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Abstract. We consider a Riemannian manifold M (dimM ≥ 3), which is
flat or has negative sectional curvature. We suppose that there is a closed and
connected subgroup G of Iso(M) such that dim(M/G) = 2. Then we study
some topological properties of M and the orbits of the action of G on M .

1. Introduction

Let Mn be a connected and complete Riemannian manifold of dimension n, and
G be a closed and connected subgroup of the Lie group of all isometries of M . If
x ∈ M then we denote by G(x) = {gx ; g ∈ G} the orbit containing x.
If max{dimG(x) ; x ∈ M} = n − k, then M is called a Ck-G-manifold (G-
manifold of cohomogeneity k) and we will denote it by Coh(G,M) = k. If M
is a Ck-G-manifold then the orbit space M/G = {G(x) ; x ∈ M} is a topolog-
ical space of dimension k. When k is small, we expect close relations between
topological properties of M and the orbits of the action of G on M . If M is a
C0-G-manifold then the action of G on M is transitive, so M is a homogeneous
G-manifold and it is diffeomorphic to G/Gx (where x ∈ M and Gx = {g ∈
G ; gx = x}). Thus, topological properties of homogeneous G-manifolds are
closely related to Lie group theory. If M is a homogeneous G-manifold of non-
positive curvature, it is diffeomorphic to R

n1 ×T
n2 , n1+n2 = n ([20]). The study

of C1-G-manifolds goes back to 1957 and a paper due to Mostert [14]. Mostert
characterized the orbit space of C1- G-manifolds, when G is compact. Later,
other mathematicians generalized the Mostert’s theorem to G-manifolds with non-
compact G. There are many interesting results on topological properties of the
orbits of C1-G-manifolds under conditions on the sectional curvature of M . If M
is a C1-G-manifold of negative curvature then it is proved (see [17]) that either M
is simply connected or the fundamental group of M is isomorphic to Z

p for some
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