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ABSTRACT - In this paper we apply our recent geometric theory of noncommu-
tative (quantum) manifolds and noncommutative (quantum) PDEs [7,8,12] to the
category of quantum quaternionic manifolds. These are manifolds modelled on
spaces built starting from quaternionic algebras. For PDEs considered in such cat-
egory we determine theorems of existence of local and global quantum quaternionic
solutions. We shaw also that such a category of quantum quaternionic manifolds
properly contains that of manifolds with (almost) quaternionic structure. So our
theorems of existence of quantum quaternionic manifolds for PDEs produce a cas-
cade of new solutions with nontrivial topology.

1- QUANTUM MANIFOLDS AND QUANTUM PDEs

In order to give a geometrical model for quantum physics we introduced in some recents works [7,8,12]
a new category of noncommutative manifolds, (quantum manifolds), where the ”first brick” used
to build them is a suitable structured noncommutative Frechet algebra, (quantum algebra). The
aim of this paper is to show that the category of quantum manifolds contains subcategories of great
interes whose noncommutative manifolds have the quaternionic algebra as a fundamental structure
element. (We call such manifolds noncommutative quaternionic manifolds). Then for PDEs
built in such subcategories we shall apply our geometric theory of QPDEs and obtain theorems of
existence of local and global solutions for noncommutative quaternionic PDEs.

Set K = R, C. Let us recall some fundamental definitions and results on quantum manifolds as
given by us in refs.[7,8,12]. A quantum algebra is a triplet (4,¢,c), where: (i) A is a metrizable,
complete, Hausdorff, locally convex topological K-vector space, that is also a ring with unit; (ii)
e : K - Ay C A is a ring homomorphism, where Ag is the centre of A; (iii) ¢ : A - K is a
K-linear morphism, with c¢(e) = 1, e =unit of A. For any a € A we call ac = c¢(a) € K the
classic limit of a; (iv) A is an associative K-algebra. A quantum vector space of dimension
(m1,...,ms) € N*® built on the quantum algebra A = 4; x ... x A, is a locally convex topological
K-vector space E isomorphic to A" x ... A™s. A quantum manifold of dimension (mg, ..., ms)
over a quantum algebra A = A; x ... x A4, of class Q¥ 0 < k < oo,w, is a locally convex manifold
M modelled on E and with a Q¥ -atlas of local coordinate mappings, i.e., the transiction functions
f:U C E — U' C E define a pseudogroup of local Q¥ -homeomorphisms on E, where QF means
Ck | i.e., weak differentiability [5], and derivatives Ag-linaires. So for each open coordinate set U C M
we have a set of m; + ...+ m, coordinate functions z4 : U — A, (quantum coordinates). The
tangent space T,M at p € M, is the vector space of the equivalence classes v = [f] of CL, (or
equivalently C') curves f : I — M, I = open neighborhood of 0 € R, f(0) = p; two curves f, f'
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are equivalent if for each (equivalently, for some) coordinate system g around p the functions o f,
pwo fl I — AT x ... x AT have the same derivative at 0 € R. Then, derived tangent spaces
associated to a quantum manifold M can be naturaly defined. (For details see refs.[7,8,12].) We
say that a quantum manifold of dimension (m,...,ms) is classic regular if it admits a projection
¢: M — Mg on a n-dimensional manifold Ms. We will call Mg the classic limit of M and in
order to emphasize this structure we say that the dimension of M is (n | my,...,ms). A quantum
PDE (QPDE) of order k on the fibre bundle 7 : W — M, defined in the category of quantum
manifolds, is a subfibrebundle Ej, C JD*(W) of the jet-quantum derivative space JD*(W) over M.
(JD*(W) is, in the category of quantum manifolds, the corresponding of the jet-derivative space for
usual manifolds. For more details see refs.[7,8,12].) In refs.[8,12] we have formulated also a geometric
theory for quantum PDEs that generalizes the theory of PDEs for usual manifolds. In particular
in the following we shall emphasize some important definitions and results about. A QPDE Ej, is
quantum regular if the r-quantum prolongations Ej,, = JD"(E)) N JD*7 (W) are subbundles
of Mhprhir_1 : JDFYT(W) = JD¥=1(W), ¥r > 0. Furthermore, we say that Ej is formally
quantumintegrable if Ey is quantum regular and if the mappings Ek+r+1 — Ek+T, Vr > 0, and
Th,o : E, - W are surjective. In the following we shall consider QPDEs on a fiber bundle 7 : W — M,
where M is a quantum manifold of dimension m on the quantum algebra A and W is a quantum
manifold of dimension (m, s) on the quantum algebra B = A x E, where E is also an Ag-algebra. The
quantum symbol g4, of Ek+r is a family of Ag-modules over Ek characterized by means of the
following short exact sequence of Ap-modules: 0 — 7}, o ktr — vTEk+r — T ok +T_IUTE‘k+T_1.
Then one has the following complex of Ag-modules over Ej, (d-quantum complex):

5 5 s 5 r N
0—gm — TMOgm—1— AFMOgm—2 —... = AT "* MOg = §(AT~* MOgi)—0

where A§M is the skewsymmetric subbundle of TfM = TM ®4, - .r ... @4, TM. We call Spencer
quantumcohomology of Ey the homology of such complex. We denote by {H;”’j’j } sck, the ho-
mology at (AéMOgm,j)q. We say that Ej is r-quantumacyclic if Hg”*j =0,m>k0<j<r,
Vq € Ej. We say that Ej is quantuminvolutive if H" = 0, m > k, j > 0. We say that Ej, is
d-regular if there exists an integer ko > k, such that g., is quantum involutive or 2-quantumacyclic.
THEOREM 1.1 - (5-POINCARE LEMMA FOR QUANTUM PDEs)[12]. Let E, C JD¥(W) be a
quantum regular QPDE. If Ay is a Noetherian K-algebra, then Eyis a d-regular QPDE.
THEOREM 1.2 - (CRITERION OF FORMAL QUANTUM INTEGRABILITY)[12]. Let £}, C JD*(W)
be a quantum regular, §-regular QPDE. Then if gxy,4+1 is a bundle of Ag-modules over Ek, and
Ek+r+1 — EHT is surjective for 0 < r < m, then Ek is formally quantumintegrable.

An initial condition for QPDE E, C JDF (W) is a point g € Ey. A solution of Ej passing for
the initial condition ¢ is a m-dimensional quantum manifold N C Ej such that ¢ € N and such
that N can be represented in a neighboroud of any of its points ¢’ € N, except for a nonwhere
dense subset £(N) C N of dimension < m — 1, as image of the k-derivative D¥s of some Q* -section
sof m: W — M. We call X(N) the set of singular points (of Thom-Bordman type) of N. If
Y(N) # () we say that N is a regular solution of E; C JD*(W). Furthermore, let us denote
by J¥ (W) the k-jet of m-dimensional quantum manifolds (over A) contained into W. One has the
natural embeddings £, C JD¥(W) C J¥ (W). Then, with respect to the embedding E; C Jk (W)
we can consider solutions of E’k as m~dimensional (over A) quantum manifolds V' C Ek such that V
can be representable in the neighborhood of any of its points ¢’ € V', except for a nonwhere dense
subset £(V) C V, of dimension < m — 1, as N®), where N*) is the k-quantum prolongation of a
m-dimensional (over A) quantum manifold N C W. In the case that (V) =), we say that V is a
regular solution of Ej, C jfn(W) Of course, solutions V of Ej, C jfn(W), even if regular ones, are
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not, in general diffeomorphic to their projections (V) C M, hence are not representable by means
of sections of 7 : W — M.

Therefore, above theorem allows us to obtain existence theorems of local solutions. Now, in order
to study the structure of global solutions it is necessary to consider the integral bordism groups of
QPDEs. In refs.[7,8,12] we extended to QPDEs our previous results on the determination of integral
bordism groups of PDEs [6-11,13]. Let us denote by Qf’c, 0 < p < m —1, the integral bordism
groups of a QPDE E, C fﬁL(W) for closed integral quantum submanifolds of dimension p, over a
quantum algebra A, of E@. The structure of smooth global solutions of E}, are described by the
integral bprdism group an"j 1 corresponding to the oco-quantumprolongation E of Ej. Beside tAhe
sags,
0 < p <m—1, where B is a quantum algebra. Then one can prove [12] that BQE’; = QE’; ®K B,

groups Qf’c, 0 <p <m—1, we can also introduce the integral singular p-bordism groups

where QE’; are the integral singular bordism groups for B = K. Furthermore, the equivalence classes
in the groups ? Qf”; are characterized by means of suitable characteristic numbers (belonging to B),
similarly to what happens for PDEs [7-11]. In ref.[12] we given also a general method to explicitly

calculate such bordism groups for quantum PDEs.
2 - THE CATEGORY OF QUANTUM QUATERNIONIC MANIFOLDS

Let us first recall some fundamental definitions and results on quaternionic algebra [2]. Let K = R, C.
Let R be a commutative ring. Let «, 8 € R, (e1,e2) the canonical basis of the R-module R2. We say
quadratic algebra of type (a,3) over R the R-module R? endowed with the structure of algebra
defined by means of the following multiplication: (&) e% = e1,€163 = €96 = ez,eg = ae; + fes.
Any R-algebra E, isomorphic to a quadratic algebra is called a quadratic algebra too. (Any R-
algebra E that admits a basis of two elements (one being the identity) is a quadratic algebra.) Then
the basis is called a basis of type (a,3). A quadratic algebra E is associative and commutative.
Let E be a quadratic R-algebra, e its unit. Let uw € E and T'(u) the trace of the endomorphism
z — uzx of the free R-module E. Then the application s : E — E, s(u) = T(u).e — u, is an
endomorphism of the R-algebra E and one has s?(u) = u, Vu € E. A Cayley algebra on R
is a couple (E,s), where E is a R-algebra, with unit e € E, and s is a skewendomorphism of E
such that: (a) u + 4 € Re, (b) u.u € Re, with 4 = s(u), Vu € E. s is called conjugation of
the Cayley algebra E and s(u) = @ is the conjugated of u. From the condition (a) it follows that
ut = tu. One defines Cayley trace and Cayley norm respectively the following maps: T : E — Re,
u—T(u) =u+14; N:E — Re, u = N(u) = u.t. One has the following properties: (1) € = ¢; (2)
s(u+ s(uw) = u+s(u) = s(u) +s%(u) = u+s(u) = s(u) =u = s =idg; 3) T(@) = T(u); (4)
N(@) = N(u); (5) (u —u)(u — @) =0 = u? — T(u).u+ N(u) = 0; (6) Let E be a R-algebra and let
s, s' be skewendomorphisms of E such that (E,s) and (E, s') are Cayley algebras. If E admits a basis
containing E, one has s = §'; (7) u + v = 4+0; @u = au; B0 = 0.4, Va € R, Vu,v € E; (8) T'(e) = 2¢;
N(e) = ¢e; (9) T(uv) = T(vu); (10) T(va) = T(uv) = N(u+v) — N(u) — N(v) = T(w)T (v) — T'(uv);
(11) N(au) = o®N(u); (12) (T(u))? — T(u?) = 2N(u); (13) T is a linear form on E and N is a
quadratic form on E.

EXAMPLE 2.1 - (CAYLEY EXTENSION OF A CAYLEY ALGEBRA (£,s) DEFINED BY AN
ELEMENT ~cR). 1) Let (E,5) be a Cayley algebra and let yer. Let F be the r-algebra with underlying
module ExE and with multiplication (z,y)(z',y")=(zz'+~¥ y,yz'+y'z). Then (e,0) is the unit of F and Ex{o}
is a subalgebra of F isomorphic to £ that can be identified with E. Let ¢ be the permutation of r
defined by t(z,y)=(z,—y), vz,ycE. Then the couple (F,) is a Cayley algebra over r. Set j=(0,e). So
we can write (z,y)=(z,0)(e,0)+(0,5)(0,e)=ze+yj. One has yj=jg, z(yj)=(y2)i—(zi)y=(z9)j, (xj)(yi)=vze, j>=e.
Furthermore, one has Tr(ze+yj)=T(x), Nr(ze+yj)=N(z)—yN(y). F is associative iff E is associative and
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commutative.

2) As a particular case one has: If E=r (hence s=idr), the Cayley extension of (R.idr) by an element
yeR is a quadratic r-algebra with basis (e,j) with j2=ye.

3) Another particular case is the following. Let £ be a quadratic algebra of type (a,8) such that the
underlying module is r? with multiplication rule given by means of (&) for the canonical basis. Let
the conjugation s be the conjugation in E. Then for any yer, the Cayley extension F of (E,s) by
means of ~ is called quaternionic algebra of type (a,3,7). (This is an associative algebra.) The
underlying module is Rr*. Let us denote by (0,i,5,k) the canonical basis of r*. Then the corresponding
multiplication rule is given by the following table. (In the same table it are also reported the trace
and norm formulas.)

TAB.2.2 - Multiplication table and trace and norm formulas.

i j k trace and norm formulas
i ae+pi k aj+Bk Tr(u)=2p+BE
j Bi—r ve By—i Nr (u)=p>+Bp—at®—y(n"+Bn¢—a(?)
k —aj yi —ave Nr (uv)=Nr () Nr(v)

u=pe+Eitnj+¢r, p.&mCEK;  a=(p+BE)e—Ei—nji—(k.

4) An Aa-algebra isomorphic to a quaternionic algebra is called a quaternionic algebra; if a basis of
such an algebra has the multiplication to be (0) then it is called of type (a,8,7)-
5) If =0 we say that the quaternionic algebra is of type (a,7). One has:

TAB.2.3 - Multiplication table and trace and norm formulas.

i j k trace and norm formulas
i ae k aj Tr(u)=2p
J —k ve —vi Nr(uw)=p®—ag®—yn*+avy¢?
k —ayj vi —aye

u=pe+§i+nj+Cr, p,&,MCEK; u=pe—§i—nj—(k.

(Of course as —11 this algebra is not commutative.)

[ ] In particular if A=K=R, a=y=—1, g=0, F is called the Hamiltonian quaternionic algebra and

is denoted by H. In this case N(u)#0, hence » admits an inverse v~ '=N(u)~'a in H, therefore H is a

noncommutative corp. Any finte R-algebra that is also a corp (noncommutative) is isomorphic to H.

Any quaternion ¢eH can be represented by g=pe+¢i+nj+Ck, where i,j,k are linearly independent symbols

that satisfy the following multiplication rules: ij=k=—ji, jh=i=—kj, ki=j=—ik, i>=j’=k>=—1. One has
a+bi c+di

the following R-algebras homomorphism: A:H—M(2;C), g— i vi ) where i is the imaginary
—c+di  a—bi

unity of c. The matrices o,=—iA(k), oy =—iA(j), 0.=—iA(i), where A(i):(; 0.), A(j):( 01 ;), A(k)=
i _

' 2=¢2=1, 0,0y=—0y=0z=ic.. Lhe set Hi=N;'(1) of
(]

0 i . . .
( ’ ), are called Pauli matrices and satisfy ¢2=c¢2
0
quaternions of norm 1 is isomorphic to the group sv(2): Hi=~svu(2). The n-dimensional quaternionic
space H™ has a canonical basis {ex}i<r<n, ex€H, and any veH" can be represented in the form v=
d*er, ¢"cH, (¢*=quaternionic components). As any quaternionic number ¢ admits the
1<k<n ) ’ y

following representation g=z+yj=z+jgy, With z=pe+¢i, y=n+¢i, where z and y can be considered complex
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numbers, then one has the following isomoprphism H"=~C?", (¢*)—(z*,5*), where c®>* has the following
basis (e1,....en,je1,....jen). We Write dimyg H*=n, dimc H*=2n. By using different quaternionic bases in H"
’ y q

one has that the quaternionic components of any vector veH" transform by means of the following

rule ¢*=)" _._ ¢‘AF, \})eGL(n,H). Furthermore, the corresponding complex components transform in

the following way:
{e""=aal '8}, y"=c'bP+y'ar},  Ar=ai+b7i.

Then one has a group-homomorphism GL(n,H) S5 GL(2n,C), such that if A=A+BjcGL(n,H), then c(A)=
A B
-B A

ly*|2)eR, where v=¢*c, ¢*€H, ¢*=2*+y"*j, *,y*eC. So such a quadratic form coincides with the ordinary

n H 3 3 2_ k|12__ k-k__ k2
>. On H" there is a canonical quadratic form |v| _ZISkSn lg*| _ZISES" "7 _ZISkS"qz 12+

norm of the vector space c*. Furthermore one has on H* the following form <vi,wve>u=) _, _ dtdbeH,
vi=y . _, ., d¥er, i=1,2. The quaternionic transformations of H", that conserve above form form a group

Sp(n)CGL(n,H). As we can write <vi,ve>u in the following way:

D icnen (@ +YITE)=<vi,v2>c= hermitiam form in  c*n
<v1,v2>H= -
CZn

El<k<n(yfz’2cfz’fy;’)j=o(v1,vg)cz skewsymmatric form in

we see that AeSp(n) preserves the hermitian form and the skewsymmetric form. Therefore c(Sp(n))cU(2n)
and it is formed by the unitary transformations of c®* that preserves the antisymmatric form o(v1,vs)c-
EXAMPLE 2.2 - sp(1)=su(2)cu(2). So all the transformations contained in ¢(Sp(1)) are unimodular. =
DEFINITION 2.1 - Let B be a quantum algebra. We define Cayley B-quantum algebra any
quantum algebra C that is obtained from a Cayley K-algebra A, by ”extending the scalars” from K
to B, i.e.,, C = B Qk A.

EXAMPLE 2.3 - The noncommutative B-quaternionic algebra B ®k H is a Cayley B-quantum al-
gebra over K = R endowed with the natural topology of Banach space and considering the K-linear
morphism ¢ = ¢g ® %T : Bex H — K, where T is the trace of H. (Another possibility is to take
¢=cp®N, where N is the norm of H. In this last case, whether B is an augmented quantum algebra,
then B ®k H becomes an augmented quantum algebra too.) "
DEFINITION 2.2 - A quantum B-quaternionic manifold of dimension n and class Q%, 0 < k <
00, w, is a quantum manifold M of dimension n and class Q¥ over the B-quantum algebra C = Bk H.
Then the quantum coordinates in an open coordinate subset U C M are called B-quaternionic
coordinates, {¢"}1<k<n, ¢" : U = C!

DEFINITION 2.3 - The category C&, of quantum B-quaternionic manifolds of class QF, is
defined by considering as morphisms maps of class Q¥ , between quantum B-quaternionic manifolds.
EXAMPLE 2.4 - Quantum quaternionic Mébius strip. Let us denote I = [-7,7] C R, N =
I x H. Let us introduce the following equivalence relation in N: (z,y) ~ (z,y) if x # —m,m,
(—m,—y) ~ (m,y). Then N/ ~= M is called noncommutative quaternionic Moébius strip. One has a
natural projection p : M — S', given by p([z,y]) =z € S' if  # —7, 7, and p([r,y]) = * € S', where
x is the point of S' = I/{—m, r}, corresponding to {—m,7}. One can recover M with two open sets:

{4 =p ' (th), Ui=]-m7n[; Q=p'(U:), U=5"\{0}}.

We put quaternionic coordinates on €);, i = 1,2, in the following way. On Q, {z'[z,y] = p[z,y] =
r € R,2%[z,y] =y € H}. On Qy, if z # —m, 7, 2'[z,y] = -7+ 2 € R, z'[-2,y] = 7 — 2z € R,

1 As a particular case we can take B=k. In this case c=H and we call such quantum K-quaternionic
manifolds simply quantum quaternionic manifolds.
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.CZ'Q[:E.Z'7y] =y € H; "El[_’]ﬂ _y] = ,(f'l[']r,y] = 07 'i.z[_,]ra _y] = 'i.2[7r7y] = |y| € Cil(R-’_) C H: with
c= %T. The change of coordinates is given by:

. .’f?l|U_:7T—.’L'1€R
Vge Ny, (plg) € S"\{x0}=U,|JU-, {2, =-7+z'€R
2 =2’cH

The structure group, i.e. the group of the jacobian matrix, is isomorphic to Zs. In fact one has:
51 =2
{oan= (on3) omss) = (0 1) corem}.

Therefore, M is a quantum quaternionic manifold modelled on R x H C H?, hence dimyg M = 2.
Furthermore one has the canonical projection M — S, therefore M is a regular quantum manifold of
dimension (1 | 2). Finally remark that as M is not covered by a global chart, it is a non trivial example
of quantum quaternionic manifold. Of course this can be also seen by means of homological arguments.
In fact one has Hy (M;R) = H,(M¢c; R) = H;(S';R) = R. Therefore, M is not homotopy equivalent
to R%, as H;(R%;R) = 0. .
EXAMPLE 2.5 - Quaternionic manifolds [3,15,16]. The category Cyg of quaternionic manifolds is
a subcategory of CE=R, where the morphisms are quaternionic affine maps [15]. Therefore any of such
morphisms f € Home,, (M, N), where dim M = 4m, dim N = 4n, are locally represented by formulas
like the following: f* = A¥q7 + 1%, Ak ¢f, 7k € H,1 <k <n, 1 <j <m. A% identify m x n matrices
with entries in H, or equivalently, real matrices of the form

The set of such matrices is denoted by M (n, m; H). The structure group of a 4n-dimensional quater-
nionic manifold is GL(n; H), (that is the subset of M (n,m;H) of invertible matrices). Therefore,
quaternionic manifolds are quantum quaternionic manifolds where the local maps f : U C H* = U C
H", change of coordinates, are H-linear. Hence D f(p) € H"2, Vp € U. In fact, one has the following
commutative diagram:

Homu(H";H") < Homgr(H™;H") £ Hom,R(H;H)"2
W R
Homu(H;H)" Homgr(R*R*)"

I I

H"’ ~ R’ — R
On the other hand the tangent space T, M has a natural structure of H-module iff M is an affine
manifold. (As in this case the action of H on T, M = H™ does not depend on the coordinates used
to obtain the identification of T,M with H".) Hence the category Cg is the subcategory of CR of
affine quantum quaternionic manifolds. A trivial example of quaternionic manifold is R*" = H". If
{z%,y*,u’,v*}1<i<n are real coordinates on R*", then the almost quaternionic structure given by

{ J(a.’ti)zayi, J(ay,-):—am,', J(aui):—avi, J(B’U,'):au,' }

K(8z;)=0u;, K(0y;)=0v;, K(0u;)=—0z;, J(0vi)=—0y;
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is called the standard right quaternionic structure on R**.2 A non trivial example of quaternionic
manifold is R*" with the standard quaternionic structure quotiented by a discrete translation group
that gives a torus. "
EXAMPLE 2.6 - Almost quaternionic manifolds. The category é;l of almost quaternionic mani-
folds is a subcategory of C5=R, where the structure group of a 4n-dimensional quantum quaternionic
manifold is GL(n; H)Sp(1) C GL(4n;R). The category Ca properly contains Cy. An example of al-
most quaternionic manifold, that is not contained into Cy, is the quaternionic projective space HP!.
This cannot be a quaternionic manifold, since it does not admit a structure of complex manifold.m
REMARK 2.1 - As the centre Cy of C' = B ®k H is isomorphic to By, that is the centre of B, we get
that, whether By is Noetherian, one can apply above Theorem 1.1 and Theorem 1.2 for QPDEs, in
order to state the formal quantum-integrability for quantum B-quaternionic PDEs. Note that in such
a way we obtain as solutions submanifolds that have natural structures of quantum B-quaternionic
manifolds. Then applying our theorems on the integral bordism groups for quantum PDEs [12], we
can also calculate theorem of existence of global solutions for quantum B-quaternionic PDEs.
EXAMPLE 2.7- Quantum B-quaternionic heat equation. Let us consider the fiber bundle
7 : W = C® - C? = M with coordinates (¢,z,u) ~ (t,z). The quantum B-quaternionic heat
equation is the following QPDE: (ITIE)c C JD}(W) C J3(W): gy — ug = 0. This is a formally
(quantum)integrable QPDE. Hence, for (Iﬁ) ¢ we have the existence of local solutions for any initial
condition. This means that in the neighborhood of any point g € (ﬁ)c we can built an integral
quantum B-quaternionic manifold of dimension 2 over C, V C (Iﬁ)c, such that V 2 my(V) C M,
where T, is the canonical projection m : JD2(W) — M. Then by using a Theorem 5.6 given in

ref.[12] we have that the first integral bordism groups of (I?E’)C is: Q§HE)C >~ H(W;K) @k C =0.
Hence we get that any admissible closed integral 1-dimensional quantum B-quaternionic manifold,
N C (I:TE)C is the boundary of an integral 2-dimensional quantum B-quaternionic manifold V',
oV C N,V C (@)C, such that V is diffeomorphic to its projection into W by means of the
canonical projection my o : J2(W) — W. ]
EXAMPLE 2.8 - Quantum quaternionic heat equation. As a particular case of above equation
one can take B = R. Then one has:

{WIWEH4—)HQEM; (t,z,u) = (t,)

(HE)y ~
(HE)y CJID*(W) C JZ3(W) gy —ugp = 0} ! '

We can see that the set Sol ((I/{E)H) of solutions of (I?E)H contains also quaternionic manifolds, i.e.,
affine quantum quaternionic solutions. For example a torus 2 X € H? = M can be embedded into

2 An almost complex structure on a ¢ manifold i is a fiberwise endomorphism J of the tangent
bundle 7 such that s2=-1. A complex analytic map between almost complex manifolds (x,7;) and
(Y,J2) is a €™ map ¢:X—Y, such that T(¢)oJi=J20T(¢). An almost quaternionic structure on a ¢
manifold a is a pair of two almost complex structures 7 and k such that sJk+KJ=0. A quaternionic
map ¢ between two almost quaternionic manifolds (x,J;,k;) and (v,Jz,K2) is 8 map ¢:Xx—Y that is
complex analytic from (x,7;) to (v,J2) and from (x,k;) to (v,K3). A quaternionic manifold is a c>
manifold » endowed with an atlas {¢;:U; =R*"}, for some n, such that ¢;o¢':¢:(U:nU;)—=¢;(U:NU;) is a

quaternionic function with respect to the standard structure on r*". (See also ref.[1].)
3 Recall [15] that if (x,7,K) is a quaternionic manifold, then x with the complex structure aJ+bK+

¢(JK), a,b,c€R, is an affine complex manifold, hence has zero rational Pontryagin classes. Furthermore,
if x is compact has zero index and Euler characteristic. Moreover, if dimg X=1 and, for some a,b,c, X
is Kéahler, then it is a torus.
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(I:TE‘)H by means of the second holonomic prolongation of the zero section u = 0: M — W. In fact,
(ITIE')H is a linear equation. Therefore, X(?) = D?y(X) is a 1-dimensional smooth closed compact
admissible integral manifold contained into (@)H, that is the boundary of a 2-dimensional integral
admissible manifold contained into (ﬁ)H too. This last is also a quaternionic manifold. Moreover,
all the regular solutions of (I/I\E)H C JD?(W) are quaternionic manifolds, as they are diffeomorphic to
HZ2. However, no all the regular solutions of (Iﬁ)H C J2(W) are necessarily quaternionic manifolds
too. L]
We are ready now to state the main results of this paper.

THEOREM 2.3 - Let B be a quantum algebra such that its centre By is a Noetherian R-algebra. Let
E, C J@k(W) be a quantum regular QPDE in the category C§, where m : W — M is a fibre bundle
with dimeM = m, C = BorH. If giyr41 is a bundle of Co-modules over Ey, and Eyy 41 — Epyy is
surjective for 0 < r < m, then Ey, is formally quantumintegrable. In such a case, and further assuming
that W is p-connected, p € {0,...,m—1}, then the integral bordism groups of E, C j,’g(W) are given
by:

QP = H,(W;R)®rC, 0<p<m-—L

All the regular solutions of E}, C jfn(W) are quantum B-quaternionic submanifolds of Ej, of dimension
m, over C, identified with m-dimensional quantum B-quaternionic submanifolds of W.

PROQF. It follows directly from above definitions and remarks by specializing Theorem 1.1, Theorem
1.2 and our results in ref.[12], about integral bordism groups in QPDEs, to the category C5. O
COROLLARY 2.1- Let E; C JD*(W) be a quantum regular QPDE in the category C&, (resp. 5H),
where m : W — M is a fibre bundle with dimuM = m. If §y4r41 is a bundle of R-modules over Ek,
and Ek+r+1 — E;H_T is surjective for 0 < r < m, then Ek is formally quantumintegrable. In such a
case, further assuming that W is p-connected, p € {0,...,m — 1}, then the integral bordism groups
of By, C Jk (W) are given by:

QP = H,(W;R)or H, 0<p<m—1.

All the regular solutions of Ej, C JF (W) are quantum quaternionic, (resp. almost quaternionic), sub-
manifolds of Ej, of dimension m, identified with m-dimensional quantum quaternionic, (resp. almost
quaternionic), submanifolds of W.
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