Mathematical Knowledge Management in Foc

T. Hardin!

Laboratoire d’Informatique de Paris 6 (LIP6),
Université Pierre et Marie Curie,

8, rue du Capitaine Scott, 75015 Paris, France.
INRIA, Projet MOSCOVA
Rocquencourt, 78153 Le Chesnay CEDEX, France.
Therese.Hardin@lip6.fr

Abstract. We present a library which enables to implement general computer algebra notions called
here entities, collections and species without the help of a dedicated language. We give an operational
model for these notions, which has been formalized and verified using the Coq proof assistant. We rely
on this model to design the programming discipline of the library. This allows us to produce semantically
founded programs in a general purpose language (Ocaml). Thus, a lot of programming features such
as polymorphism, type inference, data structure management, garbage collection are obtained for free
while keeping good efficiency when running computer algebra algorithms. The discipline corresponds
to a restricted use of “object oriented” together with “module” features, which is formalized in the
theorem prover Coq. Following the discipline is enforced by the concrete syntax given to users.

The Foc! project started at the fall 1997 is currently building a development environment for certified
computer algebra. That is a framework for programming algorithms, proving their mathematical properties
and the correctness of their implementations. This talk gives a presentation of this project, focusing on the
mathematical knowledge management within a general purpose programming language.

Computer Algebra Systems (CAS in short) perform ezact (or symbolic) computations on mathematical
entities which are represented by terms of formal language. Moreover, the correctness (and the mathematical
meaning) of the algorithms underlying these computations have been strictly established, by mathematicians.
Thus, no place seems to be left for bugs, because implementations are usually carefully done. Despite of
this care, bugs are not rare [16]: algorithmic errors (hasty simplifications, required assumptions which are
actually not discharged, ...), implementation errors (incorrect typing, bad management of inheritance, bad
deallocation, ...).

To increase safety, the gap between mathematical description of an algorithm and its implementation
has to be reduced. This requires a syntax powerful enough to reflect mathematical properties, as well as a
strong semantic associated with this syntax. That was already pointed out several years ago in [10] and, since
no programming language was meeting these requirements, the Computer Algebra community was led to
develop its specific programming languages, such as the powerful systems Axiom([12]) or Magma ([4]). But
this effort is not yet sufficient to get rid of bugs or ambiguities (for example, on solving multiple inheritance
conflicts). Indeed, the syntax of Axiom encourages the user to follow a certain programming discipline but
there is no effective semantic control. We tried[1] to prove some properties of Axiom programs by interfacing
it with the proof assistant Coq. The conclusion was that such a task needs a programming language whose
semantics is firmly stated (and possibly formalized).

In parallel with this effort of the Computer Algebra community, research on semantics of programming
languages has led to powerful languages such as Ocaml that can combine reliability and high level program-
ming with efficient programming. Such languages allow many styles of programming (applicative, imperative,
object-oriented, abstract data types...). The semantics of programs using together these different features has
been carefully studied (reliability of the language), and efficient compilers have been developed. We claim in
this talk that it is now possible to use such a “general” language to program computer algebra libraries.

However, to use a language having a well-studied semantics is not enough to build a certified CAS. Indeed,
the user of Foc should have the possibility to specify a given algorithm, to prove its properties, to implement

L F for formel i.e. symbolic in French+O for Ocaml+C for Coq[8]

it, showing the correctness of her/his code. As Ocaml provides static (polymorphic) typing and subclassing,
some semantic properties of algorithms and programs can be granted for free. Some of these properties are
not so trivial, has it will be illustrated during the talk. But, some required formal specifications and proofs
are much involved. Thus, we intend also to describe the contents of the library in the theorem prover Coq.
The structure of the library has been already formalized in Coq and modelized in a Category theory based
on dependent types[5]. The heart of the Foc environment is a user-interface that extracts from the user
source both a Ocaml program and Coq specifications. Then, the proof is to be done at the user-interface
level and translated into a proof term, checked by Coq. This last part of the user-interface is currently under
design[11]. In the prototype of this interface, proofs are done directly in Coq.

1 Semantic Analysis

The point where the approaches of engineers and mathematicians depart from each other is the notion of
representation. In mathematics, there exists a unique set of integers defined by some characteristic proper-
ties. In computer algebra, there are several implementations of integers (BigNums, GMP, etc.), sometimes
needing explicit conversions between them. There are several ways to handle the correspondence between a
mathematical object and its representations.

A CAS manipulates entities such as integers, polynomials, etc. These entities have a representation which
must explicitly be stated as part of their definition. In our opinion it is important to distinguish mathematical
operations performed on an entity from those performed on the representation. This give better control over
the data being manipulated.

These entities are characterized by properties of their operations, which rely both on mathematical prop-
erties and on representation properties. It is important for us to have a clear distinction between mathematical
depencies and data representation depencies.

Thus, our choice is to have a clear separation between data manipulation and mathematical operations.
Data manipulation is a concern of programming languages, which is not at all in the scope of computer
algebra. For instance, lists with their tools and their properties are assumed to be available. Thus our choice
is to write a library whereas Axiom defines a complete computer language. We have to live with the types
and values of our implementation languages (Ocaml and Coq), whereas a complete language should define
its own types and values, together with a fully stated (and if possible formalized) typing and evaluation
semantics.

1.1 Terminology of the project

Mathematical structures are here described by species, which are defined by a set of components, describing
mathematical operations and properties available for an entity of this species. So, species are roughly Axiom’s
categories. We detail carefully in the following the atomic steps of the introduction a new species, as each
of these steps corresponds to an atomic stage of proof correctness so needs to be easily identifiable in the
source program.

— The representation of its entities is the first component of a species. It is called the carrier of the
species. Working in a polymorphic typed framework, the simplest carrier is a type variable 7. This may
progressively be instantiated by a type expression still containing other type variables or by an explicit
data type. This is a first way of creating a new species. We call this carrier instantiation.

— The components, called primitive, of a species are named and described by their prototype, written as
a type expression possibly depending on 7, or by a logical statement depending on 7 for components
recording properties. A given species can also have derived components which receive, besides a name
and a prototype (or a statement), an implementation (or a proof) build upon the primitive components
and functionalities supposed available over 7.

— A second way to create new species is to extend a given species by adding primitive or derived components.
For instance an additive group is an extension of an additive monoid by a primitive operation finding the
opposite of an entity and another primitive one that checks an element to 0. From these operations one
can describe a derived binary subtraction and implement equality (which was a primitive operation in

the species of monoids) in terms of subtraction and zero check. Sometimes, one adds only new properties:
an abelian group has the same operations than a group but has new properties. We call the introduction
of a single new component an eztension.

— Now, a primitive component of a species can receive an implementation, defining a new species by a way
usually called a refinement (so no extension of the specification, only a step to approach a full imple-
mentation). The code has only to meet the declared properties of the component. Thus the refinements
of a species share names, prototypes, some properties and some definitions.

— A component, say ¢, of a given species §; may be redefined, leading to a new species S;. As in the
previous case, the new code has to meet the declared properties of the component in &;. Moreover, as
redefinitions of a species share also names, prototypes, and some properties, if some of these properties
in &1 rely upon the code of ¢, they have to be reproved.

— Whenever every primitive component of a species has a definition, this species can only be extended
by derived components. We will call collection such a species if we don’t want to extend it anymore. A
collection thus appears as a terminal element of the species creation process.

— Species can receive parameters as long as those are collections or entities. Thus, a parametrized species
is a kind of “function” taking collections or entities and returning a species. For instance, Z/nZ, the
species of modular integers, is parametrized by the integer n and there exists a species of univariate
polynomials, parametrized by the ring R of coefficients.

— All previous operations on species apply to parametrized species. The operation, called parameter in-
stantiation, is a way of building a new species. For instance, instantiating n by 2 builds the species Z/2Z
and R may be instantiated by Z/2Z.

— A species S; can be converted into a species Ss by etasblishing a correspondence between the primitive
components of Sy and some components of S, ensuring the same properties. A species can always be
restricted to another species of which it is an extension. Namely a field can always be provided where a
ring is wanted.

— Some operations of a species can be renamed to create a new species. For instance in an additive monoid
we should be able to rename the “plus” operation into a “mult” operation and the “zero” constant into
a “one” constant.

Summarizing, new species can be defined by a composition of atomic steps: carrier instantiation, ex-
tension, refinement, parameter instantiation, redefinition, conversion, restriction, renaming. For instance,
a mechanism like multiple inheritance can be decomposed into restrictions leading to a common ancestor
followed by some extensions.

These different operations induce links between species defining a hierarchy between them. The specifi-
cation of this hierarchy and of these operations has been studied in [5,6]. These operations are compatible
with standard Ocaml’s inheritance (see [14] or [15]).

2 Choosing an object-oriented model

We have considered various models based on object and classes to implement these notions inside the Ocaml
programming language. These are summarized in figure 1 and we discuss them on a simplified version of our
basic operations. We consider the representation component as distinguished from other components which
are just operations, their protoype is given by a method name together with a signature.

The class model of figure 1 which encodes entities as objects and collections as classes was rejected
because it was too far from “mathematical specifications”. For example, arities of operations are not explicit
so have to be inferred when proving properties. In the talk, we give a short example to illustrate that point.

The rep(resentation) model of figure 1 restaures operation arities but still encodes entities as objects. This
leads to a permanent encapsulation of the representation inside an instance variable, which needs functions
rep_of and of rep) to manipulate these representations. This introduces a semantic confusion between the
collection itself (for example, a group) and its elements. We shall explain this point during the talk.

We are thus led to a strictly more general class based model (the class model of figure 1) which gets rid of
rep-of and of rep. This model replaces data encapsulation by data type abstaction, using type parametric
classes. In this model the carrier is explicit, carrier instantiation corresponds to type instantiation. Primitive

Fig. 1. Object based paradigms

class model |rep model object model
entity object representation|arbitrary
operation name|/method method method
collection class class object
prototype method type|method type |method type
species class type |class type class

components correspond to virtual methods whereas derived components correspond to implemented methods.
We shall give several examples along the talk.

3 Description of the library

We follow the paradigm of the object model where classes are species and where objects carry a “mathematical
view” on a data structure which is always explicit. So, we consider that a class I" views a data structure a
as a mathematical structure 4. In this model an object is a collection and a class is a species.

3.1 Basic structures

In order to validate our model, we designed first a small, but meaningful, library of units covering common
abstract algebra and common computer algebra basic notions. We focused on polynomials arithmetics, trying
to achieve a good level of absraction. The current library is made of around 120 parametric species for around
4000 lines of code. It covers most of Axiom’s functionalities for polynomials. The library provides concrete
classes which enable to do integer arithmetics using either standard big int big integers or the standard
big integers Gnu package GMP (in versions 2 or 3 through the use of a C interface). We also provide support
for small integers (for degree arithmetics) through the standard Ocaml integers int. In the talk, we will
comment on the building of this library, focusing on the following points.

In Ocaml, classes can have two kinds of parameters, value parameters and type parameters. We use both,
as shown by the following species corresponding to Axiom’s category Algebra.

class virtual [’r,’a,’b] algebra(R:’r) =
object (the_alg)
constraint ’r = (’a #commutative_ring)

inherit [’blring

method virtual mult_extern :
(’a * ’b) -> ’b

method 1lift x =
the_alg#mult_extern(x , the_alg#one)

method opposite x =
the_alg#mult_extern((R#opposite) (R#one) , x)

end;;

The carrier of this algebra is encoded by the type parameter ’b. The ring R of this R-Algebra is given
by the value parameter R and his type by the type parameter ’r. The carrier of this ring is encoded by the
type parameter ’a.

The type constraint expresses that ’r (the type of the value parameter R) is a collection which should
have the methods of the species of commutative rings with carrier ’a. This constraint is verified by the type
checker. That is the type checker infers the most general type p for the value parameter R and verifies that
the type constraint defines an instantiation of p.

Here we see that to describe an R-Algebra we had to use three type parameters ’r, ’a, ’b and one value
parameter R. Moreover there is a dependencie between the value parameter R and the type parameter ’r.
More generally a species with n collection parameters (so value parameters) is described by a class with 2n+1
type parameters in addition to the n value parameters. The carrier of the species being described is encoded
by one type parameter. Moreover, for each value parameter P, we have one type parameter C, encoding
the carrier of P and a second type parameter S, for the species that describes the operations required for
P. This seems rather heavy but it reflects only mathematical coherence. And, it has the advantage that the
type checker can verify the mathematical constraints expressed by the user. Roughly speaking, there is no
‘type lie’.

Passing entities as argument to species is easy. We show that through the example of modular integers.

class modular_integers(the_mod) =
object
inherit [int]commutative_ring

method is_zero(x) = (x = 0)
method one = 1
method add(m,n) =
let r = (m+n) in
if (r < 0)
then foc_error "Overflow"
else (r mod the_mod)

end;;

Here the value parameter the mod is simply int, as infered by the system. More generally, suppose that
a class is parameterized by an entity v of a collection C, specified by a species S. Then, v appars as a value
parameter. C' is introduced by a second value parameter and two additional type parameters, ’a for the type
of v and ’c for the type of C. Access to the methods of C is given by the constraint :

constraint ’c = ’a # S

This constraint enables a type safe use of the mathematical operations of species S. It expresses that the
type ’a #S is more specific than the type ’c.

So, the correctness of the coding of species, collections and entities relies on a “programming discipline”,
ensuring some specification invariants. This is enforced by the use of a concrete syntax which is translated
to Ocaml code under this programming discipline (see [11] for the first attempts).

4 Conclusion

In this talk, we present a library which enables to implement general computer algebra notions called entities,
collections and species without the help of a dedicated computer algebra language. An operational model
for these notions enables us to produce safe (semantically founded) programs in the Ocaml general purpose
language using a programming discipline. Furthermore, this informal model is formalized and verified using
the Coq proof assistant. The programming discipline makes a restricted use of object oriented features but
uses the full power of the class sub-language.

As a conclusion, we can affirm that it is possible to write generic computer algebra algorithms, in a general
programming language, with a functional style, while keeping good efficiency when running them. But, the
programming language must be very carefully chosen and must offer powerful, semantically understood,
features among them strong typing, semantically studied multiple inheritance, late binding and a mechanism
of abstract/manifest types.

The Foc environment is still in infancy but is promising. A concrete syntax, still under design, obliges
the user to follow the programming discipline through a translator to Ocaml code and through a translator
into formal specifications in Coq. Interface with Open-Math is also currently under design. When mature, it
would enable to produce certified implementation of many computer algebra algorithms. The first a-version
will be disposable at the end of 2001.

References

1.
2.

3.

4.

10.
11.
12.
13.
14.
15.
16.
17.

18.

G. Alexandre. D’Aziom & Zermelo. Ph. D. Thesis, University of Paris 6, LIP6, February 1998.

D. Ancona and E. Zucca An algebraic approach to mizins and modularity In M. Hanus and M. Rodrigez Artalejo,
editors, ALP’96, LNCS 1139, Springer Verlag.

D. Ancona and E. Zucca. An algebra of mixin modules. In WADT’97, LNCS 1376. Springer-Verlag, January
1998.

W. Bosma, John J. Cannon, C. Playoust. The Magma algebra system. I. The user language. Journal of Symbolic
Computation, Vol 24, 1997.

S. Boulmé. Spécification d’un environnement dédié a la programmation certifiée de bibliothéques de calcul formel.
Ph. D. Thesis, avaliable in french on http://www-spi.lip6.fr/ boulme/bin/these.ps.gz.cgi, Université Paris
6, Décembre 2000.

Sylvain Boulmé. Specifying in Coq inheritance used in computer algebra. Research report, available at
http://www.lip6.fr/reports/1ip6.2000.013.html 013, LIP6, May 2000.

S. Boulmé, T. Hardin, D. Hirschkoff, V. Ménissier-Morain, and R. Rioboo. On the way to certify computer
algebra systems. In Calculemus 99 Systems for Integrated Computation and Deduction, volume 23 of ENTCS.
Elsevier, 1999.

Coq project, The Coq Proof Assistant Reference Manual, version 6.2.4, 1999.

Judicagl Courant, MC : un calcul de modules pour les systémes de types purs. Thése de doctorat, Ecole normale
supérieure de Lyon, February 1998.

J. Davenport, Y. Siret, E. Tournier, D. Lazard Computer Algebra, Masson, 1993.

V. Prevosto. Vers une interface utilisateur pour Foc. Internal Report LIP6, October 2000.

R. D. Jenks, R. S. Stutor. AXIOM, The Scientific Computation System. Springer-Verlag, 1992.

X. Leroy. The Objective Caml system, release 2.0. Software and documentation available:
http://caml.inria.fr/ocaml/, 1998.

D. Rémy. Des enregistrements auz objets. Mémoire d’habilitation & diriger des recherches en informatique. Uni-
versité Paris 7, september 1998.

D. Rémy, J. Vouillon. Objective ML: An effective object-oriented extension to ML. Theory And Practice of Object
Systems, 1998.

D. R. Stoutemyer. Crimes and Misdemeanors in the Computer Algebra Trade. Notices of the AMS, pp. 778-785,
September 1991, Vol. 38, Number 7.

J. Vouillon. Using modules as classes. In Informal proceedings of the FOOL’5 workshop, 1998. available at
http://pauillac.inria.fr/"“remy/fool See also Ph.D. thesis.

S. Watt, P. Broadbery, S. Dooley, P. Iglio, S. Morrison, J. Steinbach, et R. Sutor. AXIOM Library Compiler User
Guide. NAG Ltd, March 1995

