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THE MATHEMATICAL FORMULATION OF THE M5-BRANE

ERIC BERGSHOEFF

ABSTRACT. I discuss three issues in M5-brane theory. These issues have in com-
mon that they are much better understood in the context of strings and Dirichlet
branes, or D-branes. D-branes and the M5-brane are related in the sense that
the M5—brane can be considered as the strong coupling limit of the D4—brane.
In this limit an extra worldvolume direction opens up. The first issue I discuss
is how the non-Abelian Born-Infeld vector of the D—branes should generalize to
non-Abelian two—form gauge fields living on the worldvolume of the M5-brane.
Next, I discuss how the noncommutative geometry of D-branes generalizes to
a non-commutative loop space geometry on the M5-brane. The third and last
issue I discuss is how the noncommutative open strings recently discovered in the
context of D-branes generalize to a noncommutative open membrane.

1. INTRODUCTION

String theory is considered to be the most promising candidate for solving the
problem of the notorious infinities of quantum gravity (for a textbook, see [1, 2,
3, 4, 5]. The basic assumption underlying string theory is that the particles in
nature are not pointlike but, instead, are described by the vibrational modes of
little strings whose basic length scale is the Planck length. String theory predicts
a finite number of massless particles, among which is the graviton as the carrier of
the gravitational force, plus an infinite number of very heavy particles with a mass
of the order of the Planck mass. The idea is that this infinite number of particles,
massless and massive ones, controls the problemetic infinities of quantum gravity.
To introduce fermions in the spectrum, like leptons and quarks, one must consider a
supersymmetric string, or superstring, theory. In the low-energy limit, or at large
distance scales, the superstring theory can be approximated by a supergravity
theory. To avoid the occurrence of anomalies during the quantization procedure
one usually starts with a superstring theory in D=10 spacetime dimensions. In
a second step one rolls up six of the spatial dimensions in order to obtain four—

dimensional physics. This rolling up of dimensions is called “compactification”.
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Having gone from pointlike particles to string-like objects, i.e. objects with a
one—dimensional extension or “1-branes”, it is natural to consider the further gen-
eralization to membranes or “2-branes”. Indeed in 1987 we proposed the D=11
supermembrane and conjectured that its low-energy limit was given by D=11 su-
pergravity [6]. The interesting thing about D=11 supergravity is that it is the
highest—-dimensional supergravity theory one can construct'. It was soon discov-
ered that there were problems with the spectrum of the D=11 supermembrane
when considered to be at the same footing as a fundamental D=10 superstring.
For instance, the spectrum did not contain the massless fields of D=11 supergrav-
ity [7, 8].

In the mid-nineties there was a revival of interest in membranes and its higher-
dimensional partners, the “p-branes”, due to the progress made in understanding
some of the nonperturbative features of string theory. In particular, it was discov-
ered that, for large values of the string coupling constant, the spectrum of string
theory contains p-branes for various values of p. In other words string theory really
is a theory of strings and branes. Another discovery was that the D=10 superstring
and D=11 supermembrane are related in the sense that the strong coupling linit
of D=10 supergravity leads to the opening up of an extra dimension and D=11 su-
pergravity [9]. It is unclear how to take this strong coupling limit of the complete
D=10 superstring theory. It is supposed to lead to a so-called D=11 M-theory
whose precise formulation is yet unknown.

We do know that the low—energy limit of M-theory is D=11 supergravity. This
D=11 supergravity theory has not only membrane, or M2-brane, solutions [10] but
also 5-brane, or M5-brane, solutions [11]. The M5-brane is the magnetic version
of the M2-brane’. The M5-brane is much less understood than the M2-brane.
In the same way as the M2-brane is the strong coupling limit of the fundamental
string, or F1-brane, the M5-brane is the strong coupling limit of the D4-brane.
It is the purpose of this lecture to gain insight into the mathematical formulation
of the M5-brane by making use of what we already know about the D-branes, in
particular the D4-brane. Any progress in our understanding of the M5-brane is
likely to lead to further insights into M—theory.

!1We assume here a Minkowski signature of spacetime. The problem with going beyond D =
11 is that one must then introduce massless particles of spin higher than two and it is not known
how to couple such high—spin particles to gravity.

In general the magnetic version of a p-brane is a (D-p-4)-brane. Note that only in D=4 the
magnetic version of a 0-brane (electron) is again a 0-brane (magnetic monopole).
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2. D-BRANES

A particularly interesting class of branes in string theory are the D-branes [12].
They differ from the ordinary branes, or p—branes, in the sense that open strings
can end on the D-brane. In fact, the D-branes are naturally described as open
superstrings with the boundary condition that the endpoints of the open super-
string is constrained to move on the worldvolume of the D-brane. These are called
Dirichlet boundary conditions. The dynamics of ordinary p-branes are described
by a Nambu-Goto action containg the (embedding) scalars of the p-brane, i.e. for
each transverse direction there is a scalar. The extra structure of the D-brane
(endpoints of open strings moving on its worldvolume) results in the existence of
not only (embedding) scalars but also a so-called Born-Infeld (BI) vector that cou-
ples to the endpoints of the open string. The scalars and vectors together form a
so-called Dirac-Born-Infeld (DBI) action. For zero scalars this action equals the
Nambu-Goto, or Dirac, action while for zero vector the action equals the Born-
Infeld action [13].

We now discuss three characteristic properties of D-branes. In the next Section
we will discuss these three properties in the context of the M5-brane of M—theory.

(A) Yang—Mills. It has been shown that if one considers N coinciding D—branes
the N Born—Infeld vectors are not the only massless vector fields. There are addi-
tional massless vectors arsing from strings that are stretched between the different
D-branes. This leads to the following symmetry enhancement [14]:

U(1) x - x U(1) — U(N). (1)

- i
-~

N times

In other words the U(1) Maxwell theory of a single D-brane gets extended to
a U(N) Yang-Mills theory of N coinciding D-branes. In general this Yang-Mills
theory is coupled to the (9-p) embedding scalars living on the worldvolume. It is
not clear how to describe these scalars in the case of N coinciding D-branes. A
special case is the D9-brane for which there are no transverse directions and hence
no embedding scalars. To avoid the complication of how to describe the scalars it
is often convenient to concentrate on this case.

One can view the number N as a deformation parameter of the worldvolume the-
ory of the D-brane. There exists another deformation parameter, the basic string
length £, or the Regge slope parameter o/ = ¢2. The a'—corrections deform the
Maxwell theory into a BI theory where o' multiplies the higher-order BI curva-
tures in the action. One can also consider the two deformations at the same time,
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i.e. consider the o/—corrections of N coinciding D—branes. The resulting worldvol-
ume theory is called the non-Abelian Born—Infeld (NBI) theory but its complete
structure is not known. For some recent progress, see e.g. [15, 16, 17]. We have
sumarized the situation in the diagram below.

Maxwell =

o' | o |

(B) Noncommutative Geometry. Recently, there has been an interest in con-
sidering D-branes in the background of a nonzero NS-NS B-field. Since this
B-field occurs in the definition of the BI curvature

F=dV+B 2)

its effect is that F # 0. This leads for instance to an effective open string metric
and coupling constant:

(Gc:sl)ab = Tab — (‘7'—2)@’ (3)

)\os - \/_det (nab + fab) . (4)

It turns out that a non-zero B—field also leads to an effective noncommutative
geometry of the worldvolume of the D-brane [18, 19]. One way to see this is to
consider a particular decoupling limit [20] in which the bulk closed string states
decouple from the worldvolume open string states. Furthermore the massive open
string states decouple and one ends up with a field theory living on the worldvolume
of the D-branes. In this limit, assuming that F is constant, the open string action
describing the open string ending on the D—brane is dominated by its Wess—Zumino
(WZ) term given by

Sstring ~ L . dr XaXb . (5)
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The subscript “bound.” indicates the boundary of the open string worldvolume,
i.e. the worldline of its endpoints. The underlined terms effectively describe a
standard vector coupling to a particle. It is well known, e.g. from the quantum Hall
effect, that this coupling leads to a noncommutative geometry for those coordinates
that couple to the vector. This is simply due to the reason that these coordinates
occur with a linear time derivative in the action. Upon canonical quantization such
terms lead to (noncommutative) Dirac brackets between the coordinates. To be
more explicit let us assume that the nonzero components of F,, are given by F,,
where 7, s refer to a certain number of spatial directions:

0 0
)

The spatial coordinates X" and X* then become noncommuting with noncommu-
tativity proportional to the inverse of (F),s:

{X",X°}° = : (7)
Here {.,.}" denotes the Dirac bracket.

(C) Noncommutative Open strings. So far we only considered spacelike non-
commutative coordinates. In the context of the D3-brane it is natural to also
consider timelike noncommutative coordinates. In the case of the D3-brane the
two cases are related to each other if one considers the S—duality in the presence
of a nonzero B—field [21]. The reason of this is that under S—duality the magnetic
(spatial) components of the 4 x 4 matrix F are converted into electric (involving
time directions) components of F. We already mentioned that in the magnetic case
a decoupling limit leads to a noncommutative Yang-Mills theory on the D-brane.
It has been pointed out that in the electric case the massive open string states do
not decouple and hence one is ending up with an open string theory instead of a
field theory [21]. This open string theory is called a noncommutative open string
(NCOS). I have summarized the situation in the diagram below.

magnetic field < electric field

nonc. Y.M. N.C.O.S.
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3. THE M5—BRANE

D-branes are hyperplanes with open strings ending on them. There is a 1-form
gauge field on the D-brane worldvolume that couples to the 0—brane endpoints of
the open string. There is a natural generalization of this to open p—branes ending
on g-branes (p < ¢) with a (p+1)-form gauge field living on the worldvolume of
the g—brane that couples to the (p—1)—brane boundary of the open p—brane. String
theory predicts that such objects exist in D=11 with p=2 and q=b5, i.e. open
M2-branes ending on an M5-brane®. In fact, it was believed for some time that
open M2-branes did not exist, see e.g. [22]. The reason for this is that the open
superstring boundary conditions break the N=2, D=10 supersymmetry to a N=1,
D=10 supersymmetry. Such a supersymmetry breaking is not possible in D=11
without breaking Lorentz invariance. It was only after the introduction of D—-branes
[12] that it was realized that a system of branes ending on branes naturally breaks
Lorentz symmetry and hence an open M2-brane ending on a M5-brane could be
defined [23, 24].

The Mb-brane is the magnetic partner of the M2-brane in the sense that the
M2-brane couples to the (electric) 3—form gauge potential of D=11 supergravity
whereas the M5-brane couples to the (magnetic) dual 6-form potential. There is
a 2-form potential living on the M5-brane that couples to the string boundary of
the M2-brane. A nontrivial feature is that this worldvolume 2-form is selfdual.
It is part of a N=2, D=6 tensor multiplet that also contains the 5 embedding
scalars corrresponding to the transverse directions of the M5-brane. The tensor
multiplet describes 8+8 (bosonic + fermionic) worldvolume degrees of freedom.
The 5 embedding scalars X* (u = 0,1,---,10)* occur via the worldvolume metric
gap (@ =0,1,---5) and the 3 degrees of freedom described by the selfdual two form
b occur via the worldvolume 3-form curvature H:

Gap = 3aX“8bX"gW(X): 5 d.o.f. (8)
H = db+C(X): 3 d.odf. 9)

Here g, (X) is the D=11 gravity field and C(X) is the 3—form potential of D=11
supergravity.

3Branes living in a D=11 target spacetime are part of M-theory and therefore called M-branes.
“Note that 6 of the X* are gauge degrees of freedom due to the worldvolume
reparametrizations.
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The 3-form curvature H satisfies the following nonlinear selfduality condition

[25]:
[ —det
Cadebc = %eabcdef?{def ) (10)

with the so—called Boillat metric given by [26]

1 1 a

C% = —L— [(1 + E%Q)g“” — Z(’}112) ”} : (11)
145 H?

It can be shown that the worldvolume equations of motion can be formulated in

terms of this Boillat metric

Having discussed the necessary M5—-brane preliminaries we are now in a position
to discuss in which sense the three properties of D—branes discussed in the previous
Section carry over to the M5—brane.

3.1. Non-abelian Two—form Gauge Fields. We mentioned that the Maxwell
theory of a single D-brane gets extended to a U(N) Yang-Mills theory of N coin-
ciding D-branes. We also know that the single Maxwell 1-form of the D4-brane,
in the strong coupling limit, becomes the selfdual 2-form of the M5-brane. The
question is what happens in the case of N coinciding M5-branes. Naively one would
expect some kind of non-Abelian 2—form gauge theory, see the diagram below. Such
a theory has not been constructed yet.

M5: 2—form =

= U(N) Y.M.

We assume here that the result can be described by a worldvolume field theory5.
There is a theorem stating that this field theory cannot be local [27].

5Tt has been suggested that instead the worldvolume theory is described by a (nonperturbative,
selfdual) string theory. If that is the case we assume that this string theory, in some limit, can
be effectively described by a field theory.
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One possible approach to find out what the worldvolume theory is that describes
N coinciding M5—branes is to consider its reduction to five dimensions. In D=5 a
Maxwell 1-form A, is (Poincaré) dual to an Abelian 2-form B,,. To construct a
non-Abelian 2-form gauge theory in five dimensions one should be able to extend
the duality to the non-Abelian case and dualize a Yang-Mills vector Alﬂ into a Yang-
Mills 2-form B,,,’. This problem has already been considered in the seventies, see
e.g. [28]. Sofar an explicit realization of the non—Abelian 2—form gauge theory
on the M5—brane worldvolume has not been found yet. We have summarized the
situation in the diagram below.

From several points of view one has come to the conclusion that whatever the
worldvolume theory of N coinciding M5-branes is, it is bound to contain nonlocal
structures. This is also natural given the fact that we are dealing with strings
instead of particles moving in the worldvolume. I have tried, in collaboration with
Chris Hull, to formulate such a nonlocal worldvolume theory, but sofar we did
not succeed to give an explicit result that satisfies the test that, after dimensional
reduction, it reproduces the (local) DBI worldvolume theory of the D4—brane.

duality
=

B,

e 4

non—abelian duality
! = B’

One way to naturally incorporate nonlocal structures, is to work with a loop
space. A loop space XM of a manifold M is defined as the space of maps from the
circle S to the manifold M. In fact, we will encounter exactly these loop spaces
in the next Subsection where we consider the M5-brane analogue of the D-brane
noncommutative geometry.

3.2. Noncommutative Geometry. We now wish to consider the M5-brane in
the presence of a nonvanishing D=11 3-form field C' and investigate what the
resulting geometry of the M5-brane worldvolume is. One immediate effect of C' # 0
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is that the 3—form
H=db+C (12)
is nonvanishing. To investigate the resulting geometry we consider, for constant H,

a decoupling limit, discussed in [29], where the open membrane action is dominated
by its Wess—Zumino term:

S nembrane ~ / drdo Hup XX X" . (13)
bound.

Here “bound.” indicates the string boundary of the open membrane. This string
boundary lives on the M5-brane worldvolume.

For convenience we assume that the field strength H can be diagonalised as
follows [20]:

—h
V1+68h%’

In the parameterisation (14) the action (13) splits into two independent Lagrangians

Ho12 = Hzus = h. (14)

for the two sets of coordinates X and X ( ; a=3,4,5):
h )
S=— drdo €., X“ X" X' (15)
VI+HE6h2 Jam
+ h drdo €, XX X" (16)
oM

The action (13) is invariant under worldsheet reparameterisations:
6e X =¢0,X*, §,X°=n0X", i=0,1. (17)

Note that, due to the absence of a worldsheet metric, there is no need to identify
the vector fields £ and 7.

The equations of motion are:
€apr XPX'T =0, € X°X'=0. (18)

Assume now that the string boundary inside the Mb5-brane has a noncompact
extension in the time direction. In that case we can impose the gauge choice
X0 = 7. Substituting this into the equations of motion we obtain

X'*=0, (19)

which means that the spatial extension of the string must be in the a direction.
Assuming that |X'| # 0 we obtain

X =0, (20)

which implies additional Dirichlet conditions in the a directions.
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Let us continue by analysing the phase space dynamics of the three coordinates
X = (X% X!, X?). The canonical momenta are given by

6S h
(o) = — = ——eup, XP X', 21
(o) X (0) 3 €asy (21)

indicating that there are 3 primary constraints ¢, (o):
h bylc
o =11, + geach X°=0. (22)
The non—trivial canonical Poisson brackets are:
{X%(0), Hs(0")} = 6 6(0 — o) (23)

and the nonzero Hamiltonian is given by

H= / do X(0)ba (o) (24)

where \%(o) are three Lagrange multipliers. To proceed with the canonical analysis
we study the consistency conditions

ba(0) = No(0) Mye(0) = 0, (25)

where

{ba(0), dp(0")} = Muy(0)d(0 —0') ,  Map = hegpe X' . (26)
Note that in the o space we can impose X° = 7 and, via the equations of motion,
X'® = 0. This implies that M,z = 0. In other words, the 3 primary constraints

¢o(0) are all first class. There are no second class constraints in the 0, 1,2 direc-
tions.

In contrast, let us now consider the canonical analysis of the three Euclidean
coordinates X¢ = (X3, X% X%). A similar analysis as above leads to the same
result except that in this case we have assumed that \X '| # 0 and therefore

MupX'"=0. (27)

The matrix M, is thus non—degenerate in the two—dimensional subspace orthogo-
nal to X'. It is convenient to introduce a projection onto this subspace as follows
(I=1,2):

Pr*(0)Ps*(0)0as = 611, (28)
Xlale
(SIJP]a(O')PJb(O') = 5ab — W s (29)
achlc
6IJPIa (U)PJb (U) = € . (30)

X
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The three constraints ¢, now split into the two second class constraints

xr = Pi"¢, , (31)
with the now non—degenerate matrix
{x1(0),xs(0")} :== M1;(0)6(c — o') , M;; = P°P;°M,, , (32)
and one first class constraint
6= X"¢, = X'°II, (33)

which acts as the generator of o-reparameterisations.

Unlike for the 0,1,2 directions we have two second class constraints in the 3,4,5
directions. The presence of these two second class constraints leads to a nontrivial
Dirac bracket between the X* coordinates given by

1 6abc ch

{X%(0), X"(0")} = o S d(oc—a'). (34)

The conclusion is that the membrane probe sees a noncommutative geometry in
the a directions of the M5—brane worldvolume.

A basic difference with the D-brane case is that we are not dealing with points
X® but with loops X*(c). This leads us naturally to loop spaces. As a historical
note, it is perhaps of interest to note that, whereas the idea of lightlike integrability
applied to a superspace geometry naturally leads to the superspace constraints of
Yang-Mills [30], the same idea when applied to a loop superspace geometry leads
to the constraints of supergravity coupled to Yang-Mills [31]. In the latter work
the definition of a loop space covariant derivative plays a central role. The gauge
field part of this covariant derivative is given by the pull-back of the selfdual anti-
symmetric tensor, i.e.

D,(0) = (5X+(o) + b, X" (35)

The Mb5—brane with nonzero C field naturally leads us to consider a noncommu-
tative version of loop space. The notion of a noncommutative loop space extending
the notion of a noncommutative geometry has not yet been defined in the math-
ematics literature. One of the open questions is how to define the loop space
analogue of the star product. A reparametrization independent definition of the
star product has been given [32]. Moreover, a path integral description of this star
product exists [33]. It is not clear how to extend this to loop spaces. It should lead

to a generalized star product defining the product of two loop space functionals
F[X(0)] and G[X (0)]:

(F*G)[X(0)]. (36)
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By now we have discussed two issues in Mb-brane theory: the issue of non-
Abelian 2—forms and the issue of noncommutative loop space. These two issues are
not unrelated. It is believed that the natural framework to describe the M5-brane
worldvolume theory, incorporating nonlocal structures for coinciding M5-branes,
is a U(1) gauge theory on loop space. Following (35), the natural gauge field is
given by the pull-back of the selfdual 2—form:

X"b,, . (37)

There are now two ways to deform the Abelian gauge theory: (1) a commu-
tative to noncommutative deformation and (2) an Abelian to non-Abelian defor-
mation. The noncommutative deformation implies that {X# X"} # 0 while the
non-Abelian deformation means that b,, — b}, T":

noncommutative non — Abelian

{X#, XV} #£0 bl 1T

j0%

It is known that in the case of noncommutative geometry a noncommutative
U(1) gauge theory is related to a non-Abelian gauge theory [20]. Based on this
it is natural to suggest that a noncommutative U(1) gauge theory on loop space
is related to a non-Abelian loop space gauge theory. If correct, the two issues are
indeed related.

3.3. Open Membranes. We now come to a discussion of our third, and last, is-
sue. We have seen that, in the case of D-branes, a magnetic B-field leads to a
noncommutative Yang-Mills theory but that an electric B—field leads to a non-
commutative open string (NCOS). A NCOS theory can be defined for the other
D-branes as well. In the case of the D4-brane it is natural to ask what the M-
theory limit of NCOS is. It has been pointed out that, for the D4-brane, the strong
coupling limit of NCOS, i.e. the limit of large values of the open string coupling
constant G, is described by a noncommutative open membrane (NCOM) living
on the M5-brane worldvolume [34, 35]. In this picture, for large values of the basic
open membrane parameter /,, the NCOM is described by a field theory of non-
Abelian 2-forms on the M5-brane worldvolume. The parameter /, is the analogue
of the basic string length parameter ¢, see the diagram below. Here R indicates
the radius of the compactifying circle.
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4

N.C.O.M. é Non. Ab. 2-forms

Gos I VR

14
N.C.OS. = Y.M.

A remarkable feature of the above picture is that the above diagram is precisely
the worldvolume analogue of the target space picture relation between M-theory
and string theory. Here the closed string coupling constant g, takes over the role
of the open string coupling constant GG,; and the D=11 Planck length parameter
¢, plays the role of the open membrane parameter /,. In short, the target space
analogue of the worldvolume diagram above is given by

4

M-theory é D=11 SUGRA

gs 4 VR
/

ITA-superstring 5 ITA SUGRA

A natural question to ask is whether there is an effective open membrane metric,
i.e. a membrane analogue of the effective open string metric G,s given in (3). The
open membrane metric should, upon reduction, give rise to the open string metric.
In view of this, it is convenient to consider the dimensional reduction of the M5—
brane to the D4-brane in more detail. The 3—form curvature # reduces to a 2—form
curvature F and a 3-form curvature # as follows:®

ﬁaby = fab ; ﬁabc (38)

6Hatted indices and fields refer to the M5-brane.
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The selfduality relation (10) of  reduces to a nonlinear relation between  and
F which can be used to solve for H in terms of F as follows:
1 _ DoFap + (F*)as

o1 Cabede - 39
31 “abed /D (39)
The 5 x 5 matrix D is defined in terms of F as
D = —det (Nw + Fup)
= Dy + 3(tr F?)? — tr F*, (40)
ra?l?dl
with Dy given by
1
Dy = 1— 5twﬂ. (41)

The terms in (40) underbraced with “rank 4” indicate the terms that are nonvan-
ishing if D is a rank 4 matrix. They do vanish whenever D is of rank 2. In that
case we have D = Dy. Note that, in our conventions, tr F2 > 0 (< 0) for electric
(magnetic) F. This leads to the following inequalities for F:

0 <Dy < 1: electric, Dy > 1 : magnetic. (42)

Concerning the open membrane metric, it was been pointed out that, in the de-
coupling limit, the open membrane equals the Boillat metric (11) upto a conformal
factor z [35]:

Gib =z (43)

Recently, the explicit expression for the conformal factor has been calculated for
the case that F is a matrix of rank 2. The result is given by [36]

1 -
=K -VE -1, K=\[1+ g (44)

The calculation of [36] was based upon the assumption that the open membrane
metric, upon reduction, should give rise to (i) the open string metric G, given in (3)
and (ii) the open string coupling constant \,s given in (4). This was combined with
the fact that, on the other hand, the effective open string coupling constant A\s; has
already been calculated in string theory. Comparing the string theory expression
with what follows from dimensional reduction fixes the conformal factor z. The
same expression for the conformal factor can be obtained, from a rather different
point of view, by deformation techniques [37].

We should note that the analysis of [36] only works if the electric reduction is
taken in the 1,2 direction. This assumes that we use the parametrization (14) and
that the spatial extensions of the membrane are in the 1,2 directions. It does not
work if we reduce in the 3,4,5 directions. Indeed, only in the case that we reduce
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in the 1,2 directions, the dimensional reduction is a double dimensional reduction
with the membrane reducing to a string. The rank 2 case leads to the additional
simplifications that D = D, and the fact that the OM-metric is diagonal:

e [Electric rank 2 reduction : 1,2

Dy = D, diagonal OM-metric

In a recent work we considered the case of a general rank 4 reduction [38]. The
extra parameter with respect to the rank 2 reduction corresponds to the angle
that describes the components of the reduction direction in the 1,2 and the 3,4,5
directions:

e general rank 4 reduction: 1,2 4+ 3,4,5

We found that the open membrane metric leads to the open string metric pro-
vided the conformal factor is given by

5(Do+1) — 1/1(Do —1)2 4 (Dy — D)
273 = \/ 75 . (45)

Note that for D = Dy this expression reduces to the rank 2 expression given in (44).

Once the conformal factor is fixed the open membrane metric is determined and its
dimensional reduction leads to a prediction for the open string coupling constant
Aos- This prediction should be compared with the string theory calculation which
in the rank 4 case reads [20]:

Mos = VD, (46)

Instead, we find

= (VD)? x (%(Do +1) - \/E(DO —1)2+ (Do — D)) : (47)

The two expressions obviously do not coincide. In hindsight, the reason that the
analysis of [36] only works for the rank 2 case is clear. Only in that case can we
reduce along one of the spatial directions of the membrane yielding an open string.
In a general rank 4 reduction one of the 3,4,5 transverse directions of the open
membrane is involved in the reduction. For a mixed 1,2 (worldvolume) and 3,4,5
(tranverse) reduction we expect to obtain a bound state of an open string with
an open D2-brane. Such a system is not described by the open string coupling
constant \,;.

The noncommutativity of an open string NCOS theory is described by a 2-form
noncommutativity parameter #%°. Such a 2-form parameter naturally follows from
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the reduction of a 3—form open membrane parameter which we denote as the OM
theta parameter. We expect that this 3—form parameter, if it exists, can teach us
something about the geometry of the open membrane in the same way as the theta
prameter of NCOS tells us about the noncommutative geometry of the underlying
worldvolume.

Omne can show that the product P of the 3-form curvature H and the Boillat
metric C reduces, in an electric rank 2 reduction, to the NCOS theta parameter
upto a conformal factor:

pabe — gyabd -

Hab el.rgk 2 _23 ) (48)

The conformal factor z is defined in (44). Due to the presence of this conformal
factor, this reduction does not reproduce the correct answer for a general rank 4
reduction for the same reasons as we explained in the OM metric case. However,
it turns out that, in the rank 2 case, the choice of an OM theta parameter is not
unique. There is another choice, called W, which exactly, i.e. without a conformal
factor, reduces to the NCOS theta parameter [37]. This choice is given by the
3—form curvature # and two Boillat metrics:

yyyabe — gyade -

gob = . (49)

It has been shown that, unlike the prarameter, the W parameter has the correct
scaling behaviour in the OM-theory limit [37]. It therefore seems that only W can
be identified as the correct OM theta parameter.

In the same way that the 2—form theta parameter # of NCOS describes a non-
commutative geometry the existence of a natural 3-form OM theta parameter 174
suggests a relation with a non-associative geometry. In the same way that 6 occurs
in the string theory expression of the two—point functions the 3-form 144 naturally
occurs in the expression of the OM three-point functions. Unfortunately, at the
moment we are not able to calculate 3—point functions within OM theory.

4. CONCLUSIONS

In this lecture I have described three recent issues in M5—brane theory. Some
recent progress is that the correct expressions for the OM-metric and the OM-theta
parameter have been identified [36, 37, 38].
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Much is still unknown about the M5-brane and the string boundary /OM theory
living on its worldvolume. In this lecture I have described three open problems
which, if we believe that M-theory exists, should have a natural resolution. The
first problem deals with the formulation of a non-Abelian gauge theory of 2-forms
on the M5—brane worldvolume. The second problem concerns which kind of non-
commutatve geometry describes the worldvolume of N coinciding M5—branes. The
third and last problem deals with the formulation of an open membrane theory on
the M5-brane worldvolume.

What I have tried to indicate in this lecture is that, although we do not know the
solutions to these three problems, it is very suggestive that the resolution requires
the use of new (already existing as well as yet to be discovered) mathematics. It
has been suggested in the recent literature that notions like “noncommutative loop
space” [29], “non-associative geometry” [39] and “(non-Abelian) gerbes” [40] are
expected to enter a proper mathematical formulation of the M5—brane.

I have given here a physicists point of view of how new mathematical notions
are expected to enter a proper mathematical formulation of the M5—brane. Much
further work needs to be done to arrive at a proper mathematical formulation.
My hope is that the mathematicians at this workshop may get inspired by these
problems and that they may motivate them to further investigate the mathematical
aspects of these isssues.
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