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1. INTRODUCTION

The Einstein equations
Ric = A\g

are second order partial differential equations in the coefficients of the metric and
in general are hard to solve. One approach is to consider first order conditions
that lead to solutions. The Killing spinor equations as studied by Friedrich and
his coworkers [1| give one such condition. Another comes from consideration of
holonomy.

The modern version of Berger’s holonomy classification is as follows. Let M be
a connected n-dimensional Riemannian manifold with metric g. Assume that M
is irreducible, i.e., M is not locally the Riemannian product of lower dimensional
manifolds. Let Hol, denote the restricted holonomy group of M; this is group of
linear transformations of T, M generated by parallel transport around contractible
loops based at p. Then locally either (M, g) is isometric to a symmetric space

K/ Hol, (1.1)
or Hol, is one of

Sp(n/4) Sp(1), (1.2)
Spin(7) (n =38),)
G (n=17), (1.3)
Sp(n/4),
SU(n/2), )
Uln/2), (1.4)
SO(n). (1.5)

From our point of view this list is interesting for two reasons. Firstly, the spaces

(1.1)—(1.3) are all Einstein: (1.1) and (1.2) have non-zero scalar curvature, whilst
1



2 RICHARD CLEYTON AND ANDREW SWANN

those in (1.3) are scalar-flat. Secondly, the condition that the holonomy is not
generic, i.e., that Hol, is not SO(n), is equivalent to the existence of special geo-
metric structures on M. These structures are encapsulated in a tensor ¢ on M
with

VCy =0,
where VIC is the Levi-Civita connection of g.

For the symmetric spaces, ¢ is the Riemann curvature tensor R"C. For
Sp(n/4) Sp(1) and Spin(7), the tensor ¢ is a four-form. The Gy case has ¢ €
A3T*M. The remaining cases are special instances of Kihler geometry. Holonomy
U(n/2) is a general Kahler manifold and ¢ is simply the Kéhler two-form. The
SU(n/2) case is Calabi-Yau geometry which has ¢ the sum of the Kéhler two-form
and a complex volume form €. This shows that it is convenient to consider tensors
that are not of pure type. The Sp(n/4) case is hyperKahler geometry with three
parallel Kahler forms w;, w;, wgx which we may combine in to one quaternion-valued
two-form ¢ = wri + wyj + wik.

Let G be the Lie group of elements of SO(n) that preserve a given tensor ¢
at a point p in M. Assume that G is independent of p up to conjugation. Then
this defines a G-structure on M. Moreover, the Levi-Civita connection preserves
this structure and so is a G-connection. With a little bit of work the holonomy
classification implies:

Theorem 1.1. Let G be a proper subgroup of SO(n) that acts irreducibly on R™.
Suppose G # U(n/2) and that (M, g) is an n-dimensional Riemannian manifold
with structure group G. If M carries a torsion-free G-connection, then g is Fin-
stein. U

The aim of this talk/paper is to discuss how the ‘torsion-free’ condition may be
weakened. Much of this is based on the Ph.D. thesis [2] of the first named author
written under the supervision of the second named author. We refer the reader to
this thesis for a fuller list of references for the material of this paper. Some of these
results were presented in [8]. The second named author thanks the organisers of
the Workshop on Special Geometric Structures in String Theory, Bonn, 8th-11th
September, 2001, for kind hospitality.

2. INTRINSIC TORSION

Suppose M is an oriented Riemannian manifold. Using the metric we have an
identification of the two-forms with skew-symmetric matrices, which is the Lie
algebra so(n) of SO(n). We may write

A*T*M = s0(n),
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where the right-hand side is regarded as a bundle over M as follows. Let M (SO)
be the bundle of oriented orthonormal frames in TM. Then M(SO) is a principal
SO(n)-bundle. Using the actions of SO(n) on M(SO), u +— u - g, and on skew-
symmetric matrices so(n), A — gAg~', we form the bundle so(n) as the quotient
of M(SO) x so(n) by (u, A) ~ (u-g,g94g97?).

Now suppose that M has a reduction of its structure group to GG. This means
that we have a principal G-bundle P — M which is a subbundle of M(SO). In
constructing the bundle so(n) we can equally well use P instead of M(SO). If G

is a proper subgroup of SO(n), we then get a splitting
A’T*M = so(n) = g® g+,

corresponding to the inclusion of the Lie algebra g in so(n).
In this situation there is a unique G-connection V with the property that the
tensor

E=V-v

is an element of T*M @ g+ inside T*M ® A2T*M: to construct V, choose any
G-connection V and then add to V the g-part of VVC — V. The connection V has
torsion

T(X,Y)=VxV = VyX — [X,Y] = &V + & X,

which in general is non-zero. Note that T uniquely determines £ € T* ® g-. The
connection V is then seen to be the G-connection whose torsion has minimal norm.
We will call both T and & the intrinsic torsion of the G-structure.

The simplest case of this construction is when £ is identically zero. We then have
V = V€ and so V€ is a torsion-free G-connection. This corresponds exactly to
the situation where Hol, is a subgroup of G.

Of current interest in string theory, is the situation where one has a G-connection
with totally skew torsion. There are some intriguing geometries whose intrinsic
torsion has this totally skew property.

Ezample 2.1. Suppose M is a manifold of real dimension 6. An SU(3)-structure
on M corresponds to a choice of metric g, almost complex structure I and complex
three-form €2 so that

g(I, 1) =g, QeA®T*M, and |Q*=1.

Let w = g(I-,-) be the corresponding two-form and write Q = ©; + i)y as a sum
of real three-forms. Under the action of SU(3) we have

APT*M = 2R + [AM] + [$*7]
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where [V] denotes the real module such that [V]®@ C=2V @& V* and AM = C? as
the standard representation of SU(3). The intrinsic torsion & lies in

T* ®EU(3)J— — HAl,O]] ® (R oy [[AQ,O]])
= 2R + 25u(3) + 2 [AY] + [$*] .

Note that each module in A3T* arises in the decomposition of 7* ® g*. However,
the requirement that & be totally skew is stronger than that & should have no
component in the missing module 2 su(3). Indeed, computation in standard bases
shows that

(7" @ su(3)") (AT = 2R,
and we deduce that M® has totally skew intrinsic torsion if and only if

f = an + bQQ,

for some functions a,b € C®(M).
In this case we may compute £ using the Levi-Civita connection and w as follows:

VCw = Vw + fw = &w,

where (w)(X,Y, Z) = w(éxY, Z)+w(Y,ExZ). We see that if € is totally skew then
Ew € A*T*M. Since V'C is torsion-free we deduce that this is equivalent to

VECyw = 3dw,

which is the condition that (M, g, I) be nearly Kihler. If V*Cw # 0 then Gray [4]
showed that ¢ is Einstein with positive scalar curvature. So we have a first example
of a condition on the intrinsic torsion that leads to Einstein metrics.

Remark 2.2. We could have considered the above example with the larger structure
group G = U(3). Then the geometry would have been specified by g and I alone.
However, if € is non-zero and totally skew then the conclusion éw = VF*Cw = 3dw
still holds. We may now use dw and *dw to define a complex volume 2 and a
reduction of the structure group to SU(3), and thus return to the situation of the
above example.

Remark 2.3. One geometry that arises in string theory is KT geometry. The data
here is a metric and an integrable complex structure I, both preserved by a connec-
tion whose torsion is totally skew. The integrability of I, is exactly the condition
that the intrinsic torsion & has no component of type (3,0). But if £ is also totally
skew, then our computations above say that £ = a+a for an element o € A>°T* M,
so £ is forced to be zero and we have a Kéhler structure. In this way, the condition
of totally skew intrinsic torsion is seen to be ‘orthogonal’ to KT geometry. Similar
remarks apply to HKT and QKT geometries.
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Example 2.4. As a second example consider a seven-manifold M with a Gy-structure.
This structure identifies T,, M with the imaginary octonions Im ©. The Lie group G,
is by definition the group that preserves octonion multiplication (X,Y) — X.Y.
Let V7 denote Im Q as a representation of Gy. We have A2V; = g, ®V7, so g5 = V7,
and find
(T*M @ gy) (A’ T*M =R

is spanned by the invariant three-form p(X,Y, Z) = ¢g(X.Y, Z). Thus if the intrinsic
torsion is totally skew, then £ = fy for some function f. We now have

V€ = fop = frp.
This equation gives dp = 1 f*¢p, which implies that f is constant. In the terminol-

ogy of Gray [3], M has weak holonomy Gs. If f # 0, Gray showed that this implies
that ¢ is Einstein of positive scalar curvature.

3. INVARIANT INTRINSIC TORSION

The two examples given in the previous section have the common property that
the intrinsic torsion £ lies in a trivial G-submodule of T*M ® g+, so pointwise &
is invariant under the structure group G. In this section, we will discuss how the
condition of invariant intrinsic torsion interacts with curvature and in particular
the Einstein equations.

The curvatures R™C of V'€ and R of V are related schematically as follows

R = R+ (V) + (&),
where (V&) and (€2) denote terms determined by linear algebraic relations from
the covariant derivative V& and from £2 = £ ® &, respectively. Since RYC is the
curvature of g we have that R lies in S?A?T*M, however we have the splitting
A2T*M = g®gt, so we may write

R =R+ R™ + R",
corresponding to the decomposition

SHAT*M) = S’g+ gV +S(g").
As V takes values in g, the components R™ and R+ are algebraically determined
by €2 and VE.
The first component R? of R*C may be further split as
R% = Rj + R}

according to
S’ =K(g) ® K(g)*,
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where X(g) is the kernel of the Bianchi map b: S?g — S?A’T*M — A*T*M.
Thus, X(g) is the space of algebraic curvature tensors with holonomy algebra con-
tained in g. The remaining component R} is now uniquely determined by Ry, \V/3
and &2 via the condition b(R"C) =0

The Einstein equations say that the trace-free part Ricy of the Ricci tensor Ric
is zero. Writing V for the G-module T*M we have Ricy € S2V. So for g to
be Einstein, it is sufficient that R““ has no components in G-modules isomorphic
to S3V or any of its submodules.

Suppose that the intrinsic torsion £ lies in a trivial module R. Then we have
€2 € R and V& € V and the above analysis now gives

R'C e R+V +XK(g).

We therefore deduce that when £ € (T*M ® g1)¢, the following three conditions
are sufficient to imply that g is Einstein:

() (SgV)< = {0},
(b) (V ® S3V)¢ = {0} and
(c) (X(g) ® S5V) = {0}.

These representation theoretic conditions have interesting interpretations. Firstly,
condition (a) implies that V' is an irreducible representation. The irreducibility of V
together with condition (b) imply that the G-invariant elements of T*M ® A*T*M
are totally skew, since the complement of A*T*M in this space is contained in
S?T*M @ T*M. So (a) and (b) imply that £ is an element of A3T*M. Thus the
Einstein equations lead to consideration of manifolds with totally skew intrinsic
torsion.

Condition (c) is rather more complex. However, Schwachhdéfer’s recent algebraic
proof [7] of the holonomy classification yields much information about X(g). In-
deed, X(g) equals X(g), where g = {Rxy : R € X(g), X,Y € V} is the Berger
algebra of g. If g acts irreducibly on V' then one can show that g does too un-
less X(g) = {0}. But the Berger algebras g that act irreducibly on V' are exactly
the holonomy algebras of (1.1-1.3). Pushing the analysis of the previous section
further, one finds that there are very few holonomy representations that admit
invariant three-forms. Two cases are those of Gy on R” and SU(3) on R. The
remaining cases are where V' = g, however the three-forms in this case can not
represent intrinsic torsion of a G-connection. Thus if we have non-zero invariant
intrinsic torsion and conditions (a) and (b) are satisfied then either we have the 6
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K G dim

Sp(n)  SO(n)Sp(1) 2(n+2)(n—1) n>3
SO(4n) Sp(n)Sp(1) 32n+1)(n—1) n>3

Sp(2) Sp(1) 7 T
Sp(7) Sp(3) 84

Sp(10)  SU(6) 175

Sp(16) Spin(12) 462

Sp(28) E, 1463

SO(14) Sp(3) 70

SO(16)  Spin(9) 84

Spin(7) Ga 7 T
G SU(2) 11

Fy G2 Sp(1) 35

E, Gy Sp(3) 08

E, F, Sp(1) 78

Eq F, G, 182

TABLE 1. The isotropy irreducible spaces K/G satisfying the hy-
potheses of Theorem 3.1. Note that cases T have weak holonomy Gs.

and 7 dimensional representations of Gy and SU(3) and K(g) is known to only con-
tain Ricci-flat metrics, or K(g) = {0}. In all cases, condition (c) is automatically
satisfied.

When X(g) = {0}, the curvature is fully determined by £* and V¢. As V¢ lies
in V, only £? can contribute to the scalar curvature of the metric. If £ is locally a
function times a parallel tensor, then the Einstein condition implies that the scalar
curvature is constant and forces £ itself to be parallel. Such a situation occurs
when the space of invariant three-forms is one-dimensional over either R or C and
one obtains the following results.

Theorem 3.1. Let (M, g) be a Riemannian manifold with a reduction of its struc-
ture group to G. Suppose the intrinsic torsion & is invariant under the structure
group and non-zero. If the cotangent representation V = T*M satisfies conditions
(a) and (b) and dimg(A®V)¢ = 1, then M is Einstein. If the scalar curvature is
non-zero then either M has weak holonomy Go or M is locally isometric to one of
the spaces in Table 1.

Theorem 3.2. Let (M, g) be a Riemannian manifold with a reduction of its struc-
ture group to G. Suppose the intrinsic torsion & is invariant under the structure



8 RICHARD CLEYTON AND ANDREW SWANN

K G dim
SO(8) SU(3) 20
Go SU(3) 61
Fy SU(3)? 36
Es SU(3) 54
E; SU(6) SU(3) 90
Es SU(9) 168
Es FE¢SU(3) 162

TABLE 2. The isotropy irreducible spaces K/G satisfying the hy-
potheses of Theorem 3.2. Note that case i is nearly Kahler.

group and non-zero. If the cotangent representation V = T*M 1is of complex type,
satisfies conditions (a) and (b) and dimc(A*V)S = 1, then M is Einstein. If
the scalar curvature is non-zero then either M has weak holonomy SU(3) or M is
locally isometric to one of the spaces in Table 2.

In this theorem, V is of complex type if V@ C =W @ W with W 2 W.

The spaces in the tables are homogeneous spaces K/G such that G acts irre-
ducibly on £/g. In fact any homogeneous Riemannian manifold M = K/G has a
reductive decomposition

tE=g+m,

(see |5]), and a canonical G-connection whose torsion is ¢(X,Y, Z) = B([X,Y], Z),
where —B is the Killing form of €. Suppose B is positive definite on m. Then
B induces an invariant Riemannian metric on M. The G-structure has c as its
intrinsic torsion if (g®@m)¢ = {0}. If ¢ = 0, then M is a symmetric space. So
non-zero intrinsic torsion together with condition (a), implies that M is isotropy
irreducible. However, Theorems 3.1 and 3.2 do not exhaust all these spaces. In
Table 3, we list those that satisfy conditions (a—c). They all share the property
that dimg(A3V)% = 2, but V is not of complex type.

4. AN EXAMPLE IN DIMENSION 77

Let us consider one particular geometry from Table 3: the model space SO(14)/Go.
The isotropy representation V' has dimension 77 and dominant weight 0==3. We
may build other homogeneous spaces with such a (Gg, 0==3)-structure as follows.
Let W be the Lie algebra g, of G, regarded as a representation of U(1) for any
circle in Gs. As Gy has rank two, W contains a trivial U(1)-module and we may
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K G dim
SO(42) Sp(4) 825
SO(128) Spin(16) 8008
SO(14) Go 7
SO(26) F, 273
SO(52) F, 1274
SO(78) Es 2925
SO(133) E; 8645

SO(248)  Es 30380

TABLE 3. Strongly isotropy irreducible spaces satisfying conditions
(a—c) but not the hypotheses of Theorems 3.1 or 3.2.

write W =R + U. Now
V=ANPWeW=ANUsUoW =ANUsR

Now dimU = 13 and U(1) acts preserving an inner product on U. We may thus
regard U(1) as a subgroup of SO(13). We have A?U = s0(13) and V = A*U ©
R is the isotropy representation of SO(13)/U(1). As this construction holds for
any circle subgroup of G, we thus obtain a countably infinite family of manifolds
SO(13)/U(1) carrying (Gs, 0==3)-structures.

Do these (Ga, 0==3)-structures have invariant intrinsic torsion? Suppose M is a
77-dimensional manifold with a (Gg,0==3)-structure with invariant intrinsic tor-
sion. Note that for this representation the space of algebraic curvature tensors
is trivial K(g,,0==3) = {0}. This implies that the Riemannian curvature is al-
gebraically determined by V¢ and £2. Examination of the contribution from V¢
shows that this component is non-trivial in both g, A gy and S%g,. However, \Y3
lives in a module isomorphic to 0==3 and 0==3 does not occur as a submodule of

S?g, = R+ S¢V7 + (2==0)

(even though 2==0 also happens to have dimension 77). Thus V& must be zero. We
now have that R is algebraically determined by &2 and is V-parallel. In other words
V is a connection whose torsion and curvature are V-parallel. This means that V
is an Ambrose-Singer connection. As 0==3 is irreducible the theory of infinitesimal
models may now be used to show that M is locally isometric to the homogeneous
space SO(14)/G,y. Thus the family SO(13)/U(1) gives no new Einstein metrics.

It is expected that the ideas of this example will lead to generalisations of The-
orems 3.1 and 3.2. This is being pursued in ongoing work.



10

[1]
2]
3]
[4]
[5]

[6]

[7]
[8]

RICHARD CLEYTON AND ANDREW SWANN

REFERENCES

H. Baum, Th. Friedrich, R. Grunewald, and I. Kath, Twistors and Killing spinors on Rie-
mannian manifolds, B. G. Teubner Verlagsgesellschaft, Stuttgart, Leipzig, 1991.

R. Cleyton, G-structures and Einstein metrics, Ph.D. thesis, University of Southern Denmark,
Odense, 2001, ftp://ftp.imada.sdu.dk/pub/phd/2001/24.PS.gz.

A. Gray, Weak holonomy groups, Math. Z. 123 (1971), 290-300.

, The structure of nearly Kihler manifolds, Math. Ann. 223 (1976), 233-248.

O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Rie-
mannian manifolds, Geom. Dedicata 81 (2000), no. 1-3, 209214, see also [6].

, Erratum: “On the existence of homogeneous geodesics in homogeneous Riemannian
manifolds” [Geom. Dedicata 81 (2000), no. 1-8, 209-214], Geom. Dedicata 84 (2001), no. 1-3,
331-332.

L. J. Schwachhofer, On the classification of holonomy representations, Habilitationsschrift,
Unvirsitit Leipzig, 1998.

A. F. Swann, Weakening holonomy, Proceedings of the Second Meeting on Quaternionic Struc-

tures in Mathematics and Physics, Roma, September 6-10, 1999 (Singapore) (S. Marchiafava,
P. Piccinni, and M. Pontecorvo, eds.), World Scientific, 2001, electronic http://www.univie.
ac.at/EMIS/proceedings/QSMP99/contents.html, pp. 405-415.

(Cleyton) DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF SOUTH-

ERN DENMARK, CAMPUSVEJ 55, DK-5230 ODENSE M, DENMARK

E-mail address: cleyton@imada.sdu.dk

(Swann) DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF SOUTH-

ERN DENMARK, CAMPUSVEJ 55, DK-5230 ODENSE M, DENMARK

E-mail address: swann@imada.sdu.dk



