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Abstract. Any real hypersurface of a Kihler manifold carries a natural
almost contact metric structure. There are four basic classes of real
hypersurfaces of a Kéhler manifold with respect to the induced almost
contact metric structure. In this paper we study the basic classes of real
hypersurfaces of a complex space form in terms of their Riemannian
curvatures.

1. Introduction

Let M*"2(J,G) be an almost Hermitian manifold with almost complex struc-
ture ./ and Riemmannian metric G: J* = —1Id, G(JX,JY) = G(X,Y),
X,Y € XM+,

If M?**! is a hypersurface in A/?"+? with a unit normal vector field IV, then
there arises naturally an almost contact metric structure (p, &, 7, g) on M2+
in the following way [3, 10, 12]:

§=—-JN, g=Gun, ¢=J-n&N,
n(X) =g X), XeXxXmmt.

Let V and V'’ be the Levi-Civita connections on M?*t! and M?"*+2, respec-
tively. We denote by & the fundamental 2-form of the structure (¢, &,7, g)

O(X,Y)=g(X,pY), XY ecxpmnt

and by /' = —V'® F = V. If A is the shape operator and h(X,Y) =
g(AX,Y), X,Y € XM?"*! is the second fundamental tensor of A/*"T!
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Riemannian Curvatures of the Four Basic Classes 239

then the Gauss and Weingarten formulas
ViV =ViY +h(X,Y)N, ViN =-AX, XY cXxM>*!
imply immediately
(V)Y = (Vxn)Y
(Vi)Y = (Vx@)V + {h(X, oY) + (Vxm)V IN = (V) AX + h(X, V)€,
F/(X,Y, Z) = F(X,Y, Z) + n(Z)h(X,Y) = n(Y)h(X, Z)
For any point p € M we have
T,M =T,M &N, , N, LT,M,
T,M=D,®DE,, & LD,
D = {D,,p € M} is the contact distribution, and {,; p € M} is the vertical

distribution of M. There exists a second shape operator A, acting in M. The
actions of the shape operators A and A are as follows:

1,0 — T,M T,M — D,
X AX = ~V,N, A X AX = Ve
If M?"+2(.J,G) is Kihlerian (V’.J = 0), then the following formulas are an
immediate consequence from the above formulas [12]:
(Vxp)Y =n(Y)AX — h(X,Y)E,
(Vxn)Y = F(X, Y, §) = —h(X,9Y),
AX = —pAX + h(X,6)¢,  @AX = AX |
2dn(X,Y) = (Y, pX) — h(X, pY)
= 2dn(eX, oY) + n(X)h(eY, §) — n(Y)h(pX, ),
(Leg)(X,Y) = —{h(Y, pX) + h(X, oY)}
= —(Leg)(0X, pY) = n(X)h(pY, &) = n(Y)h(X,§),
dd =0,
N(X,Y) = [p,o](X,Y) +2dn(X,Y)E
= n(X)(pAY — ApY) —n(Y)(pAX — ApX),
N(X,Y,Z) = —n(X){MY,0Z) + h(Z,pY)}
+n(Y){h(X, 0Z) + h(Z,¢X)},
F(X,Y,Z) =n(Y)h(X, Z) = n(Z)(X,Y), 3)
h(Xa Y) F<X Y, 5) —p(X, Y) ) (4)
h(§, Z) = F(§.§,2) = w(Z) = (Leg)(0Z.§) = —2dn(pZ,§) -

(1)

2)



240 G. Ganchev and M. Hristov

The function v = h(£, ) cannot be expressed by F.

If, moreover, M?"2(c) is a complex space form, i.e. Kihler manifold with
constant holomorphic sectional curvature c, then the equations of Gauss and
Codazzi are [2]

C

R(X.Y,Z,U) = {Z [g(Y, %) A (X, %) + B(Y, %) A B(X, %)

—20(X,Y).®] + h(Y, %) A h(X, *)}(Z, U),
g(VxA)Y — (WA)X, Z) = (Vxh)(Y, Z) — (Vv h)(X, Z)

= S A(Z9|(X,Y) + 20(2)R(X,Y).
Alexiev and Ganchev introduced in [1] twelve basic classes W;, i =1,...,12,

of almost contact metric manifolds with respect to the symmetries of the tensor
field F'. By using this classification Ganchev and Hristov obtained in [6] the
sixteen classes of real hypersurfaces of a Kidhler manifold and described them
in terms of their second fundamental tensor.

Theorem 1.1. ([6]) Let M?"2(J, G), (n > 2) be a Kéhler manifold. Any real
hypersurface M1 (p £ n,g) of M**2 is in the class

WieW,ag W, & Ws.

The four basic classes W1, Wy, W4 and Wy generate sixteen classes of real
hypersurfaces, which are characterized in terms of their second fundamental
tensor h as follows:

) Wo: Wo CW,;, 1=1,2,4,6) h= hy,
ho(X,Y) =v(n@n)(X,Y);

i)y Wi: h=hi+hy, M(X,Y)=0Oow+wen)(X,Y);
iii) Wa: h=ho+ho, ho(X,Y)=—-LEghX,hY), Trh#0;

iv) Wy: h=hy+ho, ha(X,Y)=L2g(hX, hY) — dn(pX,hY),
Trh =0

V) We: h=he+ ho, he(X,Y)= %(ﬁgg)(QOX, LY );
vi)-xi) W, @W,: h=h;+h; +ho, 4,7 € {1,2,4,6},i # j;
xii)-xv) W, & W, @ Wy: h=h;+h; +hy+ho, 4,j,ke{1,2,4,6},
i FJF kR
xvi) Wi @ Wo e Wy & Ws: h=hy+ hy + hy + hg + ho.
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Remark 1.1. If n = 1, then it follows that the class Wy is empty [4]. In
this case there arise 8 classes of real hypersurfaces of a 4-dimentional Kdihler
manifold.

Remark 1.2. With respect to the theory of almost contact metric manifolds, the
class:

o W, is exactly the class of cosymplectic manifolds, characterized by

F=0, WycW,, i=12..,12,

W, is exactly the class of a-Sasakian manifolds, characterized by

N=0, dp=a®, a#0,

Wy & Wy is exactly the class of quasi-Sasakian manifolds, characterized by
N=d® =0,

We W1y is exactly the class of almost cosymplectic manifolds, characterized
by

dn=d® =0,
Wo®Ws W, & Ws ® Wy ® W,y is exactly the class of normal manifolds,
characterized by N = 0.

Similar questions were considered in [4,5].

2. Preliminaries

In this section we shall use the notion of a complexification of an almost contact
metric vector space and of the tangent bundle of an almost contact metric
manifold. We shall consider the complex linear extension of real tensors and
their essential components (which may not be zero) with respect to the standard
complex coordinates (e. g. [8]).

The following results are the odd-dimensional analogues of the well known
decomposition of the curvature tensor in an almost Hermitian manifold [11].
Let V2t 1(p £ 1, g) be an almost contact metric vector space and V¢ = D@
{¢} = DY @ D% @ {£} be its complexification. D'° and D%! are (+i)- and
(—i)-eigenspaces of . D9 = span{Z, = e, —ipe,}, D" = span{Zz =
eq +ipet, Zo = &, where {e,,pe,, &, = 1,...n} is an orthonormal basis
of V. 'R denotes the set of all Riemannian-like curvature tensors:

R={Re®'V*; R(X,Y,Z,U)=—R(Y,X,Z,U) = -R(X,Y,U,Z),
o R(X,Y,Z,U)=0}.

(X,Y,2)
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Further pgr, pr, p}, are the Ricci-type contractions associated with R € R and
Tr, TR, Tj, are the corresponding scalar curvatures:

2n+1

pR(Xa Y) = Z R(ei7X7 Ya ei) = g(QR(X)’Y)
=1 2n+1

TR = Z R(ei,ej,ej,ei)

,J=1

2n+1

PE(Xv Y) = Z R(ei7X7 Y7 (pe’i) =49 (QE(X%Y)
=t 2n+1

TE — Z R(eiaejogpejagpei)

,4=1

pr(X,Y) = R(& X,Y,) = g (Qr(X),Y)

%R = Z R(Saeia eiaf)

where {e;, €s,11 = £} is an orthonormal basis of T, M,p € M.
Let £ be the vector space of all (0, 2)-tensors over T, M. In [9] it is proved that
L =@, L;, where £; are mutually orthogonal, U(n) x 1-invariant and irre-
ducible spaces. L£; are described by the following symmetries for the essential
components for L € £ with complex contraction p = g% Lyp:

i i
'Cl:LaB:LBa:EgaBa H=p,

EQ:LaB:LBom M=,
£3Z LaﬁzLﬁa

Lg: Loy = —Lo, )
Egi LOO

By using appropriate involutive isometries, commuting with the Lie group
U(n)x 1, analogously to [11], we obtain the following
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Theorem 2.1. (partial decomposition) The space R is decomposable into mu-
tually orthogonal and U(n) x 1-invariant factors as follows

R=hRi®hRT DhRy ® hRy ®vR1 ©vRy ®vRy ®wRy D uwR; .

The characteristic conditions for the factors in terms of the essential compo-
nents, are

AR = hR3;® hRy = {R € R; Ropys, Rapyss Rapyss Rapys — essential},
hRy = {R € hR; Rsp,5 — essential},
hRs = hRs ® hRy = {R € hR; Rasys = 0},
hRy = {R € hRs; R,s,5 — essential},
hRy =hR, ® hRy = {R € hR3; Ropys = 0},
ARy = {R € hRy; Rapys = 2Ranss <= Rapys = —Rusya)
hRi={R € hRs; Rys5 =0 <= R,z5 = Ruso5};
vR = vRy Ry = {R € R; Roapys Roapys Roags — essential},
vRy = {R € vR; Rons, — essential},
vRy = vRy @ vRy = {R € vR; Roup, = 0},
vRi = {R € vRy; Roapy = 2Rovss <= Ronsy = —Ropas )
vR1 ={R € vR2z; Rospy =0 <= Rougy = Rogan };
wR = wRy ® wRy = {R € R; Roapo, Roaso — essential},
wRi = {R € wR; Rospo = 0, Roapo — essential},
wRi ={R € wR; Roupo = 0, Ry,30 — essential}.
By using the self-conjugate projections p;, q;, 75, ¢ = 1,2, s,t,u, commuting

with 2/ (n)x 1, we describe their kernels and images, and following the scheme
in [7,11] we get

Theorem 2.2. (complete decomposition) The space R is decomposable into 18
mutually orthogonal, U(n) X 1-invariant and irreducible factors:

R =hR11 ® hRyy @ hR13 ® hRy © hRi, © hR1; © hRy
® hR3, ®hRyp © hR%
©vRy VR VR ®vRy, B vRy
D wR11 ©wRy2 @ U)Rf,

describing by the essential components and equalities in the following table:
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Factor

Essential components and equalities for R

hR11 = ker(p1)

AT
Ropys = wiis 2090395 + 945905)>
pr € L1,pR € La,pr =0

hR12 = ker(p2)

Rogys = w3 20905(PR) gy + 95+ (PR)as + 945 (PR)ap + 9ap(PR)-s5);

CIIn(pl) PR E Lo pr € Ls,pr=0, 7o =74 =0
FRiz = p2(Im(p1)) | Wiz,5 = (P2 0P1) Rlagrs,  pwe = pivr = pwr =0
o _An N
hRii = ker(qi1) Raps = n(n—1) 2(904[3975 97590‘5)’

pr € L1,pR € La,pr =0

hRi = ker(q2)

Rapvs = 5nemy 9as (PR) 5 T 95+ (PR)as — 945(PR)ap — Gas(PR)As)s

C Im(qm) PR E Loypr € Ls,pr=0,1r =71 =0
]’LR{'S = qg(Inl(ql)) c;/,é'yg = [(q2 @) ql)R}aéfyS’ Pwr = p*W// = ﬁW” =0
hRj‘ Ropys — essential  pr = pgr = pr =20

hR3 = ker(r1)

Ragys = == [9as(pr) gy — gay (PR)s5),
pE:ﬁR =0,pr € L3

hR3 = ker(rs)

Ragys = = 737 [Pas(pR) sy — Pay(pR)es — 2Pas(pR)ral;

C Im(r1) pr = pr = 0,pk € Lo
hR3s = ro(Im(r1)) | W55 = [(r2 o 71)Rlagys,  pwrr = piym = pwrr =0
Roapy = — 757 [903(PR)0s + 98+ (PR )0]

vR11 = ker(s)

pr € L7,pr € Ls,pr =0

vRi2 = Im(s)

Voasy = Roagy + 737 (907 (0R)os + 954 (pR)00]
pv: = pyr = pyr =0

VR = ker(t)

Roopy = = 3521y (93 (PR)os — go4(pR)0a]
pr € L7,pr € Ls,pr =10

vRi = Im(t)

1

vapy = Roags + 31y (907 (PR)0s — 98 (pR)0a]
pyi = pyn = pyr =0

1
URQ

Roagy — essential  pr = pir =pr =0

wR11 = ker(u)

Roago = 2%%gcm pr € Lo, pr € L1,pr =0

wR1z2 = Im(u)

Woaso = Roago — 2 gap  pw = piy = 0,pw € Lo, 7w =0

wRT

Roago — essential, pr = pgr = 0,pr € L3
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3. Riemannian Curvature Identities in the Basic Classes of Real
Hypersurfaces of a Complex Space Form

In the sense of [8], we give the following

Lemma 3.1. The characterization conditions for the basic classes of real hy-
persurfaces M* 1 (p & n, g) of a Kihler manifold in terms of the essential
components and essential complex equalities for the fundamental tensors, are
as follows:

o Wit hyo = Loo = Fooa = Wy = —21N00 = i(ﬁgg)ao = —iNao

i . J(€

L4 WQ: hoﬁ - §Lo¢6 — _177116 — _FaBO — _FBaO - - 2<n) goe@
1 .

® W4: hag = §Lag = W,z = —Lyp0 = _FBaO7 f(g) =Trh=0
1 i

o Ws: haﬁ = §<££g)aﬁ = —Fop0 = —Fao = §N0aﬁ) L=0

where L is the Levi form.

Using the relations between the shape operators, we get

Lemma 3.2. The characterization conditions for the basic classes W;, i =
1, 2,4, 6 with respect to the shape operators A and A are as follows:
Wit A= pA g(AX)Y) = —(nR@wop)(X,Y), A =—-(wop) R
TrA=0, Tr(Aoy)=0
5P(¢)

Wy: A= -A*=poAdop ! ==, P TrA=0 Tr(Aoy)#0

o
or equivalently: poA = Aoy = — 5—(5)@, TrA=Trh=-Tr A+v

2n
Wy A=-A*"=podop™, TrA=0 Tr(Adop)=0
or equivalently: poA=Aop TrA=Trh=v
We: A=A* = —poAop™!, TrA=0, Tr(Aoy)=0
or equivalently: poA=—-Aoyp TrA=Trh=v.
Here A* is the operator, g-conjugate to A and 6P is the codifferential of ®.

The equation of Codazzi implies:

Lemma 3.3. The essential components of the covariant derivatives of the
shape operator A and of the second fundamental tensor h of a real hyper-
surface of a complex space form M?*""2(c) satisfy the following equalities:
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l) (vaA)ﬁ - (vﬁA>a =0 < (Vah>ﬁ0 - (Vﬁh)ac = 07 C e {77 W?O};

. c C
il) (Vad)s = (VaA)a = 5Pusl = (Vah)go = (Vshlao = 5P0p =
c,

_519046;

C . C

lll) (VQA)O — (VoA)a = —ZSOZOC = —IZZQ <~ (Vah>03 — (V()h/)ag =
c c.
_(I)aB = — 51045

2 2

The Gauss equation and Lemma 3.1 imply

Lemma 3.4. Let M*"*(p,£,n,g) be real hypersurfuce of a complex space
Jorm M?"*2(¢). Then the Riemannian curvature tensor R satisfies in terms of
the essential components the following identities:

C
L Rapys = 5 (9a8Gvs + 98+9as5) + hprhas — Paryhiss
C
= 5 (M +T2)agys + gy fas — har s
2. Raﬁﬁg — h,@"’yho(g - ha”yhﬁé
3. R@B'Yé - hﬁ’yhdéh@’yhﬁé
4. Raﬁfﬂs — h,@”yhacs - ha’yhﬂ6
5. ROaﬁ’y = haﬁhofy - hoc’yhOB
6. Rodﬁfy — haghofy - hd’yhOB
7. Roaﬁﬁ/ - haﬁhofy - hofyhOB
C
8. Roago = ~ Gap + Vhag — haohog

4
9. ROozﬁO = Vha@ - honhOB-

Using Lemma 3.1, Lemma 3.4 and Theorems 2.1 and 2.2, we express the es-
sential components and the decomposition of the Riemannian curvature tensor
R:

Theorem 3.1. Let M*"*(p,&,m,g) be in one of the basic classes Wy, W,

W., We of real hypersurfaces of a complex space form M*"*2(c). Then the
Riemannian curvature tensor R satisfies the following identities:

® W1: c
Rogs = ) (my + 772)04575 )
C

RO&BO = Zgow — Wals ,

ROoeﬁO = _wawﬁ
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and M € hRy (1 = ¢y @ wR;
° W c 12(8)

RaB’yg = 5 <7T1 + 7T2)a/§fyg + Wg'yﬁgag )

and M € hR> & wRi (7 = 2 — v L&),

® W4:
Raﬁ'yg = 2<7Tl + WQ)aB'yg — NvaTas
Raﬁﬁg = naﬁ 776’7 9
Nas 77ﬁ8

C .
Rospgo = 19545 + 1WNap

and M € hRs © wRq;

® WGZ c 1
R.5,5 = 2 (71 + T2)aprs — 1 (Leg)ar(Leg) 5
R = _l (‘Cﬁg)ﬁv (Eig)ow
! 4 1(Leg)ss (Leg)as|
C
Rowo = Zgaﬁ ;

1
Roapo = §V(ﬁsg)aﬁ

and M € hR, ® hRy ® wRy1 (T = £) ® wRy.
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