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Abstract. In this paper we give a presentation of the basic vacuum relations
of Extended Electrodynamics in terms of linear connections.

1. Linear Connections

Linear connections are first-order differential operators in vector bundles. If such
a connection∇ is given andσ is a section of the bundle, then∇σ is one-form on
the base space valued in the space of sections of the vector bundle, so ifX is a
vector field on the base space theni(X)∇σ = ∇Xσ is a new section of the same
bundle [2]. Iff is a smooth function on the base space then∇(fσ) = df ⊗ σ +
f∇σ, which justifies the differential operator nature of∇: the components ofσ are
differentiated and the basis vectors in the bundle space are linearly transformed.

Letea andεb, a, b = 1, 2, . . . , r be two dual local bases of the corresponding spaces
of sections< εb, ea >= δba, then we can write

σ = σaea, ∇ = d⊗ id+Γb
µadx

µ ⊗ (εa ⊗ eb), ∇(ea) = Γb
µadx

µ ⊗ eb

and therefore

∇(σmem) = dσm⊗em+σmΓb
µadx

µ <εa, em> ⊗ eb =
[

dσb + σaΓb
µadx

µ
]

⊗eb

whereΓb
µa are the components of∇ with respect to the coordinates{xµ} on the

base space and with respect to the bases{ea} and{εb}.

Since the elements(εa⊗eb) define a basis of the space of (local) linear maps of the
local sections, it becomes clear that in order to define locally a linear connection it
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