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STAR PRODUCTS AND APPLICATIONS®

MARI IIDA and AKIRA YOSHIOKA
Department of Mathematics, Tokyo University of Science, 162-8601 Tokyo, Japan

Abstract. A family of star products parametrized by complex matrices is
defined. Especially commutative associative star products are treated, and
star exponentials with respect to these star products are considered. Jacobi’s
theta functions are given as infinite sums of star exponentials. As application,
several concrete identities are obtained by properties of the star exponentials.

1. Star Products

Using an arbitrary complex symmetric matrix, we can define a star product, which
gives a family of star products parameterized by complex matrices [4—6]. In par-
ticular for symmetric matrices we obtain a family of commutative associative star
products [1,2].

In this note, as a special case we consider a family of star product algebras of
functions of one variable. Using star exponentials of these algebras we describe
Jacobi’s theta and its basic identities (cf. [1, 2, 6]).

First we consider a star product given by an arbitrary complex matrix. For sim-
plicity, we consider star products of two variables (u1,us). The general case for
(u1,ug, -+, Ugpy) is similar.

A11 A1z

For any 2 x 2 complex matrix A = ( b e ) € M,(C), we have a biderivation

in the space of polynomials

— —
PLOAIDPy =pi | D Xap0a 0 | p2 =D Aapd,p10,p2, p1.p2 € P(C?).
af af

Then we define a star product by the formula

“Reprinted from J. Geom. Symm. Phys. 20 (2010) 49-56.
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P1 %, P2 = p1exp (%31\3) P2 =p1 (i L (%)n ((5/\5))”) P2
n=0
=3 5(5) n(707)"s
k

P1 ((5A5>>kp2 =D ((51\5)> s ((5/\5) D2

k
= Z )‘alﬁl T )\akﬁkaal T 8akplaﬁ1 T aﬁkPQ'

In this setting we have

Proposition 1. For any A € M>(C), the product *, is well-defined and associative
on P(C?).

2. Star Products on Functions

The star products are well defined on the space of polynomials. In this section we
look for their extension to certain class of functions on C2. We introduce a system
of semi-norms and then its topology in P(C?). We take the completion to obtain
a space of functions on which the star products are well defined. On this space we
can consider star exponentials.

Now we define a topology. Let p be a positive number. For every s > 0 we define
a semi-norm for polynomials by

pls = sup [p(u1, uz)|exp (—s|ul”).
ueC?
Then the system of semi-norms {| - |5}

P(C2).

By taking the completion of P(C?) with respect to the topology 7, we obtain the
Fréchet space £,(C?).

s> defines a locally convex topology 7, on

Proposition 2. For a positive number p, the Fréchet space £, consists of entire
functions on the complex plane C? with finite semi-norm for every s > 0, namely,

£,(C?) = {f € H(C?); |f]s < oo, forall s > O}.

As to the continuity of star products, the space £,(C 2), 0 < p < 2is very suitable,
namely, we have the following
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Theorem 1. On the space £,(C?) for 0 < p < 2, every product *, is continuous.

For the spaces £,(C?) where p > 2, the situation is not so good, but we still can
rely on the following result.

1 1
Theorem 2. For p > 2, take p' > 0 such that — + — =1. Then every star

2
product *, defines a continuous bilinear product

tr  E(C?) X E4(C) = E(C?). £,(C?) x £,(C%) — £,(C?).

This means that (£,(C?), x,) is a continuous € ,(C?)-bimodule.

Let us introduce the Fréchet space
£y (C?) = Nas €0 (C?)
and consider the exponential element

t(H)_OO”H* *H
TPy M\in) T Anlin T N

n=0 ~~
n

in Sp(CQ). The right hand side is not convergent in general. Hence for a polyno-
mial H € P(C?), we define the star exponential exp, t(H/ih) by the differential
equation

woret () = oot () oot () oo
—e J— = — e — e — —0) — 1.
at P \Gn ) T PG ) P Gy ) 0

When H € P(C?) is a linear element, then exp, ¢ (%) belongs to the good space

E14(C &3). In this case, the star exponentials are obtained directly by the formula

oo t" H
nzomg_h*A“‘*A -

gl

n
On the other hand, we remark here that the most interesting case is given by qua-

dratic form H € P(C?), which case > o2, %% TREEEN % is not convergent

and we need the differential equation to define the star exponentials. The star ex-
ponential belongs to the space £, (C?), which is difficult to treat at present.

3. Theta Functions
In this section, we consider the star product for the simple case where
_(r0
A=(50):

Then we can see easily that the star product is commutative and explicitly given
sy ——
by p1 *, p2 = p1exp (%ﬂaulaul) po2. This means that the algebra is essentially
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reduced to the space of functions of one variable u;. Thus, we consider func-
tions f{w), g(w) of one variable w € C for which we define a commutative star
product = with complex parameter 7 such that

(_

fw) =, g(w) = f(w)ez v “g(w)

3.1. Star Theta Functions

In this section we consider the Jacobi’s theta functions as an example of star expo-
nentials.

A direct calculation gives
exp, itw = exp(itw — (1/4)t2).

Hence for R7 > 0, the star exponential exp, niw = exp(niw — (7/4)n?) is
rapidly decreasing with respect to integer n and then we can consider summations
for 7 satisfying R > 0

e e] x

Z exp, 2niw = Z exp (2niw —7n ) Z q” niw g = e,

n=—oo n=—oo n=—oo

This is Jacobi’s theta function O3(w, 7) (cf. [1]). Then we have expression of the
theta functions as

oo
O14_ ( Z (=1)"exp, (2n+ l)iw, 6O (w) = Z exp, (2n+ 1)iw
n=—oo n=—oo "
o] oo
03, (w) = Z exp, 2niw, 04 (w) = Z (=1)"exp, 2niw.
n=—oo n=—oo

Remark that 0, (w) are the Jacobi’s theta functions Oy (w,7), k = 1,2, 3,4 re-
spectively. This is obvious by the exponential law

2exp, 2iw *, Opy (w) = Ops (w), k=23
exp, 2iw *, Ops (w) = =0, (w), k=1,4

Then using exp, 2iw = e~ "e? and the product formula directly we have
262 0p, (w4 i) = Ops (w), k=23
ein_THk*T (w+iT) = =0k (w), k=1,4.

Following Toda’s idea [3] we obtain the following formulas with the help of the
above expressions. In what follows we use as a variable v instead of w given by
the relation 7v = w.
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Lemma 1.
3. (v) = é Z +;Z) MO\ 1)
3. () - é Z " ; Z) MO\, )
62 (v) = \;Z - ; Z) MO

*

e
where M (A, pu) = eV i) g2hmiv g g Z means that A runs through all even
A

integers elc.

Proof: By a direct calculation we have

2 1 2 1
9%*7— ('U Z( 1 n+m ( n+ )lee£7m+ )ﬂ-l’v
We notice that
(2n+1)7r1'u (2m+1)7r1'u . —Z(2n+1)mi(2m+1)mi (2n+1)7iv (2m+1)wiv
*r *r = —¢€ e*T *r *r

Z(2n+1)(2m+1)n? 2(n+m+1)7iv
e2 €x., .

The introduction of A = n +m + 1 and p = n — m gives after some work the
following formula

1* ( E( 1 )\e;(/\Q—p) zjmv

T

Cancellation in the summation ylelds

2 (v) (zz zz)ew 22 2o
A u

which produces the desired result. Other identities are obtained in a similar manner.
O

Using Lemma 1 we easily obtain

Proposition 3.
01, (v)+ b3, (v) =03, (v)+ 01 (v).
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Proof: We have
o1, (v) = (ZZ )M(Lk) (ZZ—ZZ) M p)
Ik A p@ AH
(Z y M(l, k) — ZZM(H@)(XG:EO:M()\,M)
A K

k
-3 3 M0 = (4= B)C - D)
A K

Similarly we have 03 (v) = (A + B)(C + D). By the same manner we see

0t (o) = (zz+zz) MK (zz+zz) M)
P
= (E+ F)(G + H)
and 92*7 (v) = (FE — F)(G — H). Therefore
of. (w305, () = (04, () + 63 (v)) = (A— B)(C - D)
+(E+F)(G+H)-{(A+B)(C+D)+(E—-F)G—-H)}
= 2(—AD — BC + EH + FG).

Arranging the summation we have

X e%(ZQ—k2+)\2— 22 zirwezi\mv
o] e o e e o e o] o e € o
(Y3 (EX-2y) -3y (2r-3y))
/DY Eow Eon I A kEw E o p
% e%(ﬂ—kQ-&-)\?— )2 27r1’062)\71'1'v -0

since >3 3-8 ez (R +u?) — SR e~z (k?+p?) O
Proposition 4. For a complex parameter a € C we have the identity
03, (v) 03, (a) + 67 (v) 07 (a)= 05 _(0)0s, (v+a)bs, (v—a)

Proof: By a similar manner as in Lemma 1 we have

93* (’U + a) 93* (’U — a (Z Z + Z Z) e;(l2 2?72 e2Xmia 2lT7rw



250 Mari lida and Akira Yoshioka

Since 27|, _ = e~ TN’ eV o = e~ 72’7 we have also
.. (0) = ( Z+ZZ) “Er
9% (a) :< Z"‘ZZ) §(k*+p?)m* 2Amia
1 (a) = (ZZ ZZ) (X +pu?)m? 2Mmia

Then we obtain

0. (v)03,_(a) +0%_(v) 67 (a)

x e§(l2—)\2—k2—p )7r 2Aria 217rw

<> (5555

}
< e%(l2_)\2)772€2)\7riaezf)7riv =063, (0) 05 (v+a)bs. (v—a)
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MOTION OF CHARGED PARTICLES IN TWO-STEP
NILPOTENT LIE GROUPS*

OSAMU IKAWA

Department of General Education, Fukushima National College of Technology
Iwaki, Fukushima, 970-8034 JAPAN

Abstract. We formulate the equation of motion of a charged particle in a
Riemannian manifold with a closed two form. Since a two-step nilpotent Lie
group has natural left-invariant closed two forms, it is natural to consider the
motion of a charged particle in a simply connected two-step nilpotent Lie
groups with a left invariant metric. We study the behavior of the motion of a
charged particle in the above spaces.

1. Introduction

Let O be a closed two-form on a connected Riemannian manifold (M, ( , )),
where () is a Riemannian metric on M. We denote by A™(M) the space of m-
forms on M. We denote by ((X) : A™(M) — A™ (M) the interior product
operator induced from a vector field X on M, and by £ : T(M) — T*(M), the
Legendre transformation from the tangent bundle T(M) over M onto the cotangent
bundle T*(M) over M, which is defined by

L:TM) > T* (M), u- L(u), Lu)(v)={,v), uveTM). (1)

A curve x(t) in M is referred as a motion of a charged particle under electromag-
netic field O, if it satisfies the following second order differential equation

Vix = L77(x)Q) (2)

where V is the Levi-Civita connection of M. Here Vix means the acceleration
of the charged particle. Since £ '(1(x)Q) is perpendicular to the direction
of the movement, £ '(1(x)Q) means the Lorentz force. The speed x| is a
conservative constant for a charged particle. When (O = 0, then the motion of a

“Reprinted from J. Geom. Symm. Phys. 20 (2010) 57-67.
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Motion of Charged Particles in Two-Step Nilpotent Lie Groups 253

charged particle is nothing but a geodesic. The equation (2) originated in the theory
of relativity (see [2] for details).

In this paper, we deal with the motion of a charged particles in a simply con-
nected two-step nilpotent Lie group N with a left invariant Riemannian metric.
Since a two-step nilpotent Lie group has a non-trivial center Z, we can construct
a left-invariant closed two form Q. from an element ap € Z specified below
and consider the motion of a charged particle under the electromagnetic field (3, .
H. Naitoh and Y. Sakane proved that there are no closed geodesics in a simply
connected nilpotent Lie group. In contrast with geodesics, there exist motions of
charged particles which are periodic. Kaplan defined a H-type Lie group, which is
a kind of two-step nilpotent Lie groups. We study the motion of a charged parti-
cle in a H-type Lie group more explicitly than in a general two-step nilpotent Lie

group.
2. Charged Particles in Two-step Nilpotent Lie Groups

Let N be a simply connected two-step nilpotent Lie group with a left-invariant
Riemannian metric (, ). Denote by the vector space consisting of all left-invariant
vector fields on N. Since is two-step nilpotent, has a non-trivial center . Let

= @ - be an orthogonal direct sum decomposition of ,then ~, ©~ C . For

ap € , we define a linear transformation ¢ o, on + by
<¢%(X))Y>:<a0> X)Y>) X)YE J--

We extend ¢4, to a linear transformation on by ¢ = 0 on , which is also
denoted by ¢o,. We can regard ¢, as a left-invariant (1, 1)-tensor on N. Then
bq, is skew-symmetric with respect to the left-invariant Riemannian metric (, )
since
(Pay (X),Y) + (X, dgy (Y)) = (a0, X,Y ) +{ao, V,X) =0
for any left invariant vector fields X, Y € . If we define a left-invariant two-form
g, on N by
Qq, (X,Y) = (X, P, (Y)), X, Y e

then a simple calculation implies that (4, is closed. In fact, for any X1, X7 and X3
in  we have

31dQq, ) (X1, X2, X3) = Qq, ( X1,X2,X35)
= (X1,X2,dq(X3)) =0

where we denote by  the cyclic sum, and the last equality follows from the fact
that X1,X; € and ¢(X3) € L. The equation of motion of the charged particle
under the electromagnetic field (34 is

Vik = Ggy (). 3)
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Here a curve in a manifold is simple if it is a simply closed periodic curve, or
if it does not intersect itself. Since N is simply connected, the one dimensional
de-Rham cohomology group vanishes. Hence we get the following theorem using
Theorem 9 in [2].

Theorem 1. The motion of a charged particle (3) in a simply connected two-step
nilpotent Lie group is simple.

Now we will construct explicitly a simply connected two step nilpotent Lie group
with a left-invariant Riemannian metric from an (abstract) two-step nilpotent Lie
algebra  with an inner product (,). In order to do this, we recall a Hausdorff
formula for a Lie group (see [1, p. 106]), which states that

1
expXexpY = exp (X—i—Y—i—EX,Y —|—)

If the Lie group is two-step nilpotent, then the higher terms 4 - - - on the right hand
side vanish. Based on the Hausdorff formula, we define a Lie group structure on
itself by

1
X-Y=X+Y+3XY,  XYe

The identity element in this group is 0, and the inverse element of x € is equal
to x. We denote by N = ( ,:) the so obtained Lie group. The center of N
coincides with . Denote by Lie(N) the Lie algebra consisting of all left-invariant
vector fields on N. Then Lie(N) is identified with as a Lie algebra as mentioned
below. Since N is a Euclidean space as a manifold, we can identify To(N) with
as vector spaces. The identification induces a Lie algebra structure on To(N].
For X € To(N), we denote by X € Lie(N) the left-invariant vector field on N
such that Xo = X. The mapping defined by = To(N) — Lie(N), X — X
gives an isomorphism as Lie algebras. Hence N is a simply connected two-step
nilpotent Lie group whose Lie algebra is . The inner product {,) on induces a
left-invariant Riemannian metric {, ) on N. Using this notation, we have

an (X,V) = <>~<> ¢V> = <aO> Y>>Z> = <C10, Y)X >

The exponential mapping exp : — N is equal to identity mapping. Hence for
X € To(N), we have

- d d t
Xx = —=(x tX)jjmo = — tX+ = x, X Tx(N).
o= gl Do = g (r X 3 0X) TN

Since the Riemannian metric on N is left-invariant, the left action of N on N itself
is isometric. Hence X € To(N) induces a Killing vector field X* on N by

, d d t
XL = a(exp tX) Xm0 = a(tX +x+ 7

The Killing vector field X* is right-invariant.

X, x )lt:O € Tx(N).
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Lemma 1. The mapping defined by
1
-, X=X+ 7 X, x

is a linear isomorphism.

Proof: Since the mapping is clearly linear, it is sufficient to prove that it is injec-
tive. In order to do this, we study the kernel of the mapping. Suppose that X €

satisfy the condition X + % X,x = 0. Decompose X as X = X7 + X, where
X1 € +and Xz € ,then Xy + (X2 4+ 3 X1,x ) = 0. This implies X; = 0 and
X + % X1,x = 0. Hence we have X, = 0, hence, X = 0. O

By the lemma above, we have Ty (N) = span{X} ; X € ] for any x in N. The
Killing vector field X* is an infinitesimal automorphism of ¢.

Lemma 2. Let X be in To(N) = . For a fixed x € N, we have X}, = W,, where
weset W =X+ X, x.

Proof: Since

~ d t
Wy = — (x—l—tX—l—tX,x + =—x, X+ X, x )
d t
=4 <x+tx+zx,x)ltzozxi
we have the assertion. O

Lemma 3. Define a one-formnga, on N by
n(lo(X;kc):<x')X>a0>» X e

Then ((X*)Qq, = d(nq, (X*)) for any Xin .

Proof: Let X and Y bein .ByLemma 2, we have

(LX) Q) (Yx) = Qo (X5, V)
= Qq, (Wy, Vo)
=04, X+ X,x),Y)
= (ap, \,X+ X,x ) ={ap, Y,X).
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Using the above equation, we have also

~ ~

d(Na, (X*))(Yx) = Yx(na, (X*))
d

%k
dtn ao (Xx+tY+ 1xYl ) [t=0

d t
= —(x+tY+=x,Y,X,a0)

dt 2
= < Y, X >a0> = (L(Xi)ﬂao)(Yx)-
Hence we get d(nq, (X*)) = (X")Qq,. O

Denote by Ty (N) — To(N);v — v, the usual parallel translation in the Euclidean
space : Take a curve c(t) in N such that ¢(0) = x,¢{(0) = v. Then v, =
%(c(t) X)jt=0- The following lemma gives a relation between the two linear
isomorphisms L;1 : Tx(N) = To(N) and T (N) — To(N),v — v,.

Lemmad. L v =v, % X,Vqa for v e T (N).

Proof: Take a curve c(t) in N such that ¢(0) = x, ¢(0) = v. Then

_ d 1
wa =L_w= T ( x + c(t) 2 x, c(t) >It—0
= d(c(t) X ]xc(t) x) =v ]xv
~dt 7™ o —n 5%
Hence we have the assertion. O

Similarly we define Ty( +) — To{ +),u — u,. and T,( ) — To( ),w — w;.

Since is abelian, we have L, 'w = w; for w € T,( ). Hence we can write
w =w,. Letx € andv € T,( ). Expressing x and v as x = y + z and

v=vi+vywhereye t,ze ,vie Ty( 1) and v, € T, ) we obtain
_ 1
Lv= (v, + (Vz 7 ¥ vy ) : C))

Proposition 1. Let x(t) = y(t) + z(t) be a curve in , where y(t) € -+ and
z(t) € . Assume that y(0) = 0. Then x(t) describes the motion of a charged
particle (3) if and only if

1
90, buona () =U(0), 2O Su,HU =20l ©)

Proof: Taking the inner product of (3) and the Killing vector field X* for X €

we have

g (6 X7) = QX5 %) = (UXT)Q) ().
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Using Lemma 3 we find

d

5 (6 XY = (X)) (&) = Zn(Xy).

Since Tx(N) = span{X}; X € 1}, the equation (3) is equivalent to

d
a((k(t)>xi(t]> (X)) = 0.

By the definition of 1, we have
ﬂ(Xi(t]) — < X(t],X >a0> = <d)ao (y (ﬂ)) X>
Since (, ) is left invariant

<X>X;kc(t]> - <L;]X>L;]Xi>
. S
:<y3l+(z Ey)ygi ))X+ X,X>

2

where we have used Lemma 2 and equation (4). Hence the equation (3) is equiva-
lent to

1
:<ggiax>+<z _y’ggi>X+ X,X,>

d
dt
Taking X € , we have

1
(<93L d)ao(y),x>+ <Z zyygai )X+ X)H >) =0.

: 1 . .
2t 5 y(t),yt)e =2(0)
where we have used the initial condition y(0) = 0. Next, taking X €

% (@f Pa,(¥), X) + (2(0), X,y >) —0.

Taking into account the initial condition y{0) = 0, we finally have

y(t),r  dora,ult) =4(0).

-, we have

O

Proposition 2. The motion of a charged particle (3) with y(0) = 0 is given by the
equations

t
y(t) = exp td z0)+q, Jo exp( tdo0)+aq,)u(0)dt

z(t) = z(0) + tz(0) + !

3 || vl ferp oy o000 at.

0
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Proof: Using the first equation of (5) with y(0) = 0, we have

t
y(t) = exptdy0)+a, L exp( tdz0)t+a,)u(0)dt.

Hence
Gx0)+a,Y(t) = (exptdyo)4q, 1U(0)
which implies that
P 01+a,Y(t) +19(0) = (exp td o)1, )u(0).

Using the second and the first equation from (5)

1 rt
z(t) = z(0) + tz(0) + 7], y(t),ylt),r dt
1 it
=z(0) +12(0) + 5 . y(t), dx0)+a,Y(t) +y(0) dt
1 it
= z{0) +12(0) + 5 . y(t), (exp tdhy0)+q,)u(0) dt.
Hence we get the assertion. O

When ¢50)+q, = 0, then, using the above Proposition, we get y(t) = ty(0) and

t
z(t) = z(0) + tz(0) + %J ty(0),u(0) dt = z(0) + tz(0).
0

Lemma 5. The equation of motion (3) implies the following relation
d

1 1
3 (2(1), 2(0) + ao) + 5 (y(t), y(0))) = 2(0)]* + (2(0), ao) + §|1'43L|2-

2

Proof: Taking the inner product of the second equation of (5) with z(0) + ap, we
have

(20) + a0)  3(u, Gy 1£(0) + ao) = 2(0)% + (2(0), ao).

Using equation (5) again produces
< yvggl vZ(OJ + (l()> = <¢'z(0]—|—aoy>ggl>
= (g, ©(0),u,)

d
= Yt (0,0, 900) = Gt (U], 9(0).
Hence
S ({00,200 + ag) + 3 (u(1),5(0)) = 2(0)+ (2(0), ag) + 19,0
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Applying the lemma above for geodesics, we can re-demonstrate the following
theorem of Naitoh-Sakane.

Theorem 2. (Naitoh-Sakane [4, Corrolary 3.3]) Every geodesic in any simply con-
nected two-step nilpotent Lie group with a left-invariant Riemannian metric does
not intersect itself.

Proof: Let x(t) = y(t) + z(t) € N be a geodesic with y(0) = 0. Applying
Lemma 5 with ap =0
d
dt

1

((z(t),z'(OD + §<y(tJ,y(0)>) = [2(0)]* + %maql > 0.

Hence (z(t), 2(0)) + %(y(t),Q(O)) is monotone increasing. Thus x(t) is not peri-
odic. Since we have already proved that x(t) is simple by Theorem 1, we get the
assertion. 0]

The author thinks that the above proof is easier than the original proof of Naitoh-
Sakane.

3. Charged Particles in H-type Lie Groups

In this section, we study the motion of a charged particle in a simply connected
H-type Lie group. First we review the definition of H-type Lie algebra according
to Kaplan. Let (U, (,)) and (V, (,)) be finite-dimensional real vector spaces with
inner products (,). Denote by End(V) the vector space consisting of all linear
transformations on V. We assume that there exists a linear mapping j : U —
End(V) such that

jla)*= la?l,  fila)x|=lax, a€clU, xeV. (6)

In other words, V is a Clifford module over the Clifford algebra generated by U.
By (6) we have

(ila)x,j(b)x) = (a,b)x%,  (j(a)x,j(a)y) = a*(x,y)
(ila)x,y) + (x,jla)y) =0, abel, xyeV
Define a bi-linear mapping , :V x V — U via the formula
<a) XY >=(j(a]x,y), aeu) XY E\/' (7)
Then , is alternative. Substituting j(b)x into y, we have
{a, x,j(b)x ) = (j(a)x,j(b)x) = (a,b)x/*.

Hence
x,j(b)x =[x/*b, bel, xeV. 8)
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We denote by = U & V the orthogonal direct sum of U and V, and define a Lie
algebra structure on by
a+x,b+y = x,y €U, a,bel, xyeV

Then the Lie algebra is called H-type. Since the H-type Lie algebra is a kind
of two-step nilpotent Lie algebra with an inner product, we can define a Lie group
structure on  with a left-invariant Riemannian metric, whose Lie algebrais itself
as we mentioned in the previous section. For ag € U, we consider the equation

Vix =jlag)x 9

of motion of a charged particle. If we express its trajectory as x(t) = y(t) + z(t)
where y(t) € V,z(t) € U, then (9) is equivalent to

y(t)yv  j(z(0) + ao)y(t) = y(0) (10)

where Ty, (V) — V,w — wy denotes the usual parallel translation in V. Here we
have used equation (5).

Theorem 3. Let x(t) = y(t) + z(t) € N (wherey(t) € V, z(t) € U) is a motion
of a charged particle (9) with x(0) = 0.

1) When z(0) + ap = 0, then x(t) = tx(0).

2) When z2(0) + ag # 0, then

_sin(t|z(0) + aol) . 1 cos(tz(0) +ao)., . _
y(t)= 20 + a0 y(0) + 200 F ag? j(2(0) + ao)y(0)
. 2 . .
2(t12(0) + 5o M (3(0) + ao) IO 00 500)2(2(0)+ ao).

The curve y(t) is a circle in'V. The motion of a charged particle is periodic if and

only if
[y(0)]? .
(Zyz(0)|2 + 1> 2(0).

In this case x(t) is an elliptic motion.

Remark 1. When x(t) is a geodesic, the condition ag = 0 implies the theorem of
Kaplan [3].

Proof: 1) is clear from (10). We will show 2). Using the first equation of (10), we

have
~ sin(t2(0) + ao)) . 1 cos(t|Z(0) + aol)
YU = 0 v a0 YO TR0+ ag?

which implies that

j(2(0) + ao)y(0)

sin(t2(0) + aol)

9(t)v = cos(t[2(0) + a0y (0) + —Zr3———

i(2(0) + ao)y(0).
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Using the equation above, we have

o 1 cos(t2(0) + ag)
YUV (1) =

y(0),j(2(0) 4+ ao)u(0) .

Further the second equation of (10) gives

50 = 2(0) + 1 cos(t]z(0) + ap)

4(0),3(2(0) + ao)y(0)

22(0) + aol? (1)
iy 1 cos(t|z(0) + apl)
= £(0) + s (2(0) + a9 0]
where we have used the equation (8). Since
1 (2(0)+ao ) . . sin{[z(0) + aolt) .
9 gorrar (Gors a) V9 = E e v{o)
cos(|2(0) + aplt). / 2(0) 4+ ap \ .
w0 rag ) (200 1 ag) YO

. . . . 1 2(0)+a .
the curve y(t) is a circle in V whose center is 0 ]+ao|] (I OTa |> y(0) and the

radius is =22 . The periodic condition is as follows
12{0)+ao|

O
2|2(0) + aol?

S (12
& ag= ('”(0”|2+1>z(0).

o )
( ) Eg;)g(o))

the curve x(t) is an elliptic such that the ratio of the long axis to the short axis is
equal to \/[9(0)2 +(2(0)[2/ ¥ (0). m

x(t) is periodic & z(0) + (z(0) +ag) =0

In this case, since

2:00), (£0)Y . 2(0)] (.
<0+ 502 (G07) YO = G ( (
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1. Introduction

The modular forms of sufficiently large weight are known to provide projective
embeddings of the arithmetic quotients of the two-ball

B = {z = (21, 20) € C%; |z1|* + | 2|® < 1} ~ SU(2,1)/S(Us x Uy).

The present work studies the projective maps, given by the modular forms of
weight one on certain Baily-Borel compactifications I@EI of Kodaira dimension
/{(m) < 0. More precisely, we start with a fixed smooth Picard modular
surface A’ | = (B/F(_tsis))/ with abelian minimal model A_, = F_1 x E_q,
FE_1 = C/Z + Zi. Any automorphism group of A’ |, preserving the toroidal com-
pactifying divisor 77 = (B / F(_Gig))/\ (IEB / I‘(_Gf)) acts on A_ and lifts to a ball lat-
tice I'yy, normalizing 1"(_618). The ball quotient compactification A’ |/H = B/Ty
is birational to A_;/H. We study the T g-modular forms [Ty, 1] of weight one

by realizing them as H -invariants of [F(_Gig), 1]. That allows to transfer [Ty, 1] to
the H-invariant abelian functions, in order to determine dim¢[I" g, 1] and the tran-
scendence dimension of the graded C-algebra, generated by [I" g, 1]. The last one

is exactly the rank of the projective map ® : B/T py —=> P([T'y, 1]).

2. The Transfer of Modular Forms to Meromorphic Functions is
Inherited by the Finite Galois Quotients

Definition 1. Let T' < SU(2, 1) be a lattice, i.e., a discrete subgroup, whose quo-
tient SU(2,1)/T has finite invariant measure. A T-modular form of weight n is a
holomorphic function 6 : B — C with transformation law

7(0)(2) = 6(7(2)) = [det Jac(7)]7"6(2).  ~v€T, z€B.

Bearing in mind that a biholomorphism 7 € Aut(B) acts on a differential form
dz1 Adzy of top degree as a multiplication by the Jacobian determinant det Jac(~y),
one constructs the linear isomorphism

jn : o] — H°(B, (28)°™)"

with the T'-invariant holomorphic sections of the canonical bundle QJQB of B. Thus,
the graded C-algebra of the I'-modular forms can be viewed as the tensor algebra
of the T'-invariant volume forms on B. For any 4,2 € [I', n] the quotient g—; is a
correctly defined holomorphic function on B/T'. In such a way, [I', n] and j, [T, n]
determine a projective map

3, :B/T — P([T,n]) = P(j,[T,n]).
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The T'-cusps OrB/T" are of complex co-dimension two, so that ®,, extends to the
Baily-Borel compactification

o, : B/T — P([T,n]).

If the lattice I' < SUsy; is torsion-free then the toroidal compactification X’ =
(B/T) is a smooth surface. Denote by p : X’ = (B/T) — X = IB?/\F the
contraction of the irreducible components 7 of the toroidal compactifying divisor
T’ to the T-cusps x; € OrB/T. The tensor product Q%,(1”) of the canonical
bundle Q%, of X’ with the holomorphic line bundle O(T"), associated with the
toroidal compactifying divisor 7" is the logarithmic canonical bundle of X'. In [2]
Hemperly has observes that

HY(X', Q3%.(T)®™) = p*jn[T,n] ~ [T, n].
Let Ky be the canonical divisor of X’
ﬁX/(nKX/ +’I’LTI) ={f€ (X,), (f)+’}’LKX/—|—’I’LTIZO}

be the linear system of the divisor n(K x» + 71”) and s be a global meromorphic
section of Q% (T”). Then

s Lx/(nKxr +nT') — HOX', Q% (T")%")

is a C-linear isomorphism. Let £ : X’ — X be the blow-down of the (—1)-
curves on X’ = (B/T)’ to its minimal model X. The Kobayashi hyperbolicity of
B requires X’ to be the blow-up of X at the singular locus 7578 of T' = £(T7).
The canonical divisor Ky = £*Kx + L is the sum of the pull-back of Kx with
the exceptional divisor L of £. The birational map £ induces an isomorphism £* :

(X) — (X”) of the meromorphic function fields. In order to translate the
condition £*(f) + nKx, +nT’ > 0 in terms of f € (X), let us recall the
notion of a multiplicity of a divisor D C X atapointp € X. If D = > n;D; is

(3
the decomposition of D into irreducible components then m, (D) = >- nymy(D;),

where
y_J1 forpeD;
my(Di) = {O forp & D;.
LetL= . L(p)forL{p) =& Yp)and f € (X). The condition £*( f) +

pETsing
nL > Ois equivalent to m,(f)+n > 0 forall p € T8, Thus, Lx/(nK x: +nT")
turns to be the pull-back of the subspace

Lx(nKx +nT,nT"8)

={fe  (X);(f) +nKx +nT >0, my(f)+n >0, pe T}
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of the linear system £ x(nKx + nT'). The C-linear isomorphism
Trans, := (&) 's®"j, : [[,n] — Lx(nKx + nT,nT5"8)

introduced by Holzapfel in [3], is called transfer of modular forms.
Bearing in mind Hemperly’s result H°(X’, Q%,(T")*™) = p*j1[T',n] for a fixed
point free I', we refer to

& :B/Tyr — B([Tr,n]) = P(ju[Trr, )

as the n-th logarithmic-canonical map of B /T, regardless of the ramifications of
B—B/Ty.

The next lemma explains the transfer of modular forms on finite Galois quotients
B/T'y of B/T' to meromorphic functions on X/H. In general, the toroidal com-
pactification X, = (B/Ty)" is a normal surface. The logarithmic-canonical bun-
dle is not defined on a singular X, but there is always a logarithmic-canonical
Weil divisor on X,.

Lemma 1. Let A’ = (B/T) be a neat toroidal compactification with an abelian
minimal model A and H be a subgroup of G = Aut(A,T) = Aut(A’, T"). Then
i) the transfer Trans,, := (£*)"'s®(=")j, : [[,n] — Lo(nT,nT58) of
I'-modular forms to abelian functions induces a linear isomorphism

Trans? : [Ty, n] — La(nT, nT518)H

of Ty-modular forms with rational functions on A/ H, called also a transfer
i1) the projective maps

(I)f : m ------ > P([T'y,nl), \Ifﬁ : AJ/H > P(L 4(nT, nTSing)H)
coincide on an open Zariski dense subset.

Proof: i) Note that j,[Tr,n] = j,[T,n]". The inclusion j, [Tz, n] C ju[T,n]
follows fromI' < T'y. fI'y = u;f:mr is the coset decomposition of I' ; modulo
I, then H = {h; = v,I'; 1 < i < n}. AT-modular form w € j,[T',n|is T'gy-
modular exactly when it is invariant under all v;, which amounts to the invariance
under all A;.

One needs a global meromorphic G-invariant section s of Q%,(7”), in order to
obtain a linear isomorphism

(5*)—13®(—n) = Transfj;l 2T, n| = jn[T,n]H — La(nT, nTsing)H.

The global meromorphic sections of the logarithmic-canonical line bundle Q2, (7")
are in a bijective correspondence with the families (f4, Uy )acs of local meromor-
phic defining equations f, : U, — C of the logarithmic-canonical divisor L + T".
We construct local meromorphic G-invariant equations g, : V, — C of 7" and
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pull-back t0 (fo = €*ga,Ua = £ HVa))aes. Let F4 : A = C2 — A be the uni-
versal covering map of A. Then for any [ point p € A choose a lifting p € F'y L(p)

and a sufficiently small neighborhood W of p p on A, which is contained in the in-
terior of a 7 (A)-fundamental domain on A, centered at p. The G-invariant open
neighborhood W = ﬂgeggﬁ} of 7 on A intersects Fgl(T) in lines with local
equations [;(u,v) = a;(p)u + bj(p)v + ¢;(p) = 0. The holomorphic function
g(u,v) = [T TI{l;(u,v)) on W is G-invariant and can be viewed as a G-invariant

local defining equation of 77 on V' = F4(W). Note that F4 is locally biholo-

morphic, so that V' C A is an open subset, after an eventual shrinking of W. The
family (g, V')pe 4 of local G-invariant defining equations of 7" pullbacks to a family
(f =€*g,U = £ 1(V))pea of local G-invariant sections of Q% (7”).
ii) Towards the coincidence ¥/ (A\T)/H] = <I>71f|[(]B/FH)\(L/H)], let us fix a basis
{wi; 1 < 1 < d} of j,[T'y,n| and apply i), in order to conclude that the set
{fi = Trans j~N(w;); 1 <i < d} is a basis of £ 4(nT, nT5"8)H  Tensoring by
s®(=1) does not alter the ratios £& ot The isomorphism ¢ : (A) — (A") is
identical on (A \ T')/H. O

3. Preliminaries

In order to specify A’ | = (]B / I‘(_ﬁig))/ let us note that the blow-down ¢ : A” | —
A_; of the (—1)-curves maps 7" to a divisor 7' = £(T"”) with smooth elliptic irre-
ducible components 7;. Such 7" are called multi-elliptic divisors. Any irreducible
component T; of T lifts to a w1 (A_1)-orbit of complex lines on the universal cover

A’ | = C2. That allows to represent
T; = {(u(mod Z + Zi),v(mod Z + Zi)); aju + bjv 4+ ¢; = 0}.

If T} is defined over the field Q(i) of Gauss numbers, there is no loss of generality
in assuming a;, b; € Z[i| to be Gaussian integers.

Theorem 1 (Holzapfel [4]). Let A_1 = E_1 X E_1 be the Cartesian square of the
elliptic curve E_y = C/Z+ 7Zi, wy = %, wo = w1, w3 = wy + weo be half-periods,

Qo = 0(mod Z + Zi), Q1 =wi(mod Z + Zi), Q2 =iQ1, Q3= Q1+ Q2
be the two-torsion points on E_1, Qi; = (Q4, Q) € AQ__ltor and

Ty = {(u(mod Z + Zi),v(mod Z + Zi); u —i*v = 0} with 1<k <4,
Tyim = {u(mod Z + Zi),v(mod Z + Zi); u — wy,, =0} for 1 <m <2 and
Trm = {u(mod Z + Zi), v(mod Z + Zi); v — wy, = 0} for 1 <m < 2.
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: (6,8) 5108
Then the blow-up of A_1 at the singular locus (T_1 ) = Qoo + Q33 +
2 2 8
Zl Zl Qij of the multi-elliptic divisor T £61’8) = 21 T; is a neat toroidal ball quo-
1= J: =

/
tient compactification A’ | = (B/ F(_ﬁis)> .

Theorem 2 (Kasparian and Kotzev [6]). The group G_1 = Aut{A_q, T£61’8)) =
Awt(A”_ |, T") of order 64 is generated by the translation T33 with Q33, the multi-

plications
i0 : 10
I= (O 1) , respectively J = (0 i)

with i € Z[i] on the first, respectively, the second factor E_1 of A_1 and the trans-
position
01
'=(10)

Throughout, we use the notations from Theorem 1 and Theorem 2, without men-
tioning this explicitly. With a slight abuse of notation, we speak of Kodaira-
Enriques classification type, irregularity and geometric genus of A_1/H, H <
G _1, referring actually to a smooth minimal model Y of A_;/H.

of these factors.

Theorem 3 (Kasparian and Nikolova [7]). Let
£:G 1 — GLy(Z[]) = {g € Zlilaxss det(g) € Z[i]* = (i)}
be the homomorphism, associating to g € G _1 its linear part L and
Li(G-1) ={g € G_1;k(L(g) — I2) = 1}

= (T I* T JF TR I 0<n <1, 1<k<3, 0<1<3)
Then

i) A_1/H is an abelian surface for H = (T33)
iiy A_1/H is a hyperelliptic surface for H = (1331%) or H = (133.J%)
iiiy A_1/H is a ruled surface with an elliptic base for

H=1(h), heLi(G_1)\{rs3I? m33J%} or H={133,ho), ho € L{L1(G_1))
iv) A_1/H is a K3 surface for (135) # H < K = kerdet L, where
K= {mi "% 51" 7*%9;0<n<1, 0<k<3}
v) A_1/H is an Enriques surface for H = (I*>J?, 133I?%)
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vi) A_1/H is a rational surface for
(hY < H, h € {msIJ, PhI*J, mis1J%;0 <n <1} or (rhI*°J* h1) <H

hy € {I?mJ2=2m pip rm g Iyl 0<m <1, 0<1<3}, 0<n<1.

The following lemma specifies some known properties of Weierstrass o-function
over Gaussian integers Z[i].

+3(

>
>

2
Lemma2. Leto(z) =2z [ (1-3%) )" be the Weierstrass o-function,

AeZ[I\{0}
associated with the lattice Z[i] of C. Then

i) o(if2) =i*o(z), 2ze€C, 0<k<3
ii) Uff(l_A) = 6()\)6_7&2_%')\'2, ze€C, \E€LZ[i, where

)
) = {—1 z:f)\ eZ[i]_\m[i]
if A€ 2ZJi.

Proof: 1) follows from

1 (1 - ﬁ;) S (%) - (1 - 3) §+%(§)2.

AEZ[\{0} p=Z€Z[\{0}

ii) According to Lang’s book [8]
o(z+ A)

o(2)
where 7 : Z[i] — C is the homomorphism of Z-modules, related to Weierstrass
¢-function ((z) = %(f% by the identity ((z + \) = ({(z) + n(A). It suffices

= 5(/\)6”0‘)(”%), z € C, A € Z[j]

to establish that n{\) = —xwA, A € Z[i]. Recall from [8] Legendre’s equality
n(i) — in(1) = 2xi, in order to derive
A+ A A=A ~ _
a0 = 2220 + 22200 = ) £ M- =X Ae i)

Combining with homogeneity n(i\) = 1n()\), A € Z[i] (cf.[8]), one obtains

(n(1) + m)iX + wiX = niX) = —in(\) = —(n(1) + 7)iX + 7N, X € Z[i].
Therefore n(1) = — and n(\) = —w\, A € Z[i]. O
Corollary 1.

U(Z + wm) _ _62(—1)mwm7rz
o{z — wm)
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0(2 + wm + 2ew3_m)
o{z — wm)

. = —_1ym+1 _1\ym
:(—1)m+1616 +2(=1) Ewg—mT2+2(—1)"wm T2

0(2 — Wm + 26w3_pm)

— (_1)ymtlg —%+2(—1)m+16w3_m7rz.
= P (=1)" " cie

for the half-periods wi = %, wo = iwy and e = £1.

Corollary 2.

U(Z + 25wm) _ e—wz+(—1)m2e7rwmz
o{z —1)

J(Z + (_l)mwm + 5(_1)mw3—m) _ _i(—l)m (I;E) eZwmvrz-i-(l—a)wg_mﬂ'z
oz — (=1)"wp, + (—=1)"ws_m)

for the half-periods w, = %, wo = lwy and e = +1.

Corollary 1 and Corollary 2 follow from Lemma 2 ii) and &, = (=1)""1w,,,

2 _ (=pm+!
U.)m = ) .

N

In [5] the map & : B /I‘(_Gig) — IP’([F(_ﬁis), 1]) is shown to be a regular embedding.
This is structi is of £ — (6:8) (p(6.8))%"8
is is done by constructing a C-basisof £ = L4_, [T277, (T_1 ) , con-

sisting of binary parallel or triangular o-quotients. An abelian function f, 3 € £
is binary parallel if the pole divisor (fo3)cc = Tw + T consists of two dis-
joint smooth elliptic curves T,, and T3. A o-quotient f; , 3 € L is triangular if
T,NT,NTg = () and any two of T;, T,, and T} intersect in a single point.

Theorem 4 (Kasparian and Kotzev [5]). Let

o(z—1)o(z + w; —wo) o{u —iv+ w3)

212(2’) = El =

o(z —wi)o(z —ws) o(u — iv)
_o(u+v+ws) _ o(u+iv+ ws) _o{u—v+uws)
2 = olu+v) >3 = o(u+iv) 4 = o(u —v)
_o(u—wy) o(u—wi) _ o(v—wy) _ o(v — wl).
>5 = o(u—wy)’ >6 = o(u—wy)’ 7 = o(v—wy)’ > o(v — ws)
Then

V-1
o-quotients fss(u,v) = Xi2(u), frs(u,v) = X12(v) and the triangular

i) the space L = Lj_, (T\(/(iiil), (T(ﬁ’s))smg) contains the binary parallel
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o-quotients

fisr =ie 27U 555y, fies = — e T THTTUITIVS $6Yg
fasr = — e TTTUETUITUS R S, fags = — deT 7 TSN N

fass =TT TR, BN, foor =TT TS B Yy

fass = — 1072 TR B B, fagr =ie” 2 TTHITUS SR,

ii) a C-basis of L is
fo =1, f1:= fis7, f2 := foss, f3 1= f368, fa 1= faer, f5 := f56, f6 := frs.

4. Technical Preparation

The group G_; = Aut (A_l, T£61’8)> permutes the eight irreducible components

of T£61’8) and the I’(_ﬁig) -cusps. For any subgroup H of G_1, the I';y-cusps are the
H-orbits of ar(ﬁig)B T8 — (1 <i <8}

Lemma 3. If ¢ : G_1 — Sg(k1,...,ks) is the natural representation of G_1 =
Aut (A_l, T£61’8)> in the symmetric group of the F@f)—cusps, then

©(733) = (K5, k6) (K7, Kg), o(I) = (K1, K4, k3, K2) (K5, K6)
o(J) = (K1, k2, k3, ka) (K7, k8),  @(0) = (K1, k3) (K5, K7) (K6, Ks)-

Proof: The F(_6i8)-cusps k; are obtained by contraction of the proper transforms

T of T; under the blow-up of A_; at (T£61’8)>Smg. Therefore the representations
of G_; in the permutation groups of {T;; 1 < i < 8}, {T/;1 < ¢ < 8} and
{ki; 1 <1 < 8} coincide.

According to 733(u — i*v) = u — i*v + (1 — F)ws = u — i*v(mod Z + Zi),
the translation 733 acts identically on 17, 1>, 13, T4. Further, 733(u — wp,) =

U+ wW3_m = u — wy_m(mod Z + Zi) reveals the permutation (75, Tg)(17, Tx) of

the last four components of 7’ (61’8).

k k-1

v = i(u — i*"'v), the automorphism
7(6:8)
-1 -

Due to the identity [(u — i*v) = iu — i
I induces the permutation (77, 7y, T3, T3) of the first four components of
Further, I(u — w,,) = i(u = w3—_.,) reveals that I permutes 75 with 7. Note that
I acts identically on v and fixes 1%, T5.

In a similar vein, J(u — i*v) = u — ¥, J(v — wn) = (v £ iws_,,) de-
termine that o(J) = (K1, K2, k3, 4)(k7, kg). According to O(u — iFv) = v —
i*u = —if(u — i~%v) and O(u — wy,) = v — wy,, one concludes that ¢(#)

(K1, k3)(Ks, K7) (K6, K8)- 5
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The following lemma incorporates several arguments, which will be applied re-
peatedly towards determination of the target P([I", 1]) and the rank of the loga-
rithmic canonical map ®%.

Lemma 4. In the notations from Theorem 4, for an arbitrary subgroup H of
G_1 = Aut (A_l,T£61’8)) andany f € L = L4_, <T£61’8), (Tﬁﬁl’g))smg), let
Ru(f) = > h(f) be the value of Reynolds operator Ry of H on f.

heH

i) The space LT of the H-invariants of L is spanned by {Ry (fi); 0 < i < 6}.

8
11) Let T; C (RH(fi,al,ﬂl))OO’(RH(fz',OtQ,ﬂQ))OO C OrbH(T’Z) + Z5Ta fOI'
o=
somel <1<4,5<a; <6,7<[3; <8 Then
RH(fi,aQ,ﬂz) € SpanC(l’ RH(.f56)a RH(f78)a RH(fi,Otlﬁl))-
i) Let Ky, .., Ri, with1 < iy <... <1y < 4 be different T g-cusps

8
T;, C (Ru(fi,))oo € Otby(Ty,) + > Ta forall 1<j<p

a=5
] H
and B be a C-basis of LI = La_, ( > Ta) . Then the set
a=5

{Ru(fija;8):1<j<ptUB
consists of linearly independent invariants over C.
iv) If R; = RH(fj,aj,,Gj) # const, Rj|l; = oo and R; = Ry(fia,p) has
Ri|TJ. =% const then for any subgroup H, of H the projective maps
vHo . X/H, —> P(LHe),  ®He . B/Tp —> P(ji[Ty,, 1])
are of rank tk®He = rk¥He = 2.
v) If the group H' is obtained from the group H by replacing all 7351 kJlom ¢
H with 55 I' J*0™, then the spaces of modular forms j1[U g, 1] ~ j1[T g, 1]

are isomorphic and the logarithmic-canonical maps have equal rank rk®H =
k@,

Proof: i) By Theorem 4 ii), £ = Spanc(f;; 0 < 6). Therefore any f € L is a
6
C-linear combination f = }_ ¢; f;. Due to H-invariance of f and the linearity of
i=0
the representation of H in Aut(L), Reynolds operator

6
|H|f = Ru(f) =Y _ciRu(f).
=0
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H
ii) Let ws € 51 [I‘(_ﬁis), 1] are the modular forms, which transfer to Ry ( f; o, 3. )-
1 < s < 2. Since wy (k;) # 0, there exists ¢; € C, such that w! = wy — c;w; van-

8
ishes at k,. By the assumption (R (fi n. 8.))oc € Orbp(T;)+ > Th, the transfer

a=H
F; € LM of w! belongs to Spang(1, fs6, fr3)" = Spanc(1, Ry (fs6), R (f7s))-
iii) As far as the transfer Transi’ : j;[Tj,1] — £ is a C-linear isomorphism, it
suffices to establish the linear independence of the corresponding modular forms

P
{wi; 5 1 < j < p} U{wy; b € B}. Evaluating the C-linear combination 37 ¢; w;;

7j=1
+ > cpwy = 0 at K;y, ..., K;,, one obtains ¢;; = 0, according to w;.(k;,) = o3
beB
and wb(/%ij) =0,be B,1 <j<p.Then > wy = 0requires the vanishing of all

beB
¢y, due to the linear independence of B.

iv) If H, is a subgroup of H then £ is a subspace of £, j; [Ty, 1] is a subspace
of j1[Tw,,1] and U7 = prewHe ®H = prl'a®Ho for the projections prt :
P(LH) — P(LH), pr''# : P(j1[Ty,,1]) — P(j1[Tx, 1]). That is why, it suffices
to justify that tk®” = rk¥U¥ = 2 is maximal. Assume the opposite and consider
Ri,Rj : X/H > P!. The commutative diagram

R;,R;
X/H (e 1) P! x P!

has surjective R, as far as R; # const. If the image C' = (R;,R;)(X/H) is
a curve, then the projection pr, : C' — P! has only finite fibers. In particular,
pry 1 (00) = Ri((R;)e0) x00 2 R;(1;) x 0o consists of finitely many points. How-
ever, R;,(1}) = P! as an image of the non-constant elliptic function R;: T > P!
The contradiction implies that dim¢ C' = 2 and tk¥# = 2.

v) The transposition of the holomorphic coordinates (u,v) € C? affects non-
trivially the constructed o-quotients. However, one can replace the equations
u— ik = 0 of T, 1 < kE < 4bywv — i~%u = 0 and repeat the above con-
siderations with interchanged u,v. The dimension of j1[I'j7, 1] and the rank of
®H are invariant under the transposition of the global holomorphic coordinates on
A_ =C2 O

With a slight abuse of notation, we write g{f) instead of ¢*(f), for g € G_1,
6,8 6,8) Sin8
feL=~>Ly (Tﬁl ) (1Y) )
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Lemma 5. The generators 33,1, J,0 of G_1 act on the binary parallel and trian-
gular o-quotients from Corollary 4 as follows

3733(f56) = — fs6,
733(f157) = — ie7 figs,
733(f368) = i€ fas7,
733(fa58) = — fae7,
I(f56) = — ifss,
I(f157) = — ifaer,
I(f363) = — 2 fass,
I(f158) = — if36s,
J(f56) =156
J(fis7) = —1e? fass,
J(f368) =fas67,
J(fas8) = f157,
0(fs6) =frs,
0(fis7) = — €2 f3s7,
0(f363) = — €2 figa,
0(fass) = faer,

733(f78) = — fr8

733(f168) = 172 fi57,
733(f258) = faer,

) =

) =
733(f167) = — fass

)

) =

I(f73) =frs

I(fi68) = — €72 fuss,
I(f258) = 1fi6s,
I(fas7) = — €2 f357
J(frs) = —ifrs
J(f168) =fa67,
J(f258) =[357,
J(fae7) = ie? figs
0(frs) =156
0(f168) = — e 2 faes,
0(f258) =f267,

0(fa67) = fa58.

733(f357) = — €77 f3es

733(f267) = fa58

I(f357) =
I(f267)

ifoe7

=—e 2 fi57

J(f357) =i 2 fusg
J(f267) = — 1€72 fas

0(fs57) = — e 2 fisy
0( f267) = f258

Proof: Making use of Lemma 2 and Corollary 2, one computes that

7’330’(’11 - 1) = —€

T330(u —wy) =

Tu+mTin

Mo (u — wy),

330 (U — wy) =
=ieT 73, 733(%4) = 4

a(u +w; —wy), T330(U+w —ws) = e Fo(u—1)

—e ™o(u —wy)

7ru+7r1ua(u o l) IJ(U + Wi — W2) = —eﬂ'ua(u + w1 — wg)

=io(u — w)

o le—7r1’u,—7rv )y

le—7r1’u,-|-7rv 23

733(Z1) = —ie” 2%y, 733(22) =e "%y, 733(%3)
733(55) = e” VTS, 733(%6) = €T TS
733(27) = e TS, T33(Xs) = ™S,
Io(u—1) =
Ia(u —wy) = —1e™o(u — wa), To(u—ws)
(%)) = ie”™u ™0y, - (%) =
I(3) = ™™™y, (%) =
I(S5) = —e™™U%g,  I(Xg) = —™%5, I(5;) =

Jo(v+ p) = Io(u+ p)lu=o,

N7, I(Xg) = X

peC
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V() = Sa IS S I -F.  JE) -
J(Z5) =55, J(Z6) =6, J(E7) =—e"%g, J(Tg) =—e"'Ty
Oo(u+p)=oc(v+p), peC
O(S1) = —ie™ TS, 0(,) = 5,
0(%;3) = ie ™Y G(5,) = —eTuTum vty
0(Z5) = L7, (%) =%s, 0(Z7) =%5 0(Zs) = Ze.
O

The following lemma is an immediate consequence of Lemma 2 and Corollary 1.

Lemma 6.
fisr) _ -z Sies) _ x fesp _ o faer) _ x
31 Imy ’ 3 Imy ’ o Ty ’ S ITy
f357 —x  f3es _=  fa58 . _x  fae7 _r
= =e", —=—| =ieT2, —| =-—-leT2, —=—| =ie 2
23 T3 23 T3 24 Ty 24 Ty
fi57 +1e? f357 fasg —ie” 2 fasg
=0, = 0.
25 T5 P Ts
Lemma 7.

[(f157 — i€ figs) + ¢(fas7 — €72 fags)llr, = te™7 ™™ (1 + ce_%>

o((1+i)v +ws) le(l-l-i)wv o(v — wy)?
o((1 +i)v)

is non-constant for all ¢ € C \ {—e7 }.

4 o~ (It o(v— W1)2
o(v —wy)? o(v —wy)?

Proof: Note that
F() = [(f157 — ie? fies) + c(fas7 — ie7 2 fsgs)]|my
= [ie_%_mﬁl(—v,v) — ce_TrJrWi”Eg(—v,v)]
X [Z5(—v)Z7(v) + Xe(—v)Xg(v)]

o((1+1)v —w3)
o((1+1i)v)

—(1+i)wo o(v— W1)2]

o(v —wg)?

= je" 2™ (1 + ce_%>

2
(14iymn (0 — w2)”
xle a(v—w1)2+e
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making use of Lemma 2 and Corollary 1. Obviously, f(v) has no poles outside
Q(i). It suffices to justify that lin}) f(v) = oo, in order to conclude that f(v) #

const. To this end, use o (ws) = io(w;) to observe that
F@o((L+i)0)|  =2ie7F (1+ce7F) ofws) £0
v

whenever ¢ # —e?, while o((1 + 1)v)|y=¢ = 0. O

5. Basic Results

Lemma 8. For H = (I.J?, 133J%), (I*J, m331%) with rational A_,/H and any
—Id e H < G_y, themap ®" : BTy > P([T'y. 1)) is constant.
Proof: By Lemma 4 (iv), the assertion for (I2.J, 733I2) is a consequence of the

one for (I.J2,733.J2). In the case of H = (I.J?,733.J2), the space £¥ is spanned
by Reynolds operators

Ru(fs6) =0, Ru(fs) =0

Ry (fis7) = fis7 +1e2 fies + €2 fas7r — €2 fasg +1€? fas7 — f3es + ifaer + ifass.
The T'gy-cusps are k1 = kKo = K3 = k4, k5 = kg and K7 = kg. By Lemma 6,

% . 0, so that Ry (fi57)|7, # oc. Therefore Ry (fi57) € L5 = C
and tk®" = 0.
It suffices to observe that — Id changes the signs of the C-basis

I56, J78, fis7, Joss, [f368, fa67 (D

of L = La_, (Tﬁﬁl’s), (T£61’8)>Smg). Then for H, = (—1d) the space £ is

generated by Ry (1) = 1. Any subgroup H, < H < (G_; decomposes into
k

cosets H = UlehiHO and Ry = > h; Ry, vanishes on (1). Thus, L7 = Cand

=1
rk®H = 0. m

Note that A_; /(— Id) has 16 double points, whose minimal resolution is the Kum-
mer surface X _| of A_1. Thus, H 5 — Id exactly when the minimal resolution Y’
of the singularities of A_,/H is covered by a smooth model of X_;. More pre-
cisely, all A_1/H with —Id € H have vanishing irregularity 0 < q(A_1/H) <
g(X_1) = 0. These are the Enriques A_; /(—1d, 7331?), all K3 quotients A_;/H
with (735) # H < K = kerdet L, except A_;/(m33(—1d)) and the rational
A_1/H withtssIJ € HforO0 <n < 1lor{(—1Id,hy) < H for

hy € {I*™j2=2m  pmp om0 <m<1, 0<1<3)
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Lemma 9. The non-trivial subgroups H  — 1d of G _1 are
1) cyclic of order two

Hy(m,1) = (r33?™J%) with 0 <m,l1<1
HY(n, k) = (rixI*J7%0) with 0<n <1, 0< k<3, Hy=(I%, H} =(J?
i) cyclic of order four

Hj(n,m) = (i IJ*™) with 0<n,m<1

HY(n,m) = (75 I*™J) with 0<n,m <1
1ii) isomorphic to the Klein group 7o X Zs

H}oo(m) = (133%™, %) with 0<m <1

HY o(m) = (r33*™, J?) with 0<m <1

HY (k) = (I*J7%0,733) with 0< k<1

HY o(n, k) = (13 I*J7%6, 75312 J?) with 0<n,k <1
iv) isomorphic to Zy X Zo
Hl o(m, 1) = (IJ*™ 1332 with 0 <m,l<1

Hjyo(m,l) = <I2mJ, 7'33[2l> with 0 <m,l < 1.

Proof: If H is a subgroup of G_;, which does not contain —Id, then H C S
={g€G_1; —1d & {g)}. Decompose G_1; = G’_; UG"_,6 into cosets modulo
the abelian subgroup

Gy ={rI*J0<n<1,0<kI<3} <Gy

The cyclic group, generated by (73, 1%J'0)? = (IJ)**! does not contain — Id
= (IJ)? if and only if k +1 = 0(mod 4).If $) = {g € S; g is of order r} then

SNG 0= {rI*J*6;0<n<1, 0<k<3}=8PnG,0= 5P

and SN G0 C S(2) consists of elements of order two. Concerning S N G’ 4,
observe that (T§13Ika+2m)2 = (IJ)?* € Sfor0<n,m < 1,0 < k < 3 requires
k = 2p to be even. Consequently

{rI*J"; k = l(mod 2)} NS
= {rssI?™J% 12, 7 0<m,1<1}=8®nG., = P

{riI*J' k=1+1(mod 2)} NS

= {q[2m+l g2 o p2m g2l 0 < n,m,l < 1} = S@.
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In such a way, one obtains S = {Id} US(SQ) US{Q) US™ of cardinality |S| = 31. If
a subgroup H of G_; is contained in S, then |H| < |S| = 31 divides |G_1| = 64,
ie, |H| = 1,2,4,8 or 16. The only subgroup H < G_; of |H| = 1 is the
trivial one H = {Id}. The subgroups —Id ¢ H < G_; of order two are the
cyclic ones, generated by h € S(()Q) U SP. We denote Ho(m,l) = (r33*™J%)
for 0 < m,l <1, HY(n,k) = (zixI*J%0) for 0 < n < 1,0 < k < 3 and
Hjy = (I*), HY = (J?).

For any h € S™ one has (h) = (h3), so that the subgroups —Id ¢ H ~ Z,
of G_y are depleted by Hj(n,m) = (i IJ*™), Hy(n,m) = (r5I1*™J) with
0<nm<1.

The subgroups —Id & H ~ Zg x Zgy of G_; are generated by commuting g;, g2 €

52 — S(SQ) U 5’{2). If g1,92 € 5’{2) then g1go € G’_q, so that one can always
assume that gy € S((JZ). Any g1 # go from S(()2) C G’_, generate the Klein group of

order four. Moreover, if
S = {rss ™I 0<m, i <1}, gy = {17, 7%

then for any ¢q,g2 € S(g,zl) with g1 gy € S there follows g1go € S&Qg. Thus, any

582) D H ~ Zs X Zs has at least one generator go € 55?3. The requirement

I?J? = —1d ¢ H specifies that g; € S((),21)- In the case of gy = I? there is no loss
of generality to choose g; = 733.J2™, in order to form Hj, ,(m). Similarly, for
go = J? it suffices to take g; = 7331%™, while constructing H. .,(m). In order to
determine the subgroups —Id & H = (g1) X {g2) ~ Zg X Zo with g1 € sz), gs €
562), note that g1 = 7341 k J=k@ does not commute with 72, J2? and commutes with
go = 733I%™ J% if and only if 2m = 2l(mod 4),i.e.,0 <m =1 < 1. Bearing
in mind that (T, TFJ %0, 73312 J?2m) = (il ph+2m j=k+2mg oq[2m j2my,
one restricts the values of k to 0 < k < 1. For m = 0 denote HY, ,(k) =
(IFJ7%0,733). Form = 1 put HY, 5(n, k) = (t5, IFJ %0, 735312.J?).

Let —Id ¢ H C S be a subgroup of order 8. The non-abelian such H are isomor-
phic to quaternionic group Qg = (s,t; s* =1d, s% =2, sts = t) or to dihedral
groupDy = (s,t; s* =1d, t? =1d, sts =1t). Note that s € S@ and sts = t re-
quire st # ts. As far as 5(4)US(g2) C G’ for the abelian group G’ | = (133, I, J),
it suffices to consider t = T5T*J %0 ¢ ng) and s = 7R IP J2+1-P ¢ S with
0<n,m,l<1,0<pk <3. However, sts = T, [F+T2+1 jk+2+1g o ¢ reveals
the non-existence of a non-abelian group —Id ¢ H < (G_; of order eight.

The abelian groups H ¢ S = {Id} U S ) U @ of order eight are isomorphic
to Zy X Zo or Zy X Zo X Zo. Any Zy X Zo ~ H C S is generated by s =
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T:?:;‘Ipﬂl“_p cSWandt e 5(2), as faras t/ = T&I’“J‘kG € S?) has

st — T§1§+n1p+kj2l+1—(}7+k)9 75 T§g+”[2l+1_(p_k) Jp""a —t's.

For s = 7ix I?™+1J% ¢ S there holds (s, t) = (s°,t) and it suffices to consider
s = 7i,I.J%. Further, t & (s%) = (I?) and 5%t # — Id specify that t = 73312 .J%
for some 0 < p,q < 1. Replacing eventually ¢ by ts> = tI?, one attains t =
733J%4. On the other hand, the generator s = 733/J% € S& of H = (s, 1)
can be restored by st = I.J20F9 so that H = H),»(l,q) = (IJ%, 133.J%) for
some 0 < [,q < 1. Exchanging I with J, one obtains the remaining groups
HY (1, q) = (I?J,7331%9) ~ Z4 x Zs, contained in S.

If —Id ¢ H C § is isomorphic to Zgy X Zg X Zo then arbitrary different elements
s,t,7 € H of order two commute and generate H. Forany x € S and M C S,
consider the centralizer Cys(z) = {y € M ; zy = yz} of z in M. Looking for
s€ 8@ t € Cyp(s)and r € Cye)(s) N Cye (t), one computes that

Cso (T3 1?) = Cgio (155T°) = S(()Q)
Cyen (13312 J2m) = §@) = 5 U 5
Cga) (TR TP J7219) = {75, 12977299, 133I*P J*; 0 < p,q < 1}
Cgy (T TP J72m=1g) = {72, 29T J=2471g 7531?PJ?P; 0 < p,q < 1}.

Any subgroup Zg X Zo X Zs ~ H C {Id} U S(()2) U Sf) intersects S{Z), due to
|SO(2)| = 6. That allows to assume that s € Sf) and observe that

Cs(z)(s) = {8, (— Id)s, 338, 7’33(—Id)8, 733, T33(—Id)}.
If t = 7331%PJ% € Cgz) (s) then Cgz) (1) = S, s0 that

H \\ {Idv 5, t} C [CS(Q)(S) N 05(2) (t)] \ {8’ t} = C,S’(2) \ {Sv t} (2)
with5 = |H \ {Id, s,t}| < |Cg@ (s) \ {s,t}| = 4is an absurd. For t € Cg(2)(s) \
{733I?PJ?%; 0 < p < 1} one has Cg2) (t) = Cg2 (), which again leads to (2).
Therefore, there is no subgroup Zy X Zgo X Zo ~ H # —1d of G_.

Concerning the non-existence of subgroups — Id ¢ H C S of order 16, the abelian
—Id ¢ H C S of order 16 may be isomorphic to Z4 X Zy, Zy X Zo X Zgy or
Zo X Ly X Ly X Ly. Any H ~ Zy X Z, is generated by s, ¢t € S with s? # {2,
Replacing, eventually, s by s* and t by 3, one has s = T{IJ*™, t = Th I a7
with 0 < n,m,p,q < 1. Then s*? = I?J? = —1Id € H is an absurd. The
groups H ~ Zy x Zo x Zs are generated by s € S™ and ¢, rinCg) (s) with
r € Cqw(t). In the case of s = 7i41J*™, the centralizer Cg(2)(s) = S(gz).
Bearing in mind that s> = I?, one observes that (t,r) N {I?,.J?} = {). Therefore
t,r € {m33I%.J%4; 0 < p,q < 1}, whereas tr € {Id, I?, J? —1Id}. That reveals
the non-existence of Zy X Zo X Zo ~ H Z — 1d. The groups H =~ Zo X Zio X Zig X Lo
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contain 15 elements of order two, while |S(?)| = 14. Therefore there is no abelian
group —Id € H < GG_; of order 16.

There are three non-abelian groups of order 16, which do not contain a non-abelian
subgroup of order 8 and consist of elements of order 1, 2 or 4. If

(s,t;s4:e, tt = e, st:ts?’)SHCS
then s,t € S c G 1 = (733, I, JJ) commute and imply that s is of order two.
The assumption

(a,byc;a*=e, B2 =¢e, *=e¢, cbca’b=e, ba=ab, ca=ac)~H C S

requires b, ¢ € Cg)(a) = S = {rssI2mJ%, T2, J2;0 < m,l < 1}. Thenb
and ¢ commute and imply that chea’b = e = a2 = e. Finally, for

Gaa = (s,t; st=e tt=ec, stst=e, ts*= st3)
there follows s,t € S ONeNed 1» whereas st = ts. Consequently, %2 = t? and

Gua = {s;0<4<3, 0<j<1}isoforder < 8, contrary to |G 44| = 16.
Thus, there is no subgroup —Id ¢ H < GG_; of order 16. O]

Throughout, we use the notations H?(+) from Lemma 9 and denote by I'Z () the
corresponding lattices with T2 (v)/ I’@is) = HB(y).

Theorem 5. For the groups H = H4X2(p, q) = (IJ?P, 133.J%9), 4X2(p, q) =
(I%PJ, 71331%9), Hi(1 —m,m) = (35 ™IJ*™), H/(1 — m,m) = (35 "I?>™.J),
Hy (1) = (13307 I%), Hi (1) = (7331%, J%), Hiyo(n,m) = (r§5I™J~™0,
73312 J%) with 0 < p,q < 1, (p,q) # (1,1) and 0 < n,m < 1 the logarithmic-
canonical map

oH BTy —> P([Ty, 1)) = P!

is dominant and not globally defined. The Baily-Borel compactifications m
are birational to ruled surfaces with elliptic bases whenever H = H},5(0,0),
HJ, 5(0,0), H}(1,0) or H](1,0). The remaining ones are rational surfaces.

Proof: According to Lemma 4(v), it suffices to prove the theorem for H},,(p, q)
with (p, g) # (1, 1), Hy(1 — m,m) Hyyy(1) and Hfso(n, m).

If H= H}(1,0) = (733I), then £ is generated by 1 € C and Reynolds operators
Ru(fs6) =0, Ru(fs) =0, Ru(fisr) = fisr — €2 foss + i€ fas7 + ifuss
Ry (fies) = fies — if267 + i€ 2 faes + e 2 fagr = i~ 2 R (faes)-

There are four T'(1,0)-cusps : k1 = Ko = K3 = R4, k5, k¢, k7 = kg. Applying

8
Lemma 4ii) to 77 C (Rg(f157))oos R (f168)00 € Y. T;, one concludes that

i=1
Ry (fi68) € Spanc(1, Ry (fi57)- Therefore £ ~ C? and ®71(1-0) is a dominant
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map to P(L7) ~ P. Since Ry (fi57)|7, # 00, the entire [I(1,0), 1] vanishes at
ke and dH1(1,0) js not defined at Kg.

The group H = H},,(0,0) = (I,733) contains F = H)(1,0) as a subgroup of
index two with non-trivial coset representative I. Therefore Ry {fs6) = Rp(f56)—+
IRF(f56) =0, RH(f78) =0 and I“k‘I)HQXQ(O’O) < 1. Due to

R (fis7) = fis7 —ie? fies — €2 fosg — €7 fogr + f3es + i€ fas7 + 1fass — 1fa67

flw_Zi)efflﬁs . — _ 9" 2 £ 0,
1

whereas Ry (f157)|7, = co. Therefore dim¢ £ = 2 and & 722009 i 4 dominant

map to P!, The T'42(0,0)-cusps are k1 = Ry = R3 = Ky, ks = kg and Ry =

157—6% 2584‘19% 357 +1fa5s — i<
f f i fas7+if = 0, so that R (fi57) is

L7 = Spang(1, Ry (fi57)). Lemma 6 provides

kg. Again from Lemma 6,
Ts

regular over 15 + Tg. As a result, ®Max2(00) 5 not defined at k5 = Rg.
For H = H)(0,1) = (I.J?), the space L is spanned by 1 and Reynolds operators

Ru(fs6) =0, Ru(fr8) =0, Ru(fisr) = fis7 + 2 fogr +1ie? fasr + ifusr
R (fies) = fies + ifoss + i€ 2 fags + € 2 fass = iRm(fass)-
The T7(0,1)-cusps are &y = Ry = k3 = R4, ks = kg, k7 and Rg. Note that

8
Ty C (Ru(f157))oos (R (f168))oo € 3° T;, in order to conclude that Ry (fi68) €

=1
Spanc (1, Ry (fis7)) by Lemma 4 ii). Therefore £/ = Spanc(1, Ry (fis7)) ~

C2 and ®H(01) j5 a dominant map to P1. Lemma 6 supplies m%‘fﬁ” =0

Ts
and justifies that dM1(01) s not defined at Rs.

For H = H),5(1,0) = (I.J?,733) note that Ry;(f56) = 0, Riz(frg) = 0, as far as
H)(1,0) is a subgroup of H), 5(1,0). Further,

R (fis7) = fis7 — i€ fies + €7 fag7 + €7 fasg + 1€ fas7 + faes + ifae7 — if1s8

sy
fis7—ie? figs
1

= —2ie” 2 # 0 by Lemma 6

4
has a pole over ) T}, according to
i=1 11

and the transitiveness of the H)(1,0)-action on {k;; 1 < i < 4}. Therefore
£H = Spang(1, Ry (fis7)) ~ C? and ®Max210) i a dominant map to PL. One
computes immediately that the '), ,(1, 0)-cusps are &1 = Ro = k3 = R4, k5 = R

+e? fass+ie? fasr—i
6, fis7 f%szz fas7—1fas8 =0, RH(fls'r)
5

and k7 = Kg. Again from Lemma

Hy, ,(1,0)

has no pole at 75 4+ T and @
If H = H}, (1) = (I?,133.J?) then

Ri(fse) =0, Ru(frs) = 4frs, Ru(fisr) = fisr +1e2 fies +ie2 fasr — faes
Rir(fass) = fass — faer — 1672 fagr —ie 7 fasg and 1€ C

is not defined at kK5 = Kg.
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span L. The T, ,(1)-cusps are & = R3, Ry = R4, Rs = kg and Ry =
Ks. Lemma 6 reveals that f157+-ée§f168 _ ie§f3g7_f368 _ f258£f267 _
1 T 3 T3 2 T
f‘“‘gﬂ = 0, so that Rg(f157), R (f258) € Spang(1, f7g) and L7 ~ C2,
4 T4

As aresult, d2x2() i a dominant map to P!, which is not defined at %1 and .
For the group H = H},5(0,1) = (I, 733.J%), containing H}, (1) = (I?,733.J?)
there follows Ry {f56) = 0 and 1k®Max2(01) < 1 Therefore Ry (f78) = 8f7s,
Ry (fi57) = fi57 + 1€ fies + €2 foss — €2 fogr + 1% f357 — faes — if1ss — ifa67
and 1 € C span L. The T}, 5(0, 1)-cusps are &| = Ry = k3 = R4, k5 = Rg and
. 0, so that Ry (f157) € Spang(1, frg) ~

1
C2. Thus, dHix2(01) i5 2 dominant map to P!, which is not defined at .
If H= HY,5(0,0) = (0, 7337%J?%) then £ is spanned by 1 € C,

Ru(fs6) = 2(fs6 + frs)s Ru(fis7) = fis7 +ie? fies — e f57 — if36s

and RH(f467) = 2(f467 + f458), due to RH(f258) = 0. The I‘g(O,ﬁO)—Cusps are
f157+;3‘§f168 -0,

6 fis7+ie? figs
’ X

k7 = kg. By Lemma -

K1 = K3, k2, k4 and kK5 = ke = K7 = kg. Lemma 6 provides

T
_ 0, whereas Ry (fi57), Ru(fa67) € Spanc(l, Ru(fs6)) ~ C2
4

Therefore &5 (0:0) is a dominant map to P!, which is not defined at %1, ko and R4.
For H = HY, 5(0,1) = (I.J 710, 733I%.J?) one has

Ru(fs6) = 2(f56 +1f7s), Ry (fi57) =0, Ru(fi63) =0

Ry (f368) = 2(f36z — i€ fas7), Rir(fass) = fass — fogr — € 2 fass — € 2 fagr.
The T9,.,(0, 1)-cusps are &, K3, Ry = R4, k5 = Rg = Ry = Kg. Lemma 6

faer+ fass
34

t f368_-§e§f357 — (. f2s8—feer — (. fasstfaer
3 5 5

T3 2 Ts > T4 .
Ry (fse8), Ru(f2s8) € Spang(1l, Ry (fs6)) ~ C. Consequently, PH2x2(0:1) jg 5
dominant map to P!, which is not defined at %, &2 and Ry4.

In the case of H = HY, 5(1,0) = (330, 73312.J?), the Reynolds operators are
Ru(fss) = 2(f56 — fr8).  Ru(fist) = fis7 +ie7 fies + i f368 + €7 fas7

R (fass) = 2(fass — f267), Ru(fi58) =0, Ru(fae7) =0.
The T'9,.,(1,0)-cusps are i1, k3, Ko = k4 and k5 = kg = K7 = Ks. Lemma 6

fis7+ie? figs
3

implies tha = 0, whereas

— if368+67f357|T3 _  foss—foer — 0. Consequently,

3 )
T 3 2 1o
RH(f157), RH(f258) S Spanc(l, RH(f56)) Bearing in mind that RH(f56)|T5 =

yields
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00, one concludes that CDHS x2(1.9) is a dominant map to P!, which is not defined at
K1, K2 and Rg.
Finally, for H = HY, ,(1,1) = (1331J 7160, 7331%.J%) one has
Ru(fs6) = 2(fs6 — ifrs), Ru(fis7) = 2(fis7 + ie? fies), Ru(fss7) =0
Ry(fazee) =0 and Rp(fass) = foss — foer + € 2 fagr + € 2 fuss.
The T'9, (1, 1)-cusps are &1, k3, Rz = R4 and k5 = Rg = Ry = Rg. Lemma 6
fsrtie? fras .= fasa oy p, = 080 that Ry (fis7), R (fass) €

Spang (1, Ri(fs6)) ~ C2. As aresult, ®72x2(11) is a dominant map to P!, which

is not defined at K1, k3 and Ko. ]

Theorem 6. If H = Hy,»(0) = (733,1%), Hj\5(0) = (733, %), Hiyp(n) =

(I"J="0,133) with 0 < n < 1, Hj(n,n) = (txIJ*"), H{(n,n) = (i, I?"J)

with 0 < n < 1or Hy(1,1) = (r331%2J?) then the logarithmic-canonical map
o . B/Tj —> P([Tp,1]) = P2

is dominant and not globally defined. The surface B//if is K3 for H = Hy(1,1),
rational for H = H)(1,1), H}(1,1) and ruled with an elliptic base for all the
other aforementioned H.

implies that

Proof: By Lemma 4 v), it suffices to consider Hb. »(0), HY, 5(n), Hj(n,n) and
Hy(1,1).
In the case of H = H}, ,(0) = (733, I?), £ is spanned by

Ru(fs6) =0, Ru(fis) =0, Ru(fisr) = fisr —ie? fies +1ie? fasr + faes

Rir(fasg) = foss + fogr — i€ 7 fasg +ie 7% f4g7 and 1€ C.
The I',, ,(0)-cusps are &y = K3, ke = K4, k5 = kg and k7 = Kg. Lemma6

i
fis7—1e? fies

provides 5 = —2ie"2 # 0, whereas Ry (fi57)|7, = oo. Simi-

T
larly, % . =2 # 0 suffices for Ry(fas8)|7, = oo. Therefore 1,
2

Ry {fi57), Ru{fess) are linearly independent, according to Lemma 4 iii) and
Hy

constitute a C-basis for £H. In order to assert that tk®72x2(0) — 2, we use
that Ry (fass)|r, = oo and Ry (fis7)|r, # const by Lemma 7 with ¢ = ie?.

Lemma 6 provides m%e:ﬁ’” = 0, in order to conclude that Ry ( f157)|my #
T5

oo and the entire [[',,5(0), 1] vanishes at &5. Therefore 252 s a dominant
map to P([['5,,,(0),1]) = P2, which is not defined at &5.
For H = HY, ,(0) = (#,733), the Reynolds operators are

Ru(fs) =0, Rp(frs) =0, Ru(fisr) = fisr —ie? figs — 2 fasr + if36s
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Ry (f2s8) = 2(fas8 + f267),  Ru(faer) =0
generate L. The TY,,(0)-cusps are &1 = &3, o, R4 and k5 = kg = Ry = Ras.

According to Lemma 6, W = —2ie™7 # 0, so that Ry (fi57)|1, = co.
T

Further, fzssg- fasr
2 T2

Therefore 1, Ry{fi57), Ru(f2s8) are linearly independent and L7 ~ C3 by
Lemma 4 iii). We claim that

—rin (1 + v + w3) [U(U —wp)? L e2n(1+i) o(v— W2)2]
(1L +1)v)

o(v —wg)? o(v—wy)?
is non-constant. On one hand, Ry (fos8)|7, has no poles on C \ Q(i). On the
other hand, l%RH(f%g)‘T ] o((1 + i)v)‘ .= —o(ws3) [%2 + 12] # 0, so that

1 v=

lir% [Ri(f258)|1,] = oo. According to Lemma 4 iv), Ry (fi57)|1;, = oo and
v—

= 2e~" # 0 and the lemma provides Ry (f258)|1, = 00.

Ry (f2s8)|m = —2e

Ry (fas8)| 1, # const suffice for 322 {0 be a dominant map to P2. The entire
L takes finite values on T}, so that <I>Hg <2(9) is not defined at R4.
Concerning H = HY, (1) = (IJ716, 733), one computes that

Ry (fs6) =0, Ry (frs) =0, Ry (fi57) = 2(f157 — i€ fies)
R (f6s) =0, Rp(foss) = foss + foor — e 2 fass + e > fapr.

The T, .,(1)-cusps are &1, k3, ko = K4 and K5 = kg = Ay = kg. By Lemma 6
we have W o = —2ie”% # 0 and f%%f‘” - = 2e~™ # 0. Therefore
Ru(fis7)lmy = 0o, Ru(fass)|m, = oo and 1, Ry (fi57), Ru(f2ss) constitute a
C-basis of £, according to Lemma 4 iii). Applying Lemma 7 with ¢ = 0, one
concludes that Ry (f157)|1, # const. Then Lemma 4 iv) implies that PH2xx(1) i

a dominant map to P2. The lack of f € £ with f|7, = oo reveals that o Hixa(1)
is not defined at k3.

If H = H}(0,0) = (I) then the Reynolds operators are
Ru(fs6) =0, Ry(fs)=4fm, Ru(fisr) = fist — €2 fagr +ie? fasr — ifaer

Ry (fies) = fies —ifass +ie7 2 fags —e 2 fisg and Rp(l)=1€C
span £H. The T(0,0)-cusps are & = Ry = R3 = R4, ks = Rg, Ry and Rg.
According to Lemma 4 ii), the inclusions 71 C (Rg(f157))co, (RE(f168))00 C
8
> T; suffice for Ry (f168) € Spang(1, Rg(frs), Ra(f157). Therefore L7 ~ C3.
i=1
Observe that Ry ( frg)|1, = 4%12(v) # const, in order to apply Lemma 4 iv) and

assert that ®72(00) is a dominant map to P2. As far as m%‘ff?’” =0 by
15




Modular Forms on Ball Quotients of Non-Positive Kodaira Dimension 285

Lemma 6, the abelian function Ry ( f157) has no pole on T5. Therefore PH1(00) ig
not defined at k5.

For H)(1,1) = (r331.J?) the Reynolds operators are
Ri(fs6) =0, Ru(frs) =4fs, Ru(fisr) = fist +e? foss+ie? fssr —ifass
Ru(fies) = fies + if267 +ie” 2 fags — e 2 faer.
The T7(1,1)-cusps are &1 = Ko = ks = R4, ks, ke and Ry = FKg. Due to
Ty C (Ru(fi57))oos (Rir(fi68))co C 28:1{1}-, Lemma 4 ii) applies to provide
i

Ru(fies) € Spanc(l, Ry (fe), Ra(fis7)). Thus, L7 ~ C3. According to
Lemma 4 iv), Ry (frs)|7, = 4512(v) # const suffices for ®74(11) (o be a dom-

f157+ie% f357
>

inant rational map to P2?. Further, = 0 by Lemma 6 implies that

15
Ry (f157) has no pole over T and ®H4(11) js not defined at &s.

If H= Hy(1,1) = (r331?J?) then £ is generated by
1e€C, Rul(fse)=2fs6, Ru(frs)=2fw, Ru(fisr)= fisr +ie? fies

Rir(fses) = faos—ie? fasz, Rir(fass) = fass—fosr,  Ru(faer) = faer+ fass.

The T'5(1, 1)-cusps are k1, ko, k3, k4, k5 = kg and k7 = Kg. By Lemma 6 one
has fisr+ie? fios — faca—ie? fas7 _ fase—faer _ fas7+fass — 0. Thus
31 e 33 T PP T 34 T . i
Ry (fi57), Ru(faes), Ru(f2s8), Ru(fae7) € Spang(l, Ru(fs6), Ru(frs)) and
LH ~ C3. Bearing in mind that Ry (fs6)|7, = 00, Ry(frs)|lr; # const, one
applies Lemma 4 iv) and concludes that ®#2(1-1) is a dominant map to P2. Since
4
L£H has no pole over 3. T, the map ®H2(1:1) is not defined at &1, ko, R3, Rq.
=1

Let us recall from Hacon and Pardini’s [1] that the geometric genus p,(X) =
dim¢c HY(X, Q%) of a smooth minimal surface X of general type is at most 4.

The next theorem provides a smooth toroidal compactification ¥ = (]B% / F<T33>)/
with abelian minimal model A_; /(733) and dim¢c H(Y, Q%(1")) = 5.
Theorem 7. i) For H = H} = (I%), H) = (J?), Hy(n,1 —n) = (133" J?72")
or Hg(n, k) = <T§L3IkJ_k9> with0 < n < 1, 0 < k < 3 the logarithmic-
canonical map

o . B/Ty > P(Ty,1]) = P>
has maximal tk®7 = 2. For H # Hy(n,1 — n) the rational map ®" is not
globally defined and IEB//EI: are ruled surfaces with elliptic bases. In the case of
H = Hy(n,1 — n) the surface IB//F\H is hyperelliptic.
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il) For H = H5(0,0) = (733) the smooth surface (B/F(T33>> ' has abelian minimal
model A_1/(733) and the logarithmic-canonical map

o) B//F(T%) """ > ]P)([P(’T33>’ 1]) = P*
is of maximal rkd(ms) = 2.
Proof: i) By Lemma 4 v), it suffices to prove the statement for Hj, H2(1,0) and
HY(n, k) = (tRI*J7*0) with0 <n < 1,0 < k < 2.
Note that H}, H(1, 0) are subgroups of Hj, 5(0) = (733, I?) and rk®2x2(0) = 2,
By Lemma 4 iv) that suffices for rk®H> = rk®H2(1.0) — 9,
In the case of H = H} = (I?), the Reynolds operators

Ry (fs6) =0, Ry (fr8) = 2fr3
Ru(fis7) = fis7 + iegf357a Ry(fies) = fies + i 2 faes

Ry (fass) = fass —1e7 7 fyss, Ry (fa67) = fas7 + 1677 fae7.
The T',-cusps are K1 = K3, Ro = K4, ks, kg, k7 and Kg. According to Lemma
4 ii), the inclusions 71 C (Rp(f157))cos (Ru(f168))00c € T1 + T3 + 28: T
suffice for Ry (fi6s) € Spanc(l, Ry (f7s), Ru(fi57)). Similarly, fromaT:E5 C

8
(Ru(f258)) 00, (Ru(f267))00 € T2 + Ta + 2_25Ta there follows Ry (fas7) €

Spanc(1, Ry (f7s), Ry (f258)). As a result, one concludes that the space of the
invariants £ = Spanc(1, Ry (f7), Ra(fi57), Ra(f2ss)) ~ C*. Since L has
no pole over T, the rational map &2 is not defined at &g.

If H = Hy(1,0) = (133I?), then £ is spanned by
1eC, Ru(fs6) = 2 [s56, Ru(frs) =0
Ry(fis7) = fi57 + f368, Ry (fass) = fass + i€ 2 fapr.
The T'y(1,0)-cusps are k1 = R3, ke = R4, k5 = K¢, k7 = Kg. According to

8
Lemma 4 iii), the inclusions 77 + T35 C (Ry(f157))o0 € 11 + T35 + > T, and

a=5
8
To+ Ty C(Ru(f258))00 € To + Ty + Y. T, suffice for the linear independence
a=5H
of 1, Ru(fs6). Ru(fi57). Ru(f258)-
Further, observe that HS(n,0) = (246) are subgroups of H3,,,(0) = (733, 0) with
rkdH3x2(0) = 9 Therefore rk®Hs (m:0) = 9 by Lemma 4 iv).
If H= H{(0,0) = (6) then

Ru(fs6) = fse+frss  Ru(fist) = fisr—e? fasr,  Ru(faes) = fea—e? fies
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Rp(f258) = f2s8 + fa6r, Ry (faer) = faer + fass.

The Fg(0,0)-cusps are k1 = kg, Ro, R4, ks = K7 and kg = Kg. According
8

to Lemma 4 ii), 70 C (Ru(fi57))oc, (Ru(f168))oc € 11 + 15 + Z5Ta im-
o=

plies R(f16s) € Spanc(1l, Ri{(fs6), R(fi57)). Lemma 6 supplies %

o
2e™™ # 0 and f‘lﬁ%f“ o 0. Therefore Ry (foss)|r, = oo and Ry (fae7) C

Spang (1, R (fs6)). Thus, £ = Spang(1, Rr(fs6), B (f157), Bi(fass)) ~
C*. The entire [T9(0, 0), 1] vanishes at 74 and ®2(%:0) is not globally defined.

For H = HY(1,0) = (7330) the space £ is generated by
1e€C,  Ru(fs6) = fs6 — frs
Ru(fis7) = fisr +ifses,  Ru(f2ss) = 2fs8,  Ru(faer) = 0.
The T§(1, 0)-cusps are i1 = &3, /%2, K4, k5 = kg and kg = R7. Making use of

8
T1 C (Ru(f157))0c € T1 + T3+ Z Toand Ty C (Ru(f258))oc C T2 + 2_:5Ta,

one applies Lemma 4 iii), in order to conclude that

L% = Spanc(1, Ru(fs6), Rir(f157), Rir(fass)) =~ C*.

The abelian functions from £ have no poles along 7}, so that H3(19) s not
defined at k4.

Observe that HY(n,1) = (34 1J10) are subgroups of HY, ,(1) = (733, [J~16)

with tk®2x2(1) = 2, 50 that tk®H2 (1) = 2 a5 well.

More precisely, Reynolds operators for H = HS(0,1) = (IJ716) are

Ru(fs6) = fso+ifrs, Ru(fis7) = fisr—ie? fies, Ru(fses) = faes—ie? fasr
Ry (fass) = foss — € 2 fass, Ry (fa67) = foor + €7 2 fagr.

The Fg—cusps are K1, kK3, kKo = R4, K5 = Rg, kg = R7. By Lemma 6 one has

fisrole? fiss | = _9je7F £, —fgﬁs_éﬁfg” = 0, whereas Ry (fi57)|1, = o0,

21 T 3 T
Ri(fses) € Spang(l, Ry (fs6))- Applying Lemma 4 ii) to the inclusions T C

(RH (f258))oo, (RH(f267)) CTo 4T+ Z T,,, one concludes that RH(f267)
SpanC(l, RH(f56)) RH(f258)) Altogether
L™ = Spanc(1, Ru(fs6), Ru(fis7), Ru(fass)) ~ C*.

Since £ has no pole over 1%, the rational map $H30.1) 5 not defined at K3-
If H= HY(1,1) = (1331.J16) then

Ru(fse) = fs6 — ifrs, Ry (fis7) = 2f157
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Ru(fses) =0,  Ru(fass) = fass + €72 fasr.
The TY(1, 1)-cusps are K1, K3, Ky = R4, k5 = Ky and kg = Kg. Making use
of Ry(fi57)|lmy, = oo, T (fes8)|m, = 00, one applies Lemma 4 iii), in order to
conclude that £# = Spanc(1, Ry (fs56), Ru(fi57), R (fass)) ~ C. Since £H
has no pole over T, the rational map &3 (1:1) is not defined at 7s.
Reynolds operators for H = HS(0,2) = (I2.J20) are

Ry (fs6) = fso—fs,  Ru(fis7) = fist+e2 fssr,  Ru(fies) = fies+e 2 f36s
Ry (fass) = fass — faer, Ry (fas7) = fae7 — [as8-

The T4(0,2)-cusps are kK, = K3, Ro, R4, A5 = Ry, Rg = FRg. Lemma 4 ii)
8

applies to 71 C (Ry(f157))oo, (RE(f168))ec C© T1 + T3 + Z5Ta to provide
o=

Ry (fi68) € Spanc(1, Ru(fs6). Ra(fi57))- By Lemma 6 one has [2s8-/267

TH
0 and % W= 2ie™2 # 0. Asaresult, Ry(fass) € Spanc(1, Ru(fs6))

and Ry (fae7)|T, = 00. Lemma 4 iii) reveals that 1 € C, Ry (fs56), Ru(fi57)s

Ry (fi67) form a C-basis of L. Since £ has no pole over Tb, the rational map

dH35(0.2) js not defined over Ko.

In the case of H = HS(1,2) = (r3312.J26) one has

Ry (fs6) = fs6 + frs, Ry (fi57) = fis7 — 1f368
Rp(fas8) = 0, Ry (fae7) = 2fa67.

The T9(1,2)-cusps are k| = K3, R, K4, k5 = kg and kg = Ky. Lemma 4 iii)
8

applies to 77 C (Ry(fi57))00 € 11 + T3 + Z5Ta, Ty C (Ru(fi67))eo C

T, + T + T7, in order to justify the linear indepencience of 1, Ry (fs6). Ru(fi57),
Ry (fa67). Since £ ~ C* has no pole over T, the rational map dH5(1,2) s not
defined at Ko.

ii) For H = H>(0,0) = (733) one has the following Reynolds operators
Ry (fs6) =0, Ru(frs) =0, Ry(fi57) = fis7 — ie? fies

Ry (fos8) = foss+fosr,  Ru(fass) = fass+ie® fasz,  Rp(faer) = fasr—fass-

There are six I‘( -cusps: ki, kKo, K3, k4, k5 = kg and kK7 = Kg. By the means

f1s7—1e? fieg — _ 93 £ 0 fass+ foer
P T P T

= 2ie™> # 0, {18048 = 9ie=% 3£ (. Therefore

3 4

7'33)

of Lemma 6 one observes that

Yo~ T 75 0, f368+§37f357
3

8
1; C (Ru(fioi6))oo C Ti + 525% for1 <i <4, (a1,01) = (57), (a2, B2) =
(5,8), (a3, 03) = (6,8), (ag,84) = (6,7). According to Lemma 4 iii), that
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suffices for 1, Ry (fi57). Ru(f2ss), Rir(fses)» Rir(fae7) to be a C-basis of L.
Bearing in mind that H>(0,0) = (733) is a subgroup of Hj, ,(0) = (733, I?) with
rkd2x2(0) = 2, one concludes that rk®(m3) = 9. ]
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Abstract. The stability properties of the Einstein Static solution of General
Relativity is altered when corrective terms arising from modifications of the
underlying gravitational theory appear in the cosmological equations. Em-
ploying dynamical system techniques and numerical integrations, we discuss
the stability of static cosmological solutions in the framework of two recently
proposed quantum gravity models, namely Loop Quantum Cosmology and
Horava-Lifshitz gravity.

1. Introduction

The Einstein Static (ES) Universe is an exact solution of Einstein’s equations
describing a closed Friedmann-Robertson-Walker model sourced by a perfect fluid
and a cosmological constant (see, for example [23]). This solution is unstable to
homogeneous perturbations as shown by Eddington [15], furthermore it is always
neutrally stable against small inhomogeneous vector and tensor perturbations and
neutrally stable against adiabatic scalar density inhomogeneities with high enough
sound speed [2].

In recent years there has been renewed interest in the ES Universe because of its
relevance for the Emergent Universe scenario [16,17,31] in which the ES solution
plays a crucial role, being an initial state for a past-eternal inflationary cosmo-
logical model. In the Emergent Universe scenario the horizon problem is solved
before inflation begins, there is no singularity, no exotic physics is involved, and
the quantum gravity regime can even be avoided. This model, relying on the choice
of a particular initial state, suffers from a fine-tuning problem which is ameliorated

“Reprinted from J. Geom. Symm. Phys. 22 (2011) 51-65.
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when modifications to the cosmological equations arise but then a mechanism is
needed to trigger the expanding phase of the Universe (see [27,28]).

The existence of ES solutions along with their stability properties has been widely
investigated in the framework of General Relativity (GR)for several kinds of
matter fields sources (see [3] and references therein). ES solutions also exist in
several modified gravity models [8] ranging from the Randall-Sundrum and DGP
braneworld scenarios [12, 18, 22, 37, 42] to Gauss-Bonnet modified gravity and
f(R) theories [4-6,13,20,21,36]. The issue of the existence and stability of ES
solutions has also been considered in the semiclassical regime of Loop Quantum
Cosmology (LQC), in either the case of correction to the matter sector [32] or the
case of correction to the gravitational sector [34]. Recently the same issue has
been also considered in the framework of Horava-Lifshitz (HL) gravity [41] and
IR modified Horava gravity [7,19].

When dealing with higher order modified cosmological equations, the existence
of many new ES solutions is possible, whose stability properties, depending on
the details of the single theory or family of theories taken into account, are sub-
stantially modified with respect to the classical ES solution of General Relativity
(GR).

Often in such analysis the case of closed (kK = 1) cosmological models is the
only one considered, neglecting the intriguing possibility of static solutions in open
(k = —1) cosmological models. It is interesting that, due to the aforementioned
corrections to the cosmological equations, open ES models may be found even
in the case of a vanishing cosmological constant or when the perfect fluid has
vanishing energy density.

In this paper we systematically review the stability properties of static cosmolog-
ical solutions arising in the framework of two recently proposed quantum grav-
ity models, namely Loop Quantum Cosmology and Horava-Lifshitz gravity, both
providing modified cosmological equations. To this aim, we employ dynamical
system techniques and numerical integrations. This work is based on the results
presented in [10, 33,34].

This paper is structured as follows. In Section 2, we consider static solutions in
the framework of LQC, following and enlarging the analysis already performed in
[34]. It is shown that, beside the ES solution of GR, a LQC solution arises also in
the case of open cosmological models which stability is also completely character-
ized. Following the same approach, in Section 3 we consider static cosmological
solutions in the context of HL gravity with detailed balance and projectability con-
dition. Two solutions are found along with their stability properties. In Section 4,
some conclusions are eventually drawn.
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2. Loop Quantum Cosmology

In Loop Quantum Cosmology the quantization techniques borrowed by Loop Qu-
antum Gravity, a background-independent nonperturbative quantum theory of
gravity, are applied to symmetry reduced models (see [9] and references therein).

For the sake of simplicity, in this section we consider the modified Friedmann equa-
tions arising in the semiclassical regime of LQC [1,39]. We consider gravitational
modifications only, neglecting the inverse volume correction to the matter sector.
The motivation is twofold: the analysis of this system allows a more transparent
comparison with the case of GR and moreover it allows us to follow the notations
introduced in [34] which will also be easily used in the analysis of the HL gravity
presented in the next section.

The model considered is sourced by a perfect fluid with linear equation of state p =

wp plus a cosmological constant A. The classical energy conservation equation
still holds

p=—3pH (L + w) (1)
while the loop quantum effects lead to a modification to the classical Friedmann
equation

K Ak p A 3k
H?=(= —— =) |l-—- 2
<3p+ 3 a2) ( Pe ﬁpc+ﬁpca2) @

and to the Raychaudhuri equation

e pen (12 24)
2 Pe Kpc

2p  2A 3p(1+w)]k 6k2
Pec  Kpe Pe

Notice that we are considering at once the k = 0 case and the £ = +1 cases [1,39].
Here k = 877G = 87 /MI%, and the critical LQC energy density is p. ~ 0.82M j‘% .

3)

1— .

2.1. Static Solutions

The system of equations (1)-(4) admits two static solutions, i.e. solutions charac-
terized by a = H = p = 0. The first solution corresponds to the standard ES
Universe in GR while the second solution arises from the LQC corrective terms

O 2A , 2k @
peR = k(1 + 3w)’ “GR = kpar(l + w)

_ 2(A — kpe) 2 _ 2k
pLQ - Kl(l + 3w) 3 aLQ - /‘JPLQ(I +w) (5)

The conditions under which these static solutions exist are summarized in Table 1
which follow from a? > 0 and p > 0. The presence of the curvature index k is
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worth stressing, indeed the previous analysis [34] can be enlarged to enclose the
k = —1 case where the two solutions still exist.

2.2. Stability Analysis

The stability of the solutions equations (4) and (5) can be characterized using dy-
namical system theory and performing a linearized stability analysis. To this aim,
we first have to rewrite the system of equations (1)-(4) in the form of a genuine
dynamical system. Indeed, in these equations the three variables a, H and p ap-
pear but the actual dynamics is constrained on a two-dimensional surface described
by the modified Friedmann equation (see Fig.1). Thus, following [34], we solve

j.ﬁ o

k18

Figure 1. Friedmann constraint as hypersurface in the a, f, p space
the forthe case k = —1, A < 0, w < —1 with A = —100, w = -2,
Kk = 25.13274123. The ES and LQ solutions are depicted as black dots
on top and underneath the surface respectively.

equation (2) for 1/ a?. Two solutions are found

1
where
2(kp + A) + kp. (1 + /1 — 12H2//£pc>
g+ = ok . (7)

Substituting the solutions (6) into equation (4), we find two branches for the time
derivative of the Hubble parameter, thus the original system splits in a pair of two-
dimensional nonlinear dynamical systems in the variables p and H (see Fig. 2)

GR:p=-3Hp(1+w) and H=F_(p H) (8)
LQ:p=-3Hp(l+w) and H=F.(p H) 9)
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where
20  2A\  6k%g3
Fi:——(l—{—w)p(l——p— ) =
Pec  KpPc Kpc (10)
2A
+g+k |1 — . ——3(1+w)£]
Pec  KPe Pe

Each one of the systems (8) and (9) admits a fixed point representing a static solu-
tion, that is

2A
R:H= d p,= ——— 11
G 0 and p (L 30) (11)
2(A — Kpc)
LQ: H = R i 12

respectively. Substituting these values of p, in equation (2) one gets exactly the
values of the constant scale factor in terms of the parameters as in equations (4)

and (5).

Figure 2. Splitting of the Friedmann constraint in two local charts
around the fixed points.

Finally, to characterize the stability of the solutions equations (4) and (5) we eval-
uate the eigenvalues of the Jacobian matrix for the two systems equations (8) and
(9) at the fixed points equations (11) and (12) respectively.

For the system in equation (8), we recover the usual properties of the ES solution
in GR. The eigenvalues of the linearized system at the fixed point are

Aor = £y A(l + w). (13)

In the case of positive curvature index k = 1, these are either real with opposite
signs for A > 0 and w > —1/3 - thus the fixed point is unstable (of the saddle
type) - or purely imaginary for A < 0 and —1 < w < —1/3, so the fixed point is a
center. In the case of negative spatial curvature index k = —1, these are again real
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with opposite signs for A < 0 and w < —1, so the fixed point is unstable (of the
saddle type). In Fig. 3 an example of the latter case is depicted.

22 i j i
NN S e e - e T

2.0

Figure 3. Dynamical behavior of the system around the GR fixed point
forthe case k = —1, A < 0, w < —1 with A = —100, w = —2,
K = 25.13274123.

For the system equation (9) the eigenvalues at the fixed point are

Mg = £/ (rpe — A)(1 + w). (14)

In the case of positive curvature index £ = 1, the LQ fixed point is either unstable
(of the saddle kind), when kp. > A and —1 < w < —1/3, or a center for the
linearized system, i.e. a neutrally stable fixed point, when kp. < Aand w > —1/3.
In the case of negative spatial curvature index £ = —1, the eigenvalues are purely
imaginary for kp. > A and w < —1, so we have a center for the linearized system
again. In the latter case the fixed point is nonhyperbolic thus the linearization
theorem does not apply. Nevertheless a numerical integration of the fully nonlinear
system equation (9) for initial conditions near the fixed point confirms the result of
the linearized stability analysis (see Fig. 4). It’s worth stressing that in open LQC
models a stable ES solution exists in the case of positive values of the cosmological
constant as long as A < kp..

The results of the linearized stability analysis are summarized in Table 1.

3. Horava-Lifshitz Gravity

The Horava-Lifshitz gravity [24, 25] is a power-counting renormalizable theory
of (3+1)-dimensional quantum gravity. In the ultraviolet limit, the theory has a
Lifshitz-like anisotropic scaling between space and time characterized by the dy-
namical critical exponent z = 3. In the IR limit the theory flows to the relativistic
value z = 1.
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0.25

0.20°

0.15(]

0.10R

Figure 4. Dynamical behavior of the system around the LQ fixed point
for the case k = —1, A < Kpe, w < —1 with A = 10, w = -2,
K = 25.13274123.

Table 1. Existence conditions and stability conditions for the static so-
lutions in equations (4) and (5).

A w Stability

GR|1| >0 w>—1/3 saddle
<0 |-1l<w< —1/3| center

-1 <0 w< —1 saddle

LQ| 1| <kpe|—-1l<w< —1/3]| center
> Kpe w>—1/3 saddle

-1 | < kpe w < —1 center

The effective speed of light ¢, the effective Newton constant GG and the effective
cosmological constant A of the low-energy theory, emerge from the relevant de-
formations of the deeply nonrelativistic z = 3 theory which dominates at short
distances [24,25]

K2 Aw K2 3
= = A — _A. . 1
‘T 13y G = 3ome g W (15)

The first of the equations in(15) imposes a relation among the parameters ¢, Ay
and A. Thus, in order to have a real emergent speed of light ¢, for A > 1/3 the
cosmological constant has to be negative Ay,. However, after an analytic contin-
uation of the parameters (see [29]), a real speed of light for A > 1/3 implies a
positive cosmological constant Ay,. Thus, mimicking the notation introduced in
[30], we introduce a two-valued parameter ¢ = +1, in order to examine both the
aforementioned cases at once.
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The HL cosmology has been systematically studied using dynamical systems the-
ory in [11, 14,26,38], it has also been investigated in [40] using conservation laws
of mechanics. Here we consider static solutions of the cosmological equations for
the HL gravity when both the detailed balance condition and projectability condi-
tion hold.

First we recast the modified Friedmann equations of [29] in a form which allows
an easy comparison with the formerly considered case of LQC!.

The modified Friedmann equation reads

2 |rw Ak 3K?
H? = — —— =+ — 16
B — 1 3p+6<3 a2+4Aa4>] (10)
and the modified Raychaudhuri equation reads
2 K E o 3k?
= ——p(1 —_ - 17
3IN—-1 [ 2p( —|—w)+e(a2 2Aa4>] (17

The conservation equation for the energy density of the perfect fluid still holds
unchanged:

p=—-3pH(1+w). (18)
Besides the overall factor 3)\2—_1 on the right hand side of equations (16) and (17),
the modifications to the cosmological equations of GR consist of the higher order
terms o< k? /Aa* which become dominant at short distance scales and do not affect
the classical cosmological equations in the case of flat models.

3.1. Static Solutions

It can be readily found, imposing the conditions @ = H = p = 0, that the system
of equations (18)-(17) admits the following two static solutions
5 3k
puar1 =0, HL1L = Hx (19)
—16€eA 5 (3w — 1)k
PHL2 = 3 — 12k’ “HL2 7 981 + w)
The conditions under which these static solutions exist are summarized in Table 2
and Table 3.

The presence of the curvature index £ and the parameter € in equations (19) and
(20) is worth being stressed; indeed the analysis presented in [41] can be enlarged
to enclose the k = —1 case where new interesting possibilities arise. For instance
a physically meaningful ES solution is present even in the case of vanishing energy
density of the perfect fluid, i.e., equation (19).

- (20)

1According to the definitions given in Section II, ¢ = 1 and x = 87, equation (16) and equation
(17) have been written accordingly.
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3.2. Stability Analysis

The stability analysis can be easily performed reducing the original system to an
actual two-dimensional autonomous dynamical system by making use of the Fried-
mann constraint (see Fig.5). In this case the simplest and most straightforward

U 2

K]

i i 1 i i »
] Ky A0 S0H)

Figure 5. Friedmann constraint as hypersurface in the a, H, p space
the for the case k = —1 withe = 1, A > 1/3, A < 0, w > 1/3. The
two black dots represent the HL.1 (upper) and HL2 (lower) static solu-
tions.

choice is to eliminate the dependence on p from the other equations, being equa-
tion (16) linear in p, that is, to consider the projection on the (H,a)-plane (see
Fig.6). This allows us to describe the dynamics with just one set of equations.
Indeed, solving equation (16) for p

3 5 € 3k 3k?

and substituting into equation (17) one gets a first order nonlinear differential equa-
tion

H=

_ But Dk, 3K@w - 1)

(et a? 4Aa

€ 3 2
- ]—§(l+w)H (22)

which, together with the definition of the Hubble parameter
a=aH (23)

provides a genuine two-dimensional autonomous dynamical system in the vari-
ables a and H. The system admits two fixed points with energy densities as in
equations (19) and (20) and in order to characterize the stability of these solutions,
we evaluate the eigenvalues of the Jacobian matrix for the system equations (22)
and (23) at the fixed points corresponding to equations (19) and (20) respectively.
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04

BETH i 10

Figure 6. Friedmann constraint as seen from the (H, a)-plane.

The eigenvalues at the fixed point A L1 read

24/6(3)\ — 1)eA
A1 = £ : 24
HI 36N 1) 24)
For all the admitted values of the parameters this is a pair of purely imaginary
eigenvalues thus the fixed point is a center for the linearized system. The point
is nonhyperbolic so the linearized analysis may fail to be predictive at nonlinear
order, nevertheless a numerical integration proves that this fixed point is actually a

center (see Fig. 7).

0.45F

0.40

0.35-

030 =T e = Z |
—06 —04 =02 00 0Z 04 06
H

Figure 7. Dynamical behavior of the system around the A L1 fixed
point for the case k = —1 withe =1, A > 1/3, A < 0, w > 1/3.

The results of the stability analysis for the fixed point H L1 are summarized in
Table 2.
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Table 2. Existence conditions and stability conditions for the static so-
lution H L1.

e | N | k| A |Stability
—1|<1/3|—-1|<0]| center
>1/3[ 1 |>0
1 [<1/3]| 1 >0
>1/3|-1|<0

The eigenvalues at the fixed point H L2 read

2v/—2(B3w — 1)(3X — 1)(1 + w)eA
(3A —1)(Bw — 1) '

According to the admitted values of the parameters this is either a pair of purely

imaginary eigenvalues, so the fixed point is a center for the linearized system, or a

pair of real eigenvalues with opposite signs, so the fixed point is unstable (of the

saddle type). In particular, the solution is a center for —1 < w < 1/3 and is a
saddle for w < —1 or w > 1/3 (for an example of the latter case see Fig. 8).

Agre =+ (25)

0.1305}

0.1300 |

0.1295¢

w 0.1290 [

0.1285}

0.12801

0.1275}

Figure 8. Dynamical behavior of the system around the H L2 fixed
point for the case k = —1 withe =1, A >0, A < 0,w > 1/3.

The results of the stability analysis for the fixed point H L2 are summarized in
Table 3.

4. Conclusions

Here we have considered the existence of static solutions in the framework of two
recently proposed quantum gravity models, namely, LQC and HL gravity and even-
tually we have shown that the inclusion of a negative curvature index £k = —1
enlarges the ranges of existence of the solutions affecting their stability properties
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Table 3. Existence conditions and stability conditions for the static so-

lution H L2.

€ A E | A w Stability
—1(>1/3|-1|>0|-1<w<1/3| center
1 1>0 w< —1 saddle

w>1/3
1 [>1/3]-1|<0 w < —1 saddle

w>1/3
1 |[<0|-1<w<1/3]| centre

thus providing new interesting results. The solutions found display stability con-
ditions rather different from those of the corresponding solutions in closed models
and from the stability properties of the standard ES solution of GR.

In the case of LQC gravitational modifications to the Friedmann equations, a neg-
ative curvature index allows a neutrally stable static solution with A < xp. and
w < —1, in contrast to the GR case. In particular the LQC static solution exists
and is stable in the case of positive values of the cosmological constant as long as
A < kpe.

In the case of HL gravity two static solutions are found. The inclusion of the neg-
ative curvature index leads to a static solution (H L1) with negative cosmological
constant and vanishing energy density which is neutrally stable against homoge-
neous perturbations. Furthermore, a negative curvature index allows a static solu-
tion (H L2) which can be either a saddle, for w < —1 and w > 1/3, or a center for
-l<w<1/3.

As already observed in the frameworks of different modified models [27, 28, 32, 34],
the regime of infinite cycles about the center fixed points must be eventually bro-
ken in order to enter the current expanding universe phase. To this aim a further
mechanism is needed, whose analysis is beyond the scope of this paper.
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Abstract. The constant mean curvature surfaces in three-dimensional space-
forms are examples of isothermic constrained Willmore surfaces, character-
ized as the constrained Willmore surfaces in three-space admitting a con-
served quantity. Both constrained Willmore spectral deformation and con-
strained Willmore Bécklund transformation preserve the existence of a con-
served quantity. The class of constant mean curvature surfaces in three-
dimensional space-forms lies, in this way, at the intersection of several inte-
grable geometries, with classical transformations of its own, as well as con-
strained Willmore transformations and transformations as a class of isother-
mic surfaces. Constrained Willmore transformation is expected to be unify-
ing to this rich transformation theory.

1. Introduction

Minimal surfaces appear as the area-minimizing surfaces amongst all those span-
ning a given boundary. The Euler-Lagrange equation of the underlying variational
problem turns out to be the zero mean curvature equation. A physical model of a
minimal surface can be obtained by dipping a wire frame into a soap solution. The
resulting soap film is minimal, in the sense that it always tries to organize itself so
that its surface area is as small as possible whilst spanning the wire contour. This
minimal surface area is reached for the flat position, which is also the position in
which the membrane is the most relaxed, i.e., where the elastic energy is minimal
- these surfaces are elastic energy extremals and, in this way, examples of Will-
more surfaces. In fact, a classical result by Thomsen [23] characterizes isothermic
Willmore surfaces in three-space as minimal surfaces in some three-dimensional
space-form.
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Unlike flat soap films, soap bubbles do not extremize the elastic energy - they exist
under a certain surface tension, in an equilibrium where slightly greater pressure
inside the bubble is balanced by the area-minimizing forces of the bubble itself.
With their spherical shape, soap bubbles are examples of area-minimizing sur-
faces under the constraint of volume enclosed - these are surfaces of (non-zero)
constant mean curvature and, therefore, examples of constrained Willmore sur-
faces (which are not Willmore surfaces), elastic energy extremals with respect to
infinitesimally conformal variations (rather than with respect to all variations). In-
deed, as established by Richter [18], constant mean curvature (CMC) surfaces in
three-dimensional space-forms are, in particular, isothermic constrained Willmore
surfaces.

In [16], a spectral deformation and a Bicklund transformation of constrained Will-
more surfaces are defined and a permutability between the two is established. It is
shown that all these transformations corresponding to the zero multiplier preserve
the class of Willmore surfaces. The class of CMC surfaces in three-dimensional
space-forms is characterized as the class of constrained Willmore surfaces in three-
space admitting a conserved quantity. It is shown that, for special choices of para-
meters, both spectral deformation and Bicklund transformation preserve the class
of constrained Willmore surfaces admitting a conserved quantity, and, in particular,
the class of CMC surfaces in three-dimensional space-forms.

The class of constant mean curvature surfaces in three-space lies, in this way, at
the intersection of several integrable geometries, with constrained Willmore spec-
tral deformation and Bécklund transformations, an isothermic spectral deformation
(classically defined by Bianchi [2] and, independently, Calapso [10]), as well as a
classical spectral deformation of its own (the Bonnet transformation [4]), and, in
the Euclidean case, isothermic Darboux transformations (classically discovered by
Darboux [12]) or, equivalently [15], Bianchi-Béicklund transformation [1]. The
isothermic spectral deformation is known to preserve the constancy of the mean
curvature of a surface in some space-form, cf. [9]. In [16], it is shown that the
classical CMC spectral deformation can be obtained as composition of isother-
mic and constrained Willmore spectral deformation. These spectral deformations
of CMC surfaces in three-dimensional space-forms are, in this way, all closely
related and, therefore, closely related to constrained Willmore Béacklund transfor-
mation. In [14] it is shown that, for special choices of parameters, the Darboux
transformation of isothermic surfaces in Euclidean three-space preserves the con-
stancy of the mean curvature in R3, as well as the mean curvature itself. Isothermic
Darboux transformation of a CMC surface in Euclidean three-space is expected to
be obtained as a particular case of constrained Willmore Béacklund transformation.
Constrained Willmore transformation is in this way expected to be unifying to this
rich transformation theory.
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Our theory is local and, throughout this text, with no need for further reference,
restriction to a suitable non-empty open set shall be underlying.

2. Constrained Willmore Surfaces

In modern literature on the elasticity of membranes, a weighted sum of the total
mean curvature, the total squared mean curvature and the total Gaussian curvature
is considered the elastic energy of a membrane. By neglecting the total mean
curvature (by physical considerations) and having in consideration that the total
Gaussian curvature of compact orientable Riemannian surfaces without boundary
is a topological invariant, Willmore [25] defined the Willmore (elastic) energy of a
compact oriented Riemannian surface, without boundary, isometrically immersed
in R3, to be

W:/HQdA

i.e., the total squared mean curvature. The Willmore functional “extends” (for
more details, see [16]) to isometric immersions of compact oriented Riemannian
surfaces in Riemannian manifolds by means of half of the total squared norm of
19, the trace-free part of the second fundamental form, which, in fact, amongst
surfaces in R?, differs from W by the total Gaussian curvature, but still shares then
the critical points with YW. And so does

wz/ IT°|%d A
M

which is what we consider as the Willmore energy functional.

By definition the Willmore surfaces are the extremals of the Willmore energy. The
class of constrained Willmore (CW) surfaces appears as the generalization of the
class of Willmore surfaces that arises when we consider extremals of the Willmore
functional with respect to infinitesimally conformal variations - those satisfying

d
dt |t=0

fixing X% a (1, 0)-vector field - rather than with respect to all variations (Note that
conformal variations are characterized by (X0, X1.9), = 0, fixing X 1% a (1, 0)-
vector field). Under a conformal change of the metric, the squared norm of the
trace-free part of the second fundamental form and the area element change in an
inverse way, leaving the Willmore energy unchanged. In particular, this establishes
the class of (constrained) Willmore surfaces as a Mdbius invariant class.

(Xl’O,Xl’O)t =0

Our study is one of (constrained) Willmore surfaces in n-dimensional space-forms!

with n > 3, which, in view of the conformal invariance mentioned above, we

1Throughout this text, we will, alternatively, use n-space to refer to n-dimensional space-form
(Euclidean, spherical or hyperbolic).
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approach as immersions
A:(M,Cp) = S"=P(L)

of an oriented compact? surface M into the conformal n-sphere, which we model
on the projective space of the light-cone £ C R"*!:1, following Darboux [11], (for
a modern account, see [5]) providing M with the conformal structure Cp induced
from the one on P(£) (and with the canonical complex structure).

A fundamental construction in conformal geometry of surfaces is the mean cur-
vature sphere congruence, the bundle of two-spheres tangent to the surface and
sharing with it the mean curvature vector at each point (although the mean curva-
ture vector is not conformally invariant, under a conformal change of the metric it
changes in the same way for the surface and the osculating two-sphere). Let

S: M — Gr(3’1) (Rn+1’1)

be the mean curvature sphere congruence of A (the k-spheres of S” = P(L) are
exactly the manifolds P(£N V) with V a (k+1, 1)-plane of R"*1:! (see [5]).). We
have a decomposition R"T5! = § ¢ S+ and then a decomposition of the trivial
flat connection d on R*+ 1! as
d=DaeN

forD = V° + VSL, with VS and VS the connections induced on S and S -,
respectively, by d. Set

A =A@ do(T'M), A% =A@ do(T' M)
two subbundles of S*, defined independently of the choice of o € T'(A) never-
zero, and then AL = ALO L AOL
In generalization of what is presented in [7] for the particular case of n = 4, we
have (see [16])

W(A) = % /M(dS A +dS)

a manifestly conformally invariant formulation of the Willmore energy. This for-
mulation makes it clear that

W(A) = E(5)
the Willmore energy of A coincides with the Dirichlet energy of S (with respect to
any of the metrics in the conformal class on AM). N. Ejiri [13] and independently,
M. Rigoli [19] proved, furthermore, that

A Willmore < S harmonic

so that A is a Willmore surface if and only if S : (M,Cp) — Grz ) (R"TH1) is
a harmonic map. According to Uhlenbeck [24], it follows that A is a Willmore

2A natural extension to surfaces that are not necessarily compact will take place at some point below.
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surface if and only if d* := D + A\ INLO0 L ANOL s a flat connection, for all )
in S'. More generally (for more details, see [16]) we have

Theorem 1 ([6]). A is a constrained Willmore surface if and only if there exists a
real one-form q € Q' (A A A1) such that the connection

df]‘ = D+ ATV LWL £ (A2 2 1)g10 + (A2 — 1)g%! )

is flat, for all X € S'. In that case, q is said to be a multiplier to A and A is said to
be a g-CW surface.

In Theorem 1 and throughout this text, we consider the identification
AZRMLL o (R
of the exterior power A?R™ 1! with the orthogonal algebra o(R" 1) via
wi— v1 A vp(w) 1= (vi,w)ve — (v2,w)v1
for vy, vy, w € R*L1,
The characterization of constrained Willmore surfaces in space-forms presented

in Theorem 1 provides a natural extension of the concept to surfaces that are not
necessarily compact.

Willmore surfaces are the 0-CW surfaces. The zero multiplier is not necessarily
the only multiplier to a CW surface with no constraint on the conformal struc-
ture, though. In fact, the uniqueness of multiplier characterizes non-isothermic
constrained Willmore surfaces

Proposition 1 ([16]). A constrained Willmore surface has a unique multiplier if
and only if it is not an isothermic surface.

A classical result by Thomsen [23] characterizes isothermic Willmore surfaces
in three-space as minimal surfaces in some three-dimensional space-form. Con-
stant mean curvature surfaces in three-dimensional space-forms are examples of
isothermic constrained Willmore surfaces, as proven by Richter [18]. However,
isothermic constrained Willmore surfaces in three-space are not necessarily CMC
surfaces in some space-form, as established by an example due to Burstall [3], of
a constrained Willmore cylinder that does not have constant mean curvature in any
space-form.

For later reference, it is convenient to denote, alternatively, dg‘ by d:\g’q and to
use Eii}’q for the analogue defined for a general non-degenerate subbundle V' of
(R"*11C = C"*2 provided with the complex bilinear extension of the metric
on R 11, a general one-form g with values in A2C™""2 and da general flat met-
ric connection on C" 2. The characterization of g-constrained harmonicity of the
bundle S consisting of the flatness of dg’q, for all \ in S!, extends naturally to a
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notion respecting a general non-degenerate subbundle V' of C"*2 and a general
q € Ql(/\2Q”+2), by means of the flatness of the connection di\/’q, forall A € S'.
For more details, see [16].

3. Transformations of Constrained Willmore Surfaces

Constrained Willmore surfaces in space-forms form a Md&bius invariant class of
surfaces with strong links to the theory of integrable systems, admitting, amongst
others, a spectral deformation, defined by the action of a loop of flat metric connec-
tions, and Bécklund transformations, defined by applying a dressing action [16].
All these transformations are closely related and all those corresponding to the zero
multiplier preserve the class of Willmore surfaces.

3.1. Spectral Deformation

For each X in S1, the flatness of the metric connection df}‘ establishes the existence
of an isometry

¢yt (R™THd)) — (R™d)

of bundles, defined on a simply connected component of M, preserving connec-
tions, unique up to a Mobius transformation. We use an interpretation of loop
group theory by Burstall and Calderbank and define a spectral deformation of A
which is supposed to be a g—CW surface into new constrained Willmore surfaces
by setting, for each X in S*

Ay == ¢oA.
This comes as an immediate consequence of the fact that (dé‘)gA = dg‘/‘, for
g = A 2¢80 4 X2%¢%! and for all A\, € S!, which readily establishes Aq)‘ as
a Ad¢qA (gx)-CW surface. In particular, spectral deformation corresponding to the

zero multiplier preserves the class of Willmore surfaces. For each A, we refer to
A()I‘ as the transformation of A defined (in the ambit of M&bius geometry) by the

flat metric connection dfl‘.

3.2. Bicklund Transformation

We use a version of the dressing action theory of Terng-Uhlenbeck [22] to define a
transformation of A into new constrained Willmore surfaces. We start by defining
a transformation on the level of constrained harmonic bundles. For that, we give
conditions on a dressing r(\) € T'(O(C""?)) such that the gauging

&;,q =7r(\)o dg’q or(A)~!



Constant Mean Curvature Surfaces at the Intersection of Integrable Geometries 311

of dé‘ by (), for each A, establishes the constrained harmonicity of some bundle
S from the constrained harmonicity of S, as follows. Define § € Q'(A2C"*?) by
setting
G0 .= Adr(o)ql’o, GOl .= Adr(oo)qo’l
Set, furthermore
g =Ad,q)-1q
and

S=r1)"

Lemma 1 ([16]). Let p € T'(C""?) be reflection across S, p = ©g — wg., for
g and wg.1 the orthogonal projections of C"*? onto S© and (S L)(C, respectively.
Suppose r(\) € T(O(C"?)) is such that

i) A r(\) is holomorphic and invertible at A = 0 and X\ = oo

ii) pr(\)p~! =r(=N), forall \

i) A — &g"'f admits a holomorphic extension to A\ € C\{0} through metric

connections on C"2,

Then, for d:= d , the notation d ? is not merely formal, that is, the connection
denoted by 4 s of the form (1).

Suppose that 1 is in the domain of r. In that case, and under the hypotheses of
Lemma 1, it follows immediately, in view of the specific form of dg’q, that

r(1)" o dg?or(1) = 3

which establishes the g-constrained harmonicity of S from the g-constrained har-
monicity of S.
Now set

AR = (1) Y (00)AR, ADL = (1)L (0)AO?
and

A =AY N 0L

The isotropy of both AM® and A%! establishes that for both A0 and A%! and
therefore, the nullity of the bundle A. On the other hand, an extra condition on r,
namely, det 7(0)|s = detr(co)|g, establishes A as a line bundle. Actually, con-
dition ii) in Lemma 1 establishes, in particular, that 7(0)|g,r(c0)|s € F(O(S))
One verifies, furthermore, that, if A C (R™h 1)C is a real bundle, then S is the
mean curvature sphere congruence of the surface A and, ultimately, that if ¢ is real,
then A is a G-CW surface.
Following the philosophy of Terng-Uhlenbeck [22], we then construct r = 7(\)
satisfying the conditions above, as well as establishing the reality of A and ¢ from
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||':'_1|| —_ |'_'.l_.II !'|

Figure 1. A permutability of spectral deformation and Bécklund trans-
formation of constrained Willmore surfaces.

the reality of A and g, respectively. We consider a two-step process of transforma-
tions of the type
a— A a—+ A

red () = ()5 + Tapny +(0) =5

(respectively), parametrized by o € C\S' non-zero and L = Ly C C"t%a dg?-
parallel null line bundle such that pL N L+ = \{0}. Namely, we consider

B,LA
for 6 =a ', L° = Land L* = T[;Lﬁ (o)L, with o and L as above. We refer

to A as the Biicklund transform of A of parameters «, Ly. Note that Bécklund
transformation corresponding to the zero multiplier preserves the class of Willmore
surfaces.

T = TqLaT

3.3. Spectral Deformation vs Bicklund Transformation

Spectral deformation and Béacklund transformation of constrained Willmore sur-
faces permute, as follows

Theorem 2 ([16]). Let a, Lg‘ be Biicklund transformation parameters to A corre-
sponding to the multiplier g, let X be in S' and qb;‘ . (R, dg’q) — (R™11 )

and qbg (R dg’q) — (R"™Y1,d) be isometries preserving connections.

A
q

qbé‘A of A, of parameter )\, corresponding to the multiplier q, coincides with the
spectral deformation of parameter X\ corresponding to the multiplier § of the Bdick-
lund transform of parameters o, Ly of A, i.e., the diagram in Fig.1 commutes.

Then the Bicklund transform of parameters 5, ¢ LY of the spectral deformation
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4. Conserved Quantities under CW Transformation

Suppose A is a g-CW surface. Let p(\) = A~!v 4w+ Av be a Laurent polynomial
with vy € T(S®) real, v € T((S%)*) and vy := p(1) # 0. We say that p()) is a
g-conserved quantity of A if dé‘p()\) = 0, for all A\ € C\{0} and then following
the idea by Burstall and Calderbank we have

Lemma 2 ([16]). p(\) is a q-conserved quantity of A if and only if
dvee =0, Do =0, N+ ¢ = 0.

The characterization above, of a g-conserved quantity p(\) of A, shows, in partic-
ular, that p(\) determines ¢ (for details, see [16]). There is then no ambiguity on
referring to p(\) simply as a conserved quantity of A.

For special choices of parameters, both spectral deformation and Bécklund trans-
formation of constrained Willmore surfaces preserve the existence of a conserved
quantity, as follows

Theorem 3 ([16]). Let pu be in S' and ¢# : (R"™11, d%%) — (R"™1,d) be an
isometry preserving connections. Suppose that either vg is non-zero or iv + pv
is non-zero. In that case, if p(\) is a q-conserved quantity of A, then ¢} p(pX) is
a Ad¢§ (g,)-conserved quantity of the spectral deformation oL A generated by the
parameter [ of A.

We have also

Theorem 4 ([16]). Suppose p(\) is a q-conserved quantity of A. Let «, Ly be
Bdcklund transformation parameters to A corresponding to the multiplier q and
let v be the corresponding dressing. If p(a) L Ly, then

BN = (1) r(N) p(N)

is a g-conserved quantity of the Béicklund transform A of A of parameters a, L.

5. Example: Constant Mean Curvature Surfaces in
Three-dimensional Space-forms

The class of constant mean curvature surfaces in three-dimensional space-forms is
characterized as the class of constrained Willmore surfaces in three-space admit-
ting a conserved quantity. It follows that, for special choices of parameters, both
spectral deformation and Bécklund transformation of constrained Willmore sur-
faces preserve the class of CMC surfaces in three-dimensional space-forms. The
class of CMC surfaces in three-dimensional space-forms lies, in this way, at the
intersection of several integrable geometries, with classical transformations of its
own, as well as constrained Willmore transformations and transformations as a
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class of isothermic surfaces. Constrained Willmore transformation is expected to
be unifying to this rich transformation theory.

In contrast to constrained Willmore surfaces, constant mean curvature surfaces are
not conformally-invariant objects, which requires carrying a distinguished space-
form. Following [5] we start by realizing all space-forms as submanifolds of the
light-cone, given v, € R?T1! non-zero

Sp, ={veL; (v,ve) =—1}

inherits from R"T1! a positive definite metric of (constant) sectional curvature
—(Vs0, Voo ). For each vy, the canonical projection 7 : £ — P(L) defines a
diffeomorphism

: Sy. = P(L\P(L N (v50)T).

Let us consider the particular case n = 3. Let 7" and L denote the orthogonal
projections of R*! onto S and S*, respectively. Suppose the surface A is not

contained in any two-sphere. This condition ensures (see [16]) that, given v, €
R*! non-zero, A is (locally) a surface in P(£L)\P(£ N (veo)*) = S,

A= (ngm)_l oA: M — S,
with mean curvature given, up to sign, by

1
Hy = (,Ué_o’vé_o)g'

ﬂ—Svoo [eS]

o

In particular, A is a minimal surface in the space-form S,__ (i.e., Hy, = 0) if and
only if vy € T(S).

5.1. CMC Surfaces and Conserved Quantities

According to Lemma 2, the existence of a conserved quantity p(\) of A establishes,
in particular, the constancy of v, := p(1). Furthermore we have

Theorem 5 ([16]). If A is a CW surface and p()\) is a conserved quantity of A,
then A has constant mean curvature in the space-form S,__, for vao = p(1). Recip-
rocally, if Hy is constant, for some non-zero vs, € R, then

1 1
Poo(A) = )\_151;; + ol + )\51};

is a conserved quantity of the CW surface A. Constant mean curvature surfaces
in three-dimensional space-forms are the constrained Willmore surfaces in three-
space admitting a conserved quantity.

Next we establish a conserved quantity with respect to a general multiplier to a
surface with constant mean curvature in some three-space. The conclusion that
these surfaces allow CW spectral deformation and CW Bicklund transformation
into new ones will then follow from Theorems 3 and 4.



Constant Mean Curvature Surfaces at the Intersection of Integrable Geometries 315

As suggested by Proposition 1, the characterization of the set of multipliers to a
constrained Willmore surface is closely related to the isothermic condition. Isother-
mic surfaces are classically defined by the existence of conformal curvature line
cooordinates, i.e., conformal coordinates with respect to which the second funda-
mental form is diagonal. This is a conformally-invariant condition, although the
second fundamental form is not conformally-invariant, and it can be reformulated
in a manifestly invariant way, as follows (This formulation is also discussed in [6]
and [21].)

Theorem 6 ([8]). A is isothermic if and only if there is a non-zero real closed form
n € QYA A AY). In that case, we say that (A, n) is isothermic.

In the conditions of Theorem 6, the form 7 is unique up to non-zero constant real
scale, cf. [21].

Following Proposition 1, we have, furthermore

Proposition 2 ([16]). Suppose (A, n) is an isothermic g-CW surface. Then the set
of multipliers to A is the one-dimensional affine space q + (*n)g.

Fix v, € R*! non-zero. Suppose A has constant mean curvature in S,__. Define
N € T'(S*) unit by setting v, = Ho, N (in the particular case A is minimal in
Sp.» N is defined only up to sign). Write oo for (mg, )7' o A. Set o :=
%O’oo A dN, a form derived by F. Burstall and D. Calderbank which establishes
A as an isothermic surface and for which scaling by the mean curvature in S,__
setting

Qoo = dooNeo

provides a multiplier to A (see [16])

Proposition 3. (A, 7.) is an isothermic g.-CW surface.

Proposition 3 makes it clear, in particular, that minimal surfaces in three-dimensional
space-forms are examples of Willmore surfaces.

For each t € R, set
Q(t)o = Qoo T ¥ Noo-

Proposition 4 ([17]). Foreachi € R
1 1
Pho(N) 1= AT15 (Hoo — )N + 05, + A5 (Hoo + it)N

is a ¢ -conserved quantity of A.
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5.2. CMC Surfaces at the Intersection of Integrable Geometries
The results in Section 5.1 combine to establish the following

Theorem 7 ([17]). The class of CMC surfaces in three-dimensional space-forms
is preserved by both CW spectral deformation and CW Bdcklund transformation,
for special choices of parameters, with preservation of both the space-form and
the mean curvature in the latter case.

Fix v5 € R%! non-zero and suppose A has constant mean curvature in S,,__. The
fact that a Backlund transform of A still is a surface of constant mean curvature
Hy in S,_, as stated above, is not immediate from Theorem 4. In contrast, it is
immediate from Theorem 3 that, given X in S! and qbi:oo . (RM, df)l\éo ) — (R, d)
an isometry preserving connections, the spectral deformation qbf" oA of A, of para-
meter )\, corresponding to the multiplier ¢, has constant mean curvature

it
H) =| Re (AHo + 15(/\ AT

in the space-form S,» for
t,

it
Voo = 9o (Ve + (ReA) Hoo + (A = ATH)N).

Zero curvature representation provides a context in which Bonnet transformation
[4] of CMC surfaces in R? can be generalized to CMC surfaces in general three-
space, as follows (the classical CMC spectral deformation). For each A € S!,
set

dX =D+ AN L AN Lo — gkl 2007 — 1)L

Theorem 8 ([16]). The connection dé‘o is flat, for all \ € S'. Besides, if for each
e St s (R, D) — (RM, d) is an isometry preserving connections, then
i) v := ¢X Voo is @ non-zero constant section of R*!
ii) the transformation A) := ¢pX A of A, defined by the flat metric connection
d., has constant mean curvature H, in the space-form Sor
iii) the family qbéoaoo, with A € St is a family of isometrical deformations of
Ooo In a fixed space-form, preserving the mean curvature.

In [8], the spectral deformation of isothermic surfaces in R3 (or, equivalently,
in general three-space) classically discovered by Bianchi [2] and, independently,
Calapso [10] is generalized to n-space, for general n, by means of zero curva-
ture representation, as follows (the isothermic spectral deformation). Let 1) be a
non-zero real one-form with values in A A A1), For each ¢ € R, set

df :=d +tn.
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Theorem 9 ([8]). (A, n) is isothermic if and only if d] is a flat connection, for
each t € R. In that case, the transformation A} of A defined by the flat metric
connection d} is still isothermic, for eacht € R.

The isothermic spectral deformation is known [9] to preserve the constancy of
the mean curvature in some three-dimensional space-form, defining then a trans-
formation of CMC surfaces into new ones. In fact [16], given ¢ € R and ¢° :
(R, d7>~) — (R*!,d) an isometry preserving connections, the deformation
¢p°A of A has constant mean curvature H;* in the space-form Sy, for

t
0 = 6 (v + 5 N)

with .
(H)? = (Hoo + 3)°.

Proposition 5 ([17]). The classical CMC spectral deformation of parameter other
than —1 can be obtained as constrained Willmore spectral deformation

A 21
doo =d LN
deo

for A # —1inS! and
1—A
t)\ = IHOOH——A € R.

Furthermore: for all A € St
-1
A} =d;_ +2Hw(1 —ReA)n),

for n2, = A71nl0 + An%l. Hence the classical CMC spectral deformation can
be obtained as composition of isothermic and constrained Willmore spectral defor-
mation and, in the particular case of a minimal surface, the classical CMC spectral
deformation coincides, up to reparametrization, with constrained Willmore spec-
tral deformation corresponding to the zero multiplier.

These spectral deformations of CMC surfaces in three-dimensional space-forms
are, in this way, all closely related and, therefore, closely related to constrained
Willmore Bicklund transformation, cf. Theorem 2.

CMC surfaces in Euclidean three-space enjoy, furthermore, Darboux transforma-
tion as isothermic surfaces or, equivalently [15], Bianchi-Biécklund transformation,
as discussed in [20] (cf. [1]). In fact, in [14], it is shown that, for special choices of
parameters, the transformation of isothermic surfaces in R® classically discovered
by Darboux [12] preserves the constancy of the mean curvature in R, as well as
the mean curvature itself. This is also the case for constrained Willmore Bécklund
transformation, cf. Theorem 7. In [14], a description of Darboux transforma-
tion of constant mean curvature surfaces in Euclidean three-space is presented in
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the quaternionic setting. It is based on the solution of a Riccati equation and it
displays a striking similarity with the Darboux transformation of constrained Will-
more surfaces in four-space defined in [16]. Non-trivial Darboux transformation of
constrained Willmore surfaces can be obtained as a particular case of constrained
Willmore Bicklund transformation, as established in [16]. We believe that isother-
mic Darboux transformation of a CMC surface in Euclidean three-space can be
obtained as a particular case of constrained Willmore Bicklund transformation.
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MONODROMY AND THE BOHR-SOMMERFELD GEOMETRIC
QUANTIZATION*

NICOLA SANSONETTO

Department of Computer Science, Universita di Verona, 37134 Verona, Italy

Abstract. We study the linear part of the monodromy of completely inte-
grable Hamiltonian systems via Bohr-Sommerfeld Geometric Quantization.
We relate monodromy to the ambiguity in the choice of the pre-quantum con-
nection and to the action of the (connected component of the) gauge group.

1. Introduction

In the framework of Bohr-Sommerfeld geometric quantization, we study (quan-
tum) monodromy from different viewpoints. Monodromy, together with the so-
called Chern-Duistermaat class and the Lagrangian class, provides an obstruction
to the global definition of action-angle variables for completely integrable Hamil-
tonian systems [7,9]. Our specific contributions relate monodromy to the freedom
of choice of a pre-quantum connection and to Gy-equivalence of connections (Gg
is the connected component of the identity of the gauge group G of a pre-quantum
line bundle).

The present work is organized as follows. In Section 2 we first review Liouville-
Arnold theorem and the obstructions to existence of global action-angles coordi-
nates and then we quickly review the geometric quantization method. In Section 3
we state and prove the main results of the paper. A short section with conclusions
and perspectives follows.

2. Liouville-Arnold Theorem and Geometric Quantization

In this section we review some basic facts about completely integrable Hamiltonian
systems and geometric quantization. We will also introduce the notation that will
be used throughout the paper.

“Reprinted from J. Geom. Symm. Phys. 20 (2010) 97-106.
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2.1. Completely Integrable Hamiltonian Systems

Let (M,w) be a 2n-dimensional symplectic manifold, and fix h : M — R, a
smooth function on M (the Hamiltonian), with its associated vector field X, ful-
filling ¢y, w = —dh. The triple (M, w, h) is called a Hamiltonian system on }/,
and it is said to be completely integrable in a subset M of M if it admits n mutu-
ally Poisson-commuting first integrals, which are functionally independent almost
everywhere in M, and, restricting the latter, if necessary, the joint level sets of the
first integrals are compact and connected. The Liouville-Arnold Theorem (see e.g.
[1,7]) gives sufficient conditions for the complete integrability of a Hamiltonian
system.

Theorem 1 (Liouville-Arnold). Let (M, w) be a 2n-dimensional symplectic man-
ifold. Let f = (f1,...,fn) : M — R"

® be a surjective submersion (i.e., the energy-momentum mapping)
e have compact and connected fibers f~1(x)

e its components pairwise Poisson-commute, i.e., {f;, f;} = 0 for every
1,7=1,...,n.

Let A be the set of regular values of f. Then for each x € A

1. the fibers f~'(z) of f are diffeomorphic to T"

2. there exists an open neighborhood U, of x in A and a diffeomorphism
(a,a) : f~HU,) — V x T" with V an open subset of R" such that
a=(ay, - ,ay) = ko f for some diffeomorphism . : f(U,) — V

3. the coordinates (a, o) on M are Darboux coordinates, the so-called action-
angles coordinates, that is w = da A do.

From the geometric point of view the Liouville-Arnold Theorem ensures that M
has a T"-bundle structure with Lagrangian fibers and moreover, f ~1(A) is a local
toric principal bundle with structure group T" with Lagrangian fibers, whose struc-
ture group T™ acts in a Hamiltonian way, with momentum map given by the projec-
tion bundle map. Besides the action-angles coordinates are bundle coordinates. We
want to stress that the construction of the toric principal bundle or, equivalently, the
existence of global action-angle coordinates is only local. Liouville-Arnold The-
orem also implies that the base manifold A of the T"-bundle is an integral affine
manifold. Since also the fibers of the bundle carry an affine structure, the transition
functions between two intersecting domain of action-angle coordinates (a, ) and
(a’,a) are

d=Z"Ta+z o =Za+ F(a) mod 27 (1)

where Z € SL,(Z), z € R" and F : a(x (V) N7 (V")) — R" such
that 0,,(ZF); = 0u;(ZF); with 4,5 = 1,...,n. From (1) clearly follows the
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non-uniqueness of the action-angle coordinates which is due to the three arbitrary
choices that must be made in the proof of Liouville-Arnold Theorem - first, the
choice of a basis of the period lattice, second a choice of a local Lagrangian sec-
tion (that is an origin to count the angles) and finally a constant of the integration in
the derivation of the actions. This freedom affects the globalization of the construc-
tion of Liouville-Arnold Theorem. A first answer was given in terms of cocycles
by Nekhoroshev [9] in 1976 and exhaustively and independently by Duistermaat
[7] in 1980, in terms of the sheaf theory.

Theorem 2 ([7]). With the notation of the previous theorem, the torus bundle m :
f~Y(A) — R" is topologically trivial if and only if the monodromy and the
Chern-Duistermaat class of the T"-bundle are trivial. Moreover if the symplectic
form is exact then the existence of global action-angle coordinates is equivalent to
the triviality of the Lagrangian toric fibration.

Remarks 1. e The Chern-Duistermaat class is the Chern class of the bundle
and it describes the obstruction to the existence of a global section of the
bundle (we referee to [2, 12] for a detailed discussion on the Chern class in
the case of completely integrable Hamiltonian systems). In local terms it
means that even if the action variables are globally defined, the function F
in (1) is not.

e In the case of a system with two degrees of freedom possessing an isolated
critical value (of focus-focus type) of the energy-momentum map f, the
Chern-Duistermaat class is trivial since the base manifold A admits a Leray
cover with empty triple intersections. Therefore the only obstruction to the
triviality of the fibration is the monodromy.

The coarsest and most known obstruction to the global existence of the action-
angles coordinates is the monodromy (actually its linear part), which is the one we
are interested in this paper. From the geometric point of view the monodromy is
the obstruction to the global “principality” of the toric bundle. Equivalently, taken
a point z in A and a basis for the first homology group of the fiber 7~1(x) over
x, if we carry it over loops in A, when we arrive again back at z, we have a map
that describes the change of the basis of the first homology of the fibers and it
depends only on the homotopy type of A. Therefore the monodromy is given by
the representation (Duistermaat’s idea)

M :m(A) — Au(H((T", Z)) = SL,.(Z). 2)

From a local point of view, (Nekhoroshev’s idea) the monodromy is the obstruction
to patch together charts on the base manifold A around the singularities. Indeed
the product of » > 1 matrices in SL,(Z) need not to be the identity. Another
characterization of monodromy has been suggested by Weinstein [7], but see [2]
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for a detailed discussion in terms of the holonomy of a suitable flat connection.
Since every Lagrangian fibration admits an affine, flat and torsion free connection
induced by the standard connection of R™ (see [13]), it turns out that the holonomy
of this connection is the monodromy of the bundle. Let us discuss in more detail
this aspect since it will be crucial for the sequel. It will be convenient for us to
study Hamiltonian monodromy from a differential geometric point of view (see
[5,7,13]). Indeed, it is well-known (see [13]) that a Lagrangian fibration admits
an affine, flat, torsion free connection VE! : TAM — VM (the vertical bundle
over M) on the Lagrangian leaves, which is an Ehresmann good connection for
the fibration (i.e., that is every smooth curve on the base has a horizontal lift). The
GL(n, Z)-holonomy representation hol(VFEr) of V' is the monodromy repre-
sentation M(m1(A)) of the T"-bundle over A. Moreover the monodromy repre-
sentation actually takes values in SL{n,Z) upon choosing suitable bases of the
tangent spaces of the base space.

Remarks 2. e In [8] (and independently in [15]) is given a sufficient condi-
tion for the non-triviality of monodromy near isolated focus-focus singu-
larities: more precisely, the (local) monodromy near a topologically stable
focus-focus point (in the interior of the energy-momentum range) is non-
trivial.

e There are various examples of completely integrable Hamiltonian systems
that present monodromy: the spherical pendulum [5,7], the champagne bot-
tle [2], the Lagrange top (see [5] and reference therein).

e Upon quantization of a completely integrable Hamiltonian system, one has
a natural notion of quantum monodromy ., which is equal to (pe)~T
where p. denotes the classical monodromy. (See [10] for a rigorous in-
troduction to quantum monodromy).

’

2.2. Geometric Quantization

Let us now briefly review the basics of geometric quantization. For a complete
account we refer to [3, 14]. Recall that if (M,w) is a real symplectic manifold

of even dimension such that [%w] € H%(M,Z), then the Weil-Kostant Theorem

states that there exists a complex line bundle (L, V, h) over M equipped with
a hermitian metric h and a compatible connection V with curvature Fy = w.
Hence [w] = ¢1(L), the first Chern class of L — M. The connection V is called
a pre-quantum connection and . — M the pre-quantum line bundle. The
different choices of L — M and V are parametrized by the first cohomology
group HY(M,S!) (see e.g. [14]). In more detail given any complex line bundle
L — M, the connections thereon are classified, up to gauge equivalence, by their
curvature (fixing the topological type of the line bundle, via the first Chern class)
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and by their holonomy, specified, in turn, on a basis of (real) homology one-cycles
[vi] for H1 (M, R), of dimension b1, the first Betti number of M - represented, for
instance, by smooth curves passing through a given point. The holonomy is trivial
if M is simply connected. The gauge group G consists, in this case, of all smooth
maps g : M — S! - explicitly, g : 2 — ¢'#(#) obvious notation - and it is not
connected in general, its connected components being parametrized by the degree
of the maps g : M — S!. The connected component (of the identity) of G will be
denoted by Gy, as usual, and will play an important role in what follows.

Given a connection Vg, any other connection is of the form V = Vg + a, with
a € AY(M), (i.e., they build up an affine space modelled on the space of one-forms
Al(M )) and the relation between their respective curvatures is Fy = Fy, + dn
Therefore, the curvatures are the same if and only if 7 is closed. This being the
case, a determines a de Rham cohomology class [a] € H'(M,R), fully recovered
via the period map

H'(M,R) 5 [a] — e R”. 3
(M,R) 5 [d] (/ /) 3)

The gauge group G acts on connections viaV — V +g-dg~! = V —ide. There-
fore, the set of all gauge inequivalent connections (possessing the same curvature)
is clearly given by H! (M, R)/H* (M, Z) and, if M is a torus, then the above set is
again a torus, the Jacobian of M. If the initial connection has zero curvature, then
the above space parametrises flat connections up to gauge equivalence.

Coming back to the specific geometric quantization setting, given a Lagrangian
submanifold A of the symplectic manifold M, the symplectic two-form w van-
ishes upon restriction to A by definition, and any (semi-local) symplectic potential
6 becomes a closed form thereon, defining a (semi-local) connection form per-
taining to the restriction of the pre-quantum connection V, denoted by the same
symbol. The latter is a flat connection and a global covariantly constant section
of the restriction of the pre-quantum line bundle exists if and only if it has trivial
holonomy, that is the Bohr-Sommerfeld condition is fulfilled

1
l—a] ceH (M,Z) e, / 6 € 2n7Z
2 ~

for any closed loop v in A.

A covariantly constant section (which we call WKB-, or BS-wave function) takes
the form

s(m) := hol, (V) - s(mo) = e ® s(mq) )
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with v denoting any path connecting a chosen point mg in A with a generic point
m € A, hol,(V) being the holonomy along 7 of the restriction to A of the pre-
quantum connection V. The r.h.s. of (4) tacitly assumes the choice of a trivializa-
tion of L |[A—— A around mg and m in a corresponding local chart.

Remarks 3. e We stress the fact that the Bohr-Sommerfeld condition forces
us to deal with Gg-equivalence classes (i.e., the degree of the gauge maps
must be zero) in order to avoid trivialities.

e Our definition of WKB-wave function is slightly different from the conven-
tional one (see e.g. [14]). Indeed we do not require square-integrability and
we do not twist the prequantization bundle with Ay (whose smooth sec-
tions consist of the complex n-forms on A), thus neglecting the “amplitude-
squared”.

e There is a version of the Bohr-Sommerfeld condition incorporating the Maslov
class, but we shall not need this refinement in what follows.

We also recall that the pre-quantum connection V allows the construction of the
(Hermitian) pre-quantum observables ()(-) via the formula

with f a smooth function on M. The connection is determined up to a closed

one-form, yielding a corresponding ambiguity in the definition of the quantum
observable Q( f) attached to f. This fact will be exploited in the sequel.

3. Monodromy via Bohr-Sommerfeld Geometric Quantization

In this section we will detect (quantum) monodromy via Bohr-Sommerfeld geo-
metric quantization and analyse how the monodromy itself affects geometric quan-
tization as well in different ways.

Let us consider the geometric quantization of a completely integrable Hamiltonian
system on a symplectic manifold of dimension 2n with vanishing Chern class and
with vanishing affine monodromy, i.e. the vector z and the function F in (1) must
vanish. (This two assumptions are not necessary for the result of our work but will
simplify the exposition and improve the clarity of the results).

3.1. The Pre-quantum Connection

In this section we show that monodromy can be detected exploiting the freedom in
the choice of the pre-quantum connection.

Let us perform geometric quantization in a neighborhood U of a Lagrangian torus
T". Let L denote the pre-quantum line bundle and V the pre-quantum connection.
Moreover let 8 be the (local) connection form.
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Theorem 3 ([11]). A. The monodromy is the holonomy of the so-called BS-
adapted connection induced by the Liouville one-form.

B. The monodromy is the holonomy of the so-called monodromy connection
induced by the vertical one-form, which in coordinates reads 0’ = —a da.

Proof: A. Consider the standard connection V given by the Liouville one-
form # = a da. Since this connection is vertical we call it a BS-adapted
connection. It fulfills Vx, = X, with X, any vector field tangent to a
Lagrangian section. Moreover it is obviously flat along the fibers, since the
restriction of the symplectic form on the fibers vanishes, being the fibers
Lagrangian submanifolds. Given a BS-adapted connection, the action vari-
ables may be recover as follow aj = 21? log hol(V|1n, v%) where 7;’s yield
a basis of one-cycles in T", thus making clear local definition of the actions.
Hence, monodromy may be view as the obstruction to patch together geo-
metric quantization bundles equipped with a local BS-adapted connection.
Note, however, that there is non global obstruction to prequantization by the
Weil-Kostant Theorem.

B. Consider now the connection V' defined by the form §’ = —a da. We call
this connection a monodromy connection, since parallel transport along a
non trivial loop contained in a local Lagrangian section & = ¢, whereupon
it is flat, produces a holonomy hol(V’) = e~22 due to the possible non-
globality of the action variables.

O

3.2. The Gauge Approach

In this section show how to detect monodromy using a gauge-equivalence theoretic
interpretation of the pre-quantum connections.

Theorem 4 ([11]). 1. The monodromy representation (2) can be viewed as a
map M : 7 (A) — G/Go = SL,(Z), which acts transitively on BS, as
expression (5) below shows, and can be read both on wave functions and
observables.

2. Take a BS-adapted connection and perform a change of coordinates ac-
cording with (1), then, remaining in the same Hilbert space, monodromy
eventually induces a change in the quantum action operator.

Proof: 1. Upon enforcing Bohr-Sommerfeld condition take the integral de
Rham class of V := V|rn. i.e., [0] via the period map (3), and denote
by BS the set of all classes [#v].Then

BS =HY(T",Z) = G - [V (5)
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with Vj a fixed flat connection. Thus BS is a G-homogeneous space iso-
morphic to Z", whereupon the connected component G of the gauge group
G acts trivially. Hence G/Gy = SL,(Z) acts freely on BS and provides a
natural (quantum) monodromy representation: M : 71 (A) — G/Gy =
SL,.(Z"™).

2. Let us perform a Darboux change of coordinates on a fixed BS-torus ac-
cording to (1). Then extend the change of coordinates to a canonical trans-
formation in a neighborhood of the fixed torus: @’ = Z Ta and o = Zax
with Z € SL,(Z). Then the Hamiltonian vector fields X, = 0,, for

k = 1,...,n of the action variables change consistently 8,, = Z710,, .
The quantum operator associated with the action ay, is ay, = iX,, = —i0,,,
as can be easily checked a; = —i(X,, — iXakG) + ap = —iX,,, since

18, >_7=1 a; da;; = ay. Therefore after the change of coordinates the quan-

tum operator takes the form @’ = —iZ~79,,. Then, using Nekhoroshev’s
idea, if we glue together 7 > 1 charts surrounding an isolated singularity of
focus-focus type we obtain a non-trivial product Z = II,_, Z,, of matrices
in SL,,(Z). This is equivalent to say that monodromy manifests itself via a
non-trivial SL,,(Z)-representation [y] — Z = Z([y]) of the fundamental
group 71{ A) of the base manifold A.

O

Remark 1. We stress the fact that in spectroscopy, monodromy manifests itself
precisely through a shift of the energy levels, see e.g. [4] and references therein.

4. Conclusions and Perspectives

We have reviewed some general methods to compute the (quantum) monodromy of
completely integrable Hamiltonian systems using the geometric quantization pro-
cedure. In particular, recovering Weinstein idea, we have detected the monodromy
via a choice of the pre-quantum connection and using Nekhoroshev original idea
performing a parallel transport along a nontrivial loop around a singularity.

As future work it would be of interest to try to extend our results to fractional mon-
odromy and to study all Duistermaat singularities in the framework of geometric
quantization.
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EINSTEIN METRICS WITH TWO-DIMENSIONAL KILLING
LEAVES AND THEIR APPLICATIONS IN PHYSICS
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Dipartimento di Fisica “E. R. Caianiello”, Universita degli Studi di Salerno
INFN, Sezione di Napoli, GC Salerno, 84084 Fisciano (Salerno), Italy

Abstract. Solutions of vacuum Einstein’s field equations, for the class of
pseudo-Riemannian four-metrics admitting a non Abelian two dimensional
Lie algebra of Killing fields, are explicitly described. When the distribution
orthogonal to the orbits is completely integrable and the metric is not degen-
erate along the orbits, these solutions are parameterized either by solutions
of a transcendental equation (the tortoise equation), or by solutions of a lin-
ear second order differential equation in two independent variables. Metrics,
corresponding to solutions of the tortoise equation, are characterized as those
that admit a three dimensional Lie algebra of Killing fields with two dimen-
sional leaves. Metrics, corresponding to the case in which the commutator of
the two Killing fields is isotropic, represent nonlinear gravitational waves.

1. Introduction

The aim of this paper is to illustrate some interesting and, in some sense, surprising
physical properties of special solutions of Einstein field equations belonging to the
larger class of Einstein metrics invariant for a non-Abelian Lie algebra of Killing
vector fields generating a two dimensional distribution.

Some decades ago, by using a suitable generalization of the Inverse Scattering
Transform, Belinsky and Sakharov [3] were able to determine four-dimensional
Ricci-flat Lorentzian metrics invariant for an Abelian two dimensional Lie algebra
of Killing vector fields such that the distribution D~ orthogonal to the one, say D,
generated by the Killing fields is transversal to D and Frobenius-integrable.

Thus, as a first step, it has been natural to consider [16] the problem of charac-
terizing all gravitational fields g admitting a Lie algebra G of Killing fields such
that

329
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I the distribution D, generated by vector fields of G, is two dimensional
IT the distribution D+, orthogonal to D is integrable and transversal to D.

As we will see in Sections 4 and 5, the condition of transversality can be relaxed.
This case, when the metric g restricted to any integral (two dimensional) subman-
ifold (Killing leaf) of the distribution D is degenerate, splits naturally into two
sub-cases according to whether the rank of g restricted to Killing leaves is 1 or 0.
Sometimes, in order to distinguish various cases occurring in the sequel, the nota-
tion (G, r) will be used: metrics satisfying the conditions I/ and I will be called
of (G,2) —type, metrics satisfying conditions I and I, except the transversality
condition, will be called of (G,0) —type or of (G, 1) —type according to the rank
of their restriction to Killing leaves.

According to whether the dimension of G is three or two, two qualitatively different
cases can occur. Both of them, however, have in common the important feature
that all manifolds satisfying the assumptions I and /7 are in a sense fibered over
(-complex curves [18].

When dim G = 3, assumption I follows from I and the local structure of this class
of Einstein metrics can be explicitly described. Some well known exact solutions,
e.g. Schwarzschild, belong to this class.

A two dimensional G, is either Abelian (A43) or non-Abelian (G2) and a metric g
satisfying I and II, with G = As or Ga, will be called G -integrable. The study of
As-integrable Einstein metrics goes back to Einstein and Rosen [9]. Recent results
can be found in [7].

The greater rigidity of Go-integrable metrics, for which some partial results can be
found in [1, 8, 10], allows an exhaustive analysis. It will be shown that the ones
of (G, 2) - type are parameterized by solutions of a linear second order differential
equation on the plane which, in its turn, depends linearly on the choice of a (-
harmonic function (see later). Thus, this class of solutions has a bilinear structure
and, as such, admits two superposition laws.

All possible situations, corresponding to a two dimensional Lie algebras of isome-
tries, are described in Table 1 where a non integrable two dimensional distribution
which is part of a three dimensional integrable distribution has been called semi-
integrable and in which the cases indicated with bold letters have been essentially
solved [2,7,16-18].

In Section 1, four dimensional metrics of (Ga, 2) - fype invariant for a non Abelian
two dimensional Lie algebra are characterized from a geometric point of view.
The solutions of corresponding Einstein field equations are explicitly written. The
construction of global solutions is descrided in Section 2 and some examples are
given in Section 3. Sections 4 and 5 are devoted to metrics of (G, 1) - type and
of (G, 0) —type respectively. In Section 6 the case in which the commutator of
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Table 1. Cases indicated with bold characters admit Ricci flat metrics,
the remaining ones are under investigation.

DE r=0 Dt r=1 D+, r=2
Go integrable integrable integrable
G2 | semi-integrable | semi-integrable | semi-integrable
G- | non-integrable | non-integrable | non-integrable
Az integrable integrable integrable
As | semi-integrable | semi-integrable | semi-integrable
Ao | non-integrable | non-integrable | non-integrable

generators of the Lie algebra is of light-type is analyzed from a physical point of
view. Harmonic coordinates are also introduced. Moreover, the wave-like char-
acter of the solutions is checked through the Zel’manov and the Pirani criteria.
The canonical Landau-Lifchitz and the Bel energy-momentum pseudo-tensors are
introduced and a comparison with the linearised theory is performed. Realistic
sources for such gravitational waves are also described. Eventually, the analysis
of the polarization leads to the conclusion that these fields are spin-1 gravitational
waves.

2. Metrics of (G2, 2) - Type

In the following, we will consider four-dimensional manifolds and Greek letters
take values from 1 to 4, the first Latin letters take values from 3 to 4, while i, j
from 1 to 2. Moreover, Kil (g) will denote the Lie algebra of all Killing fields of a
metric g while Killing algebra will denote a sub-algebra of Kil (g). Moreover, an
integral (two dimensional) submanifold of D will be called a Killing leaf, and an
integral (two dimensional) submanifold of D+ orthogonal leaf .

2.1. Geometric Aspects

e Semiadapted coordinates.
Let g be a metric on the space-time M (a connected smooth manifold) and
G- one of its Killing algebras whose generators X, Y satisfy [X,Y] = sY]
s=0,1
The Frobenius distribution D generated by G is two-dimensional and in the
neighborhood of a non singular point a chart (z!, z?, 23, 2*) exists such
that

0 0
da3’ Dzt
From now on such a chart will be called semiadapted (to the Killing fields).

X = Y =exp (8133)
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e [nvariant metrics
It can be easily verified [16, 17] that in a semiadapted chart g has the form

g = gijd:ridzrj + 2 (li + smix4) dz'dz® — Qmidxidx4
+ (52/\ (334)2 — 2spxt + I/) dz?dz® + 2 (,u — 3)\1‘4) da?dz?
+Adztda?, i=1,2,=1,2
with g;;, mi, l;, A, p, v arbitrary functions of (z!, z?).
e Killing leaves.
Condition II allows to construct semi-adapted charts, with new coordinates
(z,y, x>, x%), such that the fields e; = §/0z, ea = 3/0y, belong to D+.
In such a chart, called from now on adapted, the components /;’s and m;’s
vanish.
As it has already said, we will call Killing leaf an integral (two dimensional)
submanifold of D and orthogonal leaf an integral (two dimensional) sub-
manifold of D+. Since D+ is transversal to D, the restriction of g to any
Killing leaf, S, is non-degenerate. Thus, (S, g|¢) is a homogeneous two
dimensional Riemannian manifold. Then, the Gauss curvature K (S) of the

Killing leaves is constant (depending on the leave). In the appropriate chart
(p = 23 g 4= 334|S) one has

glg = (825\(12 — 2spq + 17) dp? + 2 (ﬁ — sXq) dpdqg + quQ

where 5\, 1, U, being the restrictions to S of A, i, v, are constants, and

K (S) = As* (@2 - 20) .

2.2. Einstein Metrics When ¢(Y,Y) # 0

In the considered class of metrics, vacuum Einstein equations, 12, = 0, can be
completely solved [16]. If the Killing field Y is not of light type, i.e., g(Y,Y) # 0,
then in the adapted coordinates (z, y, p, q) the general solution is

g = f(dz* £ dy?) + B°[(s’k>q” — 2slg + m)dp® + 2(I — skq)dpdg + kdg?] (1)
where f = — A4 3%2/2s%k, and (3 (x,y) is a solution of the tortoise equation
B+ Aln|3 - Al =u(z.y)
where A is a constant and the function u is a solution either of the Laplace or the

d’ Alembert equation, Aru = 0, A = 02, +0;,, such that (8pu)* =+ (Byu)? # 0.

The constants k, [, m are constrained by km — [? = T1,k # 0 for Lorentzian
metrics or by km — 2 = £1, k # 0 for Kleinian metrics.
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Ricci flat manifolds of Kleinian signature possess a number of interesting geo-
metrical properties and undoubtedly deserve attention in their own right. Some
topological aspects of these manifolds were studied for the first time in [12], [13]
and then in [11]. In recent years the geometry of these manifolds has seen a re-
vival of interest. In part, this is due to the emergence of some new applications in
physics.

2.2.1. Canonical Form of Metrics When g(Y,Y") # 0

The gauge freedom of the above solution, allowed by the function u, can be locally
eliminated by introducing the coordinates (u,v, p, q), the function v(z, y) being
conjugate to u(z,y), i.e. Arv = 0 and u; = vy, uy = Tv,. In these coordinates
the metric g takes the form

exp *5°
252k 3

with 3 (u) a solution of 3+ Aln |3 — A| = w.

g= (du? £ dv?) + 32[(s*k2q? — 2slqg+m)dp? + 2(1 — skq)dpdq+ kdq?]

2.2.2. Normal Form of Metrics When ¢(Y,Y) # 0

In geographic coordinates (¢, ) along Killing leaves one has
gls = 4% |do? + F (9) dg?|

where F (19) is equal either to sin h?1 or — cosh? 99, depending on the signature of
the metric. Thus, in the normal coordinates, (r = 2s%k3, 7 = v, 1, ), the metric
takes the form (local “Birkhoff’s theorem™)

-1
g=e1 ([1 - é} dr? + [1 E é] d'r2> +er? [d? + F(9)de?| (@)

r T

where £1 = £1, g9 = £1.

The geometric reason for this form is that, when g(Y,Y") # 0, a third Killing field
exists which together with X and Y constitute a basis of s (2,1). The larger sym-
metry implies that the geodesic equations describe a non-commutatively integrable
system [15], and the corresponding geodesic flow projects on the geodesic flow of
the metric restricted to the Killing leaves.

The above local form does not allow, however, to treat properly the singularities
appearing inevitably in global solutions. The metrics (1), although they all are
locally diffeomorphic to (2), play a relevant role in the construction of new global
solutions as described in [17,18].
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2.3. Einstein metrics when ¢(Y,Y) =0

If the Killing field Y is of light type, then the general solution of vacuum Einstein
equations, in the adapted coordinates (z, y, p, q), is given by

g =2f(dz® £ dy®) + pl(w (z,y) — 2sq)dp® + 2dpdq] 3)

where p = A® + B with A, B € R, ® is a non constant harmonic function of x
and y, f = (V®)* /[u]/p, and w (x, y) is solution of the 1 - deformed Laplace
equation

Azw ~+ (0 In|p|) Opw £ (0y In |pu|) Oyw =0
where A4 ( A_) is the Laplace (respectively d’ Alembert) operator in the (x,y) —
plane. Metrics (3) are Lorentzian if the orthogonal leaves are conformally Euclid-
ean, i.e., the positive sign is chosen, and Kleinian if not. Only the Lorentzian case
will be analyzed and these metrics will be called of (G2, 2) - isotropic type.
In the particular case s = 1, f = 1/2 and p = 1, the above (Lorentzian) metrics
are locally diffeomorphic to a subclass of the vacuum Peres solutions [14], that for
later purpose we rewrite in the form

g = dz? + dy? + 2dudv + 2(pzdz + wydy)du. )

The correspondence between (3) and (4) depends on the special choice of the func-
tion ¢(x,y,u) (which, in general, is harmonic in z and y arbitrarily dependent on
u); in our case

r—Z, Yy—u, u—u, v—>v—|—<p(m,y,u)

with h = .
In the case . = const, the u-deformed Laplace equation reduces to the Laplace

equation. For p = 1, in the harmonic coordinates system (z,y, z, t) defined [4],
for |z — t| # 0, by

z = 3[(2¢ —w (x,9)) exp (=p) + exp (p)]
t=5((2g — w(z,y)) exp (=p) — exp (p)]
the Einstein metrics (3) take the particularly simple form
g=2f(dz? £ dy?*) + dz® —dt* + d(w)d (In |z — t]). 5)

This shows that, when w is constant, the Einstein metrics given by equation (5) are
static and, under the further assumption ¢ = V2, they reduce to the Minkowski
one. Moreover, when w is not constant, gravitational fields (5) look like a dis-
turbance propagating at light velocity along the z direction on the Killing leaves
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(integral two dimensional submanifolds of D). They represent, indeed, gravita-
tional waves having the light as one of possible sources [4-6, 19].

3. Global Solutions

Here, we will give a coordinate-free description of previous local Ricci-flat metrics,
so that it becomes clear what variety of different geometries, in fact, is obtained.
We will see that with any of the found solutions a pair, consisting of a (-complex
curve YV and a (-harmonic function u on it, is associated. If two solutions are
equivalent, then the corresponding pairs, say (W, u) and (W' u'), are related by
an invertible ¢-holomorphic map ® : WV, u) — (W', u’) such that ®* (v') = w.
Roughly speaking, the moduli space of the obtained geometries is surjectively
mapped on the moduli space of the pairs WV, u).

Further parameters, distinguishing the metrics we are analyzing, are given below.
Before that, however, it is worth to underline the following common peculiarities
of these metrics

e they have, in the adapted coordinates, a block diagonal form whose upper
block does not depend on the last two coordinates so that orthogonal leaves
are totally geodesic.

o they possess a non trivial Killing field. Geodesic flows, corresponding to
metrics, admitting three dimensional Killing algebras, are non-commutati-
vely integrable. The existence of a non trivial Killing field is obvious from
the description of model solution given in next section. For what concerns
geodesic flows, they are integrated explicitly for model solution in next sec-
tion, and the general result follows from the fact that any solution is a pull-
back of a model one.

Solutions of the Einstein equations previously described manifest an interesting
common feature. Namely, each of them is determined completely by a choice of

1) asolution of the wave, or the Laplace equation,
and either by

2"} a choice of the constant A and one of the branches, for 3 as function of u,
of the tortoise equation

B+Al|f—Al=u (6)
if g(Y,Y) # 0, or by
2") a choice of a solution of one of the two equations
[,u (8; — 3%) + 1y Oy — ,umam] w =0, Op =0 @)

(1 (07 + 02) + g0y + prale| w =0, Dp=0 ®)
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in the case g (Y,Y) = 0.

They have a natural fibered structure with the Killing leaves as fibers. The wave
and Laplace equations, mentioned above in 1), are in fact defined on the two di-
mensional manifold W which parameterizes the Killing leaves. These leaves them-
selves are two dimensional Riemannian manifolds and, as such, are geodesically
complete.

For this reason the problem of the extension of decribed local solutions, is reduced
to that of the extension of the base manifold VV. Such an extension should carry a
geometrical structure that gives an intrinsic sense to the notion of the wave or the
Laplace equation and to equations (7) and (8) on it. A brief description of how this
can be done is the following.

3.1. (—complex Structures

It is known there exist three different isomorphism classes of two dimensional
commutative unitary algebras. They are

C=R[z]/ (2 +1). Ry =R[]/(?), R&R=Rlz]/(22-1)

Elements of this algebra can be represented in the form a + (b, a,b € R, with
¢? = —1,0, or 1, respectively. For a terminological convenience we will call
them ¢- complex numbers. Of course, (-complex numbers for (2 = —1 are just
ordinary complex numbers. Furthermore, we will use the unifying notation R% for
the algebra of {-complex numbers. For instance C = Rg for (2 = —1.

In full parallel with ordinary complex numbers, it is possible to develop a (-
complex analysis by defining ¢- holomorphic functions as R%—valued differen-
tiable functions of the variable z = z 4 (y. Just as in the case of ordinary com-
plex numbers, the function f (z) = u{(z,y) + (v (z,y) is (-holomorphic iff the
(-Cauchy-Riemann conditions hold

Uy = Vy, Uy = CZ’Um. 9)

The compatibility conditions of the above system requires that both u and v satisfy
the ¢- Laplace equation, that is

gy + uyy = 0, ~CPvas + vyy = 0.

Of course, the ¢-Laplace equation reduces for (2 = —1 to the ordinary Laplace
equation, while for (2 = 1 to the wave equation. The operator —(20? + 85 will be
called the ¢- Laplace operator.

In the following a {- complex structure on ¥V will denote an endomorphism J :
D (W) — D (W) of the C*° (W) module D (W) of all vector fields on W, with
J? = (%I, J # 0,1, and vanishing Nijenhuis torsion, i.e., [J, J]FN = 0, where
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[ -]FN denotes for the Frolicher-Nijenhuis bracket. A two dimensional manifold
W supplied with a (—complex structure is called a {- complex curve.
Obviously, for (2 = —1 a (-complex curve is just an ordinary one dimensional
complex manifold (curve).
By using the endomorphism J the (-Laplace equation can be written intrinsically
as
d(J*du) =0

where J* : AL (W) — Al (W) is the adjoint to .J endomorphism of the C>° (W)
module of one forms on W.
Given a two dimensional smooth manifold W, an atlas {(U;, ®;)} on W is called
(-complex iff

) ®;:U; — W, U,isopenin Rg

ii) the transition functions <I>371 o ®; are (-holomorphic.
Two (-complex atlases on VWV are said to be equivalent if their union is again a
(-complex atlas.

A class of (-complex atlases on WV supplies, obviously, W with a (-complex struc-
ture. Conversely, given a (-complex structure on YV there exists a (-complex atlas
on W inducing this structure. Charts of such an atlas will be called ¢- complex
coordinates on the corresponding (- complex curve. In (-complex coordinates the
endomorphism J and its adjoint J* are described by the relations

J (0z) = 0y, J(8y) = (20,
J* (dz) = ¢2dy, J* (dy) = dz.

If ¢? # 0, the functions u and v in the equation (9) are said to be conjugate.

Alternatively, a (-complex curve can be regarded as a two dimensional smooth
manifold supplied with a specific atlas whose transition functions

(2,y) — (&(z,y),n(z, )

satisfy to (-Cauchy-Riemann relations (9).
As it is easy to see, the (-Cauchy-Riemann relations (9) imply that

1

82—C262: 82— CQaQ
Tt a-og (0 - ¢af)

and also

1
(07 = CCOZ) +1anOy—Chiede = 555 |10 (95 —C202) + mydy — Crads] -

§x —C7&,

This shows that equation (7) (respectively, (8)) is well-defined on a (-complex
curve with (? = 1 (respectively, (? = —1). The manifestly intrinsic expression for
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these equations is
d (pJ*dw) = 0.

We will refer to it as the p-deformed (-Laplace equation.

A solution of the (-Laplace equation on W will be called ¢- harmonic. We can see
that in the case ¢? # 0 the notion of conjugate (-harmonic function is well defined
on a (-complex curve. In addition, notice that the metric field d¢? — ¢2dn?, 1 being
(-conjugate with &, is canonically associated with a (-harmonic function £ on W.

A map & : W, — W, connecting two (- complex curves will be called (- holo-
morphic if ¢ o ® is locally  -holomorphic for any local {-holomorphic function ¢
on W,. Obviously, if ® is - holomorphic and u is a {-harmonic function on Ws,
then ®* (u) is (-harmonic on W;.

It is worth noting that the standard (- complex curve is Rg = {(x+Cy)}, and
the standard (-harmonic function on it is given by x, whose conjugated is y. The

pair (Rg, m) is universal in the sense that for a given (-harmonic function « on

a (-complex curve WV there exists a ( -holomorphic map & : W — R% defined
uniquely by the relations ®* () = u and ®* (y) = v, v being conjugated with w.

3.2. Global Properties of Solutions

The above discussion shows that any global solution, that can be obtained by
matching together local solutions desribed in Section 1, is a solution whose base
manifold is a (-complex curve VYV and which corresponds to a -harmonic function

won W.

A solution of Einstein equations corresponding to W C R2, u = x will be called
a model. Notice that there exist various model solutions due to various options in
the choice of parameters appearing in 2’) and 2”) at the beginning of this section.
An important role played by the model solutions is revealed by the property [18]
that

Any solution of the Einstein equation which can be constructed by matching to-
gether local solutions described in Section 1 is the pullback of a model solution
via a (—holomorphic map from a (-complex curve to R 2.

We distinguish between the following two qualitatively different cases:

I metrics admitting a normal three dimensional Killing algebra with two di-
mensional leaves

IT metrics admitting a normal two dimensional Killing algebra that does not
extend to a larger algebra having the same leaves and whose distribution
orthogonal to the leaves is integrable.
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It is worth mentioning that the distribution orthogonal to the Killing leaves is auto-
matically integrable in Case 1 [17]. In Case 1I the two dimensionality of the Killing
leaves is guaranteed by Proposition 2 of [17].

Any Ricci-flat manifold (M, g), we are analyzing, is fibered over a (-complex
curve W

T M — W

whose fibers are the Killing leaves and as such are two dimensional Riemann man-
ifolds of constant Gauss curvature.

Below, we shall call « the Killing fibering and assume that its fibers are connected
and geodesically complete. Therefore, maximal (i.e., non-extendible) Ricci-flat
manifolds, of the class we are analyzing in the paper, are those corresponding to
maximal (i.e., non-extendible) pairs (W, u), where W is a (-complex curve and u
is (-harmonic function on W.

4. Examples

In this Section, we illustrate the previous general results with a few examples using
the fact that any solution can be constructed as the pullback of a model solution
via a (-holomorphic map ® of a (-complex curve W to R%. Recall that in the pair
(W, u), describing the so obtained solution, u = Re(®).

4.1. A Star “Outside” the Universe

The Schwarzschild solution shows a “star” generating a space “around” itself. It
isan s (3)-invariant solution of the vacuum Einstein equations. On the contrary,
its s (2, 1)-analogue shows a “star” generating the space only on “one side of it-
self”. More exactly, the fact that the space in the Schwarzschild universe is formed
by a one-parametric family of “concentric” spheres allows one to give a sense to
the adverb “around”. In the s (2, 1)-case the space is formed by a one-parameter
family of “concentric” hyperboloids. The adjective “concentric” means that the
curves orthogonal to hyperboloids are geodesics and metrically converge to a sin-
gular point. This explains in what sense this singular point generates the space
only on “one side of itself”.

4.2. Kruskal-Szekeres Type Solutions

We describe now a family of solutions which are of the Kruskal-Szekeres type,
namely, that are characterized as being maximal extensions of the local solutions
determined by an affine parametrization of null geodesics, and also by the use of
more than one interval of monotonicity of u (3).
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Consider the (-complex curve

W={E=r+@ Ry <1}, =1

:c+yD
x—yl|)’

and the (-holomorphic function ® : W — Rg

D (2) = Aln (|A]2%) = A (m‘A (2= 4?)| + ¢

Thus, in the pair (W, u) the {-harmonic function u is given by
U = Aln‘A (:1;2 —yQ)‘.
Let us decompose W in the following way
W =U1 Ul
where
U, = {(z::r—i—Cy) eR?; 0<y?—2%< 1}
U ={(z=2+Cy) eRE y? —a? <0}

Consider now the solution defined as the pull back with respect to ®[,, and ®|,,
of the model solutions determined by the following data: in the case of <I>|u1,
G=s5 (3)orG =s (2,1), characterized by F () = sin? ¥ or F () = sin h?J
respectively, e; = e = 1, A > 0, and for 3 (u) the interval |0, A]. In the case of
®|,,, the same data except for 3 (u) which belongs to the interval [A, oo[. The case
F (9) = sin? 9, corresponding to s (3), will give the Kruskal-Szekeres solution.
The case F (19) = sin h?4, corresponding to s (2, 1), will differ from the previous
one in the geometry of the Killing leaves, which will now have a negative constant
Gaussian curvature. The metric g has the following local form

g= 4A3# (dy2 - d:1:2) + 32 [d192 +F(9) d<p2]

with singularity 3 = 0 occurring at y? — 22 = 1.
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POISSON-NIJENHUIS STRUCTURE FOR GENERALIZED
ZAKHAROV-SHABAT SYSTEM IN POLE GAUGE ON THE
LIE ALGEBRA s((3,C)

ALEXANDER B. YANOVSKI

Department of Mathematics & Applied Mathematics, University of Cape Town
7700 Rondebosch, Cape Town, South Africa

Abstract. We consider the recursion operator approach to the soliton equa-
tions related to a s((3, C) generalized Zakharov-Shabat auxiliary linear sys-
tem in pole gauge and show that the recursion operator can be identified with
the dual to a Nijenhuis tensor for a Poisson-Nijenhuis structure on the mani-
fold of potentials.

1. Introduction

The soliton equations or completely integrable equations have been object of in-
tense study even from their discovery. Their most essential property is that they
admit a Lax representation [L, A] = 0. In it L, A are linear operators on 0, 0
depending also on some functions g;(x,t), 1 < i < s (‘potentials’) and a spectral
parameter A. The equation [L, A] = 0 should be satisfied identically in A and in
this way the Lax equation [L, A] = 0 is equivalent to a system of partial differential
equations for g;(x, t). Usually one fixes the linear problem L = 0 (auxiliary lin-
ear problem) and considers all the evolution equations (of certain form of course)
one can obtain changing the operator A. These equations are called nonlinear evo-
lution equations (NLEEs) associated (related) with L (or with the linear system
Ly = 0). There are several different schemes to resolve them but the essential
point is that the Lax representation permits to pass from the original evolution de-
fined by the equation to the evolution of some spectral data related to the problem
L+ = 0 which is linear and consequently easily found. From this data the po-
tentials can be recovered by a process called Inverse Scattering Method, see the
monograph books [4, 6].
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The Generalized Zakharov-Shabat (GZS) system presented below is a paradigm
of auxiliary linear problem. It can be written as follows

Ly = (10, + q(x) = AJ) ¢ = 0. ()

Here g(x) and .J belong to some fixed simple Lie algebra g in some finite dimen-
sional irreducible representation. The element .J is regular, that is the kernel of ad ;
(ady(X) = [J, X], X € g) is the Cartan subalgebra h C g. The potential ¢(z)
belongs to the orthogonal completion h= of h with respect to the Killing form

(X,Y) = tr(adx ady), X, Y eg. 2)

Therefore q(z) = > acA Qo Eo where E,, are the root vectors, A is the root system
of g. The scalar functions ¢, (x) defined on R, are complex valued, smooth and
rapidly vanishing for x — 400, we can assume that ¢, (x) are of Schwartz type.
The functions g, are called also ‘potentials’ and we shall consider g(x) as a point
in an infinite dimensional manifold - the manifold of potentials. The classical
Zakharov-Shabat system is obtained for g = sl(2,C), J = diag(1, —1).

Remark 1. We assume that the basic properties of the semisimple Lie algebras
(real and complex) are known. All definitions and normalizations we use coincide
with those made in [11] and are almost universally accepted.

Remark 2. When Generalized Zakharov-Shabat systems on different algebras are
involved we say that we have Generalized Zakharov-Shabat g-system to underline
it is on the algebra g, but when we work on a fixed algebra its symbol is usually
omitted.

Referring for the details to [10] we simply remind that the adjoint solutions of GZS
operator L are functions of the type w = mXm™! where X is a constant element
from g and m is fundamental solution of Lm = 0. Let us denote by w? and w?
the orthogonal projection (with respect to the Killing form) of w over h=— and b
respectively. If one denotes the orthogonal projector on h= by  then of course
w? = mgw and w? = (1 — 7y)w. One of the most important facts from the theory
of GZS system is that if a suitable set of adjoint solutions (w;(z, \)) is taken then
roughly speaking for A belonging to the spectrum of L the functions w?(z, A) form
a complete sets in the space of potentials. If one expands a potential over the subset
of the adjoint solutions as coefficients one gets the minimal scattering data for L.
Thus passing from the potentials to the scattering data can be considered as a sort
of Fourier transform, called generalized Fourier transform. For this transform the
functions w?(x, A) play the role the exponents play in the usual Fourier transform.
This interpretation was given for the first time in [1] and after that has been de-
veloped in a number of works, see for example the monograph books [6, 12] for
comprehensive study of s[(2, C)-case and bibliography, [2, 10] for more general
situations.
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I. The recursion operators (generating operators, A-operators) are the operators for
which the functions w?(z, \) are eigenfunctions and therefore for the generalized
Fourier transform they play the same role as the differentiation operator plays in
the usual Fourier transform method. Their explicit form can be found in a number
of articles, and books, see for example [6]. For the above reasons the recursion
operators AL (usually one says just recursion operator) play important role in the
theory of soliton equations - it is a theoretical too which apart from explicit so-
lutions can give most of the information about the NLEEs, [6,23]. In particular,
through them can be obtained:

1) The hierarchies of the nonlinear evolution equations solvable through L
i1) The conservation laws for these NLEEs
iii) The hierarchies of Hamiltonian structures for these NLEEs.

There is another important trend in the theory of the recursion operators, it is re-
lated with the study of the recursion operators related to gauge-equivalent systems.
Taking as example the GZS system, assume that we make a gauge transformation
of the type ¢ — 9y 1w = z/; where g 1s a fundamental solution to GZS system
corresponding to A = 0. Then if we denote S = 9 L J4), and the orbit of the
coadjoint representation of the Lie group G corresponding to g by O ; we shall
obtain that 15 is a solution of the following linear problem

Lap = 10,9 — AS) = 0, SeO;. (3)

One can choose different fundamental solutions vy and one will obtain different
behavior for S when z — =oo but usually for 1 is taken the Jost solution that
satisfies lim,_,_ o, 19 = 1. The system (3) is called GZS system in pole gauge in
contrast to the system (1) which is called GZS system in canonical gauge.

The theory of the NLEEs related with the GZS auxiliary problem in canonical
gauge (L) is in direct connection with the theory of the NLEEs related with the
GZS auxiliary problem in pole gauge (L). The NLEEs for both systems are in one-
to-one correspondence and are called gauge-equivalent equations. This beautiful
construction has been discovered for the first time in the famous work of Zakharov
and Takhtadjan, [22] in which there has been proved the gauge-equivalence of
two famous equations - the Heisengerg ferromagnet equation and the nonlinear
Schroédinger equation.

In fact the constructions for the system I and its gauge equivalent L are in complete
analogy. Instead of the fixed Cartan subalgebra j = kerad; we have ‘moving’
Cartan subalgebra hs(z) = keradg(,), ‘moving’ space h3(z) orthogonal (with
respect to the Killing form) to hs(z) (and consequently moving projector wg(z))
etc. We have the corresponding adjoint solutions . = X~ where v is a
solution of E@ = 0 and X is a constant element in g. If we denote by m?® and m?
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the projections of /() on hg(x) and hg(z) respectively then the corresponding
recursion operators are constructed using the fact that the functions m® must be
eigenfunctions for them.

Let us make the following agreement. Though the Cartan subalgebra hg(x), its
orthogonal space hz (z) and the projector 75(z), depend on = we shall not write
it explicitly unless there is a posibility of confusion. So for example in the case
of a function X (z) that is defined on R and such that X(z) € h35(z) we shall
write simply X € h3, for two functions X (z) and Y () we shall write instead of
X{(z) =Y(x) simply X =Y and so on.

For GZS system in pole gauge everything is easily reformulated and the only real
difficulty is to calculate all the quantities that are expressed through ¢ and its de-
rivative through S and its derivatives. There is a clear procedure how to achieve
that goal but in each particular case it requires new calculations. The procedure has
been developed in detail in our PhD thesis [20], outlined in [7, 8] (for the s[(2, C)
case) and in more general cases in [9]. In the case of sl(3) the procedure has been
carried out in detail in [21] - for all these references see also [6].

II. The recursion operators for GZS have also beautiful geometric meaning. It can
be shown that their adjoint operators can be interpreted as Nijenhuis tensors on the
manifolds of ‘potentials’ where the evolution defined by [L, A] = 0 occurs. The
point is that one of characteristic properties of the soliton equations is that they
are not simply Hamiltonian but they are Hamiltonian with respect to two different
compatible Poisson structures. The property is called bi-Hamiltonian property of
the NLEEs solvable through the corresponding linear problem. A Poisson structure
on a manifold M is a field of linear maps m +— P, : T} (M) — T,,(M) such that
for any two smooth functions f, g the expression { f, g}(m) = (dgm, Prn(df)m) is
a Poisson bracket. (Here (, ) is the canonical pairing between 7T}, (M) and T} (M)
- the tangent and cotangent spaces at m € M). Compatible Poisson structures are
called such Poisson structures P, () for which their linear combination a P + bQ
(where a, b are constants) is also a Poisson tensor. It turns out that compatible
Poisson structures give rise to Nijenhuis tensors in case one of it is invertible.

Indeed, if Q is invertible, then one can define N = P o Q! and N is a field of
linear maps m — N, : Tpn(M) — T,,,(M) such that the so called Nijenhuis
bracket [N, N] of N is zero. Then the manifold of potentials is endowed with
a very special geometric structure - Poisson-Nijenhuis (P-N) structure of coupled
Poisson tensor and a Nijenhuis tensor. The properties of the P-N structure are re-
sponsible to the fact that the symmetries of the soliton equations have ‘hereditary’
properties and that there are infinitely many Hamiltonian structures for the corre-
sponding NLEEs. This interpretation was found by F. Magri in his pioneer works
[13,14], one can see all the details of the theory in [3] or in [6], we shall assume
that it is known and shall not describe it here.
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As a matter of fact there is a nice picture of the relation of the P-N structures on
the manifold of potentials for the GZS system in canonical gauge, the manifold of
potentials for the same system in pole gauge and the manifold of the corresponding
Jost solutions, see [6, Ch. 15].

Together with the possibility to calculate the recursion operators for GZS system in
pole gauge through the gauge transformation, there exists another option - to cal-
culate directly the P-N structure on the manifold of potentials using the compatible
Poisson structures and then to find the conjugate to the Nijenhuis tensor. In this
work we shall use it and then shall compare our result with the Recursion Operator
already known in the case s[(3, C), see [21]. Our motivation comes from the fact
that there has been some renewed interest in the GZS system in pole gauge and its
reductions recently, see [5].

2. P-N Structure for GZS Pole Gauge Hierarchy. The s((3, C) Case

Consider the GZS pole gauge s[(3,C)-system in general position - that is the
smooth function S(x) with domain R, see (3), is subject only to the require-
ments that S(z) € Oy and S(x) tends fast enough to some constant values when
x — Foo. For J we shall assume that J = diag(A1, A2, A3), >.; Ay = 0, where
all A; # 0. Of course J must be regular, so that ker ad y coincides with the Cartan
subalgebra of the diagonal matrices in s[(3, C).

Let us consider a more general case then in the above when the algebra g is arbi-
trary simple algebra. Let S(x) is smooth, have values in g and when x — o0
the function S(z) tend fast enough to constant values. These functions of this type
form an infinite dimensional manifold which we shall denote by M. Then it is
reasonable to assume that the tangent space T's(M) at S consists of all the smooth
functions X : R — g vanishing fast enough when = — +o00. We denote that space
by F(g). We shall also assume that the ‘dual space’ T'§(M) is equal to §(g) and if
a € TEHM), X € Tg(M) then

“+0o0

a(X) = (@, X)) = [ (ae), X(@))da @

—0
where () is the Killing form of s[(3, C).

Remark 3. In other words, we identify T¢(M) and Ts(M) using the bi-linear
form ((,)). We do not want to make the definitions more precise, since we will
speak rather about a geometric picture then about precise results. Such results
can be obtained only after profound study of the spectral theory of L and L. In
particular, we put dual space in quotation marks because it is clearly not equal to
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the dual of §(g). We mention however that the term ‘allowed’ functional H means

H
that 0H € Tg(M) ~Tg(M).

)
First we note that the operators
a — P(X) = i0;q, a € Tg(M) 5)
a— Qa) = adg(a), SeM. 6)

It is a fact from the general theory that these Poisson tensors are compatible, [6,
Ch. 15]. In other words P+ () is also a Poisson tensor. Let us also mention that the
tensor () is the canonical Kirillov tensor which acquires the above form because
the algebra is simple and coadjoint and adjoint representation are equivalent.

Now let O be the orbit of the coadjoint representation of GG (the group that cor-
responds to g) passing through J. Let us consider the set of smooth functions
f : R — Oy such that when x — 400 they tend fast enough to constant values.
The set of this functions is denoted by A and clearly can be considered as subman-
ifold of M. If S € N the tangent space T's(\') consists of all smooth functions
X, tending to zero fast enough when 2 — o0 and such that X () € Tg(;)(O)
(Recall that O is a smooth manifold in a classical sense.) We again assume that
TE(N) ~ Ts(N) and that these spaces are identified via ((,)).

The Poisson tensors P and ) can be restricted from M to A. The question how
to restrict a Poisson tensor on submanifold has been considered in detail in the
literature, see for example [17] and [18, 19]. We shall use a simplified version of
the results obtained in these papers, proved in [15,16]. We call it first restriction
theorem.

Theorem 1. Let M be Poisson manifold with Poisson tensor P and McC M be
a submanifold. Let us denote by j the inclusion map of M into M, by Xg(M ),
the subspace of covectors a € T, (M) such that

)
Pp(a) € djm(Tn(M)) = Tm(djn,), m € M (7N

here Im denotes the image and T+ (M), — the set of all covectors at m € M van-
ishing on the subspace Im(dj,,), m € M also called the annihilator of Tm(dj,,)
in T}} (M). Let the following relations hold

XM + T M)y =T5(M),  meM (8)
(M), N TH(M), C ker(Pry). 9)
Then there exists unique Poisson tensor Pon M, j-related with P, that is

Py, =djm o Pm o (d]m)* (10)
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The proof of the theorem is constructive. First, one takes 3 € T (M), then
represents (j*3)., as a1 + ap where a1 € X5 (M), an € TH(M),, and finally
puts P, (8) = Pp(ay) (we identify m and j(m) here).

Restricting the Poisson tensor @ is easy, one readily get that the restriction Q is
given by the same formula as before

a — Qa) = adg(a), SeN, a € TG(N). (11)

The tensor P is a little harder to restrict. The restriction we present below has been
preformed in various works in the simplest case g = sl(2,C), see for example
[16]. We do it now in the case g = s[(3,C), in other words starting from here the
algebra g will be s[(3, C).

First, let us introduce some facts and notation. Since .J is a regular element from
the Cartan subalgebra b then each element S from the orbit O is also regular,
hs(z) = keradg(,) is a Cartan subalgebra of sl(3,C) and we have

51(3,C) = bs(2) & bz (x) (12)
(s1(3, C) is constant, so we do not write s[(3, C)(z)).

If X € Ts(N) = b3 then X(x) € hz(x) (we recall that these spaces depend on
x) but in addition X is smooth and vanishes rapidly when = — +o00. We shall
denote the set of these functions by § (f]JS-) So according to our notation X & hfg'
and X € F(h3). Using the same logic, for X € F(hs) we write adg(X) which
means the function adg(,) X () belonging to F(hs).

We have some facts about J that we introduce in the below propositions. For the
proofs see [21].

Proposition 1. The matrices J and J; = J? — %tr(J 2)1 span the Cartan subalge-
bra fj = kerad .

As a consequence, for S € O the matrices S and S; = S? — %1 span the Cartan
subalgebra hg of s[(3,C). On f)fg' the operator adg is invertible.

Proposition 2. The matrix .J satisfies the equation
1 1
J? = 5CoJ +3C51, Gy = MEAZ4A2 0 Cs=2A+ A3+ 03 (13)

Proposition 3. If S € Oy = {X; X = gJg~!,g € SL(3,C)} then S satisfies
(13), that is S® = %CQS + %031. If in addition for all A;, A; # O the inverse is
also true, that is any S that satisfies the equation S3 = %CQS + %Cgl belongs to
the orbit.

The Killing form of s[(3, C) is equal to 6tr XY and one has the following useful
identities

(J,J) = 6C, (Ji,J,) = C%, (J, J1) = 6Cs. (14)



Poisson-Nijenhuis Structure for Generalized Zakharov-Shabat System in Pole ... 349

The Killing form is invariant with respect to the adjoint action, so we also have
(S,8) =6Cy,  (S1,51)=C3,  (5,81) =6Cs. (15)

The Gram matrix

r= (50 ) = Ge ) 16)

has determinant d; = 6(C3 — 6C%). Of course d; # 0. One can show that

di =120\ — 22)? (A2 — A3)%(A1 — A3)? = 12d. (17)
Therefore
p-1_ 1 ( (J1, 1) —(J, J1>) _ b ( 3 —603) . (18)
12d \ —(J1,J) (J,J) 12d \ —6C3 6C5
Now we are in position to perform the restriction of P on \/. For S € N we have
Xp(N)s = {a; i0za € F(H7)} (19)
T=(N)s = {a; (e X)) =0, X € 3(h5)}- (20)

We see that T--(N)g is the set of smooth functions «(z) such that o € hg tends to
zero fast enough when z — +00. We shall denote this space by §(hg). Naturally,
S(hs) C F(hs)o, where the space F(hg)o consists of all smooth functions X ()
such that X € b and such that X tends to some constant values when = — +oc.
Since S and S span hg, we have that S, S7 € F(hs)o and

§(hs)o = {X; X = a(2)S(z) + b(x)51(z), a(z),b(z) — smooth,

a({z), b(x) tend to some constant values when x — o0}
S(hs) = {X; X =a(z)S(z) +b(z)S1(x), a(z),b(z)— smooth,

2D

lim a(z) = mlirinoo b(z) = 0} (22)

2 %00
Let us consider now X3(N)g N T+ (N)g. It consists of elements
a = a(z)S(z) + b(x)S1(x)
such that i0,« € F(h3). But
i0;a = ia(x)S; + ib(x)(S1)z + ia,S(x) + ib;S1(x)

so we must have (i0,a(z), S(z)) = (i0,a(x), S1(x)) = 0. Now, let us note that
from (15) follows that

(5(z), Sz(z)) = (Si(z), (S1)z(z)) = 0, (S1(2), Se(z)) = —((S1)2(2), Sz(x)).
Next
(S1,58,) = 6tr(S,5?) = 2tr(S?),.
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Using Proposition 3 we get that (S, S;) is proportional to tr S, = 0. In this way
we see that S, (S1), belong to S(f)fg) and therefore a, = b, = 0. Then a and b
can be only identically zero and

XE(N)sNTH(N)g = {0} C ker Ps.
Consider now arbitrary o € T*(N')g. We want to represent it as v + g, where
a; € X*(N)g, ay € TH(N)g. Therefore, ay = A(x)S(x) + B(z)S; with
A(z), B(x) vanishing when x — zoo. In addition, we must have
i0ya = 10yaq + 1A(2) Sz +1B(2)(S1)s +1A2S(x) +1B;S1 (23)
where i0,01 € § (f)fg-) Taking the Killing form with S and S; we get the system
(0za, S(x)) = Ag(J, J) + Bz (J, J1) (24)
(Orcr, S1()) = Ag(J, J1) + Be(J1, 1)
(25)

Am) -1 ( {0z, S(z)) )

=T 26
(Bm (Der, 1 (x)) (20)
where T’ is the Gram matrix introduced earlier. So we obtain

(5)=m"(mmsn) e

and therefore

Remark 4. In all the theory of the recursion operators and their geometric interpre-
tation usually the expressions on which the operator 9! acts are total derivatives.
Thus the same results will be obtained choosing for 8, ! any of the following op-

erators
x x 1 x x
/.dy, /.dy, §(/.dy+/.dy). (28)
—00 400 — OO 4o

However, one uses more frequently the third expression when one writes the cor-
responding Poisson tensors in order to make them explicitly skew-symmetric.

Returning to our task, for « € T*(N)g let us put

a = a1+ ag (29)

al= a — o2 (30)
_ 1 950z, S(2))

am 8507 (G215 s ) b

One checks that arq, ay lie in the spaces X*(N)g, T+ (N)g respectively. Thus the
conditions of the first restriction theorem are fulfilled. Noting that for 5 € TE(N)
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we have dj%3 = wg(3) we find that the restriction P of P on A has the form

P(B) = ing0af3 —1(Sa, (S1)) T (aa;;ll((gjg’;(gn))é ) ' o

The Poisson tensor () is invertible on A/, so one can construct a Nijenhuis N =
P oadg’ tensor which evaluated at X € F(h3) gives

_; - - 1 05 M0x(adg" X), S(x))
N(X) - 171'5835(&(151 X) —1 (Sm’ (Sl)m) r ! (a;l(am(adgsl X), Sl($)> ) (33)

Taking into account that {(adg' (X), S) = (adg'(X),S1) = 0 the above can be
cast into equivalent form

07 adg' X, (S1)z(2))

From the general theory of the compatible Poisson tensors now follows that

N(X):iwsc‘)m(adng)+i(Sm,(Sl)m)T_1( 9; !adg" X)Sq () ) (34)

Theorem 2. The Poisson tensor field Q and the Nijenhuis tensor field N endow
the manifold N with a P-N structure.

The final step is to calculate the dual of the tensor N with respect to the pairing
((,))- A quick calculation, taking into account that adg is skew-symmetric with
respect to the Killing form, gives for a € F(hs)

or equivalently
N*(a) = iad§1 ['KSama — (Sz, (S1)z) T (ai—%t?ié?éf?i% ):| . (30)

But if we write the above in components we shall see that these are the recursion
operators A+ for the GZS system in pole gauge, see [21]. Thus our results confirm
the idea that the recursion operators and the Nijenhuis tensors are dual objects.

3. Conclusion

In this article we have found the P-N structure on the manifold of potentials A
for the GZS system in pole gauge on the algebra sl(3,C) obtaining geometric
interpretation of the recursion operators.
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