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1 Introduction

Mathematics represents a field of knowledge which is very structured but also extremely vast.
Searching information from documents related to this area (for instance, documents available on
the Web) can be very difficult. A solution to this problem consists in automating information
retrieval by integrating mathematical knowledge in Information Systems. From the field of Artificial
Intelligence and more precisely Knowledge Engineering, these systems are called Knowledge-Based
Systems (KBS). Heirs to Expert Systems, KBS are currently used for different purposes such as
Enterprise Knowledge Management (capitalization, share and appropriation of know and know-
how), Education (exploitation of intelligent tutoring systems for managing a cooperative problem
solving process) or « Semantic Web » (indexation and annotation of web resources by expliciting
their semantics).

The main problematics underlying the construction of a KBS is knowledge representation which
consists in formalizing, from informal descriptions usually expressed in natural language, the knowl-
edge characterizing a specific domain (i.e., the concepts, the relationships and the axiomatics which
define, in a nonambiguous way, the semantics of the considered domain). This activity lies with
recent works on Ontology Engineering [GUARINO & al. 2000, BACHIMONT 2001]. This engineering
is concerned with the development of methodologies, models, tools and languages dedicated to the
construction of ontologies.

The Artificial Intelligence literature contains many definitions of an ontology (many of these
contradict one another). A definition, which seems to be a consensus, can be expressed as follows:
an ontology is a formal explicit description of concepts in a domain of discourse (classes sometimes
called concepts) and relations among them [GRUBER 1993]. An ontology can be developed for
different goals, for instance to share common understanding of the structure of information among
people or software agents, to enable reuse of domain knowledge or to make domain assumptions
explicit.

The work introduced in this paper is concerned with the formalization of the ontology underlying
the projective geometry. This formalization is done by using the Conceptual Graphs, a formal model
defined in the Artificial Intelligence community. Through this experiment, we want to show that
applying knowledge representation techniques to mathematical field is a relevant way to improve the
reliability and efficiency of tools dedicated to mathematical knowledge management. Our proposal
is based on the construction of knowledge bases (defined according to ontologies) which must be



considered as the heart of any mathematical knowledge management tool such as specific math
search engines on the web, specific math intelligent tutoring systems, specific math theorem provers,
etc.

Note that the idea we advocate begins to be applied in the Web area as shown by the re-
cent development of Semantic Web languages dedicated to the sharing of ontologies and knowl-
edge bases such as RDF/RDFS - « Resource Description Framework » recommended by the W3C
and technically based on XML [RDFS 2000] - or the more powerful (from the expressivity point
of view) DAML+OIL - DARPA Agent Markup language [HENDLER 2001] / Ontology Inference
Layer [FENSEL & al. 2000] - which is based on Description Logics, a model close to the Conceptual
Graphs model.

In the following, we present the general principles (illustrated with examples) of the formal-
ization of the projective geometry with Conceptual Graphs. We also emphasize how the formal
representation we have defined allows expliciting and automating theorem proofs, and query an-
swering.

2 Representing the projective geometry with Conceptuals Graphs

Our work is based on HILBERT’s book, « Grundlagen der Geometrie » [HILBERT 1997|. In this
book, HILBERT presents the axioms on which he builds the geometry. Five groups of axioms
are distinguished: the membership’s axioms, the order’s axioms, the congruence’s axioms, the
parallelism’s axioms and the continuity’s axioms. The projective geometry is built on the first and
the second groups of axioms. These axioms have been modelized using the Conceptual Graphs
model.

The Conceptual Graphs model, first introduced by Sowa [SOWA 1984], is a knowledge represen-
tation model which belongs to the semantic networks. This model uses a graphical notation based
on the definition of concepts and relationships between concepts. Knowledge represented with Con-
ceptual Graphs (CGs) is managed by way of graph algorithms. Furthermore, CGs own a logical
interpretation of its primitives; this allows giving a formal semantics to the knowledge represented
with CGs and to the reasoning mechanisms.

Knowledge expressed within this model is structured into three levels:

e a terminological level, used to define the conceptual vocabulary of the considered domain;

e an ontological level, used to specify the definitions, the rules and the constraints underlying
the considered domain;

e an assertional level, used to design graphs representing specific assertions of the domain
(e.g. theorems) or queries of the end-user. These graphs are constructed by using the concep-
tual vocabulary.

2.1 The terminological level

The terminological level is composed of a poset of concept types T, (possibly structured as lattice)
and a poset of relation types T,. The relation types represent the different kinds of relationships
which can be stated between instances of concept types. To each relation type is associated a
signature which specifies its arity and the maximal concept types of its arguments. Note that the
relationships between concept types, such as the Kind-of link, are not represented with a relation
type; they are represented with the two specialisation/generalisation relations <. and <, which
organize the hierarchies 7T, and 7.



Figures 1 and 2 present the concept types T, and the relation types 7} defined for the domain
of projective geometry. The basic objects manipulated in projective geometry are points, straight
lines and plans.

Note that because the negative expressions do not exist in CGs, we must add to the hierarchy
of relation types the negative forms of the membership relation (e.g., belongsPS(Point,Set of
Points) versus nBelongsPS(Point,Set of Points)).
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Figure 1: The hierarchy of concept types.
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Figure 2: The hierarchy of relation types.

2.2 The ontological level

The ontological level is used to represent the semantics of the considered domain and, in particular,
to make the implicit knowledge explicit. Knowledge defined at this level is represented by Concep-
tual Graph Rules, Conceptual Graph Constraints and Concept/Relation Type Definitions. These
primitives are based on the notion of Simple Conceptual Graph (SCG).

A Simple Conceptual Graph (SCG) is a bipartite graph composed of concept vertices (repre-
senting objects of the domain) and relation vertices (describing relationships between objects). A




specification/generalisation relation <, based on <. and <,, is defined between conceptual graphs.
The projection is the fundamental operation on simple graphs since it allows the effective computa-
tion of the < relation. This operation is essentially a labelled graph homomorphism (cf. section 2.3).

A Conceptual Graph Rule is an inference rule of the form Gi1 = G2, where G; and Gy are
SCGs (see [SALVAT & al. 1996] for details). The graphical representation of a rule is the same as
the representation of a simple graph, except that the hypothesis of the rule is indicated in white
color and the information added to the graph by the application of the rule is indicated in black
color (cf. figure 4). According to a graph G, a rule is applicable if there exists a projection of the
hypothesis graph into G. In this case, the conclusion graph of the rule can be joined to G.

A Conceptual Graph Constraint defines conditions that a simple graph must respect to be
considered as valid (see [MUGNIER 2000] for details). It is composed of a condition part and a
mandatory part. We consider positive and negative constraints. A positive constraint expresses that
« if information A is present, then information B must also be present ». Roughly said, a graph G
satisfies a positive constraint if, for every projection of its condition part, there exists a projection
from its mandatory part into the graph G. A negative constraint expresses that « if information A
is present, then information B must be absent ». The graphical representation of a constraint is the
same as the one used for Conceptual Graph Rules (cf. figure 3).

A Concept Type Definition asserts an equivalence between a concept type and a monadic abstrac-
tion (see [LECLERE 1997] for details). This abstraction represents a set of sufficient and necessary
conditions to belong to its type. Any object recognized by the description must belong to the type

and any instance of type owns the attributes of the description. We denote t.(x) 2l D(z) the
definition of type t. with = the variable of formal parameter. In the aristotelician approach, the
genus of new type is the type of the concept marked by z and D(x) represents the differentiae from
t. to its genus (cf. figure 8).

A Relation Type Definition asserts an equivalence between a relation type and a n-ary ab-

straction. We denote t,(z1, T2..-Zp) ‘g D(z1,x9...zy,) the definition of type t, with z1,zs...z, the
variables of formal parameters (cf. figure 9).

2.2.1 The membership’s axioms

HILBERT gives eight axioms which define the membership relation type. All these axioms are
represented by using CG rules and/or CG constraints. The second axiom (called Axiom 1-2) is
expressed (in natural language) as follows: There is at most one straight line to which belong two
points A and B. This axiom is represented by the negative constraint of the figure 3.

Figure 3: Representation of Axiom 1-2.

The sixth axiom (called Axiom 1-6) is expressed (in natural language) as follows: If two points
A and B which belong to a straight line d also belong to a plan «, then all points of d belong to the
plan o. This axiom is represented by the rule of the figure 4.
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Figure 4: Representation of Axiom 1-6.

Note that some implicit knowledge are not explicitly expressed by HILBERT but must be repre-
sented for constructing an operational system. For instance, the figure 5 presents the rule underlying
the following situation: Let A and B be two points, A belongs to a straight line d and B does not
belongs to d, then A and B are necessary different points. In a similar idea, the implicit knowledge
underlying the membership relation specifies that it is not possible that an object both belongs

and nBelongs to another object (cf. figure 6).
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Figure 5: Representation of implicit knowledge.
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Figure 6: Representation of the membership constraint.

2.2.2 The order’s axioms

The four axioms related to this group define the relationship « between ». The first axiom (called
Axiom 2-1) is expressed (in natural language) as follows: If a point B is between a point A and a
point C, the three points belong to the same straight line and B is between C and A. This axiom is

represented by the rules of the figure 7.
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Figure 7: Representation of Axiom 2-1.

2.2.3 The composite concepts and relationships

From the basic objects and relationships defined in the membership’s axioms and the order’s ax-
ioms, HILBERT introduces composite concepts such as Segment, Triangle or Polygon and composite
relationships such as Same Side or Aligned. These composite objects are represented by Con-
cept/Relation Type Definitions. Figure 8 presents the definition of the concept Triangle. Figure 9
presents the definition of the relationship Not Same Side. Note that some of these definitions have
to be completed with CG constraints in order to avoid erroneous deductions.

def
Triangle(x) <=>

Figure 9: Representation of the composite relationship called Not Same Side.



2.3 The assertional level

The assertional level is used to represent facts. These facts are described with conceptual graphs
which, themselves, are defined according to the conceptual vocabulary of the terminological level.
A fact can be related to a theorem, a query of the end-user, a description of a geometric scene, etc.
Figure 10 presents the representation of following query: is there exists a point which belongs to
both an affine curve and a set of points ?

1
5 belongsPS

:
Affine Curve: * belongsPS 1

Figure 10: A graph representing a query.

The reasoning mechanisms provided by the CG model allow managing different types of ex-
ploitation of an ontology. In this section, we present two types of such an exploitation: the query
answering and the theorem proving.

2.3.1 The query answering

The query answering consists in verifying if an assertion (represented by a conceptual graph) is
true in a particular situation. Within the CG model, such an activity is performed by using the
projection. Figure 11 presents an example of a projection from the query of figure 10 into the graph
G representing a particular scene. In this context, the answer of the query is positive because there
exists at least a projection: the point B belongs to both the straight line AB (which is an affine
curve) and the straight line BC (which is a set of points).

Straight Line: AB

Straight Line: BC

Figure 11: Query answering by using the projection.

2.3.2 The theorem proving

The theorem we consider in this section is expressed (in natural language) as follows: There is at
most one point which belongs to both a plan o and to a straight line d which does not belong to a.
This theorem is represented by the negative constraint of the figure 12.

The proof of this theorem expressed in natural language is as follows: « Suppose that two
different points A and B belong to a plan « and to a straight line d which does not belong to .. As
assumed by the axiom 1-6, all the points of d belong to a. So d belongs to a. This conducts to an
absurdity ».

By using the CGs formalization, this proof is performed as follows.
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Figure 12: Representation of theorem 1.

The hypothesis of the proof (« Suppose that two different points A and B belong to a plan «
and to a straight line d which does not belong to « ») is represented by the graph of the figure 13.
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Figure 13: Representation of the hypothesis.

The first step of the proof (« As assumed by the axiom 1-6, all the points of d belong to a. So
d belongs to alpha. ») is done by applying the rule used to represent the Axiom 1-6 (cf. figure 4).
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Figure 14: Application of Axiom 1-6.

The new graph (cf. figure 14) is not logically valid because he breaks the constraint which
expressed the incompatibility of membership and no membership relationships (cf. figure 6). So,
the graph which represents the hypothesis of the proof is a negative constraint.

3 Conclusion

From a methodological point of view, the ontology of the projective geometry we propose has
been constructed by adopting a classical ontology engineering process. This process consists in
first elaborating a corpus. Then, this corpus is analysed in order to identify the concepts and the



relationships of the studied domain. This analysis can possibly be done by using tools related to
natural language processing. In our work, all the concepts and their relations have been identified
« by hands » from the particular corpus corresponding to the HILBERT’s book. It is important
to notice that most of the implicit knowledge has been identified when performing the activity of
validation which, in our work, corresponds to the theorem proving.

From a practical point of view, the current version of the ontology is composed of 14 rules
dedicated to the axioms, 32 rules dedicated to implicit knowledge, 3 negative constraints and
11 type definitions. This ontology is currently being implemented with the COGITANT frame-
work [GENEST 1997].
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