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Abstract

Mathematics is a process of creating, exploring, and connecting math-
ematical models. This paper present a formal framework for managing
the mathematics process as well as the mathematical knowledge pro-
duced by the process. The central idea of the framework is the notion
of a biform theory which is simultaneously an axiomatic theory and an
algorithmic theory. Representing a collection of mathematical models,
a biform theory provides a formal context for both deduction and com-
putation. The framework includes facilities for deriving theorems via a
mixture of deduction and computation, constructing sound deductive
and computational rules, and developing networks of biform theories
linked by interpretations. The framework is not tied to a specific un-
derlying logic; it can be used with many popular logics such as first
order logic, simple type theory, and set theory. Many of the ideas and
mechanisms used in the framework are inspired by the IMPS Interactive
Mathematical Proof System.

Keywords: Mechanized mathematics, theorem proving, computer al-
gebra, axiomatic method, little theories method.



1 Introduction

What is mathematics? Mathematics is a process of creation, exploration,
and connection. It consists of three intertwined activities:

(1) Model creation. Mathematical models representing mathematical as-
pects of the world are created.

(2) Model exploration. The models are explored by stating and proving
conjectures and by performing computations.

(3) Model connection. The models are connected to each other so that
results obtained in one model can be used in other related models.

Although mathematical models come in many forms, most mathematical
models can be considered as collections of objects related in certain ways.
For example, the standard model of the natural numbers consists of an
infinite set N = {0,1,2,...}, the usual binary relations = and < on N, and
the usual binary operations + and * on N.

By producing models and knowledge about models, the mathematics
process enlarges the body of mathematical knowledge. Mathematical knowl-
edge, in turn, fuels the mathematics process. Old ideas are joined and re-
fined into new ideas. Old structures are extended and refashioned into new
structures. Patterns are discovered and illuminated.

The mathematics process has produced a body of mathematical knowl-
edge that is truly overwhelming in both size and complexity and that is
being enlarged at an ever increasing rate. Compared to other disciplines,
the system for managing the mathematics process and the knowledge it
produces is very primitive and has changed relatively little in the last half
century. Although computers are used extensively for performing computa-
tions, they are rarely used for the other parts of the mathematics process.
The great majority of mathematical knowledge is expressed in the abbre-
viated, informal, nonmachine-readable style mathematicians have employed
for centuries. In this new century, how should mathematics be managed to
best facilitate its further production via the mathematics process and its
application in science and technology?

This question is one of the most important questions facing mathematics
today. We believe that the answer to it should be a formal framework that
meets the following goals:

(1) Model Representation. The framework provides a way of representing
models and knowledge about models.



(2) Process Facilitation. The framework facilitates the full process of cre-
ating, exploring, and connecting models.

(3) Mechanization. The framework can be effectively mechanized by a
software system.

There are two principal candidates for such a framework: computer the-
orem proving and computer algebra.

1.1 Computer Theorem Proving

Computer theorem proving emphasizes the conjecture proving aspect of the
mathematics process. An aziomatic theory T is used to represent a collection
of one or more mathematical models with similar structure. Formally, T' is a
pair (L,T") where L is a formal language and T" is a set of formulas of L. The
members of T are called the azioms of T. A model of T is a model for L in
which each axiom of T" holds. The language L provides a common vocabulary
for making statements about the models of T'. Each logical consequence of
the axioms of T holds in each model of T'. Example 1.1 below presents a,
formulation of Peano arithmetic, a famous axiomatic theory that represents
the standard model of the natural numbers.

The computer theorem proving framework is mechanized by a wide
range of different kinds of computer theorem provers. Examples include Au-
tomath [41], Coq [2], EVES [14], HOL [31], MPs [25], Isabelle [43], Mizar [46],
Nqthm [5], Nuprl [13], Otter [38], and PvS [42]. Most theorem provers are
primarily used to prove conjectures in the context of an axiomatic theory.
Other aspects of the mathematics process are usually not well supported.
However, some can be used to manage the creation, extension, and con-
nection of axiomatic theories, and some can perform computations in the
process of proving conjectures.

Example 1.1 (Peano Arithmetic) Let L be a language of second-order
logic with exactly two nonlogical constants:

(1) An individual constant 0.
(2) A unary function constant S (the successor function).

(The binary predicate constant = is considered a logical constant.)
Let I" be the set of the following three formulas of L:

(1) Yz . S(z) # 0 (0 is not a successor).



(2) Vz,y.S(z) = S(y) Dz =1y (S is injective).
(3) VP.[P(O)A(Vz .P(z) D P(S(z)))] DVz . P(z) (induction axiom).

PA = (L,T) is the (second-order) theory of Peano arithmetic. PA
specifies a single model (up to isomorphism), namely, the standard model
of the natural numbers. (The relation <, the operations + and *, and the
natural numbers 0,1, ..., are definable in PA.) O

PA is a powerful theory which is well suited for proving general theorems
about the standard model of the natural numbers. However, it has some
significant shortcomings. First, let PA’ be PA plus definitions for <, +,
*, and each natural number n. PA’ is not finitely axiomatizable (even
in second-order logic), which means that PA’ cannot be represented in a
computer system without some kind of procedural mechanism for encoding
the infinite set of definitions {1 = S(0),2 = S(S(0)),...}. Second, to prove
an equation such as 4671 x 8334 = 38928114 directly from the axioms of
PA requires a prodigious number of steps, while it can be proved with one
calculation using a simple calculator.

1.2 Computer Algebra

Computer algebra emphasizes the computational aspect of the mathematics
process. An algorithmic theory T usually represents a single mathematical
model. Formally, T' is a pair (L,T") where L is a formal language and I" is a
set of algorithms that take expressions of L as input and return expressions
of L as output. The language L provides a vocabulary for making statements
about the model T represents. The algorithms exhibit the behavior that the
model possesses. Example 1.2 below presents a simple algorithmic theory
that represents the standard model of the natural numbers.

The computer algebra framework is mechanized by computer algebra sys-
tems. Examples include Axiom [36], Macsyma [35], Maple [10], and Math-
ematica [49]. Most computer algebra systems are designed primarily for
performing computations. Computations are performed at great speed, but
the results are not always reliable. The algorithmic theories in which compu-
tation is performed are usually not represented as explicit, manageable units.
Conjecture proving is generally not possible since mathematical knowledge
is represented algorithmically.

Example 1.2 (Natural Number Arithmetic) Let L be a language of
terms of type boole (the type of truth values) and nat (the type of natural
numbers) formed from the following primitive symbols:



(1) Constant symbols of type nat: 0,1,....

(2) Operator symbols:

= : nat X nat — boole.
< nat X nat — boole.
+ : nat X nat — nat.
* nat X nat — nat.

A numeral is a member of {0,1,...}, and a numeric term is a term that
does not contain = or <.

Let eval be an algorithm that, given a numeric term ¢ of L, returns the
numeral that “equals” ¢. Let reduce be an algorithm that, given a term ¢ of
type boole, returns true [false] if ¢ is a “true” [“false”] equation or inequality.

NNA = (L, {eval,reduce}) is an algorithmic theory of natural number
arithmetic. NINA specifies the standard model of the natural numbers. O

NNA is a powerful theory for evaluating (variable-free) numeric terms
and deciding equations and inequalities between (variable-free) numeric
terms. However, it is not at all suitable for proving abstract properties
about the natural numbers. For example, it does not provide the means to
prove the fundamental theorem of arithmetic that says every natural num-
ber > 1 can be factored into a product of primes that is unique up to the
order of the factors.

Neither computer theorem proving nor computer algebra fulfills our re-
quirements for a formal framework for managing mathematics. First, some
knowledge about mathematical models is best encoded declaratively using
axioms, while other knowledge is best encoded procedurally using algorithms
that manipulate expressions. A formal framework should allow models and
knowledge about models to be represented in both ways. Second, the full
process of creating, exploring, and connecting mathematical models should
be supported. Emphasizing just conjecture proving or just computation is
not enough. The power of the mathematics process comes from the rich
interplay of creating models, exploring them using both deduction and com-
putation, and connecting them when they share structure.

1.3 Our Proposal for a Formal Framework

In this paper we propose a Formal Framework for Managing Mathematics
(FFMM). It is for managing both the mathematics process and the knowl-
edge it produces. FFMM is based on the notion of a biform theory which



is simultaneously an axiomatic theory and an algorithmic theory. A bi-
form theory represents a collection of mathematical models by encoding
knowledge about the models both declaratively and procedurally. FFMM is
intended to support the full mathematics process; it provides the means to
manage the creation, exploration, and connection of biform theories. FFMM
includes facilities for “derivation”, “theoremoid construction”, and “theory
development”. Derivation is a merger of deduction and computation which
is driven by the application of deductive and computational rules called
theoremoids. Theoremoids are constructed from theorems and aziomoids,
the primitive theoremoids of a biform theory, by applying theoremoid con-
structors that guarantee soundness. And networks of biform theories are
developed by creating biform theories, linking them with interpretations,
and installing theorems, theoremoids, and definitions in them.

Many of the ideas and mechanisms used in FFMM are inspired by the IMPS
Interactive Mathematical Proof System [22, 25, 26]. The mechanization
of FFMM is not discussed in this paper. We believe that FFMM can be
mechanized using ideas embodied in computer theorem proving systems like
IMPS and computer algebra systems like Maple.

There is a large body of work related to our proposal concerning (1) log-
ical frameworks for managing logical systems and investigating metalogical
issues and (2) the problem of integrating computer theorem proving and
computer algebra. This related work is discussed at the end of the paper in
section 10.

The rest of the paper is organized as follows. The properties that a back-
ground logic for FFMM must satisfy are discussed in section 2. The notions
of a transformer for representing expression manipulating algorithms and a
formuloid for representing asserted formulas and transformers are presented
in section 3. Section 4 defines the central notion of a biform theory, while
section 5 defines an interpretation of one biform theory in another. Deriva-
tion, theoremoid construction, and theory development are the subjects of
sections 6, 7, and 8, respectively. The paper then ends with a conclusion in
section 9 and a survey of related work in section 10.

2 Logics

The background logic for FFMM is required to satisfy a small set of proper-
ties. These properties are expressed in the notion of an “admissible logic”
defined in this section. The syntactic properties of an admissible logic’s
language are given by the definition of an “admissible language”, while the



semantic properties are embodied in definition of a “model” for an admissi-
ble language.
A language is a triple L = (T, &, 1) where:

(1) T is a set of syntactic objects called the types of L.
(2) € is a set of syntactic objects called the ezpressions of L.
(3) 7:& — T is a total function.

The phrase “F is an expression of L of type o” means that £ € £ and
T(E) = o

Let E be an expression of L. A subezpression of E is an expression E’
of L that occurs at some position p in E, while a subexpression occurrence
in F is a position p in E at which some expression E’' of L occurs. Let
F be a subexpression of F that occurs at position p in F, and let Ey be
an expression of L such that 7(F;) = 7(E2). The result of replacing F; at
position p in E with Fj is the syntactic object denoted by E[p/FEs]. We
assume that a language satisfies the following additional property:

(4) If E, Ey, Ey are expressions of L such that F; is a subexpression of E
that occurs at position p in F and 7(E1) = 7(E2), then E[p/Es] is an
expression E' of L such that 7(E') = 7(E).

A language L = (T,&,7) is admissible if the following conditions are
satisfied:

(1) * € T. (% denotes the type of truth values.)
(2) true and false are expressions of L of type x.

(3) If E1, Ey € € with 7(E1) = 7(E2) = «, then (E; ~ FEj3) is an expression
of L of type .

(4) If E,E'" € €& with 7(E) = 7(E') = %, then =F and (E D E’) are
expressions of L of type *.

(5) If By,...,E, € £ with 7(Fy) = --- = 7(E,) = * and n > 0, then
N(Er,...,Ey) and V(En,. .., E,) are expressions of L of type *.

(6) If Eq,E9,E3 € £ with 7(E1) = * and 7(E2) = 7(F3) = «, then
if(E1, E9, E3) is an expression of type a.



true and false denote the truth values true and false. (E; ~ E) asserts
the equivalence of E; and Es.! —E;, (E; D Es), A(Ey,...,E,), and
V(E1,...,E,) assert the usual propositional combinations. if(F, Fs, E3)
denotes Fs if F4 is true and denotes F3 otherwise. An admissible language
may contain other kinds of types and expressions.

A formula of an admissible language L is an expression of L of type x.
Parentheses in expressions may be suppressed when meaning is not lost.

Example 2.1 (Standard Language of Proposition Logic) Let Py be
an infinite set { Py, P, ...} of symbols called propositional variables or letters.
The set &, of expressions is defined inductively by:

(1) If P € Py, then P € £
(2) true,false € £.
(3) If E,E' € &y, then —E,(E D E') € €.

The other kinds of expressions of an admissible language are introduced by
the following definitions:

V() stands for  false.

V(E1,...,E,) stands for  (-E; D V(Es,...,E,)) wheren > 1.
ANEr, ..., Ey) stands for  —-V(=FE1,...,—E,;) wheren > 0.
(B =~ Es) stands for  A((E1 D E»), (E2 D Ey)).
if(El,EQ,Eg) stands for /\((El D) EQ), (—|E1 D) Eg))

Let Tp = {*} and 71 : €pi = Tpi. Then Ly = (Tp1,Epl, Tp1) is an
admissible language which we call the standard language of propositional
logic. O

A model for an admissible language L = (T,&,7) is a pair M = (D, V)
such that:

(1) Disaset {D, : a € T} of nonempty domains such that D, = {T, F}.
(T #F.)

(2) V is a partial function? such that, if E € £ and V (E) is defined, then
V(E) € DT(E)

'In a standard logic, (E1 ~ E>) means that E: and E> denote the same value, while
in a partial logic like LUTINS [16, 17, 18], the logic of MPS, (E; ~ E;) means that either
E; and E> denote the same value or E; and F» are both undefined.

>The domain of definition of a function f is the set Dy of values at which f is defined,
and the domain of application of f is the set D} of values to which f may be applied. A
function f is total if Dy = D} and partial if Dy C D}. Thus a total function is a special
case of a partial function.




(3) V(true) = T and V (false) = F.

(4) Let E1,Ey € € with 7(Ey) = 7(Eq) = a. If V(Ey) and V(E3) are
defined, then V(Ey ~ Ey) = Tif V(Ey) = V(E3),and V(E; ~ E3) = F
otherwise.

(5) Let E,E' € £ with 7(E) = 7(E') = x. f V(E) and V(E') are defined,
then:

(a) V(-=E) =T if V(E) =F, and V(-E) = r if V(E) = 1.
(b) V(IEDE)=Fif V(E)=Tand V(E') =F,and V(ED E') =T

otherwise.

(6) Let Ey,...,E, € £ with 7(Fy) = --- = 7(E,) = *and n > 0. If
V(E1),...,V(Ey) are defined, then:

(a) A(Eq,...,E,) = Tif, for all 4 with 1 < i < n, V(E;) =T, and
A(E1, ..., Ey) = F otherwise.

(b) V(E1,...,E,) = Fif, for all i with 1 <3 < n, V(E;) =F, and
V(E1,...,E,) =T otherwise.

(7) Let El,EQ,Eg € & with T(El) = * and T(EQ) = T(Eg) = o If
V(E1), V(E2), and V(E3) are defined, then V (if(E1, Fy, E3)) = V(E>)
lf V(El) =T and V(If(El,EQ,Eg)) = V(Eg) lf V(El) = F.

(8) Let E,Ey ~ E5 € £ such that E; is a subexpression of E that occurs
at position p in E. If V(E; ~ E3) = T, then V(E ~ E[p/Es]) = T.

When V(E) is defined, V(FE) is called the value of E in M. When V(E)
is undefined, F is said to be undefined or nondenoting in M. M is a total
model if V is total.

Example 2.2 (Models of Propositional Logic) Let D, = {T,F} and
V : Ep — Dy such that:

(1) For all P € Py, V(P) is defined.

(2) V(true) =T and V(false) =F.

(3) Forall E € £y, V(=E) = Tif V(E) = F, and V(=E) = F if V(E) = .
(4)

4) For all E,E' € €, V(E D E') =Fif V(E) =T and V(E') = F, and
V(E D E') = T otherwise.



({D«},V) is a total model for L, which we call a standard model of propo-
sitional logic. O

An admissible logic is a pair K = (L, M) such that L is an admissi-
ble language and M is a set of models for L. L is called the language of
K.? Many common logics can be formulated as admissible logics (including
propositional logic, first-order logic, and simple type theory).

Let K = (L, M) be an admissible logic. Let M = (D,V) € M, A be
a formula of L, and ¥ be a set of formulas of L. M satisfies A, written
M E A if V(A) = T. M satisfies ¥, written M |= X, if M satisfies each
B € ¥. A is valid, written = A, if every model in M satisfies A. A is a
logical consequence of ¥, written ¥ = A, if every model in M that satisfies
3 also satisfies A.

Proposition 2.3 Let K = (L, M) be an admissible logic, A be a formula
of L, ¥ and X' be sets of formulas of L, and E and E1 ~ E5 be expressions
of L.

(1) If M € M, then M |= true.

(2) L=Aiff £ = A~ true.

(3) ¥ = false iff there is no model in M that satisfies X.
(4) If L C Y and T = A, then ¥’ = A.

(5) If Ey is a subexpression of E that occurs at position p in E, then

Proof Follows immediately from the definition of a model for an admissible
language. O

Let F and Fq ~ F, be expressions of L such that E; is a subexpression
of E at position p, and let C' be a set of formulas occurring in F. C' is a
local context in E at p if, for all sets 2 of formulas of L,

xuc IZ E1 jad E2
implies
Y | E ~ E[p/Es).

3We could have defined an admissible logic to include a family of languages. Instead an
admissible logic includes a single language (which will usually contain an infinite reservoir
of each kind of symbol).
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In other words, a local context in an expression F at a position p is a set
of formulas in F that govern the subexpression of E occurring at p. For
example, {A} is a local context at the position where B occurs in A D B.
The method of local contexts [40] is a powerful idea that is applicable to
both deduction and computation. See [25, 27] for examples of how local
contexts are used in IMPS to facilitate deduction and computation.

An admissible logic with local contexts is a triple K = (L, M, k) such
that:

(1) (L, M) is an admissible logic.

(2) k is function such that, for each expression F of L and subexpression
occurrence p in E, k(E,p) is a local context of E at p.

Example 2.4 (Propositional Logic) Let K, = (Lpi, Mpi,Kkp1) where
My is the set of standard models of propositional logic and ki (E,p) is
defined as follows:

(1) If p is the subexpression occurrence of E in E itself, then xy (E, p) = 0.

(2) If =E' occurs in E at position p’ and E' occurs at position p in E,
then kpi(E,p) = kp(E,p').

(3) If (E' D E") occurs in E at position p’ and E’ occurs at position p in
E, then kp(E,p) = kp(E,p').

(
(4) If (E" D E") occurs in F at position p’ and E” occurs at position p in
E, then kp(E,p) = kpi(E,p') U{E'}.

Notice that, if E = A(F1,...,FE,) and p is the subexpression occurrence of
E; in E for some i with 1 < i < n, then sy (E;,p) is logically equivalent to
{Er,..., Ei}.

K, is a formulation of classical propositional logic as an admissible logic
with local contexts . O

3 Transformers and Formuloids

Let L; = (T4, &4, 7;) be an admissible language for ¢ = 1,2. A transformer I1
from L; to Lo is an algorithm that implements a partial function 7 : £ —
Ey. For E € &1, let II(E) mean w(E), and let dom(II) denote the domain
of m, i.e., the subset of £; on which 7 is defined. II resides in a language
L =(T,&, 1) if Il is a transformer from L to L and, for all expressions F €

11



dom(Il), 7(E) = 7(II(E)). IIg,E, denotes a transformer that implements
7 : &1 — €2 such that the domain of 7 is {E;} and 7(E;) = Es.

A transformer is intended to be an expression transforming algorithm
such as an evaluator, a simplifier, a rewrite rule, a rule of inference, a decision
procedure, or a translation from one language to another. Various examples
of transformers will be given later in the paper.

Suppose II is a transformer residing in a language L. Let E be an ex-
pression of L and E; be a subexpression of E that occurs at position p
in E. The application of II to E at p, written II(E,p), is the expression
E[p/II(Ey)]. II(E,p) is undefined if II(E}) is undefined. (Since L is a lan-
guage, E[p/II(E1)] is an expression of L whose type equals 7(E) if II(E;) is
defined.)

Let L be an admissible language. A formuloid of L is a pair § = (k, X)
where:

(1) k €{0,1,2,3} is the kind of 6.

2) If K =0, then X is a formula of L.

(2)
(3) If k € {1,2,3}, then X is a transformer II residing in L.
(4) If k € {2,3}, then, for all expressions E € dom(II), 7(E) = .

A formuloid is formulary if its kind is 0 and is transformational if its kind
is 1, 2, or 3. The purpose of a formulary formuloid is to assert that its
formula is true, and the purpose of a transformational formuloid is to assert
that each member of a certain set of formulas generated by its transformer
is true.

Let 8 = (k, X) be a formuloid where X is a formula A of L or a trans-
former II residing in L. The span of 6, written span(6), is the set of formulas
of L defined as follows:

) If K =0, then span(f) = {A}.

(

) If K =1, then span(f
) If k = 2, then span(#
) (

(1 ) =
2 ) (E) : E € dom(TT)}.
(3 )

(BE~T
{EDT(E) : E € dom(IT)}.
(4 {11

The operation of 6, written oper(f), is the transformational formuloid
(1,1 arstrue) if £ = 0 and is @ itself if £ € {1,2,3}.

A formuloid has two meanings. Its aziomatic meaning is its span of
formulas, and its algorithmic meaning is its operation.

If £ = 3, then span(0) (E) D E: E €dom(Il)}.

12



Remark 3.1 The great majority of commonly used rules of inference can
be represented by transformational formuloids. The exceptions include rules
like universal generalization (V-introduction) and existential instantiation
(Z-elimination). In [20], we show how rules of inference of this kind can be
realized with conservative extensions made from “profiles” (see section 8).
a

4 Biform Theories

In this section we introduce the central notion of a “biform theory” which is
simultaneously an axiomatic theory and an algorithmic theory. Represent-
ing a collection of mathematical models, a biform theory provides a formal
context for deduction and computation.

A biform theory is a pair T = (K, ) where:

(1) K= (L, M,k) is an admissible logic with local contexts.
(2) T is a set of formuloids of L called the aziomoids of T.

The span of T, written span(T'), is the union of the spans of the axiomoids
of T, i.e.,

U span(6).

el

The operations of T, written oper(T), is the set of operations of the ax-
iomoids of T, i.e.,

{oper(0) : 0 € T'}.

T can be viewed as having two forms simultaneously: (L,span(T)) is its
form as an axiomatic theory and (L,oper(T)) is its form as an algorithmic
theory.

A model of T is a model M € M such that M = span(T). T is satisfiable
if there is a model of T. Let A be a formula of L. A is an aziom of T if
A € span(T). A is a theorem of T, written T' = A, if span(T") = A. Let
thm(T') denote the set of theorems of T'. A theoremoid of T is a formuloid
0 of L such that, for each A € span(0), T = A. Obviously, each axiomoid of
T is also a theoremoid of T'. Let thmoid(T") denote the set of theoremoids
of T.

13



Example 4.1 (Standard Theory of Propositional Logic) A popular
axiomatization of classical propositional logic (formulated with the connec-
tives — and D) consists of three axiom schemata and the rule of inference
modus ponens [39]. Following this axiomatization, we will formalize propo-
sition logic as a biform theory. Let T}, = (K1, I'p1) where

I'p1 = {61, 62,05, modus-ponens, V-def, A-def, ~-def, if-def, reduce }

is a set of (transformational) formuloids of Ly such that:

(1)

01 = (1,1I)) where, if E has the form
(45 (B> 4)),

then II(E) = true, and otherwise II(E) is undefined.

02 = (1,1I)) where, if E has the form
(ADBDC)D((ADB)D>(AD0))),

then II(E) = true, and otherwise II(E) is undefined.

03 = (1,II)) where, if E has the form
(FAD>=B) D (BDA),
then II(E) = true, and otherwise II(E) is undefined.
modus-ponens = (1,1I)) where, if E has the form
A(A, (A D B)),

then II(F) = B, and otherwise II(E) is undefined.

V-def = (1,II)) where, if E = V(), then II(E) = false; if E has the
form

V(AL An)

where n > 1, then II(E) = (-A; D V(4s,...,4,)); and otherwise
II(E) is undefined.

14



(6) A-def = (1,1I)) where, if E has the form
A(A1, ..., Ap),

then II(E) = =V(—A41,...,74y), and otherwise II(E) is undefined.

(7) ~-def = (1,1I)) where, if E has the form
(El ~ Eg),

then II(E) = A((E1 D E2),(E2 D E1)), and otherwise II(E) is unde-
fined.

(8) if-def = (1,II)) where, if E has the form
if(E1, E, E3),

then II(E) = A((E1 D E»), (—E1 D E3)), and otherwise II(E) is unde-
fined.

(9) reduce = (1,II)) where II(E) is some simplified conjunctive normal
form of E. (For example, if F' contain no members of Py, then II(E)
is either true or false.)

Ty is a biform theory which we call the standard biform theory of proposi-
tional logic.

T, contains the machinery of both an axiomatic and an algorithmic
formalization of classical propositional logic; its axiomoids provide the basis
for both deduction and computation. O

Let T; = (K, T;) be a biform theory for i = 1,2. T} is a subtheory of Ty
and T is an extension of Ty, written T} < Th, if I'y C Ty. If T'= (K,T) is
a biform theory and X is a set of formulas of the language of K, then T'[X]
is the extension 7" = (K, T’ UT") of T" where I'" = {(0,A) : A € X}. For a
single formula A, let T[A] mean T[{A}].

5 Interpretations
Let K; = (L;, M;, k;) be an admissible logic with local contexts and T; =

(K;,T;) be a biform theory for i = 1,2. A translation from T} to T3 is a
transformer ® from L to Lo such that:
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(1) ®(true) = true and ®(false) = false.

(2) If By ~ Ey, -A, A1 D A, /\(Al,...,An), V(Al,...,An), and
if(A, Eq, E9) are expressions of L; and ®(E;), ®(E2), ®(4), ®(41),
.., ®(Ay) are defined, then

(a) ®(F1 ~ Ey) = ®(E) ~ O(E»)

(b) @(—4) = ~2(4)

(c) ©(A41 D Az) = 2(A41) D 2(42)

(d) ®(A(A1,...,4n)) = A(R(A1),...,2(4n)).
(e) (V(A1,...,4n)) = V(2(A1),...,2(4n)).
(f) @(if(A, By, By)) = if(2(A), ®(E1), P(E?))

(Notice that, if F4 and FE5 are expressions of L; of the same type and ®(E)
and ®(FE,) are defined, then ®(E;) and ®(E>) are also of the same type.)
An interpretation of T1 in Tb is a translation ® from T; to 75 such that,
for all formulas A of Ly, if T} |= A and ®(A) is defined, then Ty = ®(A).
In other words, an interpretation is a translation that maps theorems to
theorems (see [15, 18, 47]).

Interpretations are a powerful mechanism for connecting biform theories
with similar structure. They serve as conduits for passing information (in
the form of theorems) from abstract theories to more concrete theories, or
indeed to other equally abstract theories. They enable the little theories
method [24], in which mathematical knowledge and reasoning is distributed
across a network of theories, to be applied to biform theories.

In the rest of this section, let ® be a translation from 77 to T5.

Proposition 5.1 (Relative Satisfiability) If ® is an interpretation of Ty
in Ty and Ts is satisfiable, then Ty is also satisfiable.

Proof Assume T is satisfiable. Then there is some M € My such that
M E A for every theorem A of T>. Now assume that T} is not satisfiable.
Then T} |= false by part (3) of Proposition 2.3. Since ® is an interpretation
of T} in Ty, T, = ®(false) and hence T, = false, which contradicts the
satisfiability of T» by part (3) of Proposition 2.3. O

Interpretations can be used to transport (both formulary and transfor-

mational) theoremoids, as well as theorems, from one biform theory to an-
other.
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Suppose II is a transformer residing in L;. Let ®(II) be an algorithm
that implements the function that maps ®(E) to ®(II(E)) for each E €
dom(®)Ndom(IT) with I[I(E) € dom(®). If ®(II) is defined (i.e., the algorithm
exists), ®(II) is clearly a transformer residing in L.

Suppose 0 is a formuloid of L;. Let ®(#) be the formuloid of Ly defined
as follows:

(1) If @ = (0,A), then ®(0) = (0,2(A)) if ®(A) is defined and ®(0) is
undefined otherwise.

(2) If 0 = (k,II) where k € {1,2,3}, then ®(0) = (k, ®(II)) if ®(II) is
defined and ®(0) is undefined otherwise.

Proposition 5.2 If ® is an interpretation of Ty in Ty, 6 is a theoremoid of
T1, and ®(0) is defined, then ®(0) is a theoremoid of Ts.

Proof Assume @ is an interpretation of T3 in T.

Let & = (0, A) be a theoremoid of Tj. Then T} = A. Assume ®(A) is
defined. To show that ®(0) = (0, ®(A)) is a theoremoid of T5, we must show
that 75 = ®(A), but this follows immediately from ® being an interpretation
of T1 in T2.

Now let & = (1,II) be a theoremoid of 77 (where II is a transformer
residing in L;). Assume ®(II) is defined. To show that ®(0) = (1, (1))
is a theoremoid of Ty, we must show Ty = ®(F) ~ ®(II(E)) for all E €
dom(®) N dom(II) with II(E) € dom(®). Let E € dom(®) N dom(II) with
II(F) € dom(®). Then T; = E ~ II(E) since 0 is a theoremoid of T} of
kind 1, and thus 75 = ®(E ~ II(E)) since ® is an interpretation of T} in T5.
Therefore, T = ®(F) ~ ®(II(E)) since (E ~II(E)) = ®(F) ~ O(II(E)).

When 6 = (k,II) is a theoremoid of T for k = 2 or 3, the argument is
similar to the case when k = 1. O

6 Derivation

In FFMM, a biform theory provides a context for performing both deductions
and computations, and more importantly, operations in which deduction and
computation are inextricably intertwined. We want to replace the unfortu-
nate separation between deduction and computation with a new notion that
combines the two, which we will call derivation.

We need a formal workspace for building derivations, that is, intertwined
deductions and computations. The workspace should work with biform the-
ories of any fixed admissible logic with local contexts. Our solution is the
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‘ Name ‘ Tuple? ‘ Meaning

node (1,N1,N2) where Nl,NQ are {Nl} = Ny
implication formulary and T7 = T5.

node (2,N1,N2) where N1, No are {Nl} <~ {NQ}
equivalence formulary and 77 < T5.

one-to-many | (3, Ng,{Ni,...,Nn}) where | {No} < {N1,..., Ny}
N(),Nl,... ,Nm are
formulary and
T=Ty="-=Tp.
assumption (4, Nl,NQ) where T7 < Th. N1 > Ny 5
unconditional (5, Ny, Ng) where T7 = T5. N1 =Ny
equivalence
conditional (6, Ny, Ny, N2) where Ny is If Ty |: Ey, then
equivalence formulary and 77 = Tb. N1 = Nos.

Table 1: Derivation Graph Connectors

notion of a “derivation graph” defined in this section. It is a generalization
of the notion of a deduction graph employed in IMPS.

Let K = (L, M, k) be an admissible logic with local contexts. A (deriva-
tion graph) node N of K is a pair (7, FE) such that 7" = (K,I") is a biform
theory and F is an expression of the language of K. N is formulary if E is
a formula. The node (7, E) is intended to represent the expression E in the
context of the biform theory T. A derivation graph node is analogous to a
sequent node in an IMPS deduction graph; T plays the role of the context
and E plays the role of the assertion.

Let A1 and Ay be finite sets of formulary nodes of K. A; = As means
that, if T3 = A; for each Ny = (T1,4;) € Ay, then Tp = Ay for each
Ny = (TQ,AQ) € Ag. Ay & Ay means both Ay = Ay and Ay = Ay hO]d,
and A; = N means Ay = {N}.

Let Ny = (T, E1) and Ny = (T3, E2) be nodes of K. N1 > Ny means
Ty |: FEi ~ Ey. N7 = Ny means N; > Ny and 17 = 15 hold.

There are six kinds of (derivation graph) connectors. They are given
in Table 1. Each connector is a tuple consisting of a kind k € {1,...,6}
and a certain collection of nodes. The intended meaning of each kind of
connector is given in the table. A derivation graph connector is analogous

iN; = (T;, E;) for i with 0 < i < m.
51f N1, Ny are formulary and E; = E, then the meaning of (4, N1, Na) is {N1} = Na.
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to an inference node in an IMPS deduction graph.

A derivation graph of K is a pair G = (N, C) such that N is a finite set
of nodes of K and C is a finite set of connectors that contain only nodes in
N. A derivation graph is intended to record a web of deductions and compu-
tations. Trees of formulary nodes connected by the six kinds of connectors
represent deductions, while sequences of nodes connected by assumption,
unconditional equivalence, and conditional equivalence connectors represent
computations.

The derivation graph ((,0) is the empty derivation graph. Derivation
graphs are built from the empty derivation graph by applying “operations”
that add new nodes and connectors to a derivation graph.

There are nine primitive (derivation graph) operations for adding nodes
and connectors to a derivation graph. They are defined in Table 2. Each
operation takes a derivation graph G = (N,C) (of an admissible logic K =
(L, M, k) with local contexts) and other objects (the inputs), and returns a
derivation graph

G'=WNUN',cuCl)

obtained by adding a finite set A/ of nodes (the output nodes) and a finite
set C' of connectors (the output connectors) to G. (The output nodes are
required to be nodes of K.)

add-node simply adds a node to the derivation graph. add-assumption
creates a new node by adding a new axiom to the theory of a node in
the derivation graph. split-implication, split-conjunction, and split-conditional
are restructuring operations. And apply-k-thmoid, for k£ € {0,1,2,3}, are
operations for applying theoremoids to nodes in the derivation graph. They
provide the means to employ the formulas and transformers asserted by the
axiomoids and other theoremoids of biform theories.

Each operation is well defined in the sense that, if an operation is applied
to a derivation graph, the result is still a derivation graph. A derivation
graph is admissible if it is the empty derivation graph or it is the result of
applying an operation to an admissible derivation graph.

Remark 6.1 Composite derivation graph operations that apply primitive
derivation graph operations in certain specified ways can be introduced
in the style of tactics [30]. For example, a tactic to “weaken” a node
N = (T[A],E) to the node N' = (T, E) in a derivation graph G could
use add-node to add the node (T, F) to G and then use add-assumption to
add the connector (4, N',N) to G. O
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Name ‘ Input Objects ‘ Output Objects
add-node = (K,TI') is a biform | N = (T,E)
theory
F is an expression of L
add-assumption | N = (T,E) e N N'"=(T[A],E)
A is a formula of L C=(4,N,N')
split-implication | N = (T, A1 D A2) e N | N' = (T[A4], A2)
C=(2,N,N’)
split-conjunction = (T,N(A1,...,4,)) | Ny = (T, 4;)
fori=1,...,n
C=(3,N,{Ni,...,N,})
split-conditional | N = (T,E) e N Ny = (T[(E,p)], A)
p is a position of No = (T[k(E,p)],-A)
If(A, El, EQ) in F (T E[p/El])
N2 = (T, E[p/Ez])
= (6, No, N, V1)
02 = (6 NO,N Ny)
apply-0-thmoid | N = (T,E) e N = (T, E[p/true])
p is a subexpression C (5,N,N’)
occurrence of A in E
0=1(0,A) €
thmoid(T[k(E, p)])
apply-1-thmoid | N = (T,E) e N N'=(T,1I(E,p))
p is a subexpression C = (5N,N’)
occurrence in F
0= (1,1II) €
thmoid(T[k(E, p)])
and II(E, p) is defined
apply-2-thmoid | N = (T, E) € N N = (T,TI(E))
0 = (2,II) € thmoid(T) | C = (1,N,N’)
and II(E) is defined
apply-3-thmoid | N = (T,E) e N N' = (T,II(E))
0 = (3,II) € thmoid(T') | C =(1,N',N)

and II(E) is defined

Table 2: The Primitive Derivation Graph Operations
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Let G = (N,C) be an admissible derivation graph, and let AU{N} C N
be a set of formulary nodes. (A, N) is an atomic deduction in G if one of
the following conditions is satisfied:

(1) A ={N}.

(2) A ={N'} and C contains one of the following connectors: (1, N', N),
(2,N',N), (2,N,N'), (4, N',N), (5,N',N), or (5, N, N").

3) A = {N'} and C contains (3,N',{Ni,...,Ny}) where N €
{Ni,...,Np}.

(4) A={Ny,...,Np} and C contains (3, N, {N1,...,Np}).
(6) A ={N',N"} and C contains (6, N',N",N) or (6, N', N, N").

A set D of atomic deductions in G is a deduction from A to N in G if
one of the following conditions is satisfied:

(1) D=A{(A,N)}.

(2) D = D' UD" such that D' is a deduction from A’ to N, D" is a
deduction from A” to N, N' € A’, and A = (A"\ N") UA".

Lemma 6.2 (Soundness of Deductions) Let G be an admissible deriva-
tion graph. If there is a deduction from A to N in G, then A = N.

Proof Let G = (N,C) be an admissible derivation graph and D be a
deduction from A to N = (T, A) in G. Our proof will be by induction on
the cardinality of D. The proof of the induction step is obvious, so we will
only prove the basis. Let (A, N) be an atomic deduction in G. We must
show that, if T |= A’ for each N' = (T, A’) € A, then T | A.

Case 1: A = {N}. Obvious.

Case 2a: A ={N'} and C = (1,N',N) € C. Let N' = (T", A"). Then C
must have been added to C by an application of apply-2-thmoid to N’ and
a theoremoid of kind 2 or of apply-3-thmoid to N and a theoremoid of kind
3. This implies, in both cases, that T = T" and T = A’ D A. Hence, if
T'|= A, then T = A.

Case 2b: A = {N'} and (C; = (2,N',N) € Cor Cy = (2,N,N') € C).
Let C; € C and N' = (T", A"). Then C; must have been added to C by an
application of split-implication to N’. This implies that A’ = A” D> A and
T = T'[A"]. Hence, if T' = A’, then T' |= A. The case when Cy € C is
similar.
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Case 2c: A={N'} and C = (4,N',N) € C. Let N' = (T", A’). Then C
must have been added to C by an application of add-assumption to N’ and
A". This implies T = T'[A"] and A = A’. Hence, if T’ = A, then T = A
by part (4) of Proposition 2.3.

Case 2d: A = {N'} and (C; = (5,N',N) € C or Cy = (5,N,N') € C).
Let C; € C and N' = (T", A’). Then C; must have been added to C by an
application of apply-0-thmoid or apply-1-thmoid to N'. In the first case, T =
T', p is subexpression occurrence of B in A’, (0,B) € thmoid(T'[k(4’,p)]),
and A = A'[p/true]. Then T |= A’ ~ A by part (2) of Proposition 2.3 and
the fact that K is an admissible logic with local contexts. In the second case,
T =T', p is a subexpression occurrence in A’, (1,1I) € thmoid(T'[k(4’, p)]),
and A = II(A',p). Then T = A’ ~ A by the fact that K is an admissible
logic with local contexts. Hence, in both cases, if T' = A', then T | A.
The case when Cy € C is similar.

Case 3: A = {N'} and C = (3,N',{Ny,...,Ny}) € C where N €
{N1,...,Ny}. Let N' = (T, A’). Then C must have been added to C by
an application of split-conjunction to N’. This implies that T = T’ and
A= NA(Aq,...,A,) with A € {A4,...,A,}. Hence, if T' = A’, then T = A.

Case 4: A = {Niy,...,Np} and C = (3, N,{Ny,...,Ny}) € C. Let
N; = (T;,4;) for i = 1,...,m. Then C must have been added to C by an
application of split-conjunction to N. This implies that T =T; = --- =T},
and A = A(Ny,...,N,). Hence, if T; = A; for all ¢ with 1 < 4 < n, then
T E A.

Case 5: A ={N',N"} and (C; = (6, N",N',N) € Cor Cy =
(6,N" N,N') € C). Let C; € C and N' = (T', A’). Then C; must have
been added to C by an application of split-conditional to N’ and a position
p of some expression if(Ag, A1, A3) in A’. In one case, T = T', N" =
(T[k(A,p)],Ap) and A = A'[p/A;]; while in another case, T = T', N" =
(T[k(A,p)],—Ap) and A = A'[p/As]. Let N" = (T", A”). Hence, in both
cases, if T" |= A", then T = A’ ~ A, and if also T' = A’, then T = A. The
case when Cy € C is similar. O

A deduction from A to N in G is grounded if each member of A has the
form (T,true). A proof of a node N in G is a grounded deduction (from
some A) to N in G.

Let N,N' € N where N = (T,E) and N' = (T',E'). A computation
from N’ to N in G is a sequence (N1, ..., N,) of nodes of G with N’ = Ny,
N = N,, and n > 2 such that, for all 1 with 1 < ¢ < n — 1, one of the
following conditions holds:

(1) (4, Ni,Ni+1) eC.
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(2) (5,Ni,NZ’+1) €Cor (5,Ni+1,Ni) eC.

(3) There is a proof of a node N in G and (6,N,N;,N;;+1) € C or
(6, N, Nit1,N;) €C.

Notice that, if (Ny,..., N,) is a computation in G and N; = (T}, E;) for all
twithl <7<n,thenT) <:-- <T,.

Lemma 6.3 (Soundness of Computations) Let G be an admissible
derivation graph. If there is a computation from N' to N in G, then
N'> N.

Proof Let G = (N,C) be an admissible derivation graph and (Ny, ..., N,)
be a computation from N’ = (T", E') to N = (T, E) in G. Our proof will by
induction on n. The proof of the induction step is obvious, so we will only
prove the basis. Let n = 2. We must show that T = E' ~ E.

Case 1: C = (4,N',N) € C. Then C must have been added to C
by an application of add-assumption to N'. This implies E = E'. Hence
TEE ~E.

Case 2: C; = (b,N',N) € Cor Cy = (5,N,N') € C. Let C; € C.
Then C7 must have been added to C by an application of apply-0-thmoid or
apply-1-thmoid to N'. In the first case, T' = T", p is subexpression occurrence
of Ain E', (0,A) € thmoid(T[k(E’,p)]), and E = E'[p/true]. Then T |=
E' ~ E by part (2) of Proposition 2.3 and the fact that K is an admissible
logic with local contexts. In the second case, T = T, p is a subexpression
occurrence in E’, (1,II) € thmoid(T[k(E’,p)]), and E = II(E',p). Then
T = E' ~ E by the fact that K is an admissible logic with local contexts.
Hence, in both cases, T = E' ~ E. The case when Cs € C is similar.

Case 3: There is a proof of N” in G and C; = (6, N, N',N) € C or
Cy = (6,N",N,N') € C. Let C; € C. Then C; must have been added
to C by an application of split-conditional to N’ and a position p of some
expression if(A, F1,Fs) in E'. In one case, T = T', N" = (T[x(E,p)], A)
and E = E'[p/E;]; while in another case, T = T', N" = (T[x(E,p)], ~A)
and E = E'[p/FEs]. Hence, in both cases, T = E' ~ E since there is a proof
of N" in G. The case when Cy € C is similar. O

For each biform theory T'= (K, T'), let thm(T, G) be the set of formulas
of L defined by the following statements:

(1) If there is a proof of N = (T, A) in G, then A € thm(T, G).
(2) If there is a computation from N’ = (T", E') to N = (T, E) in G, then
E'~ FE € thm(T, G).
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Theorem 6.4 (Soundness of Derivation Graphs) Let T be a biform
theory and G be an admissible derivation graph. Then, for all formulas
A ethm(T,G), T = A, i.e., each member of thm(T,G) is a theorem of T'.

Proof Let A € thm(T,G).

Case 1: There is a proof of N = (T, A) in G. By definition, there is
a deduction from some A to N in G such that each member of A has the
form (T”,true). By Lemma 6.2, A = N, and by part (1) of Proposition 2.3,
T' |= true for all N' = (T",true) € A. Therefore, T |= A.

Case 2: There is a computation from N’ = (T, E') to N = (T, E) in G.
By Lemma 6.3, N' > N. Therefore, T = E' ~ E. O

The Soundness of Derivation Graphs theorem shows that derivation
graphs are a means to derive theorems.

7 Theoremoid Construction

In FFMM, the essence of derivation—and deduction and computation as spe-
cial cases—is the application of theoremoids. Effective derivation requires
a well-stocked toolbox of theoremoids for each employed biform theory. Of
course, the toolbox of theoremoids for a theory contains the axiomoids of
the theory, but these may not embody all the reasoning and computational
techniques that are desired. How are other theoremoids obtained?

There are two parts to the answer for a biform theory T'. First, a formu-
lary theoremoid (0, A) of T is obtained by constructing a derivation graph
G such that A € thm(T,G). Second, a transformational theoremoid of T is
obtained by constructing a transformer II residing in the language of 7" and
then proving that, for some k € {1,2,3}, (k,II) is a theoremoid of T

FFMM does not include a system for proving that a given transforma-
tional formuloid is a theoremoid of a particular theory. Instead, it includes
a collection of theoremoid constructors inspired by the macete constructors
of IMPS. From theorems and transformational theoremoids, theoremoid con-
structors construct transformational formuloids for which theoremoidhood
is guaranteed by the construction itself. Several examples of theoremoid
constructors are presented in this section. Together with axiomoids and
theorems, they form a powerful programming language for building sound
deductive and computational tools in the form of transformational theore-
moids.

In this section let K = (L, M, k) be an admissible logic with local con-
texts.
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7.1 Theorem-to-Theoremoid Constructors

One can define a family of theorem-to-theoremoid constructors for K that
automatically generate transformational theoremoids from theorems, in the
style of theorem macetes as employed in IMPS. The form of the generated
transformational theoremoid depends on the syntactic form of the theorem.

Suppose A is a theorem of a biform theory 7' = (K, T).

For the first example, define thm-to-thmoid-1(A) to be (1,I1}) where
Y =T Astwe. (Recall that g, g, is a transformer II such that dom(IT) =
{E1} and II(E;) = E5.) thm-to-thmoid-1(A) is a transformational formuloid
of L that uses A as a theorem. (Notice that thm-to-thmoid-1(A) has exactly
the same utility as the formulary theoremoid (0, A).)

For the second, let A have the form FE; =~ Fs and define
thm-to-thmoid-2(A) to be (1,114) where 114, = g, g,. thm-to-thmoid-2(A)
is a transformational formuloid of L that uses A as a rewrite rule.

For the third, let A have the form A; D Ay and define thm-to-thmoid-3(A)
to be (2,113) where I3 = I4,,,4,. thm-to-thmoid-3(A) is a transforma-
tional formuloid of L that uses A as a forwardchaining rule of inference (a
backchaining rule of inference (3,11%) could be defined in a similar way).

It is important to emphasize that each of these transformational formu-
loids can be generated automatically from a theorem and that the theore-
moidhood of each formuloid is guaranteed by its construction (as stated in
the next proposition).

Proposition 7.1 Let Ay, As, A3 € thm(T) with Ay = F1 =~ Fy and A3 =
By D By. Then thm-to-thmoid-m(A,,) € thmoid(T') for all m € {1,2,3}.

If the background logic K allows quantification in its language, much
more powerful transformational theoremoids can be generated from theo-
rems. For example, suppose the theorem A is a formula

Qi a

Vil ,xzp - A' D Ep ~ Ey

where each acfll is a quantified variable of type a; that may occur in A', E;,
and F». Define thm-to-thmoid-4(A) to be (1,1I%) where IT% is a transformer
residing in L defined as follows: If E is alpha-equivalent to Ejo, where o
is a substitution with domain {z}, ,...,2% }, then II(E) = if(A's, Ey0, E);
otherwise II(F) is undefined. thm-to-thmoid-4(A) is a transformational theo-
remoid of T that applies A as a conditional rewrite rule (the “reverse” condi-
tional rewrite rule can also be generated from A). When thm-to-thmoid-4(A)

is applied in a derivation graph, it introduces a conditional expression that

25



can be resolved by simplification or split with the split-conditional operation.
Other examples of theorem-to-theoremoid constructors using quantification
are given in [28].

This method of generating transformational theoremoids from theorems
is a very powerful technique. Transformational theoremoids are designed by
writing formulas of the right form, are verified by proving that the formulas
are theorems, and finally are constructed automatically. Thus the construc-
tion of a large collection of useful transformational theoremoids is reduced
to essentially just theorem formulation and proving.

7.2 The Composition Constructor

The composition constructor combines two given transformational theore-
moids by composing their transformers.

Let k € {1,2,3}, T = (K,I') be a biform theory, and 6; = (k,I;) €
thmoid(T') for ¢ = 1,2. Define composition(#;,62) to be (k,II) where IT =
IT; o IIy. It is easy to see that composition(61,62) € thmoid(T).

7.3 The Fixpoint Constructor

The fixpoint constructor builds a transformational theoremoid whose trans-
former has the effect of repeating applying the transformer of a given trans-
formational theoremoid to an expression until the expression remains un-
changed.

Let k € {1,2,3}, T = (K,T') be a biform theory, and 8 = (k,II) €
thmoid(T'). For n > 1, define TI" to be IT if n = 1 and IT o TI" ! otherwise.
Now define fixpoint(6) to be (k,II') where II' is defined as follows. Let E
be an expression of L. II'(E) = E' if, for some n > 1, II'(E) # II?(E) #
- £ M™"(E) and E' = I"(E) = [I"*1(E). II'(E) is undefined otherwise. It
is easy to see that fixpoint(f) € thmoid(T').

7.4 The Conditional Constructor

The conditional constructor combines two given transformational theore-
moids with a given formula used as a conditional.

Let k € {1,2,3}, T = (K,T') be a biform theory, 6; = (k,II;) € thmoid(T)
for i = 1,2, and A be a formula of L. Define conditional(4,6;,602) to be
(k,II) where II is defined as follows. Let E be an expression of L. II'(E) =
if(A, 11, (E),I(E)) if II;(E) and IIp(E) are defined. II'(E) is undefined
otherwise. It is easy to see that conditional(A4, 61, 602) € thmoid(T).
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7.5 The Broadcast Constructor

The broadcast constructor builds a transformational theoremoid whose trans-
former has the effect of applying the transformer of a given transformational
theoremoid to all the subexpressions of an expression.

Let T = (K,T') be a biform theory and § = (1,II) € thmoid(7T'). Let E be
an expression of L. A target of Il in E is an occurrence p of a subexpression
E' of E such that II(E’) is defined. p is mazimal if there no other target p’ of
II in F such that the expression occurring at p in E is a proper subexpression
of the expression occurring at p’ in E. Notice that the expressions occurring
at two maximal targets of I in F are disjoint from each other.

Define broadcast(6) to be (1,II') where IT' is defined as follows. Let E
be an expression of L and {p1,...,pm} be the set of maximal targets of II
in E. For i with 1 <4 < m, define IT*(E) to be II(E,p;) if i = 1 and to be
I(II*~1(E), p;) otherwise. If m # 0, I'(E) = I™(E), and if m = 0, II'(E)
is undefined. Tt is easy to see that broadcast(#) € thmoid(T).

7.6 The Make-Sound Constructor

The make-sound constructor builds a transformational theoremoid whose
transformer has the effect of applying a possibly unsound transformer to an
expression only when the application is actually sound.

Let T = (K,T') be a biform theory, IT be a transformer residing in L,
and 6; = (1,II;) € thmoid(T") for ¢ = 1,2. Define make-sound(IL,6;,65)
to be (1,II') where IT' is defined as follows. Let E be an expression of L.
II'(E) = II(E) if II;(E) and II(TII(E)) are defined and 11, (E) = I, (II(E)),
and IT'(E) is undefined otherwise.

0, and 6, are used to check the correctness of an application of II. Since
01 and 6 are theoremoids of kind 1, II; (E) = Iy(II(E)) implies T |= E ~
II(E). Thus make-sound(II, 61,62) € thmoid(T) even when (1,II) is not a
theoremoid of T'.

7.7 The Transport Constructor

The transport constructor “transports” a formulary or transformational the-
oremoid from one biform theory to another via an interpretation.

Let K; = (L;, M;, k;) be an admissible logic with local contexts and T; =
(K;,T';) be a biform theory for s = 1,2; ® be an interpretation of T} in T5;
0 = (k,II) be a theoremoid of T} with k € {0,1,2,3}; and ®(6) be defined.
Then define transport(f, ®) to be the formuloid ®(#). By Proposition 5.2,
®(0) € thmoid(Ty).
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8 Theory Development

In FFMM, derivation is performed on top of a network of biform theories con-
nected by interpretations. The network is not static. Like the collection of
models in informal mathematics itself, it needs to be continuously expanded
and enriched. FFMM therefore includes a facility for developing theories that
provides services to:

1) Create new biform theories.

2) Create new links between biform theories using interpretations.

4

(1)

(2)

(3) Store derived theorems.

(4) Store constructed theoremoids.
(5)

5) Add new objects and concepts to biform theories using conservative

extensions.

Our theory development facility for biform theories is based on the in-
frastructure for developing axiomatic theories presented in [20] and partially
implemented in IMPS. It consists of several kinds of storage objects and a
collection of primitive operations for creating and modifying the storage
objects. In this section, we will give just a brief overview of the theory
development infrastructure for FFMM.

Let K = (L, M, ) be an admissible logic with local contexts. A constant
of a language L is an expression of L which contains no subexpressions. Let
T = (K,T') be a biform theory. A constant c of L is mentioned in a biform
theory T = (K,T') if ¢ occurs in some member of I'. An expression F of
L is proper in T if every constant ¢ occurring in F is mentioned in 7T'. Let
T; = (K,T';) be a biform theory for i = 1,2. T» is a conservative extension
of Ty, written T Ty, if T1 < Ty and, for all formulas A of L that are proper
n Tl, if T2 |: A, then T1 |: A.

A biform theory object T stores a “development” of a biform theory.
More specifically, T includes a base (biform) theory Ty = (K,Ty), a current
(biform) theory T = (K,T') such that Ty < T, a set of derived theorems of
T, and a set of constructed theoremoids of T. There are also objects for
storing interpretations, theorems, theoremoids, and definitions, and profiles
(see below).

A definition D consists of a constant ¢ and a defining expression E. D
is installed in a biform theory T = (K,I') by adding ¢ ~ FE to I'. (c is
intended to be unmentioned in 7T'.) The result is a new theory T'[D] with a
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constant that has the value expressed by E. The installation of D in T is
only allowed if T QA T[D]. Hence, a definition is a means to introduce new
machinery into 7" without compromising its original machinery. Moreover,
the defined constant ¢ can be “eliminated” from expressions of L using ¢ ~ F
as a rewrite rule.

A profile P consists of a finite set C of constants and a profiling formula
A in which the members of C occur. P is installed in a biform theory
T = (K,T') by adding A to I". (The members of C are intended to be
unmentioned in 7T'.) The result is a new theory T[P] in which the members
of C satisfy the property expressed by A. A profile is thus a generalization
of a definition. The installation of P in T is only allowed if 7" < T[P].
Hence, like a definition, a profile is a means to introduce new machinery
into T without compromising its original machinery. But, unlike a definition,
the profiled constants in C may not be eliminable. Profiles can introduce
abstract machinery that is impossible to introduce with direct definitions.
For example, in a biform theory R of real number arithmetic, a profile with
the profiling formula (v/2)? = 2 could be used to introduce a constant /2
in R whose sign is unspecified. For another example, a profile can be used
to introduce in a biform theory an abstract algebra or data type consisting
of a collection of objects plus a set of operations on the objects.

There are primitive operations for creating each kind of storage object
and for “installing” theorem, theoremoid, definition, and profile objects in
a biform theory object T. The result of installing a theorem or theoremoid
object in T is that the theorem or theoremoid is added to the derived theo-
rems or constructed theoremoids of T, respectively. The result of installing
a definition or profile object X to T is that the current theory T of T is re-
placed by T'[X]. Replacement is appropriate because T'[X] is a conservative
extension of 7T'.

There is also a primitive operation for extending interpretations. When
the current theory T of a biform theory object T is replaced by an extension
T[X] of T, the stored interpretations of 7" would not normally be defined on
the defined or profiled constants of X. Three basic solutions to this problem
are discussed in [20]. The first two solutions extend the old interpretations
of T automatically to new interpretations of T'[X], while the third solution is
to provide the user with a primitive operation for extending interpretations.
With a mechanism for extending interpretations, it is often advantageous
to create an interpretation of the base theory of biform theory object and
then extend it later as needed. This is the reason why the base theory of
T—which is the initial current theory of T—is permanently stored in T.
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Many useful theory development operations could be defined using these
primitive operations. For example, consider the operation for installing the-
orems of a deduction graph defined as follows. Let G be a derivation graph
and T be a biform theory object whose current theory is 7. Given G and T,
the operation creates a theorem object O4 that stores A and then installs
O4 in T for each A € thm(T,G). Other operations could be defined for
transporting theorems, definitions, and profiles from one biform theory ob-
ject to another and for creating new biform theory objects by instantiating
an existing biform theory object, in both cases using interpretations.

9 Conclusion

In this paper we have proposed a formal framework for managing the math-
ematics process and the mathematics knowledge produced by the process
called FFMM. We claim that FFMM meets the three goals given in the Intro-
duction.

Model Representation. A biform theory, which is simultaneously an ax-
iomatic theory and an algorithmic theory, is used to represent a collection
of mathematical models. The properties of the models are specified both
declaratively and procedurally.

Process Fuacilitation. Mathematical models are created, explored, and
connected via biform theories. The theory development facility provides
operations for creating biform theories and storing them in biform theory
objects. It also has operations for connecting biform theories with inter-
pretations and for developing biform theories by installing theorems, theo-
remoids, definitions, and profiles in biform theory objects. Biform theories
are explored using the derivation facility. Driven by the application of the-
oremoids, derivation is a combination of deduction and computation that
produces theorems. The theorems represent knowledge about models and
serve as raw material for constructing new theoremoids. The theoremoids
are tools for reasoning and computation built using the theoremoid con-
struction facility.

The mathematics process in FFMM is thus divided into a triad of symbi-
otic processes: Biform theories are created and incrementally enriched with
new language and derivation tools. Theorems are derived by applying the
derivation tools of biform theories. And new derivation tools are constructed
from the theorems and the derivation tools of biform theories.

Mechanization. We have not discussed in this paper how FFMM can be
mechanized as a computer system. It is a subject for an entirely separate
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paper. Although we have not produced a computer mechanization of FFMM,
we believe that it is mechanizable and we intend to mechanize it in the future.
We expect to borrow heavily from the implementation ideas employed in
IMPS, Maple, and other mechanized mathematics systems. Moreover, we
view the success of the IMPS implementation as a proof of concept for our
framework proposal.

An implementation of FFMM would be a kernel for an interactive math-
ematics laboratory (IML) [19, 21] with which students, engineers, scientists,
and even mathematicians could create, explore, and connect mathematics in
countless ways that are not possible today—at least for the common math-
ematics practitioner . An IML that supports the full mathematics process,
is equipped with a well-endowed mathematics library, and is accessible to a
wide range of mathematics practitioners has the potential to revolutionize
how mathematics is learned and practiced.

10 Related Work

A logical framework is a system for managing logical systems and inves-
tigating metalogical issues. There is a large literature on the design and
use of logical frameworks (see Frank Pfenning’s Web guide to logical frame-
works [44]). Many logical frameworks have been proposed which provide
one or more of the following services:

S1 Representation of logical systems.
S2 Implementation of logical systems.
S3 Interoperation of logical systems.
S4 Analysis of metalogical issues.

FFMM is a logical framework that provides services S1 and S3. FFMM
manages logical systems represented as biform theories. As we have shown,
in FFMM biform theories can be connected with interpretations and incre-
mentally enriched, and a derivation can involve many different biform the-
ories (of the same logic). Most logical frameworks deal with logical systems
for deduction, but biform theories are for mixed deduction and computa-
tional. The notion of a biform theory is both simple and abstract: the
details about the syntax and semantics of a biform theory T are given by
the underlying logic of T' and the details about derivation in 7" are given by
the axiomoids of T'.
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The problem of integrating computer theorem proving and computer
algebra systems is one of the primary challenges in mechanized mathematics
today. A mechanized mathematics system that combines the capabilities of a
computer theorem proving system and a computer algebra system would be
of great value to a wide range of mathematics practitioners. Unfortunately,
there has historically been very little communication between the computer
theorem proving and computer algebra communities. Recently, researchers
in Europe and North America have begun to pursue ways of integrating
computer theorem proving and computer algebra (for example, see [7, 9, 12,
48)).

There are four general approaches for creating an integrated system.

First, computational capabilities are added to a computer theorem prov-
ing system. Computation in various forms has been added to many computer
theorem proving systems. Examples include:

(1) Decision and simplification procedures: Rewrite rule systems, propo-
sitional simplification using binary decision diagrams (BBDs), linear
arithmetic [6], and generic algebraic simplification in IMPs.

(2) Mechanisms for applying theorems and rules of inference: LCF-style
tactics [30], IMPS macetes, and IMPS proof scripts [23].

Second, deductive capabilities are added to a computer algebra system.
Examples include:

(1) The incorporation of logic into the computer algebra system Ax-
iom [45].

(2) Analytica [11], a computer theorem proving system for mathematical
analysis implemented in Mathematica.

Third, a computer theorem proving system and a computer algebra sys-
tem are combined. Examples include:

(1) Systems combining a computer theorem proving system with a com-
puter algebra system [32, 33].

(2) Frameworks and techniques for integrating computer theorem proving
and computer algebra systems [1, 3, 4, 29, 34, 37].

Fourth, a system is created in which deduction and computation are
integrated at the bottom level. Examples include:

32



(1) The Theorema system [8] which is intended to support the full pro-

cess of mathematical problem solving including conjecture proving and
computation.

(2) The framework FFMM proposed in this paper.
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