Formal Representation Issues in an
Open Mathematical Knowledge Base
— Extended Abstract —

Michael Kohlhase
School of Computer Science
Carnegie Mellon University
Pittsburgh, USA
http://www.cs.cmu.edu/“kohlhase

July 9, 2001

Abstract

For the logical formulation of mathematical concepts, we propose a methodology for devel-
oping representation formalisms for mathematical knowledge bases. Concretely we propose to
equip knowledge bases with a hierarchy of logical systems that are linked by logic morphisms.
These mappings relativize formulae and proofs and thus support translation of the knowledge
to the various formats currently in use in deduction systems. On the other hand they define
higher language features from simpler ones and ultimately serve as a means to found the
whole knowledge base in axiomatic set theory.

1 Introduction

Around 1994, an anonymous group of authors put forward the “QED Manifesto” [QED95], which
advocates building up an open mathematical knowledge base (and supporting software systems)
as a kind of “human genome project” for the deduction community (see http://www.mcs.anl.
gov/qed for an overview of the QED activities). Unfortunately, the vision has failed to catch on
in spite of a wave of initial interest. In our view this is due to the lack of supporting software,
as well as to the ensuing debate on the “right” logical formalism. We will not concentrate on the
motivation of a knowledge base system — this has been more thoroughly and more elaborately in
the QED Manifesto [QED95], which we presuppose as a background reference to the discussion.

There are several attempts to build such knowledge base systems currently under way. The
first that needs to be mentioned is the Automath project [dB80] (the precursor of all logical frame-
works and formal mathematical knowledge base systems), and the MIZAR project [Rud92], that
has compiled a very large body of formalized mathematics. Moreover, semi-automated reasoning
systems usually store large amounts of mathematical data in a file-oriented library storage mech-
anism (see e.g. [Imp, Isa, PVS]). All in all, even if successful, these projects have only yielded
mathematical content, and not an open web-based infrastructure for mathematical knowledge
bases.

In the last years we have embarked on an infrastructure project to develop an open (not
tied to a particular mathematical software system) mathematical knowledge base (using con-
temporary database and communication technology) system. The MBASE system is a web-
based, distributed knowledge base for mathematics that is universally accessible through MATH-
WEB [FK99, FHJ*99]. The current implementation is still under development, it consists of the
MBASE server, which acts as a MATHWEB service which communicates with other services through
a system of mediators. The primary interface format of MBASE is OMDoc [Koh00b, Koh01], an



XML-based representation language for MBASE content. Since this is an extension of the emerging
OPENMATH standard [CC98] for web-based mathematics, its syntax is logic-independent. So the
mediators can first do the logic-transformation, then generate the OMDOC representation, and
then create the concrete input syntax of the respective reasoning system by invoking a standard
XML style sheet processor with a specialized XSL style sheet.

Currently, connections to the theorem proving system QMEGA [BCFT97], INK A [HS96], Pvs [ORS92],
AClam [RSG98], Tps [ABI*96] and CoQ [Tea] systems are supported. Access for humans is pos-
sible via specialized knowledge base clients (e.g. browser services that display the knowledge base
content), specialized query engines.

In this paper we will not describe the MBASE system (see [FK00, KF00] for an overview or go
tohttp://www.mathweb.org/mbase for a demo), but the problems of integrating formal knowledge
from the theorem provers connected to MBASE. In general we will follow the approach of theory
and language interpretations, which allow to build a two-dimensional hierarchy of theories in
MBASE.

2 Logics, Morphisms and MBASE Languages

The logical language supported by MBASE is a polymorphically MY
typed, sorted record A-calculus modeled after the mathematical every- l
day language (often called “mathematical vernacular”, e.g. [dB94]). It
is a joint generalization of the ML-polymorphic A-calculus with kinds }}/VK
as used in ISABELLE and Hashimoto & Ohori’s polymorphic record | [Kohlh94
calculus [Oho95]. Records allow a clean formalization of mathemat-
ical structures, such as groups or fields, polymorphism is needed to
reuse definitions and theorems in the knowledge base and ensure a
modular structure of the theory. Finally the mechanism of “kinds”
adds to the practical expressivity of the polymorphism and is used in TSET
many theorem proving systems (AClam, ISABELLE,...). Finally, the
MBASE logic supplies the infrastructure for sorted A-calculi (see sec- S7 ZF
tion [KF00]). Conceptually, sorts are unary predicates (corresponding KZ f} :
to often-used sets in mathematics) that are treated specially in the ; v
inference procedures (sorted matching and unification). This added iTéFT\\ fZF
Y.
17

—_
—_—

Ohori95]

e

structure leads to a more concise representation and a more guided
search. For clients that cannot manipulate sorts, types, records, or
higher-order quantification, the mediators built into MBASE can rel- Figure 1: Hierarchy
ativize these language features away, retaining the intended meaning.

We will use a variant of the theory interpretation approach proposed in [Far93] for relativiza-
tion mappings, that can be used to transport meanings and proofs between logical formalisms.
In fact, we can build a whole hierarchy of representation languages (see Figure 1), where rela-
tivizations can be used to arrive at various representation formalisms for mathematics, down to
axiomatic (Zermelo-Fraenkel) set theory. Before we formally define the notion of relativization
by the concept of logical morphism in the next section, let us discuss the consequences for the
architecture of MBASE.

The defining intuition for logic morphisms is that

Logic Morphisms Transport Proofs: Let 7:S — S’ be a logic morphism and A
an S-theorem, then F(A) is an S'-theorem.

This already suggests the logical structure of a mathematical knowledge base: Orthogonal to the
usual theory hierarchy (induced by theory interpretation morphisms; we will not go into in this
article, see [Far93]), there is a hierarchy of logical system induced by logic morphisms. In Figure 1,
we have specified some of the logical systems we will discuss in this article.

Mathematical knowledge can be specified in any of the logical systems; it can be queried and
retrieved in any logical system that is downward accessible from this one. Furthermore, commu-



nication of mathematical software systems is possible by way of the “least common denominator
logic”. This may seem as a severe restriction of applicability of the approach, but it is not since
the set of logical systems and morphisms in the hierarchy is not necessarily fixed:

e A new logical system can be incorporated by specifying a logic morphism to any of the
existing systems.

e A new logic morphism can be added, if it is consistent with the information already present
in the structure, i.e. if it is redundant.

Of course these hierarchy extensions generate proof obligations (determining the logic morphism
property and redundancy), which will have to be supported in a system like MBASE. We leave a
discussion of this to another article.

The practical usefulness of a language hierarchy will depend very much on the existence of
such redundant morphisms. In particular for the “least-common-denominator” problem between
languages £ and L' we can have two kinds of situations:

e If there is a good and well-understood way to translate formulae from language £ to L',
then we can implement this as a redundant logic morphism in MBASE bypassing the need
of an intermediate “communication logic”. Moreover, making the logic morphism available
in MBASE will allow other users to use it.

e If there is no such translation, or if it is very domain-specific, then (of course) logic morphisms
will not help (only further research into the semantic relation between the logics and possible
translations will).

In [KF00] we have described how this approach can be used to build up the logical hierarchy
in Figure 1, in particular to build up typed A-calculus (A7) from axiomatic set theories like
ZF [Fra22], and thus ground the hierarchy of representation languages in set theories.

3 Theory Hierarchies and the Development Graph

Orthogonal to the hierarchy of logical langauges, there is the theory hierarchy. Traditionally,
mathematical knowledge has been partitioned into so-called theories, often centered about certain
mathematical objects like groups, fields, or vector spaces. Theories have been formalized as
collections of

e signature declarations (the symbols used in a particular theory, together with optional
typing information).

e axioms (the logical laws of the theory).
¢ theorems; these are in fact logically redundant, since they are entailed by the axioms.

In software engineering a closely related concept is known under the label of an (algebraic) spec-
ification, which is used to specify the intended behavior of programs. There, the concept of a
theory (specification) is much more elaborated to support the structured development of speci-
fications. Without this structure, real world specifications become unwieldy and unmanageable.
Therefore MBASE supports the structured specification of theories building upon the technical
notion of a development graph [Hut99], since this supplies a simple set of primitives for struc-
tured specifications and also supports management of theory change. Furthermore, it is logically
equivalent to a large fragment of the emerging CASL standard [CoF98] for algebraic specification
(see [AHMSO00]).

The main idea is that not all definitions and axioms need to be explicitly stated in a theory;
they can be inherited from other theories, possibly transported by signature morphism which
acts much like the language morphism discussed in the last section. For instance, given a theory
of monoids using the symbols set, op, neut (and axioms stating the associativity, closure, and



neutral-element axioms of monoids), a theory of groups can be given by importing the monoid
theory and simply stating an axiom for the existence of inverses. Similarly, a theory of rings given
as a tuples (R, +,0, —, %, 1) by importing from a group (M, o, e, %) via the morphism {M +— R,0 —
+,e — 0,i — —} and from a monoid (M,o,e) via the {M — R*,o — %,e — 1}, where R* is R
without 0 (as defined in the theory of monoids).

Following Hutter’s development graph [Hut99], we can use the knowledge about theories to
establish so-called inclusion morphisms that establish the source theory as included (modulo
renaming by a morphism) in the target theory. This information can be used to add further
structure to the theory graph and help maintain the knowledge base with respect to changes of
individual theories. In effect, any axiom in the source theory there must be a theory in the target
theory (i.e. provable). This information can be used to trace dependency information in the
knowledge base and and support management of theory change (e.g. to determine what theorems
have to be re-proven if we change a definition).

In MBASE and in its communication representation OMDoOC, the theory structure is repre-
sented by with the OPENMATH content dictionary mechanism. OPENMATH content dictionar-
ies are XML-based representations of signature information (names and types of mathematical
concepts expressed as OPENMATH symbols); they contain symbol names and so-called math-
ematical properties, that restrict the semantics of the concepts, but no principled treatment of
concept definitions or logical entailment of mathematical properties. The mathematical theories
described in this section are a superset of the information in OPENMATH content dictionaries, so
we view them as a drop-in replacement, and directly use the OPENMATH reference mechanism for
mathematical objects in OMDoOC and MBASE, while keeping the richer theory structure we have
described in this section for theory maintenance and exploration (see [Koh00a] for a discussion).

4 Practical Representation Issues

In this section we will talk more about the practical problems encountered in a series of experi-
ments of connecting the theorem proving systems OMEGA [BCFT97], INKA [HS96], Pvs [ORS92],
AClam [RSG98], Tps [ABIT96] and CoQ [Tea] systems are supported. to the MBASE system by
equipping them with an OMDoOC interface.

The first observation in the interpretation is that even though the systems are of relatively
different origin, their representation languages share many features

e Tps and Pvs are based on a simply typed A-calculus, and only use type polymorphism in
the parsing stage, whereas OMEGA and AClam allow ML-style type polymorphism.

e (OMEGA, INKA and Pvs share a higher sort concept, where sorts are basically unary predi-
cates that structure the typed universe.

e Pvs and CoQ allow dependent- and record types as basic representational features.
but also differ on many others

e INKA, Pvs, and CoQ explicitly support inductive definitions, but by very different mecha-
nisms and on differing levels.

e CoQ uses a constructive base logic, whereas the other systems are classical.

At one level, the similarities are not that surprising, all of these systems come from similar the-
oretical assumptions (most notably the Automath project [dB80]), and inherit the basic setup
(typed A calculus) from it. The differences can be explained by differing intuitions in the system
design and in the intended applications.

Following recent work on the systemization and classification of A-calculi [Bar92], we have
started to ground these languages in language hierarchy like the one shown in Figure 1. The
structural similarities between theories and logical languages and their structuring morphisms



allow to re-use the OMDOC/MBASE theory mechanism for language definition: The logical sym-
bols and language constructs can be defined just like other (object-level) symbols/concepts. As a
consequence, the development of the OMDOoC interface to the theorem provers mentioned above
included the specification of the representation language as a theory (which could be used as an
integrated documentation). The structured theory mechanism can now be used to re-use and
inter-relate the various representation formats between the theorem provers. For instance the
simply typed A-calculus can be factored out (and thus shared) of the representation languages of
all of the theorem proving systems above!. This makes the exchange of logical formulae via the
OMDoc format very simple, if they happen to be in a suitable common fragment: In this case,
the common (OPENMATH/OMDoc) syntax is sufficient for communication.

On the other hand, the experiments have shown that the basic assumptions in the MBASE/OMDoc/OPENMATH
framework will have to be extended to fully accommodate the current practice in theorem proving
representations. For example, Pvs allows the specification of parameterized theories. This feature
is mainly used to compensate for the lack of type polymorphism in the representation language,
but is more general than this. If the number of theory instances (i.e. symbols, where the formal
theory parameters are instantiated with concrete values) is finite, the theory can be accommo-
dated in the development graph model, by generating finitely many explicit instance theories and
the appropriate inclusion morphisms. However Pvs also allows to quantify over variables that
are later used to instantiate theory parameters; in this case the number of theory instances is po-
tentially infinite, and cannot be directly be represented in MBASE/OMDoc. Unfortunately this
problem cannot simply be fixed by adding additional representation concepts to OMDoc, since
it breaks a fundamental assumption in OPENMATH, namely that theories can always explicitly
be represented (as content dictionaries), and that this can be done ahead of using them. Thus
extending MBASE/OMDOC to this form of mathematical practice will reconciling even something
as fundamental as the OPENMATH standard with mathematical practice. Note that the concept
of parametric theories cannot easily be dismissed as representational aberrations; the work on
so-called functors in the Theorema project http://www.theorema.org views parametric theories
as the principal building blocks and successfully uses this higher-order structure to guide theorem
proving.

5 Conclusions

We have presented some ideas how to cope with the complexities of formal representations in open
mathematical knowledge bases that arises from the fact that such systems must accept input from
widely differing representation systems.

We have proposed a logic-based approach based on theory and logic morphisms to structure the
(in practice rather large) set of theories and representation languages into structured (inheritance)
graphs, and we have shown how this structure can be exploited to generate mediators that translate
mathematical knowledge between mathematical software systems. While this picture is compelling
in theory, its practical promise has still to be realized by an implementation and larger experiments.

On the practical side we have presented the results of a series of experiments of building
mediators (in this case translators to the OMDOC representation format) by hand for specific
systems. We have seen that a unified representation format can be used to pinpoint representation
language similarities and enable system communication, but that some fundamental problems
remain.

References

[ABIT96] Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning, and
Hongwei Xi. TPS: A theorem-proving system for classical type theory. Journal of
Automated Reasoning, 16:321-353, 1996.

1We will make the language definitions of the theorem provers available only shortly




[AHMSO00] Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. Towards an evolution-

[Bar92]

[BCF+97]

[CC98]

[CoF98]

[dBS0]

[dB94]

[Far93]

[FHI*99]

[FK99]

[FKO00]

[Fra22]

[HS96]

[Hut99]

ary formal software-development using CASL. In C. Choppy and D. Bert, editors, Pro-
ceedings Workshop on Algebraic Development Techniques, WADT-99. Springer, LNCS
1827, 2000.

Henk P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
117-309. Oxford University Press, 1992.

C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann, and
V. Sorge. (IMEGA: Towards a mathematical assistant. In William McCune, editor,
Proceedings of the 14th Conference on Automated Deduction, number 1249 in LNAI,
pages 252-255, Townsville, Australia, 1997. Springer Verlag.

Olga Caprotti and Arjeh M. Cohen. Draft of the Open Math standard. The Open
Math Society, http://www.nag.co.uk/projects/OpenMath/omstd/, 1998.

Language Design Task Group CoFI. Casl — the CoFT algebraic specification language
— summary, version 1.0. Technical report, http://www.brics.dk/Projects/CoFI,
1998.

Nicolaas Govert de Bruijn. A survey of the project AUTOMATH. In R. Hindley and
J. Seldin, editors, To H.B. Curry: Essays in Combinator Logic, Lambda Calculus and
Formalisms, pages 579-606. Academic Press, 1980.

N. G. de Bruijn. The mathematical vernacular, a language for mathematics with typed
sets. In R. P Nederpelt, J. H. Geuvers, and R. C. de Vrijer, editors, Selected Papers on
Automath, volume 133 of Studies in Logic and the Foundations of Mathematics, pages
865 — 935. Elsevier, 1994.

William M. Farmer. Theory interpretation in simple type theory. In HOA’93, an
International Workshop on Higher-order Algebra, Logic and Term Rewriting, volume
816 of LNCS, Amsterdam, The Netherlands, 1993. Springer Verlag.

Andreas Franke, Stephan M. Hess, Christoph G. Jung, Michael Kohlhase, and Volker
Sorge. Agent-oriented integration of distributed mathematical services. Journal of
Universal Computer Science, 5:156—187, 1999.

Andreas Franke and Michael Kohlhase. System description: MATHWEB, an agent-
based communication layer for distributed automated theorem proving. In Harald
Ganzinger, editor, Proceedings of the 16th Conference on Automated Deduction, num-
ber 1632 in LNAI pages 217-221. Springer Verlag, 1999.

Andreas Franke and Michael Kohlhase. System description: MBASE, an open mathe-
matical knowledge base. In David McAllester, editor, Automated Deduction — CADE-
17, number 1831 in LNAI, pages 455-459. Springer Verlag, 2000.

Adolf Abraham Fraenkel. Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre.
Mathematische Annalen, 86:230-237, 1922.

Dieter Hutter and Claus Sengler. INKA - The Next Generation. In M.A. McRobbie
and J.K. Slaney, editors, Proceedings of the 13th Conference on Automated Deduction,
number 1104 in LNAT, pages 288-292, New Brunswick, NJ, USA, 1996. Springer Verlag.

Dieter Hutter. Reasoning about theories. Technical report, Deutsches Forschungszen-
trum fiir Kiinstliche Intelligenz (DFKI), 1999.



[Koh00a]

[Koh0Ob)

[Koh01]

[Oho95]

[ORS92]

[PVS]
[QED95]

[RSGYS]

The imps online theory library. Internet interface at http://imps.mcmaster.ca/
theories/theory-1library.html.

The isabelle online theory library. Internet interface at http://www4.informatik.
tu-muenchen.de/~isabelle/library.

Michael Kohlhase and Andreas Franke. Mbase: Representing knowledge and context
for the integration of mathematical software systems. Journal of Symbolic Comutation;
Special Issue on the Integration of Computer algebra and Deduction Systems, 2000.
forthcoming.

Michael Kohlhase. OMDoOC: An infrastructure for OPENMATH content dictionary
information. Bulletin of the ACM Special Interest Group on Symbolic and Automated
Mathematics (SIGSAM), 34(2):43-48, 2000.

Michael Kohlhase. OMDoc: An open markup format for mathematical documents.
Seki Report SR-00-02, Fachbereich Informatik, Universitat des Saarlandes, 2000. http:
//www.mathweb.org/omdoc.

Michael Kohlhase. OMDocC: Towards an internet standard for the administration,
distribution and teaching of mathematical knowledge. In Eugenio Roanes Lozano,
editor, Proceedings of Artificial Intelligence and Symbolic Computation, AISC’2000,
number 1930 in LNAI Springer Verlag, 2001.

Atsushi Ohori. A polymorphic record calculus and its compilation. ACM Transactions
on Programming Languages and Systems, 17(6):844-895, 1995.

S. Owre, J. M. Rushby, and N. Shankar. PVS: a prototype verification system. In
D. Kapur, editor, Proceedings of the 11th Conference on Automated Deduction, volume
607 of LNCS, pages 748-752, Saratoga Spings, NY, USA, 1992. Springer Verlag.

Pvs libraries. http://pvs.csl.sri.com/libraries.html.

The QED manifesto. Internet Report http://www.rbjones.com/rbjpub/logic/
gedres00.htm, 1995.

Julian D.C. Richardson, Alan Smaill, and Tan M. Green. System description: Proof
planning in higher-order logic with Aclam. In Claude Kirchner and Hélene Kirchner,
editors, Proceedings of the 15th Conference on Automated Deduction, number 1421 in
LNAL Springer Verlag, 1998.

Piotr Rudnicki. An overview of the mizar project. In Proceedingsof the 1992 Workshop
on Types and Proofs as Programs, pages 311-332, 1992.

Coq Development Team. The Coq Proof Assistant Reference Manual. INRIA. see
http://coq.inria.fr/doc/main.html.



