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Abstract. The Baily-Borel compactification B/T" of an arithmetic ball quo-
tient admits projective embeddings by I'-modular forms of sufficiently large
weight. We are interested in the target and the rank of the projective map @,
determined by I'-modular forms of weight one. This paper concentrates on
the finite H-Galois quotients B/I"; of a specific B/ I’(_6i8), birational to an
abelian surface A_;. Any compactification of B/I" has non-positive Ko-

daira dimension. The rational maps ®¥ of ﬁfi{ are studied by means of
the H -invariant abelian functions on 4 ;.
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1. Introduction

The modular forms of sufficiently large weight are known to provide projective
embeddings of the arithmetic quotients of the two-ball

B = {z = (21, 20) € C%; |z1|* + | 2|® < 1} ~ SU(2,1)/S(Us x Uy).

The present work studies the projective maps, given by the modular forms of
weight one on certain Baily-Borel compactifications I@EI of Kodaira dimension
/{(m) < 0. More precisely, we start with a fixed smooth Picard modular
surface A’ | = (B/F(_tsis))/ with abelian minimal model A_, = F_1 x E_q,
FE_1 = C/Z + Zi. Any automorphism group of A’ |, preserving the toroidal com-
pactifying divisor 77 = (B / F(_Gig))/\ (IEB / I‘(_Gf)) acts on A_ and lifts to a ball lat-
tice I'yy, normalizing 1"(_618). The ball quotient compactification A’ |/H = B/Ty
is birational to A_;/H. We study the T g-modular forms [Ty, 1] of weight one

by realizing them as H -invariants of [F(_Gig), 1]. That allows to transfer [Ty, 1] to
the H-invariant abelian functions, in order to determine dim¢[I" g, 1] and the tran-
scendence dimension of the graded C-algebra, generated by [I" g, 1]. The last one

is exactly the rank of the projective map ® : B/T py —=> P([T'y, 1]).

2. The Transfer of Modular Forms to Meromorphic Functions is
Inherited by the Finite Galois Quotients

Definition 1. Let T' < SU(2, 1) be a lattice, i.e., a discrete subgroup, whose quo-
tient SU(2,1)/T has finite invariant measure. A T-modular form of weight n is a
holomorphic function 6 : B — C with transformation law

7(0)(2) = 6(7(2)) = [det Jac(7)]7"6(2).  ~v€T, z€B.

Bearing in mind that a biholomorphism 7 € Aut(B) acts on a differential form
dz1 Adzy of top degree as a multiplication by the Jacobian determinant det Jac(~y),
one constructs the linear isomorphism

jn : o] — H°(B, (28)°™)"

with the T'-invariant holomorphic sections of the canonical bundle QJQB of B. Thus,
the graded C-algebra of the I'-modular forms can be viewed as the tensor algebra
of the T'-invariant volume forms on B. For any 4,2 € [I', n] the quotient g—; is a
correctly defined holomorphic function on B/T'. In such a way, [I', n] and j, [T, n]
determine a projective map

3, :B/T — P([T,n]) = P(j,[T,n]).
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The T'-cusps OrB/T" are of complex co-dimension two, so that ®,, extends to the
Baily-Borel compactification

o, : B/T — P([T,n]).

If the lattice I' < SUsy; is torsion-free then the toroidal compactification X’ =
(B/T) is a smooth surface. Denote by p : X’ = (B/T) — X = IB?/\F the
contraction of the irreducible components 7 of the toroidal compactifying divisor
T’ to the T-cusps x; € OrB/T. The tensor product Q%,(1”) of the canonical
bundle Q%, of X’ with the holomorphic line bundle O(T"), associated with the
toroidal compactifying divisor 7" is the logarithmic canonical bundle of X'. In [2]
Hemperly has observes that

HY(X', Q3%.(T)®™) = p*jn[T,n] ~ [T, n].
Let Ky be the canonical divisor of X’
ﬁX/(nKX/ +’I’LTI) ={f€ (X,), (f)+’}’LKX/—|—’I’LTIZO}

be the linear system of the divisor n(K x» + 71”) and s be a global meromorphic
section of Q% (T”). Then

s Lx/(nKxr +nT') — HOX', Q% (T")%")

is a C-linear isomorphism. Let £ : X’ — X be the blow-down of the (—1)-
curves on X’ = (B/T)’ to its minimal model X. The Kobayashi hyperbolicity of
B requires X’ to be the blow-up of X at the singular locus 7578 of T' = £(T7).
The canonical divisor Ky = £*Kx + L is the sum of the pull-back of Kx with
the exceptional divisor L of £. The birational map £ induces an isomorphism £* :

(X) — (X”) of the meromorphic function fields. In order to translate the
condition £*(f) + nKx, +nT’ > 0 in terms of f € (X), let us recall the
notion of a multiplicity of a divisor D C X atapointp € X. If D = > n;D; is

(3
the decomposition of D into irreducible components then m, (D) = >- nymy(D;),

where
y_J1 forpeD;
my(Di) = {O forp & D;.
LetL= . L(p)forL{p) =& Yp)and f € (X). The condition £*( f) +

pETsing
nL > Ois equivalent to m,(f)+n > 0 forall p € T8, Thus, Lx/(nK x: +nT")
turns to be the pull-back of the subspace

Lx(nKx +nT,nT"8)

={fe  (X);(f) +nKx +nT >0, my(f)+n >0, pe T}
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of the linear system £ x(nKx + nT'). The C-linear isomorphism
Trans, := (&) 's®"j, : [[,n] — Lx(nKx + nT,nT5"8)

introduced by Holzapfel in [3], is called transfer of modular forms.
Bearing in mind Hemperly’s result H°(X’, Q%,(T")*™) = p*j1[T',n] for a fixed
point free I', we refer to

& :B/Tyr — B([Tr,n]) = P(ju[Trr, )

as the n-th logarithmic-canonical map of B /T, regardless of the ramifications of
B—B/Ty.

The next lemma explains the transfer of modular forms on finite Galois quotients
B/T'y of B/T' to meromorphic functions on X/H. In general, the toroidal com-
pactification X, = (B/Ty)" is a normal surface. The logarithmic-canonical bun-
dle is not defined on a singular X, but there is always a logarithmic-canonical
Weil divisor on X,.

Lemma 1. Let A’ = (B/T) be a neat toroidal compactification with an abelian
minimal model A and H be a subgroup of G = Aut(A,T) = Aut(A’, T"). Then
i) the transfer Trans,, := (£*)"'s®(=")j, : [[,n] — Lo(nT,nT58) of
I'-modular forms to abelian functions induces a linear isomorphism

Trans? : [Ty, n] — La(nT, nT518)H

of Ty-modular forms with rational functions on A/ H, called also a transfer
i1) the projective maps

(I)f : m ------ > P([T'y,nl), \Ifﬁ : AJ/H > P(L 4(nT, nTSing)H)
coincide on an open Zariski dense subset.

Proof: i) Note that j,[Tr,n] = j,[T,n]". The inclusion j, [Tz, n] C ju[T,n]
follows fromI' < T'y. fI'y = u;f:mr is the coset decomposition of I' ; modulo
I, then H = {h; = v,I'; 1 < i < n}. AT-modular form w € j,[T',n|is T'gy-
modular exactly when it is invariant under all v;, which amounts to the invariance
under all A;.

One needs a global meromorphic G-invariant section s of Q%,(7”), in order to
obtain a linear isomorphism

(5*)—13®(—n) = Transfj;l 2T, n| = jn[T,n]H — La(nT, nTsing)H.

The global meromorphic sections of the logarithmic-canonical line bundle Q2, (7")
are in a bijective correspondence with the families (f4, Uy )acs of local meromor-
phic defining equations f, : U, — C of the logarithmic-canonical divisor L + T".
We construct local meromorphic G-invariant equations g, : V, — C of 7" and
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pull-back t0 (fo = €*ga,Ua = £ HVa))aes. Let F4 : A = C2 — A be the uni-
versal covering map of A. Then for any [ point p € A choose a lifting p € F'y L(p)

and a sufficiently small neighborhood W of p p on A, which is contained in the in-
terior of a 7 (A)-fundamental domain on A, centered at p. The G-invariant open
neighborhood W = ﬂgeggﬁ} of 7 on A intersects Fgl(T) in lines with local
equations [;(u,v) = a;(p)u + bj(p)v + ¢;(p) = 0. The holomorphic function
g(u,v) = [T TI{l;(u,v)) on W is G-invariant and can be viewed as a G-invariant

local defining equation of 77 on V' = F4(W). Note that F4 is locally biholo-

morphic, so that V' C A is an open subset, after an eventual shrinking of W. The
family (g, V')pe 4 of local G-invariant defining equations of 7" pullbacks to a family
(f =€*g,U = £ 1(V))pea of local G-invariant sections of Q% (7”).
ii) Towards the coincidence ¥/ (A\T)/H] = <I>71f|[(]B/FH)\(L/H)], let us fix a basis
{wi; 1 < 1 < d} of j,[T'y,n| and apply i), in order to conclude that the set
{fi = Trans j~N(w;); 1 <i < d} is a basis of £ 4(nT, nT5"8)H  Tensoring by
s®(=1) does not alter the ratios £& ot The isomorphism ¢ : (A) — (A") is
identical on (A \ T')/H. O

3. Preliminaries

In order to specify A’ | = (]B / I‘(_ﬁig))/ let us note that the blow-down ¢ : A” | —
A_; of the (—1)-curves maps 7" to a divisor 7' = £(T"”) with smooth elliptic irre-
ducible components 7;. Such 7" are called multi-elliptic divisors. Any irreducible
component T; of T lifts to a w1 (A_1)-orbit of complex lines on the universal cover

A’ | = C2. That allows to represent
T; = {(u(mod Z + Zi),v(mod Z + Zi)); aju + bjv 4+ ¢; = 0}.

If T} is defined over the field Q(i) of Gauss numbers, there is no loss of generality
in assuming a;, b; € Z[i| to be Gaussian integers.

Theorem 1 (Holzapfel [4]). Let A_1 = E_1 X E_1 be the Cartesian square of the
elliptic curve E_y = C/Z+ 7Zi, wy = %, wo = w1, w3 = wy + weo be half-periods,

Qo = 0(mod Z + Zi), Q1 =wi(mod Z + Zi), Q2 =iQ1, Q3= Q1+ Q2
be the two-torsion points on E_1, Qi; = (Q4, Q) € AQ__ltor and

Ty = {(u(mod Z + Zi),v(mod Z + Zi); u —i*v = 0} with 1<k <4,
Tyim = {u(mod Z + Zi),v(mod Z + Zi); u — wy,, =0} for 1 <m <2 and
Trm = {u(mod Z + Zi), v(mod Z + Zi); v — wy, = 0} for 1 <m < 2.
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: (6,8) 5108
Then the blow-up of A_1 at the singular locus (T_1 ) = Qoo + Q33 +
2 2 8
Zl Zl Qij of the multi-elliptic divisor T £61’8) = 21 T; is a neat toroidal ball quo-
1= J: =

/
tient compactification A’ | = (B/ F(_ﬁis)> .

Theorem 2 (Kasparian and Kotzev [6]). The group G_1 = Aut{A_q, T£61’8)) =
Awt(A”_ |, T") of order 64 is generated by the translation T33 with Q33, the multi-

plications
i0 : 10
I= (O 1) , respectively J = (0 i)

with i € Z[i] on the first, respectively, the second factor E_1 of A_1 and the trans-
position
01
'=(10)

Throughout, we use the notations from Theorem 1 and Theorem 2, without men-
tioning this explicitly. With a slight abuse of notation, we speak of Kodaira-
Enriques classification type, irregularity and geometric genus of A_1/H, H <
G _1, referring actually to a smooth minimal model Y of A_;/H.

of these factors.

Theorem 3 (Kasparian and Nikolova [7]). Let
£:G 1 — GLy(Z[]) = {g € Zlilaxss det(g) € Z[i]* = (i)}
be the homomorphism, associating to g € G _1 its linear part L and
Li(G-1) ={g € G_1;k(L(g) — I2) = 1}

= (T I* T JF TR I 0<n <1, 1<k<3, 0<1<3)
Then

i) A_1/H is an abelian surface for H = (T33)
iiy A_1/H is a hyperelliptic surface for H = (1331%) or H = (133.J%)
iiiy A_1/H is a ruled surface with an elliptic base for

H=1(h), heLi(G_1)\{rs3I? m33J%} or H={133,ho), ho € L{L1(G_1))
iv) A_1/H is a K3 surface for (135) # H < K = kerdet L, where
K= {mi "% 51" 7*%9;0<n<1, 0<k<3}
v) A_1/H is an Enriques surface for H = (I*>J?, 133I?%)
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vi) A_1/H is a rational surface for
(hY < H, h € {msIJ, PhI*J, mis1J%;0 <n <1} or (rhI*°J* h1) <H

hy € {I?mJ2=2m pip rm g Iyl 0<m <1, 0<1<3}, 0<n<1.

The following lemma specifies some known properties of Weierstrass o-function
over Gaussian integers Z[i].

+3(

>
>

2
Lemma2. Leto(z) =2z [ (1-3%) )" be the Weierstrass o-function,

AeZ[I\{0}
associated with the lattice Z[i] of C. Then

i) o(if2) =i*o(z), 2ze€C, 0<k<3
ii) Uff(l_A) = 6()\)6_7&2_%')\'2, ze€C, \E€LZ[i, where

)
) = {—1 z:f)\ eZ[i]_\m[i]
if A€ 2ZJi.

Proof: 1) follows from

1 (1 - ﬁ;) S (%) - (1 - 3) §+%(§)2.

AEZ[\{0} p=Z€Z[\{0}

ii) According to Lang’s book [8]
o(z+ A)

o(2)
where 7 : Z[i] — C is the homomorphism of Z-modules, related to Weierstrass
¢-function ((z) = %(f% by the identity ((z + \) = ({(z) + n(A). It suffices

= 5(/\)6”0‘)(”%), z € C, A € Z[j]

to establish that n{\) = —xwA, A € Z[i]. Recall from [8] Legendre’s equality
n(i) — in(1) = 2xi, in order to derive
A+ A A=A ~ _
a0 = 2220 + 22200 = ) £ M- =X Ae i)

Combining with homogeneity n(i\) = 1n()\), A € Z[i] (cf.[8]), one obtains

(n(1) + m)iX + wiX = niX) = —in(\) = —(n(1) + 7)iX + 7N, X € Z[i].
Therefore n(1) = — and n(\) = —w\, A € Z[i]. O
Corollary 1.

U(Z + wm) _ _62(—1)mwm7rz
o{z — wm)
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0(2 + wm + 2ew3_m)
o{z — wm)

. = —_1ym+1 _1\ym
:(—1)m+1616 +2(=1) Ewg—mT2+2(—1)"wm T2

0(2 — Wm + 26w3_pm)

— (_1)ymtlg —%+2(—1)m+16w3_m7rz.
= P (=1)" " cie

for the half-periods wi = %, wo = iwy and e = £1.

Corollary 2.

U(Z + 25wm) _ e—wz+(—1)m2e7rwmz
o{z —1)

J(Z + (_l)mwm + 5(_1)mw3—m) _ _i(—l)m (I;E) eZwmvrz-i-(l—a)wg_mﬂ'z
oz — (=1)"wp, + (—=1)"ws_m)

for the half-periods w, = %, wo = lwy and e = +1.

Corollary 1 and Corollary 2 follow from Lemma 2 ii) and &, = (=1)""1w,,,

2 _ (=pm+!
U.)m = ) .

N

In [5] the map & : B /I‘(_Gig) — IP’([F(_ﬁis), 1]) is shown to be a regular embedding.
This is structi is of £ — (6:8) (p(6.8))%"8
is is done by constructing a C-basisof £ = L4_, [T277, (T_1 ) , con-

sisting of binary parallel or triangular o-quotients. An abelian function f, 3 € £
is binary parallel if the pole divisor (fo3)cc = Tw + T consists of two dis-
joint smooth elliptic curves T,, and T3. A o-quotient f; , 3 € L is triangular if
T,NT,NTg = () and any two of T;, T,, and T} intersect in a single point.

Theorem 4 (Kasparian and Kotzev [5]). Let

o(z—1)o(z + w; —wo) o{u —iv+ w3)

212(2’) = El =

o(z —wi)o(z —ws) o(u — iv)
_o(u+v+ws) _ o(u+iv+ ws) _o{u—v+uws)
2 = olu+v) >3 = o(u+iv) 4 = o(u —v)
_o(u—wy) o(u—wi) _ o(v—wy) _ o(v — wl).
>5 = o(u—wy)’ >6 = o(u—wy)’ 7 = o(v—wy)’ > o(v — ws)
Then

V-1
o-quotients fss(u,v) = Xi2(u), frs(u,v) = X12(v) and the triangular

i) the space L = Lj_, (T\(/(iiil), (T(ﬁ’s))smg) contains the binary parallel
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o-quotients

fisr =ie 27U 555y, fies = — e T THTTUITIVS $6Yg
fasr = — e TTTUETUITUS R S, fags = — deT 7 TSN N

fass =TT TR, BN, foor =TT TS B Yy

fass = — 1072 TR B B, fagr =ie” 2 TTHITUS SR,

ii) a C-basis of L is
fo =1, f1:= fis7, f2 := foss, f3 1= f368, fa 1= faer, f5 := f56, f6 := frs.

4. Technical Preparation

The group G_; = Aut (A_l, T£61’8)> permutes the eight irreducible components

of T£61’8) and the I’(_ﬁig) -cusps. For any subgroup H of G_1, the I';y-cusps are the
H-orbits of ar(ﬁig)B T8 — (1 <i <8}

Lemma 3. If ¢ : G_1 — Sg(k1,...,ks) is the natural representation of G_1 =
Aut (A_l, T£61’8)> in the symmetric group of the F@f)—cusps, then

©(733) = (K5, k6) (K7, Kg), o(I) = (K1, K4, k3, K2) (K5, K6)
o(J) = (K1, k2, k3, ka) (K7, k8),  @(0) = (K1, k3) (K5, K7) (K6, Ks)-

Proof: The F(_6i8)-cusps k; are obtained by contraction of the proper transforms

T of T; under the blow-up of A_; at (T£61’8)>Smg. Therefore the representations
of G_; in the permutation groups of {T;; 1 < i < 8}, {T/;1 < ¢ < 8} and
{ki; 1 <1 < 8} coincide.

According to 733(u — i*v) = u — i*v + (1 — F)ws = u — i*v(mod Z + Zi),
the translation 733 acts identically on 17, 1>, 13, T4. Further, 733(u — wp,) =

U+ wW3_m = u — wy_m(mod Z + Zi) reveals the permutation (75, Tg)(17, Tx) of

the last four components of 7’ (61’8).

k k-1

v = i(u — i*"'v), the automorphism
7(6:8)
-1 -

Due to the identity [(u — i*v) = iu — i
I induces the permutation (77, 7y, T3, T3) of the first four components of
Further, I(u — w,,) = i(u = w3—_.,) reveals that I permutes 75 with 7. Note that
I acts identically on v and fixes 1%, T5.

In a similar vein, J(u — i*v) = u — ¥, J(v — wn) = (v £ iws_,,) de-
termine that o(J) = (K1, K2, k3, 4)(k7, kg). According to O(u — iFv) = v —
i*u = —if(u — i~%v) and O(u — wy,) = v — wy,, one concludes that ¢(#)

(K1, k3)(Ks, K7) (K6, K8)- 5
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The following lemma incorporates several arguments, which will be applied re-
peatedly towards determination of the target P([I", 1]) and the rank of the loga-
rithmic canonical map ®%.

Lemma 4. In the notations from Theorem 4, for an arbitrary subgroup H of
G_1 = Aut (A_l,T£61’8)) andany f € L = L4_, <T£61’8), (Tﬁﬁl’g))smg), let
Ru(f) = > h(f) be the value of Reynolds operator Ry of H on f.

heH

i) The space LT of the H-invariants of L is spanned by {Ry (fi); 0 < i < 6}.

8
11) Let T; C (RH(fi,al,ﬂl))OO’(RH(fz',OtQ,ﬂQ))OO C OrbH(T’Z) + Z5Ta fOI'
o=
somel <1<4,5<a; <6,7<[3; <8 Then
RH(fi,aQ,ﬂz) € SpanC(l’ RH(.f56)a RH(f78)a RH(fi,Otlﬁl))-
i) Let Ky, .., Ri, with1 < iy <... <1y < 4 be different T g-cusps

8
T;, C (Ru(fi,))oo € Otby(Ty,) + > Ta forall 1<j<p

a=5
] H
and B be a C-basis of LI = La_, ( > Ta) . Then the set
a=5

{Ru(fija;8):1<j<ptUB
consists of linearly independent invariants over C.
iv) If R; = RH(fj,aj,,Gj) # const, Rj|l; = oo and R; = Ry(fia,p) has
Ri|TJ. =% const then for any subgroup H, of H the projective maps
vHo . X/H, —> P(LHe),  ®He . B/Tp —> P(ji[Ty,, 1])
are of rank tk®He = rk¥He = 2.
v) If the group H' is obtained from the group H by replacing all 7351 kJlom ¢
H with 55 I' J*0™, then the spaces of modular forms j1[U g, 1] ~ j1[T g, 1]

are isomorphic and the logarithmic-canonical maps have equal rank rk®H =
k@,

Proof: i) By Theorem 4 ii), £ = Spanc(f;; 0 < 6). Therefore any f € L is a
6
C-linear combination f = }_ ¢; f;. Due to H-invariance of f and the linearity of
i=0
the representation of H in Aut(L), Reynolds operator

6
|H|f = Ru(f) =Y _ciRu(f).
=0
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H
ii) Let ws € 51 [I‘(_ﬁis), 1] are the modular forms, which transfer to Ry ( f; o, 3. )-
1 < s < 2. Since wy (k;) # 0, there exists ¢; € C, such that w! = wy — c;w; van-

8
ishes at k,. By the assumption (R (fi n. 8.))oc € Orbp(T;)+ > Th, the transfer

a=H
F; € LM of w! belongs to Spang(1, fs6, fr3)" = Spanc(1, Ry (fs6), R (f7s))-
iii) As far as the transfer Transi’ : j;[Tj,1] — £ is a C-linear isomorphism, it
suffices to establish the linear independence of the corresponding modular forms

P
{wi; 5 1 < j < p} U{wy; b € B}. Evaluating the C-linear combination 37 ¢; w;;

7j=1
+ > cpwy = 0 at K;y, ..., K;,, one obtains ¢;; = 0, according to w;.(k;,) = o3
beB
and wb(/%ij) =0,be B,1 <j<p.Then > wy = 0requires the vanishing of all

beB
¢y, due to the linear independence of B.

iv) If H, is a subgroup of H then £ is a subspace of £, j; [Ty, 1] is a subspace
of j1[Tw,,1] and U7 = prewHe ®H = prl'a®Ho for the projections prt :
P(LH) — P(LH), pr''# : P(j1[Ty,,1]) — P(j1[Tx, 1]). That is why, it suffices
to justify that tk®” = rk¥U¥ = 2 is maximal. Assume the opposite and consider
Ri,Rj : X/H > P!. The commutative diagram

R;,R;
X/H (e 1) P! x P!

has surjective R, as far as R; # const. If the image C' = (R;,R;)(X/H) is
a curve, then the projection pr, : C' — P! has only finite fibers. In particular,
pry 1 (00) = Ri((R;)e0) x00 2 R;(1;) x 0o consists of finitely many points. How-
ever, R;,(1}) = P! as an image of the non-constant elliptic function R;: T > P!
The contradiction implies that dim¢ C' = 2 and tk¥# = 2.

v) The transposition of the holomorphic coordinates (u,v) € C? affects non-
trivially the constructed o-quotients. However, one can replace the equations
u— ik = 0 of T, 1 < kE < 4bywv — i~%u = 0 and repeat the above con-
siderations with interchanged u,v. The dimension of j1[I'j7, 1] and the rank of
®H are invariant under the transposition of the global holomorphic coordinates on
A_ =C2 O

With a slight abuse of notation, we write g{f) instead of ¢*(f), for g € G_1,
6,8 6,8) Sin8
feL=~>Ly (Tﬁl ) (1Y) )
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Lemma 5. The generators 33,1, J,0 of G_1 act on the binary parallel and trian-
gular o-quotients from Corollary 4 as follows

3733(f56) = — fs6,
733(f157) = — ie7 figs,
733(f368) = i€ fas7,
733(fa58) = — fae7,
I(f56) = — ifss,
I(f157) = — ifaer,
I(f363) = — 2 fass,
I(f158) = — if36s,
J(f56) =156
J(fis7) = —1e? fass,
J(f368) =fas67,
J(fas8) = f157,
0(fs6) =frs,
0(fis7) = — €2 f3s7,
0(f363) = — €2 figa,
0(fass) = faer,

733(f78) = — fr8

733(f168) = 172 fi57,
733(f258) = faer,

) =

) =
733(f167) = — fass

)

) =

I(f73) =frs

I(fi68) = — €72 fuss,
I(f258) = 1fi6s,
I(fas7) = — €2 f357
J(frs) = —ifrs
J(f168) =fa67,
J(f258) =[357,
J(fae7) = ie? figs
0(frs) =156
0(f168) = — e 2 faes,
0(f258) =f267,

0(fa67) = fa58.

733(f357) = — €77 f3es

733(f267) = fa58

I(f357) =
I(f267)

ifoe7

=—e 2 fi57

J(f357) =i 2 fusg
J(f267) = — 1€72 fas

0(fs57) = — e 2 fisy
0( f267) = f258

Proof: Making use of Lemma 2 and Corollary 2, one computes that

7’330’(’11 - 1) = —€

T330(u —wy) =

Tu+mTin

Mo (u — wy),

330 (U — wy) =
=ieT 73, 733(%4) = 4

a(u +w; —wy), T330(U+w —ws) = e Fo(u—1)

—e ™o(u —wy)

7ru+7r1ua(u o l) IJ(U + Wi — W2) = —eﬂ'ua(u + w1 — wg)

=io(u — w)

o le—7r1’u,—7rv )y

le—7r1’u,-|-7rv 23

733(Z1) = —ie” 2%y, 733(22) =e "%y, 733(%3)
733(55) = e” VTS, 733(%6) = €T TS
733(27) = e TS, T33(Xs) = ™S,
Io(u—1) =
Ia(u —wy) = —1e™o(u — wa), To(u—ws)
(%)) = ie”™u ™0y, - (%) =
I(3) = ™™™y, (%) =
I(S5) = —e™™U%g,  I(Xg) = —™%5, I(5;) =

Jo(v+ p) = Io(u+ p)lu=o,

N7, I(Xg) = X

peC
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V() = Sa IS S I -F.  JE) -
J(Z5) =55, J(Z6) =6, J(E7) =—e"%g, J(Tg) =—e"'Ty
Oo(u+p)=oc(v+p), peC
O(S1) = —ie™ TS, 0(,) = 5,
0(%;3) = ie ™Y G(5,) = —eTuTum vty
0(Z5) = L7, (%) =%s, 0(Z7) =%5 0(Zs) = Ze.
O

The following lemma is an immediate consequence of Lemma 2 and Corollary 1.

Lemma 6.
fisr) _ -z Sies) _ x fesp _ o faer) _ x
31 Imy ’ 3 Imy ’ o Ty ’ S ITy
f357 —x  f3es _=  fa58 . _x  fae7 _r
= =e", —=—| =ieT2, —| =-—-leT2, —=—| =ie 2
23 T3 23 T3 24 Ty 24 Ty
fi57 +1e? f357 fasg —ie” 2 fasg
=0, = 0.
25 T5 P Ts
Lemma 7.

[(f157 — i€ figs) + ¢(fas7 — €72 fags)llr, = te™7 ™™ (1 + ce_%>

o((1+i)v +ws) le(l-l-i)wv o(v — wy)?
o((1 +i)v)

is non-constant for all ¢ € C \ {—e7 }.

4 o~ (It o(v— W1)2
o(v —wy)? o(v —wy)?

Proof: Note that
F() = [(f157 — ie? fies) + c(fas7 — ie7 2 fsgs)]|my
= [ie_%_mﬁl(—v,v) — ce_TrJrWi”Eg(—v,v)]
X [Z5(—v)Z7(v) + Xe(—v)Xg(v)]

o((1+1)v —w3)
o((1+1i)v)

—(1+i)wo o(v— W1)2]

o(v —wg)?

= je" 2™ (1 + ce_%>

2
(14iymn (0 — w2)”
xle a(v—w1)2+e
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making use of Lemma 2 and Corollary 1. Obviously, f(v) has no poles outside
Q(i). It suffices to justify that lin}) f(v) = oo, in order to conclude that f(v) #

const. To this end, use o (ws) = io(w;) to observe that
F@o((L+i)0)|  =2ie7F (1+ce7F) ofws) £0
v

whenever ¢ # —e?, while o((1 + 1)v)|y=¢ = 0. O

5. Basic Results

Lemma 8. For H = (I.J?, 133J%), (I*J, m331%) with rational A_,/H and any
—Id e H < G_y, themap ®" : BTy > P([T'y. 1)) is constant.
Proof: By Lemma 4 (iv), the assertion for (I2.J, 733I2) is a consequence of the

one for (I.J2,733.J2). In the case of H = (I.J?,733.J2), the space £¥ is spanned
by Reynolds operators

Ru(fs6) =0, Ru(fs) =0

Ry (fis7) = fis7 +1e2 fies + €2 fas7r — €2 fasg +1€? fas7 — f3es + ifaer + ifass.
The T'gy-cusps are k1 = kKo = K3 = k4, k5 = kg and K7 = kg. By Lemma 6,

% . 0, so that Ry (fi57)|7, # oc. Therefore Ry (fi57) € L5 = C
and tk®" = 0.
It suffices to observe that — Id changes the signs of the C-basis

I56, J78, fis7, Joss, [f368, fa67 (D

of L = La_, (Tﬁﬁl’s), (T£61’8)>Smg). Then for H, = (—1d) the space £ is

generated by Ry (1) = 1. Any subgroup H, < H < (G_; decomposes into
k

cosets H = UlehiHO and Ry = > h; Ry, vanishes on (1). Thus, L7 = Cand

=1
rk®H = 0. m

Note that A_; /(— Id) has 16 double points, whose minimal resolution is the Kum-
mer surface X _| of A_1. Thus, H 5 — Id exactly when the minimal resolution Y’
of the singularities of A_,/H is covered by a smooth model of X_;. More pre-
cisely, all A_1/H with —Id € H have vanishing irregularity 0 < q(A_1/H) <
g(X_1) = 0. These are the Enriques A_; /(—1d, 7331?), all K3 quotients A_;/H
with (735) # H < K = kerdet L, except A_;/(m33(—1d)) and the rational
A_1/H withtssIJ € HforO0 <n < 1lor{(—1Id,hy) < H for

hy € {I*™j2=2m  pmp om0 <m<1, 0<1<3)
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Lemma 9. The non-trivial subgroups H  — 1d of G _1 are
1) cyclic of order two

Hy(m,1) = (r33?™J%) with 0 <m,l1<1
HY(n, k) = (rixI*J7%0) with 0<n <1, 0< k<3, Hy=(I%, H} =(J?
i) cyclic of order four

Hj(n,m) = (i IJ*™) with 0<n,m<1

HY(n,m) = (75 I*™J) with 0<n,m <1
1ii) isomorphic to the Klein group 7o X Zs

H}oo(m) = (133%™, %) with 0<m <1

HY o(m) = (r33*™, J?) with 0<m <1

HY (k) = (I*J7%0,733) with 0< k<1

HY o(n, k) = (13 I*J7%6, 75312 J?) with 0<n,k <1
iv) isomorphic to Zy X Zo
Hl o(m, 1) = (IJ*™ 1332 with 0 <m,l<1

Hjyo(m,l) = <I2mJ, 7'33[2l> with 0 <m,l < 1.

Proof: If H is a subgroup of G_;, which does not contain —Id, then H C S
={g€G_1; —1d & {g)}. Decompose G_1; = G’_; UG"_,6 into cosets modulo
the abelian subgroup

Gy ={rI*J0<n<1,0<kI<3} <Gy

The cyclic group, generated by (73, 1%J'0)? = (IJ)**! does not contain — Id
= (IJ)? if and only if k +1 = 0(mod 4).If $) = {g € S; g is of order r} then

SNG 0= {rI*J*6;0<n<1, 0<k<3}=8PnG,0= 5P

and SN G0 C S(2) consists of elements of order two. Concerning S N G’ 4,
observe that (T§13Ika+2m)2 = (IJ)?* € Sfor0<n,m < 1,0 < k < 3 requires
k = 2p to be even. Consequently

{rI*J"; k = l(mod 2)} NS
= {rssI?™J% 12, 7 0<m,1<1}=8®nG., = P

{riI*J' k=1+1(mod 2)} NS

= {q[2m+l g2 o p2m g2l 0 < n,m,l < 1} = S@.
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In such a way, one obtains S = {Id} US(SQ) US{Q) US™ of cardinality |S| = 31. If
a subgroup H of G_; is contained in S, then |H| < |S| = 31 divides |G_1| = 64,
ie, |H| = 1,2,4,8 or 16. The only subgroup H < G_; of |H| = 1 is the
trivial one H = {Id}. The subgroups —Id ¢ H < G_; of order two are the
cyclic ones, generated by h € S(()Q) U SP. We denote Ho(m,l) = (r33*™J%)
for 0 < m,l <1, HY(n,k) = (zixI*J%0) for 0 < n < 1,0 < k < 3 and
Hjy = (I*), HY = (J?).

For any h € S™ one has (h) = (h3), so that the subgroups —Id ¢ H ~ Z,
of G_y are depleted by Hj(n,m) = (i IJ*™), Hy(n,m) = (r5I1*™J) with
0<nm<1.

The subgroups —Id & H ~ Zg x Zgy of G_; are generated by commuting g;, g2 €

52 — S(SQ) U 5’{2). If g1,92 € 5’{2) then g1go € G’_q, so that one can always
assume that gy € S((JZ). Any g1 # go from S(()2) C G’_, generate the Klein group of

order four. Moreover, if
S = {rss ™I 0<m, i <1}, gy = {17, 7%

then for any ¢q,g2 € S(g,zl) with g1 gy € S there follows g1go € S&Qg. Thus, any

582) D H ~ Zs X Zs has at least one generator go € 55?3. The requirement

I?J? = —1d ¢ H specifies that g; € S((),21)- In the case of gy = I? there is no loss
of generality to choose g; = 733.J2™, in order to form Hj, ,(m). Similarly, for
go = J? it suffices to take g; = 7331%™, while constructing H. .,(m). In order to
determine the subgroups —Id & H = (g1) X {g2) ~ Zg X Zo with g1 € sz), gs €
562), note that g1 = 7341 k J=k@ does not commute with 72, J2? and commutes with
go = 733I%™ J% if and only if 2m = 2l(mod 4),i.e.,0 <m =1 < 1. Bearing
in mind that (T, TFJ %0, 73312 J?2m) = (il ph+2m j=k+2mg oq[2m j2my,
one restricts the values of k to 0 < k < 1. For m = 0 denote HY, ,(k) =
(IFJ7%0,733). Form = 1 put HY, 5(n, k) = (t5, IFJ %0, 735312.J?).

Let —Id ¢ H C S be a subgroup of order 8. The non-abelian such H are isomor-
phic to quaternionic group Qg = (s,t; s* =1d, s% =2, sts = t) or to dihedral
groupDy = (s,t; s* =1d, t? =1d, sts =1t). Note that s € S@ and sts = t re-
quire st # ts. As far as 5(4)US(g2) C G’ for the abelian group G’ | = (133, I, J),
it suffices to consider t = T5T*J %0 ¢ ng) and s = 7R IP J2+1-P ¢ S with
0<n,m,l<1,0<pk <3. However, sts = T, [F+T2+1 jk+2+1g o ¢ reveals
the non-existence of a non-abelian group —Id ¢ H < (G_; of order eight.

The abelian groups H ¢ S = {Id} U S ) U @ of order eight are isomorphic
to Zy X Zo or Zy X Zo X Zo. Any Zy X Zo ~ H C S is generated by s =
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T:?:;‘Ipﬂl“_p cSWandt e 5(2), as faras t/ = T&I’“J‘kG € S?) has

st — T§1§+n1p+kj2l+1—(}7+k)9 75 T§g+”[2l+1_(p_k) Jp""a —t's.

For s = 7ix I?™+1J% ¢ S there holds (s, t) = (s°,t) and it suffices to consider
s = 7i,I.J%. Further, t & (s%) = (I?) and 5%t # — Id specify that t = 73312 .J%
for some 0 < p,q < 1. Replacing eventually ¢ by ts> = tI?, one attains t =
733J%4. On the other hand, the generator s = 733/J% € S& of H = (s, 1)
can be restored by st = I.J20F9 so that H = H),»(l,q) = (IJ%, 133.J%) for
some 0 < [,q < 1. Exchanging I with J, one obtains the remaining groups
HY (1, q) = (I?J,7331%9) ~ Z4 x Zs, contained in S.

If —Id ¢ H C § is isomorphic to Zgy X Zg X Zo then arbitrary different elements
s,t,7 € H of order two commute and generate H. Forany x € S and M C S,
consider the centralizer Cys(z) = {y € M ; zy = yz} of z in M. Looking for
s€ 8@ t € Cyp(s)and r € Cye)(s) N Cye (t), one computes that

Cso (T3 1?) = Cgio (155T°) = S(()Q)
Cyen (13312 J2m) = §@) = 5 U 5
Cga) (TR TP J7219) = {75, 12977299, 133I*P J*; 0 < p,q < 1}
Cgy (T TP J72m=1g) = {72, 29T J=2471g 7531?PJ?P; 0 < p,q < 1}.

Any subgroup Zg X Zo X Zs ~ H C {Id} U S(()2) U Sf) intersects S{Z), due to
|SO(2)| = 6. That allows to assume that s € Sf) and observe that

Cs(z)(s) = {8, (— Id)s, 338, 7’33(—Id)8, 733, T33(—Id)}.
If t = 7331%PJ% € Cgz) (s) then Cgz) (1) = S, s0 that

H \\ {Idv 5, t} C [CS(Q)(S) N 05(2) (t)] \ {8’ t} = C,S’(2) \ {Sv t} (2)
with5 = |H \ {Id, s,t}| < |Cg@ (s) \ {s,t}| = 4is an absurd. For t € Cg(2)(s) \
{733I?PJ?%; 0 < p < 1} one has Cg2) (t) = Cg2 (), which again leads to (2).
Therefore, there is no subgroup Zy X Zgo X Zo ~ H # —1d of G_.

Concerning the non-existence of subgroups — Id ¢ H C S of order 16, the abelian
—Id ¢ H C S of order 16 may be isomorphic to Z4 X Zy, Zy X Zo X Zgy or
Zo X Ly X Ly X Ly. Any H ~ Zy X Z, is generated by s, ¢t € S with s? # {2,
Replacing, eventually, s by s* and t by 3, one has s = T{IJ*™, t = Th I a7
with 0 < n,m,p,q < 1. Then s*? = I?J? = —1Id € H is an absurd. The
groups H ~ Zy x Zo x Zs are generated by s € S™ and ¢, rinCg) (s) with
r € Cqw(t). In the case of s = 7i41J*™, the centralizer Cg(2)(s) = S(gz).
Bearing in mind that s> = I?, one observes that (t,r) N {I?,.J?} = {). Therefore
t,r € {m33I%.J%4; 0 < p,q < 1}, whereas tr € {Id, I?, J? —1Id}. That reveals
the non-existence of Zy X Zo X Zo ~ H Z — 1d. The groups H =~ Zo X Zio X Zig X Lo
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contain 15 elements of order two, while |S(?)| = 14. Therefore there is no abelian
group —Id € H < GG_; of order 16.

There are three non-abelian groups of order 16, which do not contain a non-abelian
subgroup of order 8 and consist of elements of order 1, 2 or 4. If

(s,t;s4:e, tt = e, st:ts?’)SHCS
then s,t € S c G 1 = (733, I, JJ) commute and imply that s is of order two.
The assumption

(a,byc;a*=e, B2 =¢e, *=e¢, cbca’b=e, ba=ab, ca=ac)~H C S

requires b, ¢ € Cg)(a) = S = {rssI2mJ%, T2, J2;0 < m,l < 1}. Thenb
and ¢ commute and imply that chea’b = e = a2 = e. Finally, for

Gaa = (s,t; st=e tt=ec, stst=e, ts*= st3)
there follows s,t € S ONeNed 1» whereas st = ts. Consequently, %2 = t? and

Gua = {s;0<4<3, 0<j<1}isoforder < 8, contrary to |G 44| = 16.
Thus, there is no subgroup —Id ¢ H < GG_; of order 16. O]

Throughout, we use the notations H?(+) from Lemma 9 and denote by I'Z () the
corresponding lattices with T2 (v)/ I’@is) = HB(y).

Theorem 5. For the groups H = H4X2(p, q) = (IJ?P, 133.J%9), 4X2(p, q) =
(I%PJ, 71331%9), Hi(1 —m,m) = (35 ™IJ*™), H/(1 — m,m) = (35 "I?>™.J),
Hy (1) = (13307 I%), Hi (1) = (7331%, J%), Hiyo(n,m) = (r§5I™J~™0,
73312 J%) with 0 < p,q < 1, (p,q) # (1,1) and 0 < n,m < 1 the logarithmic-
canonical map

oH BTy —> P([Ty, 1)) = P!

is dominant and not globally defined. The Baily-Borel compactifications m
are birational to ruled surfaces with elliptic bases whenever H = H},5(0,0),
HJ, 5(0,0), H}(1,0) or H](1,0). The remaining ones are rational surfaces.

Proof: According to Lemma 4(v), it suffices to prove the theorem for H},,(p, q)
with (p, g) # (1, 1), Hy(1 — m,m) Hyyy(1) and Hfso(n, m).

If H= H}(1,0) = (733I), then £ is generated by 1 € C and Reynolds operators
Ru(fs6) =0, Ru(fs) =0, Ru(fisr) = fisr — €2 foss + i€ fas7 + ifuss
Ry (fies) = fies — if267 + i€ 2 faes + e 2 fagr = i~ 2 R (faes)-

There are four T'(1,0)-cusps : k1 = Ko = K3 = R4, k5, k¢, k7 = kg. Applying

8
Lemma 4ii) to 77 C (Rg(f157))oos R (f168)00 € Y. T;, one concludes that

i=1
Ry (fi68) € Spanc(1, Ry (fi57)- Therefore £ ~ C? and ®71(1-0) is a dominant
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map to P(L7) ~ P. Since Ry (fi57)|7, # 00, the entire [I(1,0), 1] vanishes at
ke and dH1(1,0) js not defined at Kg.

The group H = H},,(0,0) = (I,733) contains F = H)(1,0) as a subgroup of
index two with non-trivial coset representative I. Therefore Ry {fs6) = Rp(f56)—+
IRF(f56) =0, RH(f78) =0 and I“k‘I)HQXQ(O’O) < 1. Due to

R (fis7) = fis7 —ie? fies — €2 fosg — €7 fogr + f3es + i€ fas7 + 1fass — 1fa67

flw_Zi)efflﬁs . — _ 9" 2 £ 0,
1

whereas Ry (f157)|7, = co. Therefore dim¢ £ = 2 and & 722009 i 4 dominant

map to P!, The T'42(0,0)-cusps are k1 = Ry = R3 = Ky, ks = kg and Ry =

157—6% 2584‘19% 357 +1fa5s — i<
f f i fas7+if = 0, so that R (fi57) is

L7 = Spang(1, Ry (fi57)). Lemma 6 provides

kg. Again from Lemma 6,
Ts

regular over 15 + Tg. As a result, ®Max2(00) 5 not defined at k5 = Rg.
For H = H)(0,1) = (I.J?), the space L is spanned by 1 and Reynolds operators

Ru(fs6) =0, Ru(fr8) =0, Ru(fisr) = fis7 + 2 fogr +1ie? fasr + ifusr
R (fies) = fies + ifoss + i€ 2 fags + € 2 fass = iRm(fass)-
The T7(0,1)-cusps are &y = Ry = k3 = R4, ks = kg, k7 and Rg. Note that

8
Ty C (Ru(f157))oos (R (f168))oo € 3° T;, in order to conclude that Ry (fi68) €

=1
Spanc (1, Ry (fis7)) by Lemma 4 ii). Therefore £/ = Spanc(1, Ry (fis7)) ~

C2 and ®H(01) j5 a dominant map to P1. Lemma 6 supplies m%‘fﬁ” =0

Ts
and justifies that dM1(01) s not defined at Rs.

For H = H),5(1,0) = (I.J?,733) note that Ry;(f56) = 0, Riz(frg) = 0, as far as
H)(1,0) is a subgroup of H), 5(1,0). Further,

R (fis7) = fis7 — i€ fies + €7 fag7 + €7 fasg + 1€ fas7 + faes + ifae7 — if1s8

sy
fis7—ie? figs
1

= —2ie” 2 # 0 by Lemma 6

4
has a pole over ) T}, according to
i=1 11

and the transitiveness of the H)(1,0)-action on {k;; 1 < i < 4}. Therefore
£H = Spang(1, Ry (fis7)) ~ C? and ®Max210) i a dominant map to PL. One
computes immediately that the '), ,(1, 0)-cusps are &1 = Ro = k3 = R4, k5 = R

+e? fass+ie? fasr—i
6, fis7 f%szz fas7—1fas8 =0, RH(fls'r)
5

and k7 = Kg. Again from Lemma

Hy, ,(1,0)

has no pole at 75 4+ T and @
If H = H}, (1) = (I?,133.J?) then

Ri(fse) =0, Ru(frs) = 4frs, Ru(fisr) = fisr +1e2 fies +ie2 fasr — faes
Rir(fass) = fass — faer — 1672 fagr —ie 7 fasg and 1€ C

is not defined at kK5 = Kg.
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span L. The T, ,(1)-cusps are & = R3, Ry = R4, Rs = kg and Ry =
Ks. Lemma 6 reveals that f157+-ée§f168 _ ie§f3g7_f368 _ f258£f267 _
1 T 3 T3 2 T
f‘“‘gﬂ = 0, so that Rg(f157), R (f258) € Spang(1, f7g) and L7 ~ C2,
4 T4

As aresult, d2x2() i a dominant map to P!, which is not defined at %1 and .
For the group H = H},5(0,1) = (I, 733.J%), containing H}, (1) = (I?,733.J?)
there follows Ry {f56) = 0 and 1k®Max2(01) < 1 Therefore Ry (f78) = 8f7s,
Ry (fi57) = fi57 + 1€ fies + €2 foss — €2 fogr + 1% f357 — faes — if1ss — ifa67
and 1 € C span L. The T}, 5(0, 1)-cusps are &| = Ry = k3 = R4, k5 = Rg and
. 0, so that Ry (f157) € Spang(1, frg) ~

1
C2. Thus, dHix2(01) i5 2 dominant map to P!, which is not defined at .
If H= HY,5(0,0) = (0, 7337%J?%) then £ is spanned by 1 € C,

Ru(fs6) = 2(fs6 + frs)s Ru(fis7) = fis7 +ie? fies — e f57 — if36s

and RH(f467) = 2(f467 + f458), due to RH(f258) = 0. The I‘g(O,ﬁO)—Cusps are
f157+;3‘§f168 -0,

6 fis7+ie? figs
’ X

k7 = kg. By Lemma -

K1 = K3, k2, k4 and kK5 = ke = K7 = kg. Lemma 6 provides

T
_ 0, whereas Ry (fi57), Ru(fa67) € Spanc(l, Ru(fs6)) ~ C2
4

Therefore &5 (0:0) is a dominant map to P!, which is not defined at %1, ko and R4.
For H = HY, 5(0,1) = (I.J 710, 733I%.J?) one has

Ru(fs6) = 2(f56 +1f7s), Ry (fi57) =0, Ru(fi63) =0

Ry (f368) = 2(f36z — i€ fas7), Rir(fass) = fass — fogr — € 2 fass — € 2 fagr.
The T9,.,(0, 1)-cusps are &, K3, Ry = R4, k5 = Rg = Ry = Kg. Lemma 6

faer+ fass
34

t f368_-§e§f357 — (. f2s8—feer — (. fasstfaer
3 5 5

T3 2 Ts > T4 .
Ry (fse8), Ru(f2s8) € Spang(1l, Ry (fs6)) ~ C. Consequently, PH2x2(0:1) jg 5
dominant map to P!, which is not defined at %, &2 and Ry4.

In the case of H = HY, 5(1,0) = (330, 73312.J?), the Reynolds operators are
Ru(fss) = 2(f56 — fr8).  Ru(fist) = fis7 +ie7 fies + i f368 + €7 fas7

R (fass) = 2(fass — f267), Ru(fi58) =0, Ru(fae7) =0.
The T'9,.,(1,0)-cusps are i1, k3, Ko = k4 and k5 = kg = K7 = Ks. Lemma 6

fis7+ie? figs
3

implies tha = 0, whereas

— if368+67f357|T3 _  foss—foer — 0. Consequently,

3 )
T 3 2 1o
RH(f157), RH(f258) S Spanc(l, RH(f56)) Bearing in mind that RH(f56)|T5 =

yields
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00, one concludes that CDHS x2(1.9) is a dominant map to P!, which is not defined at
K1, K2 and Rg.
Finally, for H = HY, ,(1,1) = (1331J 7160, 7331%.J%) one has
Ru(fs6) = 2(fs6 — ifrs), Ru(fis7) = 2(fis7 + ie? fies), Ru(fss7) =0
Ry(fazee) =0 and Rp(fass) = foss — foer + € 2 fagr + € 2 fuss.
The T'9, (1, 1)-cusps are &1, k3, Rz = R4 and k5 = Rg = Ry = Rg. Lemma 6
fsrtie? fras .= fasa oy p, = 080 that Ry (fis7), R (fass) €

Spang (1, Ri(fs6)) ~ C2. As aresult, ®72x2(11) is a dominant map to P!, which

is not defined at K1, k3 and Ko. ]

Theorem 6. If H = Hy,»(0) = (733,1%), Hj\5(0) = (733, %), Hiyp(n) =

(I"J="0,133) with 0 < n < 1, Hj(n,n) = (txIJ*"), H{(n,n) = (i, I?"J)

with 0 < n < 1or Hy(1,1) = (r331%2J?) then the logarithmic-canonical map
o . B/Tj —> P([Tp,1]) = P2

is dominant and not globally defined. The surface B//if is K3 for H = Hy(1,1),
rational for H = H)(1,1), H}(1,1) and ruled with an elliptic base for all the
other aforementioned H.

implies that

Proof: By Lemma 4 v), it suffices to consider Hb. »(0), HY, 5(n), Hj(n,n) and
Hy(1,1).
In the case of H = H}, ,(0) = (733, I?), £ is spanned by

Ru(fs6) =0, Ru(fis) =0, Ru(fisr) = fisr —ie? fies +1ie? fasr + faes

Rir(fasg) = foss + fogr — i€ 7 fasg +ie 7% f4g7 and 1€ C.
The I',, ,(0)-cusps are &y = K3, ke = K4, k5 = kg and k7 = Kg. Lemma6

i
fis7—1e? fies

provides 5 = —2ie"2 # 0, whereas Ry (fi57)|7, = oo. Simi-

T
larly, % . =2 # 0 suffices for Ry(fas8)|7, = oo. Therefore 1,
2

Ry {fi57), Ru{fess) are linearly independent, according to Lemma 4 iii) and
Hy

constitute a C-basis for £H. In order to assert that tk®72x2(0) — 2, we use
that Ry (fass)|r, = oo and Ry (fis7)|r, # const by Lemma 7 with ¢ = ie?.

Lemma 6 provides m%e:ﬁ’” = 0, in order to conclude that Ry ( f157)|my #
T5

oo and the entire [[',,5(0), 1] vanishes at &5. Therefore 252 s a dominant
map to P([['5,,,(0),1]) = P2, which is not defined at &5.
For H = HY, ,(0) = (#,733), the Reynolds operators are

Ru(fs) =0, Rp(frs) =0, Ru(fisr) = fisr —ie? figs — 2 fasr + if36s
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Ry (f2s8) = 2(fas8 + f267),  Ru(faer) =0
generate L. The TY,,(0)-cusps are &1 = &3, o, R4 and k5 = kg = Ry = Ras.

According to Lemma 6, W = —2ie™7 # 0, so that Ry (fi57)|1, = co.
T

Further, fzssg- fasr
2 T2

Therefore 1, Ry{fi57), Ru(f2s8) are linearly independent and L7 ~ C3 by
Lemma 4 iii). We claim that

—rin (1 + v + w3) [U(U —wp)? L e2n(1+i) o(v— W2)2]
(1L +1)v)

o(v —wg)? o(v—wy)?
is non-constant. On one hand, Ry (fos8)|7, has no poles on C \ Q(i). On the
other hand, l%RH(f%g)‘T ] o((1 + i)v)‘ .= —o(ws3) [%2 + 12] # 0, so that

1 v=

lir% [Ri(f258)|1,] = oo. According to Lemma 4 iv), Ry (fi57)|1;, = oo and
v—

= 2e~" # 0 and the lemma provides Ry (f258)|1, = 00.

Ry (f2s8)|m = —2e

Ry (fas8)| 1, # const suffice for 322 {0 be a dominant map to P2. The entire
L takes finite values on T}, so that <I>Hg <2(9) is not defined at R4.
Concerning H = HY, (1) = (IJ716, 733), one computes that

Ry (fs6) =0, Ry (frs) =0, Ry (fi57) = 2(f157 — i€ fies)
R (f6s) =0, Rp(foss) = foss + foor — e 2 fass + e > fapr.

The T, .,(1)-cusps are &1, k3, ko = K4 and K5 = kg = Ay = kg. By Lemma 6
we have W o = —2ie”% # 0 and f%%f‘” - = 2e~™ # 0. Therefore
Ru(fis7)lmy = 0o, Ru(fass)|m, = oo and 1, Ry (fi57), Ru(f2ss) constitute a
C-basis of £, according to Lemma 4 iii). Applying Lemma 7 with ¢ = 0, one
concludes that Ry (f157)|1, # const. Then Lemma 4 iv) implies that PH2xx(1) i

a dominant map to P2. The lack of f € £ with f|7, = oo reveals that o Hixa(1)
is not defined at k3.

If H = H}(0,0) = (I) then the Reynolds operators are
Ru(fs6) =0, Ry(fs)=4fm, Ru(fisr) = fist — €2 fagr +ie? fasr — ifaer

Ry (fies) = fies —ifass +ie7 2 fags —e 2 fisg and Rp(l)=1€C
span £H. The T(0,0)-cusps are & = Ry = R3 = R4, ks = Rg, Ry and Rg.
According to Lemma 4 ii), the inclusions 71 C (Rg(f157))co, (RE(f168))00 C
8
> T; suffice for Ry (f168) € Spang(1, Rg(frs), Ra(f157). Therefore L7 ~ C3.
i=1
Observe that Ry ( frg)|1, = 4%12(v) # const, in order to apply Lemma 4 iv) and

assert that ®72(00) is a dominant map to P2. As far as m%‘ff?’” =0 by
15
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Lemma 6, the abelian function Ry ( f157) has no pole on T5. Therefore PH1(00) ig
not defined at k5.

For H)(1,1) = (r331.J?) the Reynolds operators are
Ri(fs6) =0, Ru(frs) =4fs, Ru(fisr) = fist +e? foss+ie? fssr —ifass
Ru(fies) = fies + if267 +ie” 2 fags — e 2 faer.
The T7(1,1)-cusps are &1 = Ko = ks = R4, ks, ke and Ry = FKg. Due to
Ty C (Ru(fi57))oos (Rir(fi68))co C 28:1{1}-, Lemma 4 ii) applies to provide
i

Ru(fies) € Spanc(l, Ry (fe), Ra(fis7)). Thus, L7 ~ C3. According to
Lemma 4 iv), Ry (frs)|7, = 4512(v) # const suffices for ®74(11) (o be a dom-

f157+ie% f357
>

inant rational map to P2?. Further, = 0 by Lemma 6 implies that

15
Ry (f157) has no pole over T and ®H4(11) js not defined at &s.

If H= Hy(1,1) = (r331?J?) then £ is generated by
1e€C, Rul(fse)=2fs6, Ru(frs)=2fw, Ru(fisr)= fisr +ie? fies

Rir(fses) = faos—ie? fasz, Rir(fass) = fass—fosr,  Ru(faer) = faer+ fass.

The T'5(1, 1)-cusps are k1, ko, k3, k4, k5 = kg and k7 = Kg. By Lemma 6 one
has fisr+ie? fios — faca—ie? fas7 _ fase—faer _ fas7+fass — 0. Thus
31 e 33 T PP T 34 T . i
Ry (fi57), Ru(faes), Ru(f2s8), Ru(fae7) € Spang(l, Ru(fs6), Ru(frs)) and
LH ~ C3. Bearing in mind that Ry (fs6)|7, = 00, Ry(frs)|lr; # const, one
applies Lemma 4 iv) and concludes that ®#2(1-1) is a dominant map to P2. Since
4
L£H has no pole over 3. T, the map ®H2(1:1) is not defined at &1, ko, R3, Rq.
=1

Let us recall from Hacon and Pardini’s [1] that the geometric genus p,(X) =
dim¢c HY(X, Q%) of a smooth minimal surface X of general type is at most 4.

The next theorem provides a smooth toroidal compactification ¥ = (]B% / F<T33>)/
with abelian minimal model A_; /(733) and dim¢c H(Y, Q%(1")) = 5.
Theorem 7. i) For H = H} = (I%), H) = (J?), Hy(n,1 —n) = (133" J?72")
or Hg(n, k) = <T§L3IkJ_k9> with0 < n < 1, 0 < k < 3 the logarithmic-
canonical map

o . B/Ty > P(Ty,1]) = P>
has maximal tk®7 = 2. For H # Hy(n,1 — n) the rational map ®" is not
globally defined and IEB//EI: are ruled surfaces with elliptic bases. In the case of
H = Hy(n,1 — n) the surface IB//F\H is hyperelliptic.
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il) For H = H5(0,0) = (733) the smooth surface (B/F(T33>> ' has abelian minimal
model A_1/(733) and the logarithmic-canonical map

o) B//F(T%) """ > ]P)([P(’T33>’ 1]) = P*
is of maximal rkd(ms) = 2.
Proof: i) By Lemma 4 v), it suffices to prove the statement for Hj, H2(1,0) and
HY(n, k) = (tRI*J7*0) with0 <n < 1,0 < k < 2.
Note that H}, H(1, 0) are subgroups of Hj, 5(0) = (733, I?) and rk®2x2(0) = 2,
By Lemma 4 iv) that suffices for rk®H> = rk®H2(1.0) — 9,
In the case of H = H} = (I?), the Reynolds operators

Ry (fs6) =0, Ry (fr8) = 2fr3
Ru(fis7) = fis7 + iegf357a Ry(fies) = fies + i 2 faes

Ry (fass) = fass —1e7 7 fyss, Ry (fa67) = fas7 + 1677 fae7.
The T',-cusps are K1 = K3, Ro = K4, ks, kg, k7 and Kg. According to Lemma
4 ii), the inclusions 71 C (Rp(f157))cos (Ru(f168))00c € T1 + T3 + 28: T
suffice for Ry (fi6s) € Spanc(l, Ry (f7s), Ru(fi57)). Similarly, fromaT:E5 C

8
(Ru(f258)) 00, (Ru(f267))00 € T2 + Ta + 2_25Ta there follows Ry (fas7) €

Spanc(1, Ry (f7s), Ry (f258)). As a result, one concludes that the space of the
invariants £ = Spanc(1, Ry (f7), Ra(fi57), Ra(f2ss)) ~ C*. Since L has
no pole over T, the rational map &2 is not defined at &g.

If H = Hy(1,0) = (133I?), then £ is spanned by
1eC, Ru(fs6) = 2 [s56, Ru(frs) =0
Ry(fis7) = fi57 + f368, Ry (fass) = fass + i€ 2 fapr.
The T'y(1,0)-cusps are k1 = R3, ke = R4, k5 = K¢, k7 = Kg. According to

8
Lemma 4 iii), the inclusions 77 + T35 C (Ry(f157))o0 € 11 + T35 + > T, and

a=5
8
To+ Ty C(Ru(f258))00 € To + Ty + Y. T, suffice for the linear independence
a=5H
of 1, Ru(fs6). Ru(fi57). Ru(f258)-
Further, observe that HS(n,0) = (246) are subgroups of H3,,,(0) = (733, 0) with
rkdH3x2(0) = 9 Therefore rk®Hs (m:0) = 9 by Lemma 4 iv).
If H= H{(0,0) = (6) then

Ru(fs6) = fse+frss  Ru(fist) = fisr—e? fasr,  Ru(faes) = fea—e? fies
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Rp(f258) = f2s8 + fa6r, Ry (faer) = faer + fass.

The Fg(0,0)-cusps are k1 = kg, Ro, R4, ks = K7 and kg = Kg. According
8

to Lemma 4 ii), 70 C (Ru(fi57))oc, (Ru(f168))oc € 11 + 15 + Z5Ta im-
o=

plies R(f16s) € Spanc(1l, Ri{(fs6), R(fi57)). Lemma 6 supplies %

o
2e™™ # 0 and f‘lﬁ%f“ o 0. Therefore Ry (foss)|r, = oo and Ry (fae7) C

Spang (1, R (fs6)). Thus, £ = Spang(1, Rr(fs6), B (f157), Bi(fass)) ~
C*. The entire [T9(0, 0), 1] vanishes at 74 and ®2(%:0) is not globally defined.

For H = HY(1,0) = (7330) the space £ is generated by
1e€C,  Ru(fs6) = fs6 — frs
Ru(fis7) = fisr +ifses,  Ru(f2ss) = 2fs8,  Ru(faer) = 0.
The T§(1, 0)-cusps are i1 = &3, /%2, K4, k5 = kg and kg = R7. Making use of

8
T1 C (Ru(f157))0c € T1 + T3+ Z Toand Ty C (Ru(f258))oc C T2 + 2_:5Ta,

one applies Lemma 4 iii), in order to conclude that

L% = Spanc(1, Ru(fs6), Rir(f157), Rir(fass)) =~ C*.

The abelian functions from £ have no poles along 7}, so that H3(19) s not
defined at k4.

Observe that HY(n,1) = (34 1J10) are subgroups of HY, ,(1) = (733, [J~16)

with tk®2x2(1) = 2, 50 that tk®H2 (1) = 2 a5 well.

More precisely, Reynolds operators for H = HS(0,1) = (IJ716) are

Ru(fs6) = fso+ifrs, Ru(fis7) = fisr—ie? fies, Ru(fses) = faes—ie? fasr
Ry (fass) = foss — € 2 fass, Ry (fa67) = foor + €7 2 fagr.

The Fg—cusps are K1, kK3, kKo = R4, K5 = Rg, kg = R7. By Lemma 6 one has

fisrole? fiss | = _9je7F £, —fgﬁs_éﬁfg” = 0, whereas Ry (fi57)|1, = o0,

21 T 3 T
Ri(fses) € Spang(l, Ry (fs6))- Applying Lemma 4 ii) to the inclusions T C

(RH (f258))oo, (RH(f267)) CTo 4T+ Z T,,, one concludes that RH(f267)
SpanC(l, RH(f56)) RH(f258)) Altogether
L™ = Spanc(1, Ru(fs6), Ru(fis7), Ru(fass)) ~ C*.

Since £ has no pole over 1%, the rational map $H30.1) 5 not defined at K3-
If H= HY(1,1) = (1331.J16) then

Ru(fse) = fs6 — ifrs, Ry (fis7) = 2f157
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Ru(fses) =0,  Ru(fass) = fass + €72 fasr.
The TY(1, 1)-cusps are K1, K3, Ky = R4, k5 = Ky and kg = Kg. Making use
of Ry(fi57)|lmy, = oo, T (fes8)|m, = 00, one applies Lemma 4 iii), in order to
conclude that £# = Spanc(1, Ry (fs56), Ru(fi57), R (fass)) ~ C. Since £H
has no pole over T, the rational map &3 (1:1) is not defined at 7s.
Reynolds operators for H = HS(0,2) = (I2.J20) are

Ry (fs6) = fso—fs,  Ru(fis7) = fist+e2 fssr,  Ru(fies) = fies+e 2 f36s
Ry (fass) = fass — faer, Ry (fas7) = fae7 — [as8-

The T4(0,2)-cusps are kK, = K3, Ro, R4, A5 = Ry, Rg = FRg. Lemma 4 ii)
8

applies to 71 C (Ry(f157))oo, (RE(f168))ec C© T1 + T3 + Z5Ta to provide
o=

Ry (fi68) € Spanc(1, Ru(fs6). Ra(fi57))- By Lemma 6 one has [2s8-/267

TH
0 and % W= 2ie™2 # 0. Asaresult, Ry(fass) € Spanc(1, Ru(fs6))

and Ry (fae7)|T, = 00. Lemma 4 iii) reveals that 1 € C, Ry (fs56), Ru(fi57)s

Ry (fi67) form a C-basis of L. Since £ has no pole over Tb, the rational map

dH35(0.2) js not defined over Ko.

In the case of H = HS(1,2) = (r3312.J26) one has

Ry (fs6) = fs6 + frs, Ry (fi57) = fis7 — 1f368
Rp(fas8) = 0, Ry (fae7) = 2fa67.

The T9(1,2)-cusps are k| = K3, R, K4, k5 = kg and kg = Ky. Lemma 4 iii)
8

applies to 77 C (Ry(fi57))00 € 11 + T3 + Z5Ta, Ty C (Ru(fi67))eo C

T, + T + T7, in order to justify the linear indepencience of 1, Ry (fs6). Ru(fi57),
Ry (fa67). Since £ ~ C* has no pole over T, the rational map dH5(1,2) s not
defined at Ko.

ii) For H = H>(0,0) = (733) one has the following Reynolds operators
Ry (fs6) =0, Ru(frs) =0, Ry(fi57) = fis7 — ie? fies

Ry (fos8) = foss+fosr,  Ru(fass) = fass+ie® fasz,  Rp(faer) = fasr—fass-

There are six I‘( -cusps: ki, kKo, K3, k4, k5 = kg and kK7 = Kg. By the means

f1s7—1e? fieg — _ 93 £ 0 fass+ foer
P T P T

= 2ie™> # 0, {18048 = 9ie=% 3£ (. Therefore

3 4

7'33)

of Lemma 6 one observes that

Yo~ T 75 0, f368+§37f357
3

8
1; C (Ru(fioi6))oo C Ti + 525% for1 <i <4, (a1,01) = (57), (a2, B2) =
(5,8), (a3, 03) = (6,8), (ag,84) = (6,7). According to Lemma 4 iii), that



Modular Forms on Ball Quotients of Non-Positive Kodaira Dimension 289

suffices for 1, Ry (fi57). Ru(f2ss), Rir(fses)» Rir(fae7) to be a C-basis of L.
Bearing in mind that H>(0,0) = (733) is a subgroup of Hj, ,(0) = (733, I?) with
rkd2x2(0) = 2, one concludes that rk®(m3) = 9. ]
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