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Abstract. It is known that Seiberg-Witten equations are defined on smooth
four dimensional manifolds. In the present work we write down a six di-
mensional analogue of these equations on R®. To express the first equa-
tion, the Dirac equation, we use a unitary representation of complex Clif-
ford algebra Cls,,. For the second equation, a kind of self-duality concept
of a two-form is needed, we make use of the decomposition AZ(R%) =
AZ(RO) @ A2(IR®) @ A2(IR®). We consider the eight-dimensional part AZ(R%)
as the space of self-dual two-forms.

1. Introduction

The Seiberg-Witten equations defined on four-dimensional manifolds yield some
invariants for the underlying manifold. There are some generalizations of these
equation to higher dimensionsinal manifolds. In [2, 7] some eight-dimensional
analogies were given and a seven-dimensional analog was presented in [5]. In this
work we write down similar equations to Seiberg-Witten equations on RS.

2. spin‘—structure and Dirac Operator on R?"

Definition 1. A spin®-structure on the Euclidian space R*" is a pair (S,T) where
S is a 2" —dimensional complex Hermitian vector space and T : R?*" — End(S)
is a linear map which satisfies

I'(v)* +T(v) =0, T'(v)*T'(v) = |v|*1
for every v € R?".

The 2"-dimensional complex vector space S is called spinor space over R?".

From the universal property of the complex Clifford algebra Cly,, the map I" can
be extended to an algebra isomorphism I': Cly,, — End(S) which satisfies I'(Z) =
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I'(z)* , where % is conjugate of x in Cly,, and I'(z)* denotes the Hermitian conju-
gate of T'(z).

If (S, T) is a spin®-structure on R?", then there is a natural splitting of the spinor
space S. Let ey, eq, ..., €2, be the standard basis of R?", define a special element
of Cly,, by

E = €9n...€2€17.
Note that 2 = (—1)", so we can decompose S as follows

S=8"®S5"
where S= are the eigenspaces of T'(¢) by

5% ={p €8 T(e)p==i"¢}.
The space S is called positive spinor space and the space S~ is called negative
spinor space. The map T'(v) interchanges these subspaces that is, I'(v)S™ C S~
and T'(v)S~ C S for each v € R?". The restrictions of T'(v) to ST for v € R?"
determine a linear map ~ : R?" — Hom(S™, S~) which satisfies
Y(v)*y(v) = v’

for every v € R?". On the other hand the map T': R?" — End(.S) can be recovered
from vy via S = ST @ S~ and

() = ( _7(()”)* 7(0’0) ) .

If (S,T) is a spin® structure on R?", we can define an action of the space of two-
forms A%(R?") on S as follows

First let us identify A2(R?") with the spaces of second order elements of Clifford
algebra Cy(R?") via the map

A2(R2n) - Cz(R%)’ n= Z Nije; A 6; = Z 1ij€i€5-
1<j 1<j
Then we compose this map with T to obtain a map p : A?(R?*) — End(S)
p(D_migel A ej) =D myT(edl(e;):
<] 1<j
The map p(n) respects the decomposition ST @ S~ for each € A%(R?") so we
can define new maps by restriction

P () = p(1)] s+
The map p extends to a map
p: A2(R?") @ C — End(S)

on the space of complex valued two-forms.
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By using an iR—valued one-form A € Q! (R?",iR) and the Levi-Civita connection
V on R?" we can obtain a connection V4 on S which is called spinor covariant
derivative operator that satisfies the relation

Vi (T(W)¥) = T(W)VPT +T(Vy W) P

in which U is spinor, (a section of S) and V, W are vector fields on R??. The
spinor covariant derivative V4 respects the decomposition S = ST @ S~. At this
point we can define Dirac operator D 4: C*®(R?", §%) — C*(R?", S7) by the
formula

2n
DA(¥) =) T(e)VA(T).
=1

3. Seiberg-Witten Equations on R*

The Seiberg-Witten equations constitute of two equations. The first equation is the
harmonicity of the spinor with respect to the Dirac operator, that is

Da(¥) = 0. )

The second equation couples the self-dual part of the curvature two-form FX of
the connection one-form A with the traceless endomorphism (¥ ¥*), associated to
the spinor field ¥. And it is expressed as

pT(Fy) = (TT*)o. 2)

Let us write these equations on R*. The following form of these equations can be
found in many books and papers [8, 10]. The spin® connection V = V4 on R* is
given by
ov
V¥ = @ + A0
where 4; : R*—iR and ¥ : R* — C2. Then the associated connection on the
line bundle Lt = R* x C is the connection one-form

4
A=) A;jdz; € Q' (RYiR)
=1

and its curvature two-form is given by

Fy=dA=) Fjdz; A dz; € Q*(RY,iR)

1<J
04; _ DA,
aZL'Z' 8:cj

where F;; = fori,j =1,...,4.
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Let T : R* — End(C%) be the classical spin® structure which is given by the

o rwy— | 0 7w
(®) [—v(w)* 0 1

where v: R* — End(C?) is defined on the generators eq, ea, €3, e4 by the fol-
lowing rule

y(el)zl(l) ﬂ, 7(62):[8_?1’ 7(63):[—(1)(1)1’ v(es)= [?61

Note that in the definition of =, the 2 x 2 identity matrix and i multiplies the well-
known Pauli matrices o7 = [1 01 oy = [_0 1} and o5 = [0 1]. The

0 -1 i0 10
classical spin®-structure has been used, in many works (see for instance [8—10]).
[ -1 000
0—-100 .
Note that T' (egeseser) = { 0 010 J and the eigenspaces of I" (eseseseq)
0 001

are

ST = {(¢1,92,0,0) ; ¢1,72 € C}
ST = {(anadjiﬁad)él) ; 1753,1754 € C} .

The corresponding vector bundles which are called half spinor bundles on the man-
ifold R* are ST = R* x ST and S~ = R* x §~. The sections of these bundles
are called spinor fields on R* and we will denote them by

T(ST) = {(¥1,42,0,0) ; 91,102 € C (R, C) }

T(S™) = {(0,0,93,%4) ; 93,94 € C™ (R*,C) }.

According to the above data Seiberg-Witten equations on R*, i.e., equations (1)
and (2), are as follows (see [9, 10])

The first of these equations, D 4 ¥ = 0, can be expressed as
—V1¥ +i01 VoW + i09V3W¥ + 103V, ¥ = 0

or more explicitly

8—? + A = i (8% + Azd}l) + (8% + A3¢2> ( e + Aﬂ/}z)

0x1 0z2 Oy
G
G+ v = i (52 A ) — (GE g ) +1 (G + A

where U = (11, 42,0, 0). The second one is
pr(Fa) = (2T7),
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which can be expressed explicitly as

Fig 4+ F34 = —% (%@1 Yorhy)
Fiz— Foy = 5 (4105 — toty) )
Fiy+ Fos = —i (Y1ahy + i)

where F)y = dA.

4. Seiberg-Witten Equations on R®

The first one in Seiberg-Witten equations can be written on any 2n— dimensional
spin® manifold. But the second one is meaningful in four-dimensional cases.
Because the self duality of a two-form in Hodge sense is meaningful in four-
dimension. On the other hand there are some various generalizations of self-duality
concept of a two-form to higher dimensions (see [3,4]).

4.1. The First Equation: Dirac Equation

The main objective of the present work is to write down Seiberg-Witten like equa-
tions on R®. In order to achieve this we consider the following spin®-structure T
on R® which is coming from the representation of the complex Clifford algebra
Clg. Let T : R® — End(C?®) be the spin® structure which is given by

F(w):[ 0 7(w)1

—y(w)* 0

where v : R® — End(C*) is defined on generators e, €9, €3, ¢4, €5, e as follow

1000 iOO 0] {OiOO—‘
7(61): 0100 7(62) 0_10 0 7(63 = iOO(-)
0010]|" 0 0i O 000 i
{0001J {0 001J L)OiOJ
[010 0] 00 01 {0001
-100 O 00 —10 | 0 0 —i
’7(64): 000 —1 ’7(65): 01 00 3’7(66): 0 —-i 00
{001 oJ {—10 ooJ Looo
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Then the special element ¢ = eg...e2e1 in Clg satisfies g2 = —1 and its image
under I' is
[—i 0 0 0000 O]
0—-i 0 000O0OO
0 0-1i 00O0O0OO
0 0 0O-10000O0
TE=10000i000
0 0 0 0O0Oi1iO0O
0 0 0 0OOO1O
| 00 0 0000 1|

The decomposition § = C® = ST @ S~ with respect to T'(¢) is given by
S+ = {(Lbl, {(/)23 w3a ’l/}4a Oa Oa Oa O) ) wla w2a '(/}3a '(/}4 € C}

and

S ={(0,0,0,0,%s5,v6, %7, 98); V5, V6,97, %5 € C}.

These spaces give the following vector bundles on the manifold R°
ST=R°x ST and ST =R°x 5.
The sections of these bundles can be interpreted as follows
T(ST) = {(¢1, Y2, ¥3,¥4,0,0,0,0)|th1, tha, Y3, 94 € C™ (R, C)}
and

P(S_) = {(Oa Oa OaOa¢5a¢6a¢7a¢8)|¢5a¢6a¢7a¢8 S c™ (Rﬁac)}

The spin® connection V4 on RY is given by

A
U= _—+ AU
VJ a$3+ ¥l

where A; : RY—iR and ¥ : R® — C* are smooth maps. Then the associated
connection on the line bundle Lr = R x C is the connection one-form

4
A=) "A;dz; € Q' (RS,iR)
i=1
and its curvature two-form is given by

Fp=dA=) Fjdaz; A dz; € Q* (R%,iR)
1<j
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where F;; = % — gﬁ; fori,5 = 1,...,6. Now we can write the Dirac operator

Dy : T(ST) — I'(S7) on R® with respect to given spin®-structure T’ and spin®-
connection V4 as follows

Za—g + A \

6 6 6 2

oo T Aith2

Da¥ =3 e VAT =3 T(ei) (VAW) =3 T | ™
i=1 i=1 i=1 :

%—% + Aitha

Introducing the notation V; = 0; + A;, ¢ = 1, ..., 6 the equation D 4V = 0 can be
expressed as

Vi = Vo + iV + Vb + Visihy + iVethy
Viy = iVahr —iVayhe — Vyihy — Visihs — iVeis
Vig = iVaths +1Vsthy — Vyihy + Visihe — iVeihe
ViYy = iVgihs — iVaihy + Vyibs — Vb +iVei)1.

4.2. The Second Equation: Curvature Equation

Now we want to define the second Seiberg-Witten equation on R®. To achieve this
we need a kind of self-duality notion for two-forms on R. Let us consider the fol-
lowing decompositions of two-forms on R®. We denote by {e1, €2, €3, e4, €5, €6}

the standard basis of R and by {dz1, dzs, dzs, dzy, dzs, dzg} the dual one. Fix
the standard symplectic form

wg = dxy Adxo +dzs Adry + dzs A dag
and the standard complex volume form
wo = (dz1 +idze) A (dzs + idzy) A (dzs + idzg)
the complex structure Jy give by
Jo(er) = €2,  Jo(es) =es, Joles) = eg
on RS, The space of two-forms A2(IR®) decomposes as follows
A2(RS) = AZ(R®) @ AR(R®) @ AR(R®)
where
AR®) = {rwo;r€R},  AFR®) ={F € A*(R®; Jo(F) = —F}
AZ(R®) = {F € A*>(R%) ; Jo(F) = Fand F Awy Awg = 0}.
icj Fijdzi A dzj € A*(R)
can be decomposed into three parts, we call the one belonging to Ag (RO) is the

For more details see [1]. Then any two-form F' = >
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self-dual part of F' and we denote it by F'™. Such a self-duality definition of two-
forms in six-dimension is consistent with the widely accepted self-duality notion
given in [4]. In their work Corrigan et al. consider the eight-dimensional subspace
of A%(R®), given by the following set of equations, as the space of self-dual two-
forms on R®

Fio+Fiy+Fi5=0, Fi3—Fu=0, Fuu+Fy=0
Ii5 — Fys =0, Fig+ Fos7 =0, F35—Fus =0, F3+ Fu5=0.

This eight-dimensional subspace exactly corresponds to Ag (RY), because follow-
ing linearly independent set of vectors belong to both of them

fi=e1Neg—+ea A ey, fs =egNes+eq eg
fo=e1 Neg —eg A eg, fe =e3Neg —eyq N es
fs=e1 Nes+ e A eg, fr=e1Nex—e3ANey
fa=e1 Neg —ea A es, fs=e3Nesg—es A eg.

Now let us consider the complexified space Ag (R%) @ C and F4 be the curvature
form of the imaginary valued connection one-form A and FX be the self-dual part
of F'y. Then

8
Fi = %Z <Fa,fi>fi= %[(FIS + Foa)f1 4+ (Fia — Fa3) fo + (Fis + Fa) f3
i=1
+(Fi6 — Fas) fa + (F35 + Fag) f5 + (F36 — Fus) fe
+(F12 — F34) fr + (F34 — F36) fs].

The image of F'; under p™ is
1
pT(F3) = 5[(F13 + Fo0)p” (f1) + (Fia — Fas)p™ (f2) + (Fis + Fag)p™ (f3)

+(Fi6 — Fas)p™ (f1) + (F35 + Fus)p™ (f5) + (Fs6 — Fusp™ (f6)
+(Fi2 — Fsu)p™ (f7) + (F34 — Fs6)p™ (f3)]

where
0200 0200
2i 000 ~2000
+ _ + —
U= 0000 | PUD=] 0000
0000 0000
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00 00O
00 -20
+ +
rrf=109 00l (f4)
00 00O
0 0-2i 0
O 0 0 0
0 0 0 O
(21 0 0 0\
0-2i 00
ot _ + —
0 0 00
Then the second equation on R is
pH(FT) = (BT,

The last equation is rather different from the second
R* and we state it as a theorem:

)

Seiberg-Witten equation on

Theorem 1. If the pair (A, V) is a solution to (5) then ¥ = 0.

Proof: The left hand side of (5) is

i(F12 — F34) — 1(F34 — F¢)

i(F13 + Fpa) — (F1a — Fa3) —i(F12 — F34)

—i(F35 + Fas) — (F36 — Fas) (Fis + Fag) — i(F16 — Fas)
0 0

and the endomorphism ¥¥* of C* is given by

(4 (zlgl
R 20
v = il Uy a) = |
f(lz?"l) sty

4

Yai)y

The trace free part of UU* is

(F13 + Fa) + (F1a — Fo3) —1(F35 + Fas) + (F36 — Fus) O
—(F15 + Fag) — i(F16 — Fo5) O

0
0

|

i(F34 — F6)
0

Yripy Yrifs Yrify
Pty Yoty Yathy
P3thy Y3ty 3ty
Vathy Yatbs Patdy
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('ﬁblﬁl 77/}1%2 1/}1%3 1/)1f4\ (1 00 O\
(\IJ\II*)() — 1#2%1 1/)2%2 /(/}2%3 1/}2£4 _ |77/]|2 0100
k%@ Ysthy P33 103%4) ko 01 0)
Yatpy Pathy Yarby Yaihy 0001
g — 701 ey (R Y1y
VYot bathy — 1017 iy Pathy
(EL P31y Usthy — |V Ysiy
P (PRU) PaP3 Yaths — L2

Then the equation (5) turns to the following set of equations

(Fig — F34) = i( ipa|? — [91]? — |s|? — [40a]?)

(F34 — F6) = ( |9h3]* — 1] — [W2l® — [1ha]?)
(Fi3 + Fos) = =5 (Y13Pq + 210y)
(Fia — Fo3) = % (V10g — o))
(Fs5 + Fag) = 5 (Y115 + ¢3¢0y)
(F36 — Fy5) = % (Y195 — 1)
(F16 — F25) = 5 (¢2w3 + wng_)
(Fi5 + Fog) = 5 (—toths + 31hy)
S|epal® =[] = [¢af* — 3> = 0
Py = 0.
From these equations it is clear that ¥ = 0. O

Due to the above theorem the equation (5) needs some modification. To do this we
follow the method given in [2]. Firstly we consider the space of self-dual complex
valued two-forms Ag(Rﬁ) ® C. The image of this space under the map p™ is a
subspace of End(S™) and denote it by W i.e.,

W = pT(A2(R%) ® C).

The set of endomorphisms {p™(f1), p™(f2),...,p (f3)} is a basis for the sub-
space W. Project the endomorphism U* onto the subspace W and denote it by
(UT*)T. Then we can explain the second equation

pr(FL) = (TT)".

Let us obtain the explicit form of last equation. The projection of the endomor-
phism ¥UU* onto the subspace W is given by

+
( ;“ S S FiATE
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Then the equation p™ (F}) = (L'T*)™ turns to the following set of equations

Fig—F34 = 3 (v1hy — ¢27J12_)
F34 — F56 = —5 (Y19py — Y3ty )
Fig + Foy = —5 (Yot + Y1)
Fiy—Fy =3 (wl% ¢2¢_)
Fy5 4+ Fag = — % (¥sh) + 1¢3)
Fs6 — Fy5 = 5 (¢1¢3 ¢3¢1)

Fi — Fos = — 5 (310 + tot03)
Fi5+ Fog = (wng Uails)

and they are very similar to the set of equations in (4).

Remark 1. We have written down Seiberg-Witten like equations on R® and we
observed that these equations are similar to the Seiberg-Witten equations on R*.
For the expression of the first equation on R® we used the spin®-structure on R°
and for the second equation we used the decomposition of the space of two-forms
A%(R®). Such equations can be also defined on six-dimensional manifolds with

SU(3) structure and it is a subject of a subsequence work [6].
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