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1. Introduction

This paper aims at investigating and proposing a new learning method by formalising a
representatioparadigmfor the domain’sandlearner’'sknowledge Indeed,we meanto setforward
a representatiomethodof the treatedmathematica(and, more generally,formalisable)domainin
which additionalpoints are stressedesideghe traditional hierarchical, deductiverepresentations.
First of all, inductive aspectsconsideringthe problemof finding out which partsof a structure,an
exampleor a problemfit a generalframework,thereforegoing from the particularto the general.
This allows, in particular,to thoroughlyanalyseand overcomemisconceptiongoften actuallybuilt
up by direct or socially mediated experience).As a further point we meanto carry out a
decompositiorinto building blocks (of definitions, proofs, exercisesetc.) with a point characteras
closeto humanexperienceas possible(e.g.,in the sensesuggestedy modernmereotopologyas
theory of partsand wholes). Moreover, study of interdisciplinary and infra—disciplinary aspects
(links, dependencies,motivations, history etc.) will also be taken into account. Partly as a
consequenceof this decompositioninto blocks, the treated domainis endowedwith a richer
structurethan ordinary textbooks.Moreover, using the graph paradigm,different arcsof several
“colours™ (correspondingo different typesof links) may link the samecoupleof nodes.Another
aspectis relatedto taking into accountpossible relationshipsamongtriples, quadruplesetc. of
notionsand conceptsjn fact, somekind of n—ary relationshipappearsecessaryThis will in fact
be modelledthroughthe useof supplementarypodes. Our approactwill moreoveralsocontribute:

1. toincreasdhe capabilityandtheintelligenceof trainingandlearningsoftwareenvironmentdy
building up the framework for a knowledge—-leveltool able to representand structurethe
learner’s acquired knowledge. This may be accomplishedby using decompositioninto
informational atomic units and finding the connections among the units themselves:
motivationalor historicaltype,difficulty degreestc. The structurethereforeactuallyconsistsof
both the information units and their links. This, in turn, permitsthe constructionof a tool -
basedon an abstractenvironmentandan object-orientedcapproachwhich cantreatknowledge
with mathematical/symbolicainstruments,at leastin cases(which constitutea significant
majority of e.g.University coursesivhenformalisationanddecompositiorarepossible.

2. to obtainintegratednformationon learner’spreferencesattitudesandflaws, including possible
misunderstandinggnd internal links betweendifferent piecesof information, mappingthe
learner’s knowledge and attitudes onto the complete domain knowledge model. This
informationwill thusbe usedin orderto supportandimprovethe learningprocessQuestions
will bechosenin orderto obtainmaximalinformationaboutthe learner’'sknowledge assuming
a suitable closure property of the learner'smodel. The obtainedclosedgraph modelis thus



mapped(imbedded)in the domain’s knowledgemodel and subsequentlytestedwith suitably
chosenredundantquestions.An optimisation algorithm may then be usedto designa path
towardsthe chosen(model) targetfor learner’'sknowledge.Effectivenessof an actualprocess
will be testedby actually allowing learnersto selecttargets,e.g.in termsof rating, andtesting
the resultsobtainedwhen humanexpertsexaminethe candidatesOur approachmay integrate
graph optimisation procedures (question choice, optimal paths) with a collaborative
environmentpy e.g.automatedecordingof activity within sucha (say,VR-type)environment.

3. To createa knowledge mediation methodthrougha problem-solvingapproachwhosebasis
relieson the sub—divisionof notionsandexercisesnto atomicsteps.The solving techniquegor
exercisexoncerninghedomainwill besplitinto atomicsteps.

4. To developtools andmethodsusinga behaviour—basedpproachn the sensehatthe modelis
to be built through the study of reactionto stimuli (input/output: answersto questionsand
exercises).Oncethe pathto knowledgeripening is startedasin 2. above,and one or more
informational units have been submitted to the learner, the actual knowledge structure
(units/nodes, relations/arcsetc.) is tested and the set of weights usedin the optimisation
algorithm is possibly dynamically changedaccordingto the actual behaviourof the learner
during the learningprocess.Statisticaltestswill be usedto verify whetherthe initially chosen
setof weightsactuallycorrespondso the averageor mediancase.

2. Basic methodologies and mathematical background

Themainmethodologythatwill allow the constructiorof thedomainandlearner’'smodelsis Graph
Theory.

We recallthata graph is G definedby anorderedpair (V,E), whereV denotedhe setof the nodes
(or vertices)of G and E denotesthe setof the edgesconnectingpairs of nodes.We define G a
multigraph if nodesu andv canbe connectedoy paralleledges A subgraph of G is a graphG’

whosenodesandedgesareall containedn G. A directedgraph is a graphwherean orientationis

assignedo the edgesMore preciselya directedgraphG is definedby the pair (V, A), whereV is

thesetof nodesandA is thesetof arcs.

In fact, atomic concepts,notionsand techniques obtainedby meansof a suitableirreducibility
criterion- will be represente@snodesof a directedgraph,andlinks amongthemare modelledas
arcs.Indeed,within the greatamountof variationsin definitionsand nameswe usewhat may be
called a coloured multigraph where multiple connections between nodes are permitted.
Connectiongnay havedifferent “colours™andlabelsaccordingto the degreeof difficulty: indeed,
we are describinga colouredn—tuple or sequenceof ordinary graphs(whereat mostoneline is
permittedto join a given coupleof nodes).Concerningthe constructionof the learner’'sknowledge
model,someconceptborrowedpartially from geometryand operationgesearctwill be used,viz.
the conceptof "extremal pointsof a graphandof hull (with respecto a certainclosureoperation).
Indeed,in orderto minimisethe numberof testquestionsit is assumedhatthe presencef certain
arcs (of e.g. greater degreeof difficulty) necessarilyentails the existenceof certain others.
Therefore a recursiveclosureoperationon graphsmay be defined,yielding their hull (with respect
to the operationitself). Moreover,a minimal setof “extremal"nodesandarcshasto be chosenjn
suchaway to obtaina given targetclosure.ln the geometricalparadigm this propertysinglesout
e.g. vertices of a polygon. Finally, graph—theoretic,operations researchalgorithms will be



constructedo yield optimal pathsfrom the obtainedgraphmodelof the learner’'sknowledgeto the
chosertargetknowledge.

A commonframeworkfor the aforesaidproblemsis the identificationof "minimal™ (accordingto a
givenobjectivefunction) subgraph®f the learner'smodelgraphfor which somespecialproperties
hold. It follows thatthey are computationally difficult™ CombinatorialOptimisationproblems.For
their solution new heuristic algorithms may needto be developed, basedon metaheuristic
paradigmsusedin the field of Combinatorial Optimisation,like GreedylLocal Searchand Tabu
SearchRoughlyspeakingbothmethodsarebasedon a "combinatorial’extensiornof the conceptof
“neighbourhood? we startfrom a seedsolutionandexploreits neighbourhoodif a bettersolution
is found, it replacesthe seedsolution andthe proceduress iterated. They have beensuccessfully
appliedto many CombinatorialOptimisationproblems(Travelling Salesmarand Vehicle Routing
problemsfor instance).

3. Knowledge Domain Model

Oneof the fundamentabktepsof the modelis the constructionof a sufficiently rich structureon the

raw setof data,notionsandexercisesindeed,while a traditionaltextbook’sstructureis essentially
linear, a more ramified type of backboneappearsecessaryn this context.In fact, the richer the

structure the greaterthe information that can be recoveredrom dataand feedback- the simplest
exampleof this being a time seriesas a part of the real line, where both algebraicand order

structureglay a meaningfulrole andconveyinformation.

Accordingto this very generaidea,we planto usethe graphparadigm.Thefirst stepis to choosea
suitable level of granularity in splitting the various types of knowledgeinto atomic parts. An
irreducibility criterionappearso bereasonablén the notionjoining senseMore precisely,we may
definea semigroupstructureon notions,wherethe internal operationis given by joining notions;
irreducibility now meanghata givennotionis a “prime~i.e. it cannotbe expressedin a non-trivial
way) asthe productof two or more notions.Of coursewe may not havea uniquefactorisationso
that, although irreducible elementsappearto be well defined, an arbitrary element may be
factorisedin morethanoneway into “primes™- thus possiblyrequiring randomchoicesduring the
factorisationprocesspr additionalnodesandlinks to accountor.

Actually, a coloured multigraph seems a suitable extension of the more traditional
(black—and—-whiteand simple) definition of graph.More precisely,different"colours™for arcsmay
accountfor differenttypesof links betweerconceptsandnotions(technical historical, motivational
etc.) sothat morethanonearc may connectthe samecoupleof nodes;at the sametime, eachlink

will be labelled with a degree of difficulty. We remark that this approachis focused on
bi-directional links rather than on hierarchical (linear orderings and linear graphs)
connections.Sincéhe definition of a graphis by its own nature binary, some extensionsof the
standardbasicideasin graphtheoryseemnecessaryo takeinto accountmore generalpatternsin

fact, in many casesotionsandideasarelinked not only in pairsbut alsoin setsof threeor more.
Therefore ratherthan consideringan n—termextensionof graphtheory (hypergraphs)a reduction
argumentmay well fit asfollows: a three—termrelationis regardedasa binary relation betweena
single nodeanda coupleof nodes(hence,an arc). This meansthat supplementarynodesmustbe
added,so asto give the graphthe necessaryadditional dimensionsneededto turn a multi-term
relationinto atwo—termone.The mainreasorior thisis thatwe canexploitthe largeavailability of

methodsandtechniquesiesignedor binary graphsatthe costof a slightincreasen the complexity



in the setof nodes(real and fictitious), and, consequentlyn a larger amountof memoryneeded.
This seemsto be suitable also taking accountof the relatively small cardinality of non—binary
relations.

4. Learner model

The learnermodelis the sourceof all typesof information abouta typical student.The rangeof
functionsand capabilitiesof the studentmodelvaries.Usually a studentmodelis requiredto keep
track of the correspondingtudent’sactivitiesandusethis informationto give a controllerguidance
and adviseat propertimes. There are many approacheso implementa studentmodel. The two
main approachesare basedon Rule—-basedsystemand Semantic—netsystem respectively.In
rule—basedsystemsthe studentmodelis representedsa collection of declarativestatementand
conditionalrules. Thesestatementsre usedto showin which state—of-knowledgehe studentis,
andtherulesspecifyhow thesestatementarerelatedto eachotherandalsohow they canbe used
for future tutoring schedulingandstrategiesThis modelis rathereasierto implement,comparedo
the semantic—nesystem but it hastwo main drawbacksThe first, andthe mostimportantone,is
thatit is very difficult to maintaindomain—-independenda this model.lt is very difficult to write
declarativestatementsuchthat they are leastdependenbn the subject-domairand at the same
time arerich in content.The secondproblemis thatthe numberof rulestendsto grow very rapidly
andthusdramaticallyaffectsthe system’sperformance.

The secondapproachis basedon the semanticnet model. The skeletonof this modelis a general
connectednon-cyclic directed graph. This graph hierarchically containsall the subjectmatters,
correspondingo a theme,andtheir subdivisionsat its nodes.Oneof the importantfeaturesof this
semantimetis a partialdomain-independenc&he graphis organisedn atree-likefashion.At the
root of thenetis the maindomain’sname for instanceDiscreteMathematics.

Eachnodehasan arbitrarynumberof parentnodesandchild nodes.The parent—childrelationis of
dominanceanddependencyype. This is obviouslya uni—directionalrelationwhich specifieshow
different subjectare relatedand dependon eachother. Eachrelation edgebetweentwo nodeshas
multiple fields which determinghe specificdetailsof the correspondingelationandits nature.

For exampleif the relationis of the general-to—specific type or of the semanticallydependent
type. The tree-like structure of the graph shows how different subjects are related in a
general-to—specific\parent—chilelation. For example,a hode representinga topic namedgraph
circuit is the parentof the noderepresentingdamiltoniancircuit andalsoof the noderepresenting
Euler circuit . Thesetopicswould makethe nodegraph circuit oneof their parentsEachnodecan
havean arbitrary numberof children and parentnode.Eachof theseparent—childedgecarriesa
relevancefactor which showsthe strengthof the correspondingparent—childrelation. Of coursea
strongdependences representetby a relevancdactor equalto oneandon the otherhandwhenthe
relationis very weak,the correspondindactoris muchcloserto zerothanto one.

A fundamentaissueconcerningthe constructionof the learner’'smodelis a suitableand possibly
optimisedchoiceof questiongincluding exercises)A possiblemodelthattriesto mimic anexpert
teacher’sstrategymay be devisedasfollows. First, an order—basedelationis definedsothat,once
a correctanswerestablishes link betweenconcepts,someothers(somewhatsubordinateto the
previousone) are assumedo be present.This recursivelyyields a hull operator:somenodesand
links spana certainset. The choiceof testquestioncannow be madein sucha way asto obtaina
minimal setof nodesand arcs spanninga given targetset- just like vertices optimally spana



polyhedronanda baseoptimally spansalinearspace.

A particularlyrelevantpointin the constructiorof anaccuratenodelof alearner'smodel,bothin a
traditional and in non-traditional context, is answer evaluation. A first, widely used, method
imposesrestrictionsto possible answers,such as length restrictions (to reduce ambiguity and
decreaseanswersprocessingtime) or even pre—defined multiple—choice questions.A possible
drawbackis a correspondingrestriction on the type and quantity of information that can be
recoveredby the analysisof the answers becauseof greatersignificanceof guessesand smaller
scopeof answersOn the other hand,evengreaterdifficulties arisewhen dealingwith automatic
interpretation and analysis of natural language;thus, for example, evenif a questionhasa
supposedlya unique answer,the lack of a normal form (a standardsimplification algorithm that
determineswhethertwo elementsof a given domainare equal,suchasfor the word problemfor

groupsor semigroups)nay evencauseambiguity in the identification of the answeras corrector

incorrect. A possiblealternativeis the creationof a suitable communicationprotocol and tools
betweenhumanexpertevaluatorsand learners.We emphasisehat, while this choiceis far from

making the whole approachtrivial, it effectively focusesattentionon the learner’'s knowledge
modellingaspects.

Oncethe global knowledgegraphis constructedthe naturally following steprelatesto its local
version,i.e. the learner'sknowledgemodel. The latter is conceivedasa subgraphof the former,
sinceonly a (generallyspeakingproper)partof the arcsandnodesmay actuallybe presentSincea
complete direct reconstruction,through questionsand exercises,of the learner’s subgraphis
obviously impracticable,a more subtle strategyis necessarylndeed,the difficulty level degrees
will be usedasa linear orderingcriterion. More precisely,oncea correctanswerestablishes link
betweenconceptsall links (within a certainsubject)\whosedegrees not greaterthanthe givenlink
are assumedo be present.The processmay now be iterateduntil no more changesoccur (i.e. a
“fixed point™ is reached).Incidentally, the previously sketchedapproachnaturally fits the use of
such ComputerAlgebra Systemsas Mathematica ,where a rule—basedevaluation procedureis
recursivelyappliedto abstracsymbolicexpressionsintil afixed pointis reached.

Besidesthe more hierarchicalmatters,it seemsnecessaryto accountfor logical dependencef
conceptsaandnotionsbelongingto different subjects.Thereforea supplementargetof arcs— with
weightsaccountingor e.g.strengthof logical correlation— will haveto be usedin orderto serveas
amodelof moregeneraideasthanlogical subordinatiorof a concepto another.

While a tree—pruningprocedureappearsessentiain orderto constructthe learner'smodelusinga

reasonableangeof questionssomekind of hypothesistestingseemsnecessaryo preventover—
andunderestimatiowf errors.Therefore someredundancyill beintroducedn the extremalsetof

test questions- whosespanoptimally coversthe knowledgedomain. Thus,a randomnumberof

randomly chosentestnodeswill be chosenat a (possiblyrandomlychosen)recursionlevel of the

closureprocedurgwhosefinal resultactuallycoversthe knowledgedomain).In casethetestnodes
(correspondingo correctanswers)actually spana subgraphwhich greatly differs from the parent
nodes(belongingto the minimal set),the learner'smodel constructionprocedurewill restartusing
fewer recursionlevels (hencebecomingmore conservative).The whole process(questionsand
compatibility tests)will be iterateduntil no more changesn the learner'smodel occur - with a

possibleupperboundon the numberof questionsanda low reliability warningin casethe process
is for somereasorstopped.

Evaluationis an immediateconsequencef the proposedwvay of constructingthe learner'smodel,
sincea snapshobf the learnergraphwill automaticallyyield this result: a level k knowledgeof
subjectj . Again, a more refined strategymay yield betterresults;whence,an evaluationmatrix
(indeed,a tensorwith three indices: subject,typesand “colour™ of links) will be constructeda



statisticalanalysisof which will give amoreaccuratedescriptionof thelearner'sknowledgeaswell

asan additional compatibility test. Thus, a correlationmatrix (indeed,a still higher—ordertensor)
will be computedwhoseentriesarethe (e.g.linear) correlationcoefficientsof the snapshotnatrix
Thelatterare(well-known)numbersaccountingor the statisticalinterrelationbetweerhigh or low

marksin a given subject,type etc. and another.Finally, hypothesistesting techniqueswill yield,

within a givenlevel of uncertainty anevaluationof the consistencyf the overalldata.

5. Learning support model

In orderto devisea learning support strategy,a fundamentalstepis the choice of a minimum
subgraphto be attained.Sucha graph may possibly be different accordingto e.g. the learner’s
choicesand the learning context. The target subgraphwill thus be obtainedthrougha recursive
procedure,just like the ones sketchedabove for hierarchical subgraphgenerationand logical
closuregenerationnow varying suchparametersasthe numberof iterations,the type of arcsand
possiblyboundingthe degreeof difficulty.

Knowledgeripeningis the procesf addingnewnotionsandconnectionsin orderto exploitgraph
formalism,a combinatorialalgorithmwill be developedbasedon a generalisatiorof well-known
labellingalgorithmsfor shortespathcomputatiorin simplegraphs.

Weightsareassignedo eachnodeandlink of the graph.We point out thatweightsaredifferentin

naturefrom — althoughconnectedvith— the difficulty degreesntroducedbefore;actually,we may
think of them asthe time neededto an averagelearnerin orderto acquaintwith this notion. A

startingsetof weightsis assignedyy experts.Then,basedon answerevaluation a fuzzy algorithm
will allow redistributing weights. The learning processis thus modelledin a dynamical system
fashionin a suitablespaceof graphs.Analysis of the correspondingime serieswill yield botha
statisticalsignificancetestof the possiblediscrepanciefrom the startingsetof weights,and- in an
aggregatdorm - a possiblecompatibility testof the actualaverage—caseharacterof the weights
themselves.

Oncethe adaptive algorithm has determinedthe set of weights that best describesthe learning
process,in regardto a given learner,the final setof weights- comparedwith the averagecase
weights - will yield a quantitative description of the learner’s attitudes and preferences(i.e.
historical,technicaletc.). Thus,the latter may be representedby the final setof weights,while the
formermaybe modelledthroughtherateof changeof theweights.

6. Conclusions

We introduceda possibleline of developmentfor knowledgelevel tool, particularly suitableto

mathematicallearning modelling and support. The proposedmodel is basedon well founded
mathematicalktheoriessuchas Graph Theory, OperationsResearchand Statistics,thus appearing
reliable; at the sametime, the non—trivial useof the latter theoriesandtheir synergiccombination
seemto makethe chosemapproactusefulandcapableof interestingfuture developmentThis holds
true both from the strict point of view of knowledge modelling and from the vantagepoint of

learningsupporttoolsdevelopment.
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