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Abstract. Let B C C? be the unit ball and I" be a lattice of SU(2, 1). Bear-
ing in mind that all compact Riemann surfaces are discrete quotients of the
unit disc A C C, Holzapfel conjectures that the discrete ball quotients B /T’
and their compactifications are widely spread among the smooth projective
surfaces. There are known ball quotients B/T" of general type, as well as
rational, abelian, K3 and elliptic ones. The present note constructs three non-
compact ball quotients, which are birational, respectively, to a hyperelliptic,
Enriques or a ruled surface with an elliptic base. As a result, we establish
that the ball quotient surfaces have representatives in any of the eight En-
riques classification classes of smooth projective surfaces.

1. Introduction

In his monograph [4] Rolf-Peter Holzapfel states as a working hypothesis or a phi-
losophy that “... up to birational equivalence and compactifications, all complex
algebraic surfaces are ball quotients.” By a complex algebraic surface is meant a
smooth projective surface over C. These have smooth minimal models, which are
classified by Enriques in eight types - rational, ruled of genus > 1, abelian, hyper-
elliptic, K3, Enriques, elliptic and of general type. The compact torsion free ball
quotients B/T" are smooth minimal surfaces of general type. Ishida [10], Keum
[11,12] and Dzambic [1] obtain elliptic surfaces, which are minimal resolutions of
the isolated cyclic quotient singularities of compact ball quotients. Hirzebruch [2]
and then Holzapfel [3], [7], [9] have constructed torsion free ball quotient compact-
ifications with abelian minimal models. In [9] Holzapfel provides a ball quotient
compactification, which is birational to the Kummer surface of an abelian surface,
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136 Azniv Kasparian and Boris Kotzev

i.e., to a smooth minimal K3 surface. Rational ball quotient surfaces are explic-
itly recognized and studied in [6], [8]. The present work constructs smooth ball
quotients with a hyperelliptic or, respectively, a ruled model with an elliptic base.
It provides also a ball quotient with one double point, which is birational to an
Enriques surface. All of them are finite Galois quotients of a non-compact torsion
free B/ 1“(_6’8), constructed by Holzapfel in [9] and having abelian minimal model
of the toroidal compactification. As a result, we establish the following

Theorem 1 (Weak Form of Holzapfel’s Conjecture). Any of the eight Enriques
classification classes of complex projective surfaces contains a ball quotient sur-
face.

2. Ball Quotient Compactifications with Abelian Minimal Models

Let us recall that the complex two-ball
B = {(z1,22) € C%; |z1]|* + |22|* < 1} = SU(2,1)/S(U(2) x U(1))

is an irreducible non-compact Hermitian symmetric space. The discrete biholo-
morphism groups I' C SU(2, 1) of B, whose quotients B/I" have finite SU(2, 1)-
invariant measure are called ball lattices. The present section studies the image 7’
of the toroidal compactifying divisor 7" = (B/T')" \ (B/T') on the minimal model
Aof (B/T)', whenever A is an abelian surface. It establishes that for any subgroup
H C Aut(A,T) there is a ball quotient B/T'jy, birational to A/ H.

Lemma 1. If a ball quotient B /T is birational to an abelian surface A then B/T
is smooth and non-compact.

Proof: Assume that B/T is singular. For a compact B/T set U = B/T. If B/T is
non-compact, let U = (B/T)’ be the toroidal compactification of B/T. In either
case U is a compact surface with isolated cyclic quotient singularities. Consider
the minimal resolution ¢ : Y — U of p; € U""& by Hirzebruch-Jung strings
E; = i E!. The irreducible components E! of E; are smooth rational curves of
t=1
self-intersection (E)? < —2. The birational morphism Y --» A transforms E!
onto rational curves on A. It suffices to observe that an abelian surface A does not
support rational curves C, in order to conclude that B/T" is smooth. The compact
smooth ball quotients are known to be of general type, so that B/T is to be non-
compact.

Assume that there is a rational curve C' C A. Its desingularization f : C — C can
be viewed as a holomorphic map F' : C = A Homotopy lifting property applies to
I and provides a holomorphic immersion F :C — A = C2 in the universal cover
A of A, due to simply connectedness of the smooth rational curve C. Its image
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f(é) is a compact complex-analytic subvariety of C2, which maps to compact
complex-analytic subvarieties plri(l3 (6)) C C by the canonical projections pr;:
C? - C,1 < i < 2. Thus, pr;(F(C)) and, therefore, F(C) are finite. The
contradiction justifies the non-existence of rational curves on A.

O

The next lemma lists some immediate properties of the image 1’ of the toroidal
compactifying divisor T’ of A’ = (B/T')’ on its abelian minimal model A.
Lemma 2. Let A" = (B/T)' be a smooth toroidal ball quotient compactification,
€ : A" — A be the blow-down of the (—1)-curves L = Y L; on A’ to an abelian
j=1
surface A and Ti’ , 1 <4 < h be the disjoint smooth elliptic irreducible components
of the toroidal compactifying divisor T' = (B/T') \ (B/T'). Then
i) T; = &(T)) are smooth irreducible elliptic curves on A
i) TE= Y T,0T) = &(L)
1<i<j<h
iii) 7; N T8 £ () and the restrictions & : T — T; are bijective for all
1<2< h

Proof: i) According to the birational invariance of the genus, the curves T; = £(17)
have smooth elliptic desingularizations. It suffices to show that any curve C C A
of genus one is smooth. If C'is singular then its desingularization C is a smooth
elliptic curve. Therefore, the composition C — C < Aof the desingulariza-
tion map with the identical inclusion of C' is a morphism of abelian varieties. In
particular, it is unramified, which is not the case for C — C. Therefore any curve
C C A of genus one is smooth.

ii) The inclusion 7¢ C Y  1; N T follows from i). For the opposite in-
1<i<j<h

clusion, note that §|4n;, = Idang) + A"\ L — A\ (L) guarantees T; =

§(T}) # &(T]) = T and different elliptic curves on an abelian surface intersect

transversally at any of their intersection points. Thus, 7578 = " 15N 1.
1<i<j<h
The disjointness of 77 yields > 1; N1 C &(L). Conversely, the Kobayashi
1<i<j<h

hyperbolicity of B/I" requires card(L; N 7T") > 2 forall 1 < j < s. However,
card(L; NT}) < 1 by the smoothness of T; = £(T7), so that there exist at least
two T} # T with card(L; NT}) = card(L,; N T}) = 1. In other words, the point
¢(Lj) € T; N T. That verifies the inclusion {(L) C > T; N T}, whereas the
1<i<j<h
coincidence {(L) = > T;NTj.
1<i<j<h
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iii) If 7; N €(L) = 0 then the intersection numbers (77)? = T? coincide. By the
Adjunction Formula

0=—e(T;) =T} + Kal; =T + Op.T; = T}

so that (77)? = 0. That contradicts the contractibility of 77 to the corresponding
cusp of B/T and justifies 7; N T""& £ @ for all 1 < i < h.
Note that {|7np, = Id |znp + T; \ L — T; \ (L) is bijective. In order to define
¢ T, nE(L) — T N L, let us recall that for any p € £(L) the smooth rational
curve £71(p) has card(¢~1(p) N TY) < 1. More precisely, card(~H(p) NTY) =1
if and only if p € T, so that for any p € T; N &(L) there is a unique point
{qg(p)} = T/ N ¢ '(p). That provides a regular morphism £~ (p) = q(p) for
allp e T, N&(L).

O

According to Lemma 2, the image 1" = £(1") of the toroidal compactifying divisor
T' = (B/T)"\ (B/T) under the blow-down ¢ : (B/T')" — A of the (—1)-curves is
h
a multi-elliptic divisor, i.e., 7' = >_ T; has smooth elliptic irreducible components
i=1
T;, which intersect transversally. Note also that (A, T’) determines uniquely (B/T)’
as the blow-up of A at 75'€,

Definition 2. A pair (A, T) of an abelian surface A and a divisor T C A is
an abelian ball quotient model if there exists a torsion free toroidal ball quotient
compactification (B/T)', such that the blow-down & : (B/T) — A of the (—1)-
curves on (B/T) maps the pair (B/T) , T = (B/T)"\ (B/T)) onto (A, T).

The next lemma explains the construction of non-compact ball quotients, which
are finite Galois quotients of torsion free non-compact B/T", birational to abelian
surfaces.

Lemma3. Let A’ = (B/T) = (B/T)UT be a torsion free ball quotient compac-
tification by a toroidal divisor T, £ : A" — A be the blow-down of the (—1)-curves
on A’ to the abelian minimal model A and T = E(T"). Then
i) Aut(A,T) = Awt(A", T") is a finite group
i) any subgroup H C Aut(A,T) lifts to a ball lattice Ty, such that T is a
normal subgroup of T with quotient group T'y /T = H and B/T'y is a
non-compact ball quotient, birational to X = A/H.

Moreover, if X = A/H is a smooth surface then B /T g is a smooth ball quotient.

Proof: i) If G = Aut(A,T), then Lemma 2 ii) implies the G-invariance of £(L).
By the means of an arbitrary automorphism of the smooth projective line P!, one
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extends the GG-action to L and, therefore, to

A= (A'\L)UL = (A\ &(L)) U L.

h
The G-invariance of 77 = > T! follows from Lemma 2 iii). That justifies the
i=1
inclusion G C Aut(A’, T"). For the opposite inclusion, note that the union L of
the (—1)-curves is invariant under an arbitrary automorphism of A’. As a result,

there arises a G-action on (L) agd A= (A\&EL)UgL) = (A'\L)Uug(L).

The multi-elliptic divisor T = > T; is G-invariant according to Lemma 2 iii).
i=1
Consequently, Aut{ A", 7") C G, whereas G = Aut(A’, 17).

In order to show that G is finite, let us consider the natural representation
©:G — Sym(Ty,...,Ty) ~ Symy,

in the permutation group of the irreducible components 7; of T". It suffices to
prove that the kernel kery is finite, in order to assert that G is finite. For any
g = Tpgo € ker p C Aut(A) with linear part g, € GL2(C) and translation part 7,
p € A, we show that g, and 7, take finitely many values. Note that the identical
inclusions 7; C A are morphisms of abelian varieties. Thus, for any choice of an
origin 64 € T; there is a C-linear embedding &; : ﬁ = C < C2 = A of the
corresponding universal covers. If £;(1) = (a;, b;) then

T, = Eai,bq; = {(ait, bit)(modﬂ'l(A)) it e C} C A.

If the origin 64 ¢ T;, then for any point (FP;, Q;) € T; the elliptic curve T; =
Eo, b + (Pi,Q;). In either case, all v; = (a4, b;) are eigenvectors of the linear
part g, of g = 7,9, € kerp. We claim that there are at least three pairwise non-
proportional v;. Indeed, if all v; were parallel, then 758 = (), which contradicts
T; T8 £ () for 1 <4 < h by Lemma 2 iii). Suppose that among vy, ..., v,
there are two non-parallel and all other v; are proportional to one of them. Then
after an eventual permutation there is 1 < k < h — 1, such that v{, vy are linearly
independent, v; = p;vy forp; € C,2 <i < kandwv; = pvpy forp; € C k+2 <
i < h. Holzapfel has proved in [9] that any abelian ball quotient model (A, T') is

h . .
subject to > card(T; N T"8) = 4 card(T"#). In the case under consideration
i=1

k h
card(T*"8) = Z Z card(T; N T})

i=1 j=k+1
_ h
card(T; NT"8) = Y card(T;NT;) for 1<i<k and
j=k+1
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k
card(T; N T5"8) = Z card(T; NTy) for k+1<j<h.
=1

h
Therefore S card(T; N T5"8) = 2card(T5"8) # dcard(T*"8) and there are at
least threezp;irwise non-proportional eigenvectors v, v, v3 of g,. Let A; be the
corresponding eigenvalues of v; and v3 = pjv1 + pavo for some py, po € C*. Then
Agvg = go(’Ug) = p1A1v1 + p2Agvug implies that A\ = A3 = Agand g, = A [z is a
scalar matrix. On the other hand, g(7;) = go(7;) + p = T; forall 1 < i < h, so
that g, permutes among themselves the parallel elliptic curves among 77, ..., 13.
Since 7; are finitely many, there is a natural number m, such that g)* € kerp.
Therefore, \™* € End(T;) and \;™ € End(T;) forall 1 < i < h,dueto (g™)~! =
g, ™ € keryp. Recall that the units group End*(7;) = Z* = {£1} for T; without
a complex multiplication. If the elliptic curve 7; has complex multiplication by an
imaginary quadratic number field Q(v/—d), d € N, then End(T}) is a subring of

the integers ring O_4 of Q(+v/—d). The units groups O* ; = (i), O* 4 = <e%>,
and O* ; = (—1) for all d # 1, 3 are finite cyclic groups. As a subgroup of O* ,,
the units group End*(T;) is a finite cyclic group. Therefore \7* € End*(T;) and

Jo = Aol> take finitely many values.

Concerning the translation part 7, of g € kery, one can always move the origin
64 of A at one of the singular points of T". Due to the G-invariance of T8, there
follows g(04) = 7pgo(0a) = Tp(04) = p € T*'"8. Therefore p takes finitely many
values and ker ¢ is finite.

ii) Since I' € SU(2, 1) is a torsion free lattice, any subgroup H of
G = Aut(A",T") C Aut(A'\T") = Aut (B/T)

lifts to a subgroup I'y C Aut(B) = SU(2, 1), which normalizes I and has quo-
tient 'y /T = H. We claim that 'y is discrete. Indeed, 'y = Uf’zlfyif‘ is a finite
disjoint union of cosets, relative to I'. Suppose that I' is not discrete and there is a
sequence {v, }52 ; C I'y with a limit point v, € 7;,I". Then pass to a subsequence
{¥mn tnzq C i, L, converging to v,. As aresult {~y; Y, o2, € T converges to
'yi_olyo € I and contradicts the discreteness of I'. Thus, I'yy D I' is discrete and,
therefore, a ball lattice. Straightforwardly,

A'/H = [(B/T) /(Tu/T) U (I"/H) = (B/Tr) U (I"/H) = (B/Tx)

is the compactification of the ball quotient B/T g by the divisor 7"/H. The H-
Galois covers (g : A — A/H and (}; : A’ — (B/T'y) fit in a commutative
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diagram
A

Cu Cy

A/H < BTy

with the contraction & of L/ H to £(L)/H.

Note that X = A/H is smooth exactly when H has no isolated fixed points on
A. The blow-up & : A" — A replaces an arbitrary p; = £(L;) with stabilizer
Stabg (p;) by a smooth rational curve L; with Stabg(q) = Stabp(p;) for all
q € L;. Therefore the blow-up £ does not create isolated H-fixed points on A’ and

A'/H = (B/T'g) is a smooth compactification. Its open subset B/T g is smooth.
O

3. Explicit Constructions

The present section applies Lemma 3 to a specific abelian ball quotient model over
the Gauss numbers Q(i), in order to provide ball quotient compactifications, which
are birational to a hyperelliptic, Enriques or a ruled surface with an elliptic base.

Theorem 3 (Holzapfel [9]). Let us consider the elliptic curve E_y = C/(Z + iZ)
with complex multiplication by the Gauss numbers Q(1), its two-torsion points

. 1 . .
Qo =0(modZ +iZ), Q1= §(m0dZ +iZ), Q2=1iQ1, Q3=Q1+ Q2
the abelian surface A_1 = E_1 x E_1, the points
Qij — (QZ’QJ) S AQ—tor - A—l

and the divisor T£61’8) = ilTi with smooth elliptic irreducible components
Ty =FEx, for 1<k<4
Tois =Qm X E_1, Thniec=FE_1xXQ, for 1<m<2
Then (A_l, Tiﬁl’g)) is an abelian model of an arithmetic ball quotient B /F(_ﬁig),
defined over Q(i).
Corollary 1 (Holzapfel [9]). 1) In the notations from Theorem 3, the multipli-

cations I = ((l) (1)), J = (é (1)) byi € Z[i| = End(E_1) on the first,



142 Azniv Kasparian and Boris Kotzev

respectively, the second elliptic factor E_1 of A_y are automorphisms of
(40,757,

i) If F(6 8) " | is the ball lattice, containing F( 8) as a normal subgroup with
quotzent F(6 8) 1/F(6 8 — = (=I, = T*J?) C Aut (A L, T 8)) then the

ball quotient JB% / I’(6 8) ' | is birational to the Kummer surface X3 of A_.

i) Iffgaf) | 18 the ball lattice, containing r ] 2

quotient I‘(G 8) 1/F(6 8) = =(I,J) C Aut (A_1, Tﬁﬁl’s)), then the ball quo-

as a normal subgroup with

tient B/ FRat _q Is a rational surface.

The entire automorphism group G(_ﬁig) = Aut (A_l, T£61’8)) 1s described in the
next lemma.

Lemma 4. In the notations from Theorem 3, the group G (_6i8) = Aut (A_l, T£61’8))

_ i 0 10 01
is generated by I = <O 1 ), J = (O ; ) the transposition 0 = ( 1 0) of

the elliptic factors F_1 of A_1 and the translation 133 by (33. The aforementioned
generators are subject to the relations

I*=1d, J*=1d, #*=1d, 75=1d, IJ=JI
GI:JG, QJZIQ, IT33:T33[, JT33:7'33J, 97‘33:7'339.
and G(_Gig) is of order 64.

Proof: Any g € G(_ﬁ’s) leaves invariant

(T(6 8))Smg Z TiNT; = Z Z Qmn + Qoo + Q33.

1<i<j<8 m=1n=1

Thus, g(T;) = T; implies s; = card(T; N T518) = card(T; N T"8) = s,
according to the bijectiveness of g. In the case under consideration, s; = sy =
s3 = 84 = 4 and s5 = sg = s7 = sg = 2, so that G(_Gis) permutes separately
T1,...,Tyand Ty, . .., Tg. In particular, the intersection N{_,7; = {Qoo, @33} is
G(_ﬁis)-invariant and any g = T(y)9o € G(_Gig) transforms the origin 64_, = Qoo
into g(64_,) = (U1,U2) € {Quo,Q33}. Straightforwardly, 733(7;) = T; for
1 < i < 4and 133(Tmt2n) = T3—meon forl < m < 2, 2 < n < 3 imply
that 733 € G(_ﬁ’l8). Therefore G(_ﬁig) is generated by G(_Gis) N GLo(End(E_;)) =
G(_ﬁis) N GLy(Z]i]) and 733. Note that 8 € Aut(A_;) acts on T£61’8) and induces
the permutation (17, 73)(15,T7)(1s, Tg) of its irreducible components. Therefore
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S G(_ﬁis) and (I, J,0) is a subgroup of G(_ﬁig) N GL2(Z[i]). On the other hand,
any g = (: ?) € G(_6i8) N GLo(Z[i]) acts on T, ..., T3 and, therefore, on
the set {ﬁ = ﬁ =0xC, C/F; = i/; = C x 0} of the corresponding universal
covers. If g(0 x C) = 0 x C, g(C x 0) = C x 0 then 5 = 4 = 0, so that
a,6 € End(FE_1) = Z[i] and det(g9) = ad € End*(E_1) = (i) = C4 imply
g = I*J! forsome 0 < k,I < 3. Similarly, for g(0xC) = Cx0, g(Cx0) = 0xC
one has & = § = 0, whereas 3,7 € Zl[i], By € Z[i]* = (i) and g = I*.J'0 for
some 0 < k,l < 3. Consequently, G(_ﬁis) N GLo(Z[i]) = (I, J,0) and G(_ﬁis) =
(I, J,0,733). The announced relations among 733, I, J, 6 imply that

GO = {(r*T0™ s 0 <k,1<3, 0<mn<1)

is of order 64.
O

Theorem 4. In the notations from Lemma 3, Theorem 3 and Lemma 4, let us
consider the subgroups Hyp = (ngJz), Hgnr = (—I2,7'3312), Hru = <J2>
of GO = Aut (A1, 1Y), their tifings TG |, TEY |, TR 10 bal

Enr,
lattices and the blow-up AQ/_\tor of A_1 at the two-torsion points Aa_ior. Then

i) B/ Fgﬁ?_l is a smooth ball quotient, birational to the smooth hyperelliptic
surface A_1/Hpypg

iy B/T{6:8)

Enr,
birational to the smooth Enriques surface As— [Hgn,

_ 1 is a ball quotient with one double point Orby,  (Qo3), which is

iii) B/ ng)—l is a smooth ball quotient, birational to the smooth trivial ruled

surface A_1/Hgy = E_1 x P! with an elliptic base E_.

Proof: i) Recall that the Z-module 7 (E_1) = Z+iZ = Z+ (1 +1)Z is generated
by 1,1 +iand Q3 = %(modm(E—l)). The translation 7, : F_1 — F_1 is of
order 2, as well as the morphism

7Qs(—1): E_1 — E_4
7Q: (—1)(P) = =P + Q3
with four fixed points
£Qs+ (Bo)mior = 5@s +{Qi5 0< i <3).
According to [5], the quotient A_;/H gy g by the cyclic group
Hup = (19, X 105(~1))
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(6,8)

of order 2 is a smooth hyperelliptic surface. Lemma 3 ii) implies that B/T"; .,

is a smooth ball quotient, birational to A_1/Hpyp.
ii) The quotient X3 = As— /(—1I2) is a smooth K3 surface, called the Kummer

surface of A_;. We claim that the involution 73312 acts on Am and determines
an unramified double cover

(1 Xks = Ay—/(—I) & Ay— [ (T2, 733]%) =

—tor

/HEnr

More precisely, 7331? = 7Q4(—1) X 7@, leaves invariant the two-torsion points
As_tor = {Qij ; 0 < 4,7 < 3} and any choice of an automorphism of P! extends
7331% to an automorphism of A;— . Note that 7331*(—I) = (—I2)733I?, so that

—tor

73312 normalizes (—I2) and there is a well defined quotient group Hgy,/(—1I2) =
(1331?) of order 2. That allows to define ¢ : X g3 — As— tor/HEnr as Hgyy/(—1I2)-

Galois cover. We claim that 73312 is a fixed point free 1nv01ution on X k3, in order
to conclude that A;—- /HEgy, is a smooth Enriques surface. More precisely, the

fixed points of 7'33[ on the set X3 of the (—Iz)-orbits on A;— lift to e-fixed

points of 73312 on As— fore = £1. The e-fixed points (P, Q) € A_; are subject
to

—P+Q3 = €P
Q+ Q3 = Q.

For ¢ = 1 the equality Q) + 3 = @ has no solution () € F_1, while fore = —1
the equation —P + Q3 = —P on P € E_; is inconsistent. Therefore 73312 has no

e-fixed points on A_;. By the very definition of the 73372-action on As—-, there
are no e-fixed points for 73372 on AQ/_\W and 73312 : X3 — Xeg is a fixed point

free involution. As a result, Az/—\tor / Hgyy is a smooth Enriques surface.
Recall that the exceptional divisor &, —1tor(A2—tor) of the blow-up
52—t0r A — Ay

2—tor
of A_1 at Ao_ior i8S Hgye-invariant, so that &5_,, descends to the contraction
I -1
‘52—t0r DA 5 tor /HEnr — A_ /HEnr of gz_tor(AZ—tor)/HEnr to A2—tor/HEnr- In
particular, the smooth Enriques surface A2—/t\0r /Hgyy is birational to A_1/Hgy,.

The singular locus (A_1/ l&TEm)Sing C (Ao_tor/HEgnr), according to the smooth-
ness of Am /Hgye. On the other hand, 73372 has no fixed points on Ay_ oy, SO

that As_ior/ HEny consists of eight double points
OrbHEnr (Q'LJ) = OrbHEnr (Qg—’i,3—j)’ O S Z’] S 3
and (A_l/HEm«)Sing = As_tor/ Hgnr- Note that

sing
(769)™ = {Orbmy,, (Qoo), Orb,, (@11), Orbrr, (Q12)}
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is contained in (A_1/ HEnr)Sing and the birational morphism
gHEnr : (B/Pl(gni) 1) —> A—l/HEIlI’
resolves (Tﬁﬁl’g))smg by smooth rational curves of self-intersection (—2). There-

Enr,—

_________ \ sing
fore (B / T{6:8) ) consists of the following five double points:

Orbg,,. . (Qo1), Orb,  (Q10), Orba,,  (Qo2), Orba,  (Q20), Orbg,  (Qo3).

Since

01Dt Qo) € | T\ (14°)™ | /Hiae = (L1006 ) /Fr

sing
0Dt (@) € |Tonea \ (T49) ™| /Hias = (T10\ ) /F

for all 1 < m < 2 belong to the compactifying divisor 77/ Hgy,, the ball quotient
B /F‘(E6 nr) has only one singular point

(B/re9_)™ = {Orbay.. (Qua)}-

iii) The quotient X = A_;/Hgy = E_1 x [E_1/{(—1))] of A_; by the reflec-
tion J?2 = 1 x (—1) is a smooth surface, birational to the smooth ball quotient

B /I’(6 %) It is well known that C' = E_, /{—1) is a smooth projective curve.
More precisely, if

1 1 1
CRF SNV =2
AE(ZHZ)\{0}

is the Weierstrass p-function, associated with the lattice Z+iZ = w1 (E_1), then
the map

w : E_1 \ {6E_1} — IP)2
Pt +(Z+i1Z)) = [1:p(t + (Z+1Z)) 1 p'(t + (Z+1Z))] = [1: p(t) : p'()]

extends by ¥(og_,) = [0 0 1] = peo to a projective embedding of F_,. The
image

W(E-) = {[z 2yl €P?5 zy® = (2 — p(Q1)) (2 — p(Q2)) (= — p(Q3)) }

is a cubic hypersurface in P2. As far as p(t) is even and p’(t) is an odd function
of ¢, the multiplication 1 by —1 on E_1 acts on 1)( E_1) by the rule

pi(z:zay]) =[z:2: -y



146 Azniv Kasparian and Boris Kotzev

The fixed points of this action are ps, and p(Q;) for 1 < ¢ < 3. The fibres of the
projection
I (E-1) \ {poc} — P!\ {40 = [0: 1]}
([z:z:y]) =[z: ]
are exactly the p_1-orbits on ¢(E_1) \ {peo}, S0 that its image

P'\ {goo} = IW(E-1) \ {poo}) = (¥ (E-1) \ {poc})/{p1-1)

is the corresponding Galois quotient by the cyclic group (u_1) of order 2. Thus,

Y(E-1)/(p-1) = W(E-1) \{Poo})/(1-1) U{poo} = (P*\ {goo}) U {poc} = P".
O
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