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Abstract

The paper describes the general philosophy and the main architectural and tech-
nological solutions of the HELM Project for the management of large repositories of
mathematical knowledge.

The lait-motif is the extensive use of XML-technology, and the exploitation of infor-
mation in the “Web way”, that is without central authority, with few basic rules, in a
scalable, adaptable, and extensible manner.

1 Introduction

During the last two decades there has been an impressive progress in the fields of automation
of formal reasoning and mechanisation of mathematics. Still, all the available tools, whose
development typically started in a pre-Web era, clearly suffer by the adoption of an old
application-oriented architectural design, and obsolete technological solutions which hinder
their evolution and, especially, their integration with the World Wide Web.

The main point of the paper, and of the HELM Project, is to stress the potentialities
offered by the eXtensible Markup Language (XML) and most of its related technologies,
for the the creation and maintenance of a virtual, distributed, hypertextual library of formal
mathematical knowledge. The crucial point is the evolution from the old application-oriented
management of information, to a new content-centric architectural design [10], enabling the
exploitation of information in the “Web way”, that is without central authority, with few ba-
sic rules, in a scalable, adaptable, and extensible manner [14]. Establishing a layer of simply
accessible and universally understandable data is the key to allow the definition of sophisti-
cated search engines and interoperable services, and to enable higher degree of automation
and more intelligent applications.

The eXtensible Markup Language does not only provide a central technology for storing,
retrieving and processing mathematical documents, but naturally brings major benefits in
all the following, crucial issues:

Interoperability If having a common representation layer is not the ultimate solution to
all interoperability problems between different applications, it is however a first and
essential step in this direction.

Standardisation Having a common, application independent, meta-language for mathe-
matical proofs, similar software tools could be applied to different logical dialects,
regardless of their concrete nature. This would be especially relevant for all those op-
erations like searching, retrieving, displaying or authoring (just to mention a few of
them) that are largely independent from the specific logical system.



Publishing XML offers sophisticated Web-publishing technologies (Stylesheets, MathML,
..) which can be profitably used to solve, in a standard way, the annoying notational
problems that traditionally afflict formal mathematics.

Searching & Retrieving The World Wide Web is currently doing a big effort in the Meta-
data and Semantic Web area. Languages as the Resource Description Framework or
XML-Query are likely to produce innovative technological solutions in this field.

Modularity The “XML-ization” process should naturally lead to a substantial simplifica-
tion and re-organisation of the current, “monolithic” architecture of logical frameworks.
All the many different and often loosely connected functionalities of these complex pro-
grams (proof checking, proof editing, proof displaying, search and consulting, program
extraction, and so on) could be clearly split in more or less autonomous tasks, possibly
(and hopefully!) developed by different teams, in totally different languages. This is
the new content-based architecture of future systems.

All these points will be discussed at length in the following sections.

At the best of our knowledge, the only other significant Projects in the world fo-
cused on the application of XML technology to the realm of mathematics have been the
W3C Working Group on MathML (http://www.w3.org/Math/), of which we are a mem-
ber, OpenMath (http://www.openmath.org), and the MathWeb Project in Saarbriicken
(http://www.mathweb.org) which recently produced an extension to OpenMath called
OMDoc[28, 29, 30]. MathML is an essential component of HELM (see section 2.6). The
relations between HELM and OMDoc will be detailed in the following sections. As for Open-
Math, the main difference with respect to HELM is that the former has been mainly focused
on computer algebra systems and interoperability issues; in particular proofs play a pretty
marginal role in OpenMath. On the other side, we consider proofs as a main component of
mathematics (maybe the most interesting part of it); as a consequence

1. HELM is more naturally oriented towards Proof Assistant Applications [24, 25] than
Computer Algebra Systems. In particular, we used the Coq [15] Proof Assistant of
INRIA (France) as a paradigmatic example of this kind of applications'. Coq is a
well-maintained and pretty complex system, based on a very rich, higher-order logical
framework called the Calculus of (Co)Inductive Constructions (CIC).

2. the main emphasis of HELM is on rendering, browsing, management, searching and
retrieving issues. The improvements in interoperability are just a welcome side-effect
of the overall methodology.

We assume the reader is familiar with the definition of XML and some of the main W3C
recommendations.

2 Structure of mathematical knowledge

Mathematics is a richly structured language. In this section we discuss the main categories
of linguistic elements appearing in mathematical developments and the related issues. The
discussion is mostly oriented to an automatic elaboration of mathematical knowledge.

2.1 Names

In the practice of mathematics, the choice of names is essential, in that names bring a useful
and important meaning, often fixed by an ancient mathematical tradition. In general, names

1See also [17] which is a related work aimed at exporting Coq developments into OMDoc.



should be short and meaningful; moreover the same name may have different meanings
in different mathematical contexts: a long name, or path, may be used to overcome the
ambiguity in this situations, naturally leading to consider structured names, composed by
specifying a prefix denoting a path in some hierarchical structure. In the terminology of
the Web, each referentiable (mathematical) entity should have a unique Universal Resource
Identifiers (URI) [16] denoting it. A generic URI is made of a formatted (structured) string
of characters whose intended meaning is associated by the applications managing it?. URLs
(Uniform Resource Locators) are a particular kind of URIs specifically designed to name
resources accessed by means of a given standard protocol (for example the HTTP protocol).
URLs consist of a first part identifying the protocol and a host followed by a second part to
locate the resource on it.

URLs can be resolved by standard processing tools and browsers, but suffer from problems
of consistency: moving the target document leads to dangling pointers; moreover, being
physical names, they cannot be used to identify a whole set of copies located on different
servers for fault-tolerance and load-balancing purposes. URIs, instead, can be designed as
logical names, leaving to applications the burden of resolution to physical names. So, for
examples, the URI “cic:/Coq/Reals/Rdefinitions/R.con” could be used as a logical name
for the axiom which defines the existence of the set R of real numbers in the standard library
of the Coq Proof Assistant; then, an application is required to map the URI to a physical
name (an URL) as “http://coq.inria.fr/library/Reals/Rdefinitions/R.con.xml”.

2.2 Expressions and Propositions

This is probably the best settled and understood part of the mathematical language. Most
systems for automatic elaboration of mathematics rely on similar, first-order encodings of ex-
pressions and proposition, which is particularly important for interoperability issues. Recent
XML proposals, such as MathML-content [3], or the Object level of OpenMath (which are
essentially isomorphic), provide a good ground for standardisation in this field. In particular,
the base set of MathML-content elements is meant to be adequate for simple coding of most
of the formulas used from kindergarten to the end of high school and the first two years of
college, that is up to A-Level or Baccalaureate level in Europe. Subject areas covered to some
extent in MathML are: arithmetic, algebra, logic and relations, calculus and vector calculus,
set theory, sequences and series, elementary classical functions, statistics, and linear algebra.
Content markup consists of about 100 elements accepting a dozen attributes. The majority of
these elements are empty elements corresponding to a wide variety of common mathematical
operators, relations and functions, such as partialdiff (partial differentiation), leq (less
or equal) and tan (tangent). Others elements, such as matrix and set, are used to encode
various mathematical data types, and a third, important category of content elements such
as apply are used to apply operations to expressions and also to make new mathematical
objects from others. MathML 2.0 has been conceived as an extensible language: the con-
structor for defining new user-defined operators is the csymbol element, largely used inside
HELM.

2.3 Proofs

Proofs are an essential aspect of mathematics. The mathematical investigation of proofs
is a recent branch of Logic which goes under the name of Proof Theory (see e.g. [32, 35,
33, 31, 21]). According to this theory, and the so called “Curry-Howard” analogy ([23]),

2 An important difference between HELM and OMDoc is that we use structured URIs, while OMDoc relies

on flat ones. Structured URIs help their mining, facilitate search and retrieving operation, and naturally
induce a hierarchical organisation of metadata, opening the way to simple inheritance mechanisms.




formal proofs are just another category of mathematical expressions and can be conveniently
represented and serialised by standard means.

More complex is the issue of recovering a “natural” presentation of proofs from their
formal encoding. Two orthogonal and compatible ways seem to be open here (and both are
currently investigated in HELM):

1. automatic reconstruction into natural language (see e.g. [19, 20, 17])
2. computer assisted annotation, in the spirit of the Annotea project [26].

Both approaches heavily rely on the use of redundant information (see section 2.7) to improve
the readability of the text. An opposite problem is that of avoiding to clutter the proof with
too many formal details, and microscopic steps (that typically afflicts formal developments
and any kind of computer understandable information). The natural solution is that of allow-
ing the user to inspect the proof at different levels of detail, possibly “exploding” subproofs
on demand (this approach is currently under investigation in HELM). The main difficulty of
subproof explosion is recognizing in the term the reasoning threads, in order to show or hide
atomically whole threads.

2.4 Theorems and Definitions

Theorems and Definitions are the “basic blocks” of mathematical developments (they corre-
spond to the minimal explicitly referentiable entities). Accordingly, this is also the granularity
of information in HELM: each definition/statement is a stand-alone XML-file, uniquely iden-
tified via a URI (inner information is still accessible by means of XPath technology; actually,
to improve computational performance each element of HELM documents has a unique ID-
attribute inside the document). Although this solution may look natural, it is not customary
of Proof Assistant applications, where information is usually saved in bigger clusters (theo-
ries, or sections). The latter organisation has major drawbacks for the maintenability of the
library:

1. we cannot access or use a result without requiring at the same time the whole theory
inside which it is defined. Since this “theories” are often very big, many times authors
redefine locally the required results, leading to a useless and confusing duplication of
information.

2. extending a theory or a section requires the recompilation of the whole section. As
a consequence, the “library”, which is the result of the contributions of many differ-
ent authors which do not have any access to contributions of other people, tends to
have a “flat” and disorganised structure, which hinder its development as a joint and
cooperative effort.

2.5 Documents and Theories

The distinction between a document and a theory is not so evident. Roughly, a “document” is
a more or less arbitrary collection of Definition/Theorems, suitably assembled by some author
for presentational purposes. A “theory” is a a well organised sets of Definition/Theorems,
typically respecting their logical dependencies, and possibly supporting complex specification
mechanisms, like inclusion, coercion and inheritance; they are traditionally called “modules”,
in the proof assistant and functional communities. The distinction is obviously blurred, since
each document could and should profit by the sophisticated mechanisms supported by the
theory model. A possible way to make the distinction more clear is at the level of Uniform
Resource Identifiers: the structure of URIs should reflect the logical organisation inside a



given theory, but they should be freely referentiable inside any document (that does not pre-
vent the possibility of automatic checking). Our current effort inside HELM has been mostly
oriented towards “documents”. OMDoc [29] is a first standardisation attempt of a strong
notion of “theory”. The main problem with OMDoc is that the complex issue of modules is
still an open research field in the proof assistant community: each application is likely to de-
velop in the near future its own module system, possibly integrated inside the logical kernel,
and these solutions may be easily incompatible with the OMDoc specification. Maybe some
standardisation is possible indeed, but this should be the result of a complex negotiation and
cooperation between many different parties. At present, any attempt to impose a specific
solution is very likely to be rejected by the scientific community. Nevertheless, OMDoc has
the important merit to provide an interesting and constructive starting point, emphasising a
major problem of current mathematical developments.

2.6 Notation

The relation between meaning and notation is complex, and part of the descriptive power
of mathematics surely derives from its ability to represent and manipulate ideas in a highly
evolved system of two-dimensional symbolic notations [27, 22, 34]. Modern mathematical
notation is the product of centuries of refinement, and this knowledge is a main component of
every mathematical development. Moreover, mathematical notations are constantly evolving
along with the progress of the discipline, requiring sophisticated and highly modular means
to relate notation to content. The final aim is to be able to change notation with the same
confidence and easiness we change a symbolic font in modern authoring languages. To this
aim we need:

e a good presentational language. MathML-presentation [3] is indubitably a major break-
through for Web-publishing issues. It provides a sophisticated editing environment,
consisting of about 30 elements which accept over 50 attributes. Most of the elements
correspond to layout schemata, which contain other presentation elements. Each lay-
out schema corresponds to a two-dimensional notational device, such as a superscript
or subscript, fraction or table. In addition, there are the presentation token elements
mi, mn and mo that respectively stands for identifiers, numerical constants and opera-
tors, as well as several other less commonly used token elements. The remaining few
presentation elements are empty elements, and are used mostly in connection with
alignment.

Unfortunately, there are no satisfactory implementations available yet (Amaya and
Mozilla, support only a subset of MathML, and their performances are quite low).
Moreover, the browser should support sophisticated forms of interactions (e.g editing
of sub-expressions) which are potentially enabled by MathML but never explored so
far. For this reasons, we developed inside HELM a brand new engine, named GtkMath-
View (http://www.CS.UniB0.it/helm/mml-widget), with rendering® and interaction
capabilities for documents embedding MathML presentation markup. The widget will
soon adopt Gdome2 [18], a new DOM level 2 Gnome implementation that is another
by-product of HELM. Thanks to Gdome2, it will be possible to easily integrate it with
other markup engines, with the final aim of developing an architecture in which differ-
ent kind of markup could be freely intermixed in the same document and rendered by
cooperating widgets.

e a standard mean to associate notation to content. In [13] we advocated the use of XSL-
Transformations (stylesheets), [9] to this aim. XSLT is a simple, rule-based, declarative
language, explicitly conceived as a mean to specify the styling of an XML document by

3Both to screen and Postscript.



transforming the specific XML-dialect of the input document into a formatting language
suitable for rendering issues (HTML, Formatting Objects, or whatever). In particular,
a stylesheet is a set of rules expressed in XSLT to transform the tree representing a
XML document into a result tree. When a pattern is matched against elements in the
source tree, the corresponding template is instantiated to create part of the result tree.
In this way the source tree can be filtered and reordered, and arbitrary structure can be
added. A pattern is an expression of XPath [8] language, that allows to match elements
according to their values, structure and position in the source tree. XSLT is very simple,
easily maintenable, and easily extendible. Moreover, most of the stylesheets (especially
the notational ones) have a simple and repetitive structure, offering the possibility of
automatically generate them starting from an abstract and concise representation of
notational information.

2.7 Redundant Information

As any language especially meant for human readability, mathematics is highly redundant.
This is especially evident at the level of proofs, which is the most discursive part of the
mathematical language. For instance, when inside a proof we meet a statement of the kind
“by applying theorem x to the hypothesis y and z we obtain P”, the intermediate conclusion
“P” is completely redundant, since it may be inferred by x, y and z. Its only (but essential!)
purpose is to improve readability. In the rest of the paper, we shall refer to this kind on
information as the “Inner Types” of proofs, since in a Curry-Howard correspondence they
correspond to the types of inner nodes in the abstract syntax tree of the proof.

From the point of view of automatic elaboration, redundant information is just a burden:
either it could be simply ignored by the application (with loss of space and parsing time), or
it imposes a lot of additional consistency checks. On the other side, it may be essential for
different forms of elaboration, such as rendering. For these reasons, it is important to have an
explicit representation of all useful “redundant” information, but it is equally important to
keep it apart from the “core” information, which is the real informative content (the minimal
information required for automatic checking).

2.8 Metadata

To enable and facilitate specific functionalities such as searching and indexing we need to
associate to documents some additional information, describing properties of the document
and relationships among entities referred to by documents. The Web terminology for this
kind of information is metadata, that is data about data, and typically comprise labelling,
cataloguing, and descriptive information of several kinds. Some metadata are user-specified
(author, editors, keywords, and so on). Other kinds of metadata may be automatically
generated from the document itself, as, for example, the set of documents that refers a given
one; in this case, metadata are used to data-mine in a batch process redundant information
too expensive to be computed on-the-fly.

The W3C Resource Description Framework (RDF) [5, 6], provides a general model for rep-
resenting metadata as well as a syntax for encoding and exchanging these metadata over the
Web. This standard approach is domain neutral, so it doesn’t make any assumption about an
application domain, and it provides interoperability of independently developed Web servers
and clients, and in general between applications that exchange machine-understandable in-
formation on the Web: documents described by RDF metadata are effectively indexed by
search engines.

Metadata management in HELM makes a major difference w.r.t OMDoc. In the latter
specification, metadata are mixed together with other levels of markup inside a single DTD
specification. Indeed, merging together in the same document different information levels



(content, rendering, metadata) to improve one kind of processing, leads to the risk of making
less effective all the others. For instance, this is what already happened with SGML in
the publishing world: documents became loaded with many different levels of markup (for
macro- and micro-structuring, making context-dependent semantic distinctions, etc.) thereby
making the resultant collections difficult to work with.

On the contrary, in HELM we adopted the general approach of layering levels of pro-
cessing, in order to manage complexity. As a consequence, content, presentation, redundant
information and metadata are all kept separated from each other.

3 Layers of mathematical representation

In relation to any tool for the mechanisation of mathematics, it is possible to identify at least
four different representation layers of mathematical information.

internal encoding The first layer is the way information is internally encoded inside the
specific tool. This description is eventually application-dependent. Note also that it
is a really formal description, at least in the somewhat crude sense that it must be
machine-understandable.

logical encoding Good tools usually have a clear semantics, based on a clean and compact
logical system. The internal encoding has thus a natural logical interpretation that
provides a purely logical description of the information. This description is still formal,
and we can usually go back and forth from the previous descriptive layer to this one
with no loss of information. The important point is that this description is not any more
application-dependent: it just depends form the specific logical system the application
is using.

content description This layer is meant to encode the “actual content” of the informa-
tion, regardless of the grammatical (and semantical) details of the foundational logical
system. To make an example, we understand the meaning of the integer constant
0 independently by its specific logical encoding or by the axiomatisation of integers
inside the logical system. This level is thus meant to supply an “abstract syntax”,
which can be particularly useful for translation purposes. The syntax is supposed to
cover all the symbols typically used to represent concepts arising in a particular area
of mathematics. The intended semantics of these symbols is supposed to be fixed by
common agreement (as in MathML) or via auxiliary documentation. For instance, the
OpenMath Project uses Content Dictionaries (CDs) for this purpose. CDs are public
documents, representing the actual common knowledge among OpenMath applications,
fixing the “meaning” of objects independently of the application. The application re-
ceiving the object may then recognise whether or not, according to the semantics of
the symbols defined in the Content Dictionaries, the object can be transformed to the
corresponding internal representation used by the application.

presentational layer The final layer is the purely presentational layer. An important
part of the descriptive power of mathematics derives from its ability to represent for-
mal concepts in a highly evolved, two-dimensional system of symbolic notations. We
must be eventually able to recover this rich presentational format, by a process of re-
mathematization of formal content [13]. In a broader sense, under the presentational
layer we also consider all the functionalities offered to the end-user in order to facilitate
browsing, searching, retrieving and management of the mathematical repository.



3.1 The current state

Most of the current tools for the mechanisation of mathematics, just rely on two of the
previous layers: the internal and the presentational one (and often, the “presentational”
description is very poor). In Proof Assistant applications, proofs are usually saved in two
format: a script of tactics, which is essentially the sequence of commands issued by the user to
prove a statement during an interactive session, and a compiled (proof checked) one in some
internal, concrete representation language. Both representations are clearly unsatisfactory,
since they are too oriented to the specific application: the information is not directly available,
if not by means of the functionalities offered by the system itself. In particular, the language
of tactics is really system dependent, often partly documented, in continuous evolution.
Moreover, we can not even speak of the language of tactics as a high level language that is
“compiled” to the language of terms: even if writing a script interactively is much simpler
than writing the term by hands, once written it becomes impossible to understand it without
replaying it interactively. The deep reason is that the semantic of tactics is not compositional,
but depends on the current subgoal and its environment.

The notational support provided by user-friendly interfaces has been typically tightly
integrated with the systems, as a set of parsing and pretty-printing rules between the pre-
sentational layer and the internal encoding. This approach lowers the modularity of the
architecture, and essentially prevents sharing of results and reusability of software compo-
nents.

3.2 The HELM approach

One of the first methodological assumption of HELM has been to exploit all the previous
layers. XML can be naturally adopted as a neutral, application independent meta-language
for the logical layer. Each logical system will need its own specific DTD, since we cannot
escape, both theoretically and practically, the multilingual environment of the foundations
of mathematics. But this is not a limitation: the standardisation we are pursuing is not at
the logical level, but at the technological one. By explicitly introducing the logical layer, we
already made a major step, decoupling the information from the application which is meant
to elaborate it. By using a common metalanguage like XML for the description of this layer,
we open the possibility to use standard commercial tools for further processing, augmenting
at the same time the modularity and interoperability of software components. In particular,
all further transformations towards content and presentational descriptions can be suitably
defined in terms of XSL-transformations (stylesheets) between XML documents.

XML
I
Internal Encoding | Logical Encoding Content Description Presentational Format
(application dependent) 1 (logic dependent) (abstract layer) (MathML, XHTML, ....)
I

Figure 1: Representation layers of mathematical knowledge.

3.3 HELM vs. OpenMath

OpenMath makes no distinction between what we called the logical and the content level.
The reason is twofold. First, their intended applications (computer algebra systems) are
sufficiently uniform at the logical level (typically, first order classical logic) to avoid the need



for a specific intermediate format. Second, the OpenMath focus is primarily on mathematical
statements, neglecting proofs which are typically much more system dependent.

In OpenMath, the conversion of a content object to/from its internal representation in
a software application is performed by an interface program called Phrasebook. The trans-
lation is governed by the Content Dictionaries and the specifics of the application. It is
envisioned that a software application dealing with a specific area of mathematics declares
which Content Dictionaries it understands. Since Phrasebooks are an important component
of the general architecture of OpenMath, they should be public and subject to some kind
of standardisation. Adding our logical layer, Phrasebooks could be conceivably written by
means of XSL-transformation, with a major improvement for the modularity of the whole
architecture.

It is finally worth to remark that OpenMath’s Content Dictionaries are not “first class cit-
izens”. They are machine-readable, but not machine understandable; their content is largely
informal (the only part which is fully formalised is administrative information like review and
expire dates) preventing the possibility of any automatic elaboration of their content (such
as, for example, consistency checks). They are essentially conceived as background references
for the implementors of Phrase-books.

4 Interoperability

Suppose to have two systems, addressing the issue of their interoperability. The problem is to
pass from an internal encoding in system A to an internal encoding in system B and vice-versa.
As a consequence you need expertise on both systems, requiring a tight cooperation within
the two developer teams. If the information is exported in a clean logical representation,
the problem is essentially reduced to a clean logical problem of mutual encoding of two
formalisms. If moreover both logical representations relies on a common and widely used
meta-language like XML, the actual implementation of the mutual encoding is surely easier,
and may profit of standard technologies. In conclusion, anybody is free to make its own
interoperability experiments, without requiring any knowledge at all of the two systems.

Let us consider a simple example. In order to check that we exported all relevant infor-
mation from Coq we wrote our own proof-checker for the Calculus of Inductive Construction.
Having an external type-checker is a very interesting and general problem since there is no
reason to rely on Coq to check Coq proofs. Developing an external proof-checker is a clear
example of interoperability between different systems. The goal is to rewrite only the kernel
of the proof-assistant, that works on proof objects. As a consequence we are not interested
in script files, since we do not want to rewrite also the interpreter for tactics. Hence, we need
to “export” proof objects in some intermediate serialisation format, and XML provides the
standard solution.

Internal Encoding Logical Encoding

>
System A logic d dent)
ystem (logic dependent) Content ()

Interoperability

I Presentational Format
! Content (B) (MathML, XHTML, ....)
‘

Internal Encoding Logical Encoding /
System B (logic dependent)

Figure 2: Interoperability in HELM.

A more sophisticated form of interoperability can be also exploited at content level. The
idea is that the content level of different systems should largely overlap (if the two systems are
based on a common logical systems, and once a common abstract notation for usual mathe-



matical signatures has been fixed, the two content level essentially coincides). If the content
level is sufficiently formal to allow a backward translation into different logical encoding, we
have already achieved a full interoperability between the two systems. In any case, we have
clearly identified a region between the logical and the content level where interoperability
should be exploited. Any interoperability issue which could be entirely solved at content
level is then an enhancement towards full interoperability. At present, it looks feasible to
make two different systems understand each other statements by a natural encoding into a
common content representation; it looks much more difficult to make the two system under-
stand each other proofs, for the simple reason that an “abstract” syntax for proofs is much
less evident than for terms and propositions.

5 Publishing

In Figure 3 you may see a screen shot of the Web interface of HELM in which mathematical
formulas are rendered in HTML. We can also output MathML presentation markup, that
can be rendered with the tools described in section 5.2.
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Figure 3: HELM HTML-interface

In Helm there are two main ways for browsing the library, that is via Theories (or docu-
ments, see the discussion in section 2.5) or via the logical hierarchy of Definition, Theorems,
etc., providing a direct access to individual Objects. This is reflected in the organisation of the
interface (the top window in Figure 3): the hierarchy of Theories appears on the left, while
the hierarchy of objects is on the right. A Theory in HELM is an arbitrary (structured)
collection of mathematical Objects, suitably assembled by some author for presentational
purposes. Definition, Theorems, and so on may be intermixed by explanatory text or figures.
Inside a Theory we only visualise statements without proofs: a link to the corresponding
proof objects allows the user to inspect proofs, if desired.

The HTML presentational markup interpreted by the browser is generated on the fly
starting from a low level XML description of the corresponding file. This requires a complex
transformation of the document; all the transformations are performed by means of XSL-
stylesheets, as detailed in the next section.
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We offers the choice between several different modes for accessing the information, which
can be easily selected via buttons and menus in the top bar:

Raw This returns the low-level XML encoding of the information. There are three sub-
modes:

CIC pure objects of the Calculus of Inductive Constructions.
Types Inner Types of the object.
Annotation textual annotations of the object.

Moreover, you may switch on/off automatic decompression, and the resolution of URIs
to URLs inside the document.

Processed Again there are several sub-modes, according to different forms of processing:

HTML HTML output format interpreted by the browser.
MathML-content intermediate “abstract” encoding of the information.

MathML-presentation if you dispose of a MathML compliant browser, you may use
this mode as a valid alternative to HTML.

In this case, you may also switch on/off the transformations in charge of rendering
formal proofs into a more friendly and natural-language like presentational format,
and/or the transformations interpreting possible annotations of the proof.

This complex mixing of possibilities requires both a tool for managing sequences of cas-
cading applications of XSLT stylesheets, and some dynamic mechanism to resolve a link to
a suitable HTTP-request parametrised according to the user preferences (we use JavaScript,
to this aim). All these aspects will be discussed in section 7.

5.1 Transformations

In HELM, the transformation of a document from the internal representation in some logical
environment to its final rendering essentially passes through four phases: exportation, trans-
formation, presentation, and rendering. Figure 4 provides the overall, simplified architecture
of these phases. Rendering will be discussed in the next section, together with the tools
required for the management of stylesheets. In this section we focus on the first three phases.

The only phase that is application dependent is the first one. The second phase may
depend on the specific foundational framework used by the application (especially for proofs
and, less sensibly, for statements), but it is already decoupled from the specific application.
The third phase is quite general and can be shared by most systems (especially for the
notational support, that is the most prominent aspect of this phase).

In Helm, the only persistent level of the library is the low-level XML-encoding of the in-
formation obtained after the first phase: all other formats are generated on the fly by means
of XSL-transformations. Most of these transformation are pretty complex: we heavily rely
on the inclusion mechanism of XSLT to organise stylesheets in a coherent and easily main-
tenable structure. For instance, Figure 4 describes the inclusion hierarchy for rootcontent.xsl
(the stylesheet responsible for transforming low-level proof-objects into their intermediate
representation).

Finally, as it is clearly evinced in Figure 5, there are two main flows of transforma-
tions, according to the two possible outputs, namely theories or individual objects. The
most complex transformation process obviously concerns objects (and its sublevels: namely
propositions, terms and proofs, comprising the required notational support). Theories, are
essentially structured wrappers for objects, and do not require major transformations.

We shall now discuss some of the most crucial aspects of the three first phases.
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rootcontent —— headercontent.xsl contentlib.xsl
basic.xsl
arith.xsl
set.xsl
reals.xsl
ring.xsl
lambda.xsl

—— proofs.xsl ———— inductive.xsl

L— annotatedcont.xs——— objcontent.xsl| content.xsl

params.xsl|

Figure 5: Hierarchical organisation of rootcontent.xsl

5.1.1 Exportation

In the first phase the document is exported into a suitable low-level XML-dialect which is
specific to the particular logical system used by the given application. This is a batch process,
producing the actual, persistent library of HELM.

The necessity of having a specific description is motivated by the fact that the information
encoded is very different both in content and format from one system to another. A general
purpose language would hardly reflect all the small but essential details of the specific internal
representation of the information inside a given logical framework.

The main problems of this phase are to decide which information is worth exporting, to
choose the right granularity of XML documents, and the actual definition of the Document
Type Descriptor.

An additional problem of this phase is that some of the information required for presenta-
tional issues could not be directly available in the internal representation of the application.
For instance, in type-theoretical tools encoding proofs as lambda-terms via the Curry-Howard
analogy, the type of the inner nodes of the proof (which are essential to recover a human read-
able representation of the proof) is typically missing. So, while we export the information, a
tight interaction with the application is usually required.

An important choice of HELM has been to decouple the information according to its
meaning and usage. The basic information is the logical term. Inner Types are a redun-
dant information which is worth to keep explicitly, but should not confused with the “core”
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information. For this reason they are kept in a separate file; each type refers to a given
subterm by means of the unique ID attribute of the root node of the subterm. The same
mechanism is used for manual annotations of proofs: each annotation refers to a specific frag-
ment of the proof identified by means of its ID. Once more, metadata for each proof-object
(or theory document) are kept aside from it, in a companion document. This architectural
choice makes a substantial difference with respect to OMDoc, where all different markup is
essentially mixed together inside a single document.

5.1.2 Transformation

The second phase is the core of the transformation process. In this phase the document is
transformed, by means of stylesheets, into a suitable intermediate “abstract” representation
(a pointer to the formal content is preserved as an Xlink). This intermediate level is meant
to improve the modularity of the whole architecture. Many different formal notions, from
the same or even different logical environments, are typically mapped here into a same
intermediate notion. Think for instance of the definition of equality, or of an order relation:
their formal definition may be very different from one system to another (or from a sub-
theory to another), but their intended presentation (and intuitive meaning) is the same.
So, there is no point in defining a specific presentation for each formal notion. We just
define presentation for the intermediate content level, mapping all formal notions into the
corresponding “abstract” one, with the intended representation. In HELM, we have adopted
MathML-content for the intermediate representation of formulae and proofs, and have defined
a new markup for the theory and metadata level.

During the transformation phase we must also heavily work on proofs in order to put
them in a form more suitable to human reading. Typically, this requires a major reorgani-
sation of the structure of the proof (see e.g. [19, 20]): in proof assistant, proofs are typically
generated in a bottom-up fashion, while we naturally expect a top-down presentation, where
subterms (sub-proofs) appears before conclusions. Another complex issue is that of recog-
nising and managing induction principles, (one of the main proof-mechanism of constructive
mathematics and Proof assistant applications). During this phase, proofs are also integrated
with their Inner Types (intermediate conclusions, see section 2.7). One of the most inter-
esting achievements of HELM has been to prove that even these complex transformations
can be feasibly performed by means of XSL-Transformations. A different approach is the
one of Caprotti, Geuvers and Oostdijk [17] that generates the natural language rendering
off-line, using a tool written in Java; the output is then included once and for all inside the
mathematical document (that is an OMDoc instance). Even if the initial implementative
effort is surely greater, our approach has clear advantages in terms of user-configurability:
changing the natural language output, for example associating a particular verbalization to
an operator or changing the whole output to another language, just amounts to adding or
overriding a few stylesheet templates. Moreover, this can be done on-the-fly on a per-user
basis.

5.1.3 Presentation

In the third phase the document is transformed from its intermediate, abstract represen-
tation to the final presentation format (currently we produce either MathML-presentation
or XHTML; other languages could be exploited in the future). This final transformation is
based on a bunch of pre-defined or user-defined stylesheet, containing notational and stylistic
intelligence. The transformation from MathML-content to MathML-presentation requires
less than 2000 lines of XSLT (suitably organised in a hierarchical structure* similar to that

4We use, among others, a stylesheet, compliant with the last specification of MathML, written by Igor
Rodionov, of the Computer Science Department of the University of Western Ontario, London, Canada.
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of Figure 4); the extension to new csymbols external to the base set of MathML-content re-
quires for 1400 additional lines (similarly for XHTML). Most of these stylesheets have a very
simple and repetitive structure and we are currently studying the possibility to automatically
generate them from a more abstract and concise representation of notational and stylistic
information. For example, most of the rules dealing with operators of the same arity are
similar, and could be inferred from the arity, the associativity, the type (infix/prefix/postfix)
and the precedence index of the operator.

5.2 Rendering and HELM interfaces

We want every user to be able both to consult and to contribute to the library requiring as
few client-side software as possible. In particular, at least for simple consulting, we propose
a Web interface requiring only a common browser. A major technical problem we have to
face, though, is that no already available browser fully implements the MathML specification
and behaves correctly on our quite peculiar documents (for dimensions and level of table
nesting). Moreover, hyperlinks could be added to MathML documents only via XLink and,
as a consequence, we require browsers both MathML and XLink compliant. Finally, even if
we can expect such browsers to be developed in a few months, it is quite unlikely that we
will soon have the possibility of freely nesting different kinds of markup (e.g. XHTML and
MathML) in the same document; note that this feature is needed to render both mathematical
documents and user-annotated formal proofs.

For the previous reason, we have developed both stylesheets to produce MathML and a
reasonable approximation in XHTML relying on the widespread “font” symbol. The main
issues that can not be easily addressed in XHTML are:

1. Layouting of oversized formulas. A MathML engine has enough information to
correctly break lines that exceed the page width, re-indenting the output accordingly.
For XHTML, we simply let the browser create an oversized canvas. Note, however,
that in our stylesheets we already do a good work computing a coarse-grained layout
so that the event of oversized formulas is very rare and not very severe.

2. Multiple-depth formula rendering. A MathML presentation element, named
maction, is used to create a node having many children of which only one is shown;
the user can switch the visible one. We are going to exploit this element to allow to
browse the proof as a collapsing tree, where the user is free to expand the proofs in a
progressive way, augmenting the level of detail only locally. This can not be reproduced
in XHTML. To achieve a similar effect we can simply render again with different pa-
rameters the whole proof. Waiting for the new rendering, though, will probably annoy
the user, especially for huge proofs whose rendering requires many seconds.

3. Smart selections. A MathML engine could easily give the user the possibility to select
sub-expressions in a smart way. Even if it is unlikely that standard browsers could be
exploited for complex interactions (e.g. editing), just clearly identifying sub-expressions
through selection is sometimes very helpful to understand complex terms.

As a compromise to cope both with the previous limitations of XHTML and the unavail-
ability of MathML compliant browsers, we have built a plug-out for Netscape for Linux to
render MathML. The plug out, that is based on GtkMathView, remotely controls Netscape
in such a way that the browser and the plug-out windows are kept in synch. This means that
the XHTML page always refers to the object shown in the plug-out; following an hyperlink
in the plug-out or pushing the back button of the browser updates both documents. That
is important because the XHTML page holds a control frame that proposes to the user the
actions allowed on the current object (e.g. type-check it).
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In this way, the control frame and its JavaScript logic have not to be reproduced in our
plug-out, that is kept extremely simple. This solution, though, has some limitations too:

1. It requires the user to install client-side software. Moreover, it works only for Linux
boxes and, without modifications, only with Netscape Navigator.

2. Due to the way the plug-out is kept in synch with Netscape, progressive rendering is
not allowed. Hence, you have to wait for all the file to be downloaded for Netscape to
pass it to the plug-out for rendering.

3. The plug-out solution does not work for MathML embedded inside other kinds of
markups.

If we leave the problem of simply consulting the library and we focus on more advanced
forms of interaction, for example annotating formal proofs with informal descriptions of some
of the proof steps, the only feasible solution seems to require the user to install client-side
software. Here we are implicitly assuming that downloading an applet every time we need
it is too time-consuming. The reason is that the applet should be at least able to render
MathML and this requires a huge amount of bytecode to be downloaded even for simple
examples. Despite these limitations, we still would like to minimise code replication and to
keep as much as possible a coherent and unique interface. Hence, we are going to develop
other plug-outs to be integrated in the Web interface. For example, we already have a plug-
out to annotate proofs that can be invoked on the proof now displayed from the control frame
of the interface. To select the wanted plug-out, a different MIME-type is returned by the
processor.

To sum up, an on-line version of the standard library of Coq V7 can be found at the ad-
dress http://phd.cs.unibo.it/helm/library. A plug-out to render MathML documents
and another one to annotate proofs can be freely downloaded. Soon we are going to integrate
in the Web interface also our proof-checker, that will run on the server-side.

A detailed description of the implementation will be given in section 7. Before it, though,
we still have to describe the distribution model for HELM library.

6 The model of distribution

The main requirement for the user interface of HELM was to keep a minimum burden on
the user: no client-side software is needed to consult the library and as few as possible to
interact with it. Now we want the same thing to happen for contributing® to the library. In
particular, we want any user with a Web space (either HT'TP or FTP) to be able to contribute
a document/object to the library without having to install at all any particular software. The
main reason is that often the Web space of a user is hosted by a provider that does not allow
new software to be run. Moreover, the simple HTTP publishing model has already proved
itself really effective in creating really distributed hypertextual libraries of knowledge. This
is a motivation against a more centralised solution, such as a net of cooperating databases to
which a user can submit a contribution. Note that this is the solution adopted in MathWeb.

Our distribution model has been also designed to exploit the peculiar property of formal
mathematical documents of being immutable. The reason for immutability is that the cor-
rectness of a document A that refers to a document B can be guaranteed only if B does not
change. Notwithstanding this, new versions of a mathematical document could be released
(for example if a conjecture is actually proved). This is exactly what happens with packages
of operating systems distributions that, once released, can be modified only changing their
version numbers.

5Tn this context, contributing means making available a development to others; it does not mean creating
a new object or document.
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Figure 6: Implementation components diagram.

Because documents are immutable and because we already identify them with logical
names (URIs) instead of physical names (URLs), many copies of them could be simulta-
neously present on different servers and a user is free to get them from the nearest or less
overloaded server, achieving load balancing. How this is implemented in describe in the next
section.

Finally, users cannot be forced to retain a copy of their documents forever, even if other
documents refer to them. Allowing different copies on different servers, though, we give the
possibility to users interested on a contribution to make a local copy of it and to start to
distribute it. In this way, interesting documents augment the number of their instances,
avoiding the danger of disappearing, while uninteresting ones could simply stop wasting
space, being deleted.

Three main problems are still unaddressed. The first one is the choice of a naming
policy to avoid users working independently to choose the same URI for different documents,
creating name clashes. Up to now, we have not chosen or implemented a naming policy
yet. To face the issue, one solution is a centralised naming authority, even if other more
distributed scenarios may be considered.

The other two problems are related together. The first one is the way a user can locate
and download (an instance of) a document given only its name and a list of servers possibly
providing it. The second one is where to elaborate the documents, e.g. applying the trans-
formations described in section 5.1. In fact, we have chosen to avoid any additional software
both on distribution sites, which are the HT'TP or FTP servers holding users contribution,
and on the client-side, which is the host of the user consulting the library. Both problems
are addressed in the next section.

7 Implementation

The HELM architecture requires at least three components, which are distribution sites,
standard browsers and plug-outs, and active components, such as XSLT processors, to elab-
orate the information. Distribution sites are simply HTTP and FTP servers, widespread all
over the world; user browsers are HTTP clients and run on the user host. We do not want
to require all the other components to run on a a particular host.

Because they must provide answers to browsers, they must provide an HTTP server
interface; because they must ask data to distribution sites, they must also be HTTP clients.
Hence, we have chosen to organise the whole HELM architecture as an HTTP pipeline. Every
node of the pipeline can be seen as an object providing different methods, each node taking
in input a list of arguments. A different URL is associated to every method, with the search
part of the URL (the one after the question mark) used to pass the actual arguments in
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the standard way. Figure 6 shows the pipeline to apply XSLT transformations to document.
The pipelines for other tasks (e.g. proof-checking) are obtained simply substituting the XSLT
processor component.

The module client of the distribution sites is the getter, which maps URIs to URLs
and hence documents. The whole module has been largely inspired by the APT packet
management system (http://www.debian.org). The main method of the getter takes an
URI and returns a copy of an instance of the document identified by the URI, downloaded
from a distribution site providing it. In order to know which documents a server provides,
each server publishes a list of the URIs of its documents with associated the respective URLs.
Users of the getter, instead, provide to it an ordered list of servers. On a regular basis, the
getter contacts every server on the list and retrieves the list of documents provided with the
associated URLs, building a local table (a NDBM database) mapping each URI to the URL
of the first server of the list providing a copy of the document.

Due to the high verbosity of XML files, we give the user the possibility to store files
on the distribution servers in a compressed form. The getter is also responsible to deflate
them before giving them back to its client. Moreover, the getter is able to retrieve the files
both from HTTP, FTP and NFS servers, giving them back to the client using a uniform
HTTP server interface. Finally, the getter is supposed to reside closer to the user than the
distribution server; hence, our getter also implements a cache, reducing downloading time
of already retrieved documents. All these reasons forced us not to use the HTTP redirect
method to map URIs to URLs, as done by PURL (http://www.purl.org) which is an
otherwise similar tool to resolve persistent URLs (URIs, in fact) to URLsS.

The actual implementation of the getter is in PERL, the choice of the language being
motivated by the simplicity of the task, the portability of the language and the availability
of already developed libraries implementing HTTP servers and clients, files compression and
NDBM management.

Another  important  component of HELM  architecture is UWOBO
(http://www.cs.unibo.it/helm/uwobo). UWOBO is an XSLT stylesheet manager,
implemented in Java and based on Xalan (http://xml.apache.org), whose main method
is used to apply a list of stylesheets (each one with the respective list of parameters) to a
document. The stylesheets are pre-compiled to improve performance. Both stylesheets and
the document are identified using HTTP URLs and can reside on any host. In particular,
the document URL provided in HELM is usually the invocation of the getter method to
download a document whose URI is also given in the dynamic part of the URL.

Let’s now describe a typical use case of the HELM interface. First of all, as soon as a user
enters the HELM site, he is asked to specify the URLs of the getter and UWOBO to use.
These informations, that can be changed at any moment, are never forgot, being passed back
and forth as parameters to the server each time a new page is requested. Then, a list of known
documents (both theories and objects) is presented. To this aim, a special “index” method
is used to ask the getter the list of all the URIs of the known documents (that obviously
depend on the list of the known distribution servers). This is an XML document which is
then processed by UWOBO to transform it into an HTML page, with some JavaScript code
whose functionalities we are soon going to describe. The user now selects from the interface
the document to look at, together with some rendering options, such as the expected output
format or the notation to apply. Hence, the JavaScript code maps the rendering options to a
list of stylesheets and stylesheets parameters and assembles them into a suitable URL. This
URL is quite complex: essentially, it is a request to UWOBO to process a document with a
given sequence of stylesheets and parameters; however, since UWOBO retrieve the document
via the getter, the URL of the document to retrieve is in turn a HTTP-request to the getter

6Being PURL general-purpose, it can not rely on document immutability. Hence, at most one copy of a
document could be available and no load balancing is provided.
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(with the proper method and parameters). Typically, more complex is the pipeline, longer
is the actual URL (and the pipeline we described is already a simplification of the current
pipeline of HELM). Luckily, this complex procedure is completely transparent to the user.

All the machinery just described does not target the issue of searching a document in the
library, which is orthogonal and will be described in next section. However, as soon as we
will have a working implementation of a search engine, we will integrate it with the interface
simply creating a new HTTP pipeline.

8 Searching and Retrieving

Our aim is to generate an on-line database of machine-understandable mathematical doc-
uments, allowing smart searching and retrieving. Since this is also the general aim of the
W3C Semantic Web Activity Domain, we decided to re-use the same methodology and tools,
mostly based on the exploitation of metadata to improve machine-understandability and
inter-operability. Our mathematical documents, though, are already completely formalised
and highly structured, so that a large part of metadata can be generated in a completely au-
tomatic way. This is important because the main reason for the failure of complex metadata
models is usually the lack of suitable tools supporting the actual insertion of metadata: it is
often painful to add them by hand, and authoring tools may only provide a surely useful but
limited support.

Smart searching and retrieval are not only useful to browse the library, but are also
fundamental for the development of proof-assistants to effectively allow re-use of already
developed results; even if this seems a trivial requirement for a proof-assistant, nowadays
many theorems and definitions are often re-stated by the authors in the new contributions
for the mere difficulty to identify the needed notion in the already developed knowledge base.

Typical queries about mathematical objects are the following;:

e Search and retrieve all the theories in which a given knowledge item is used/referenced
(where a knowledge item is an object as a definition or a theorem).

e Search and retrieve all the theories regarding Linear Algebra.

e Search and retrieve all the theorems that are applicable to a given set of hypotheses.
e Search and retrieve all the theorems whose conclusion matches a given type pattern.
e Search and retrieve all the proofs of a given statement.

Two main kind of basic queries are clearly recognisable. The first one uses informations
as names (first query), keywords (second query) or authors which are not specific of the
mathematical domain. These queries could be resolved using standard metadata schemas
as Dublin Core (http://dublincore.org), eventually enriched with domain-specific con-
straints, for example on the list of keywords.

Although this form of searching is certainly useful for browsing purposes, it is clearly not
sufficient during proof-searching, where the names of the needed theorems/definitions are
usually unknown. The second kind of basic queries address exactly this problem and allows
to search for objects including terms satisfying some given constraints expressed as match
patterns on types (second to fourth queries). These kind of queries are extremely expensive
and become even more complex if matching on types is defined up to convertibility or some
form of isomorphism. Hence, we are going to study what are the metadata that could help
this kind of search. The ambitious goal is to automatically generate in a batch process enough
metadata to allow the previous queries to be solved on-the-fly.

All the meta-information considered must be associated both to theories/documents and
to single mathematical objects. Less expensively, though, some metadata could be associated
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to whole collections of mathematical objects (e.g. the author of a bunch of related theorems
and definitions). Hence, we associate to every theory, collection of objects or single object
an XML file (a metadata model) with the relative meta-information. The XLink technology
can be exploited to relate the metadata models to the corresponding XML data files.

The metadata model can be conveniently expressed in RDF (Resource Description Frame-
work), a W3C proposal explicitly conceived with this purpose. RDF [5, 6], provides a general
architectural model for expressing metadata and a precise syntax for encoding and exchanging
these metadata over the Web.

There are two approaches for querying RDF metadata: the more traditional is inserting
RDF metadata in a relation or XML database and rely respectively on SQL or XQL7 for
querying; the second one views the Web described by RDF metadata as a knowledge base,
applying knowledge representation and reasoning techniques on RDF metadata.

Standard (relational or object) databases are too much rigid to capture the peculiarities
of RDF descriptions and schemas. On the other hand, most query languages proposed for
semi-structured or XML data, as the XML Query Language, are totally schema-less and
cannot exploit the RDF class or property hierarchies and relationships. Moreover querying
a RDF data model as an XML instance, needs more than a single XML-QL query due to the
fact that RDF allows several XML syntax encodings for the same data model.

Then we need a query language for both RDF descriptions and schemas. A good candi-
date could be RQL (http://139.91.183.30:9090/RDF/RQL) a language for querying Portal
catalogs holding multi-purpose descriptions of community resources®. RQL adapts the func-
tionality of semi-structured query languages to the peculiarities of RDF but also extends this
functionality in order to uniformly query both resource descriptions and related schemas.

While all the other components of HELM described in this paper are already operative
and well on their way, the metadata model and its technological infrastructure is still under
development.
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