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Abstract. We discuss deformation quantization in quantum mechanics
and quantum field theory. We begin with a discussion of the mathemat-
ical question of deforming the commutative algebra of functions on a
manifold into a non-commutative algebra by use of an associative pro-
duct. We then apply these considerations to the commutative algebra of
observables of a classical dynamical system, which may be deformed
to the non-commutative algebra of quantum observables. This is the
process of deformation quantization, which provides a canonical pro-
cedure for finding the measurable quantities of a quantum system. The
deformation quantization approach is illustrated, first for the case of a
simple harmonic oscillator, then for an oscillator coupled to an external
source, and finally for a quantum field theory of scalar bosons, where
the well-known formula for the number of quanta emitted by a given
external source in terms of the Poisson distribution is reproduced.

The relation of the star product method to the better-known methods
involving the representation of observables as linear operators on a
Hilbert space, or the representation of expectation values as functional
integrals, is analyzed. The final lecture deals with a remarkable formula
of Cattaneo and Felder, which relates Kontsevich’s star product to an
expectation value of a product of functions on a Poisson space, and
indicates how this formula may be interpreted.

1. Introduction

One may distinguish three main approaches to understanding quantum me-
chanics (for a more detailed analysis see Styer et al [41]). In chronological
order the first is the operator formalism, in which physical states are repre-
sented as vectors in a Hilbert space, and observables as linear operators on
the states. The measurable quantities are the matrix elements of the operators
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12 Allen Hirshfeld

between states. The second is the Feynman’s path integral approach. Here
the measurable quantities are represented as expectation values which involve
the functional integration of the classical observables evaluated on all potential
trajectories in phase space, and weighted by an exponential factor involving
the classical action. Finally, in deformation quantization the measurable quan-
tities are given as expectation values involving the ordinary integration of the
star product of the classical observables with phase space distributions which
represent the physical states. We now present a more detailed description of
these three approaches.

The operator formalism goes back to Dirac [15] and von Neumann [36]. The
mathematical apparatus involving linear operators in Hilbert spaces has been
extensively studied in the intervening years, and the treatment of non-relativistic
systems is well understood. This is not the case for relativistic systems, where
one must go over to the second-quantized field theory, and where the pertur-
bation series exhibits divergencies whose interpretation is problematical. It is
nevertheless possible to do precision calculations in quantum electodynamics,
which show an excellent agreement with experiment [30]. The main limitation
of this approach is that it has not proved possible to adapt it to a covariant
description of the non-abelian gauge theories which describe the other funda-
mental interactions of elementary particles, the strong and weak interactions.
For non-covariant quantum treatments of these theories see [10, 20].

The path integral formalism was developed by Feynman in connection with
his calculations in quantum electrodynamics, but he later extended his con-
siderations to give a fundamentally new approach to all quantum mechanical
phenomena [21]. His approach has proved remarkably well-suited to getting an
intuitive grasp of a very wide scope of problems in theoretical physics [37]. The
first breakthrough in the quantum treatment of non-abelian gauge theories also
used this method [19]. However, it has proved intractable to exact mathemati-
cal analysis for realistic field theories, although for some quantum mechanical
systems and lower-dimensional field theories such analyses are possible [24].

The most recent approach to quantum physics is deformation quantization. It
is based on phase space techniques developed by the pioneers of quantum me-
chanics; Weyl, Wigner, and von Neumann [45,47,36]. The star product was
discovered in this context by Groenewold [25], and developed by Moyal [35].
The mathematical fundament was laid by Gerstenhaber [23]. But it was only
recognized as an autonomous program for treating quantum mechanical prob-
lems in the papers of Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer
[S]. At that time the problems which could be treated by this method were rela-
tively restricted, but that has changed over the years [3,7, 16, 18, 22, 39,40], so
that today it may well be considered as a rival of the other two main approaches
to quantum mechanics.
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Why might we be interested in yet another approach to quantum mechanics?
Aside from the potential convenience of the calculational techniques involved,
deformation quantization has clear conceptual advantages. In retrospect, we
can see that the meaning of quantization was not really understood in the ear-
lier approaches. Indeed, the difficulties with Dirac’s quantization postulates in
the operator formalism were already noted by Groenewold [25], and later for-
malized by van Hove [1,42]. The relationship between classical and quantum
mechanical systems is also clarified. While in the oprator approach quantum
systems can in principle be treated without any reference to their classical coun-
terparts, the path integral formalism neccessarily has as its starting point the
classical action. In the semi-classical approximation the appearance of the clas-
sical action in the quantum-mechanical treatment can be made plausible, but in
the general case it remains somewhat unmotivated. In deformation quantiza-
tion, on the other hand, the non-commutative algebra of observables emerges
naturally as a deformation of the classical commutative algebra of functions on
phase space.

The explication of this last statement will form the starting point of our present
review. We shall then proceed to illustate how the method works for a large
range of physical problems. We shall finally discuss some recent results which
highlight the power of this method in a case where the other approaches are not
instructive. To the extent that original results are described here, they are based
on work done in collaboration with Peter Henselder in Dortmund [26, 27].

Alternative aspects of the program of deformation quantization are discussed
in other recent reviews [17, 43, 48].

2. Deformations of Algebras

In this section we describe the mathematical setting for deformation quantiza-
tion theory. The results are essentially due to Gerstenhaber [23].

2.1. Associative Algebras

Let V' be a vector space. For £k =0,1,2,... define the space of k-multilinear
mappings

MF(V)Y={m: VXV x---xV — V;m multilinear} . 2.1)

L ktimes—

Now let a € M*(V), b € MY(V'), and take vectors z1,...,Ts,; 1 € V. Then
define a mapping

o;: M*(V) x MY(V) — M*"1(V) (2.2)
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given by
(G O; b)(xl, <. ’Ikal) = G(Ila ceey L1, b(xi’ cey I'H—l—l), cee ,$k+271)- (2.3)
With this we can define a composition law

aob="> (—1)" Nt Va0, b (2.4)
and a bracket
[a,b]g =aob— (—1)F D Vpoq, (2.5

Gerstenhaber [23] has shown that [, ] satisfies a super-Jacobi identity:

[a, [b, C]g]g T (71)(Iclf1)(|a|+|b|) [C’ [a’ b]g]g + (71)(|a|f1)(|bl+lcl) [b, [C’ a]g]g =0.
(2.6)

An element m € M?(V) defines a product on V, since m: V x V — V. Let
a,b € M?*(V), and z,y,z € V. Then

(aob)(z,y,2) = a(b(z,y),z) — a(z, by, z)) 2.7
[a’ b]g(x,y, Z) = a(b(xvy)v Z) - a(:z:, b(yv Z))

+b{a(z,9),) ~ b{a,a(y, ) &9
and
Slo,alg(r,y, ) = ala(z,), ) — a(z,a(y, 2)) @9
Define z - y = a(x,y). Then the last equation may be written as
Slasalo(e,9,2) = (2-y) 2o (y-2). @.10)
We see from this that an element a € M?(V') which satisfies
[a,alg =0 .11
determines an associative algebra structure on V.
Let m € M?*(V). Define the mapping 4,,: M*(V) — M (V) by
Omn = [m, n]g (2.12)

for n. € M*(V). The super-Jacobi identity for this case is

[m, [’m, n]g]g + (*1)(|n|71)(2lm|) [n, [m, m]g]g
+ (=) =0l [ [ ml gl g (2.13)
= 2[ma [m,n]g]g o [[m,m]g,n]g =0.
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If m is an associative product, [m,m|g = 0, then this becomes
d2n =0 forall n. (2.14)

Define the total space M (V) = &, M*(V'). Then (M(V),4,,) is the Hochschild
complex of (V,m). The cohomology of this complex is the Hochschild coho-
mology.

2.2. Deformations of Associative Algebras

Let my € M?(V') be an associative product. A deformation of m, is an element
m(e) € M?(V') such that

m(e) = my + emq + € mg + - - - (2.15)

is a formal power series in the parameter €. The product determined by m(e)
is associative if

[m(f)am(f)]g = [mOamO]g + 2€[m0,m1]g

2.16
+€2(2[m0,m2]g +[mlaml]g)+”' =0 ( )

Remarks:

e [mg,mylg = 0 by the assumption that m, is associative.

e [mg,my]g = d,,m1 = 0 means that m, is a J,,,-cocyle. A symmetric
mapping mg signifies a commutative product. Assume that m; is an-
tisymmetric. Then define {z,y} = m(z,y). Use now Eq. (2.8) with
a = my and b = m,. This yields

Omemi(z,y,2) =2z -{x,y} —z-{y,z2} + {z -y, 2} —{z,y - z}. (2.17)

We then have for the antisymmetrized sum

1
5 (5m0m1 (Ia ya Z) o 5m0 my (I, Za y) + 5m0m1 (Z, SE, y)) (218)
=x-{y,z} +{z, 2z} -y —{z-y,2}.
Hence d,,,m; = 0 means that m; is a derivation.
° %[ml,ml]g = —0,,,m2 means that the cocycle [my,m4]g is a cobound-

ary.
e Assume now that mq is symmetric. Then

S (dmgma + gl malo) = {euh,2) + {y, b o) 4 ({520,
cyclic (219)
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We see that the e-term in the expansion vanishes if 7, satisfies the Jacobi
identity.
Conclusions: With the above (anti-)symmetry conditions the deformation of
the commutative product m  can be extended to second order if the coefficient
m, satisfies

e antisymmetry,

e the Leibnitz rule,

e the Jacobi identity.
These are the defining conditions for m;(z,y) = {z,y} to be a Poisson
bracket. We see that if we have a space with a commutative product and
a Poisson structure we can construct a deformed associative product at least

to second order. Possible obstructions to further extension of the deformation
series lie in the third Hochschild cohomology class.

We shall not pursue these formal arguments further; our purpose here was only
to indicate how the question of the existence of such deformed products can
be formulated in a way that makes it accessible to mathematical analysis. As a
matter of fact many important results concerning the existence of such products
have been achieved, see Ref. [44].

2.3. Deformations of Algebras of Functions

We now take for the vector space V' the space of smooth functions on a manifold
M, that is V = C°°(M). For functions f,g € C>(M) and = € M we take
for the commutative product m, just the usual pointwise product of functions:

(mo(f,9)) (2) = f(z)g(). (2.20)

As we have discussed, m; can be identified with a Poisson bracket structure:

mi(f,g) = {f, 9} =a”f 8,0, g. (2.21)

Here o/ is the Poisson tensor which characterizes the Poisson structure. (M, «)
is a Poisson manifold. If the Poisson tensor is invertible then A/ must be even
dimensional, and (M, ) is a symplectic manifold.

We are now ready to define the central concept of a star product. A star product

on a Poisson manifold is a deformation of the commutative pointwise product
of Eq. (2.20):

fxg=m(e)(f,9), (2.22)
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with the parameter € = i%/2, and such that

lim (%) [f,9]. = {f, 9} (2.23)

h—0

where [f,g]. = (f xg — g x f) is the star commutator.

We shall initially restrict our considerations to symplectic manifolds. An im-
portant role in the analysis of these manifolds is played by Darboux’s Theorem
[34]: there exist canonical coordinates (¢, p) for a symplectic manifold M for
which the coefficients ¥ are constants, and in these coordinates the Poisson
bracket may be written as

—

{f,9} = f(8,0, — D,0,)9.- (2.24)

We actually restrict ourselves at the start to the flat manifold M = R?. Here
there exists a star product already found by Goenewold [25], the Moyal star
product [35], given explicitly by

i_aij‘_._'_ lh
frug=felB00g=fgr —{fgh+

O (IR (D)™ o am (2.25)

Another star product is the normal star product given by

fryg=fe'%g, (2.26)

which is expressed in terms of the holomorphic coordinates a and a, which are
related to the canonical coordinates by

a= %(q+ig>, az@(qi%) 2.27)

where w is a frequency parameter.

Two star products * and " are c-equivalent if there exists an invertible transition
operator

T=14hTy+--- = W"T, (2.28)
n=0

where the 7,, are bidifferential operators, null on constants, such that

T(f+ g)=Tf*Tg. (2.29)
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In terms of the holomorphic coordinates the Moyal star product is

PRICEE AN (2.30)

and the transition operator connecting this to the normal star product is
T =¢ 309 (2.31)

For the 2m-dimensional phase space M = R*™, whose points are parametrized
by the canonical coordinates * = {¢1,...,¢m,P1,---,Pm}, the Moyal star
product is just

n - o = o
fr,g=Ffez >, (04, 0y, 817@-3%)9_ (2.32)

The generalization of the other expressions above to the phase space M = R*™
is equally straightforward. In this case all possible star products are c-equivalent
to the Moyal product [14].

Besides these representations of star products using differential operators, one
can also consider integral representations. The first such representation was
given for the Moyal star product by von Neumann [36], it is (for a two-
dimensional phase space)

(F 2 9)(F) = [ a7, a5 (73 )g(7) e 5577 (2.33)
where 7= (q,p), ;7 = (q;,p;) for i = 1,2, and S(r1,75,7) is four times the
area of the triangle in phase space with vertices (r1,73,7), see Fig. 1. The

associativity of the star product is easy to see in this representation [49].

T

- -

b1 Ty

Figure 1. A triangle in phase space

3. Quantum Mechanical Systems

In classical mechanics the state of a physical system with one degree of freedom
is represented by a point 7 = (g, p) in a two-dimensional phase space M. The
system evolves in time from an initial state 7, = (qo,po) by moving along a



Deformation Quantization in Quantum Mechanics and Quantum Field Theory 19

curve in M which is determined by the equations of motion, here the Hamilton
equations. Physical observables are functions on the phase space f € C*(M).
The measurable quantities are the values of the observables in specific states
f(ro).

For our present purposes it is convenient to describe physical states as dis-
tributions in phase space 7 () = 4 (r'— ry). The measurable quantities are
obtained as

1) = [ $@ms @ ar= [ 1086 v dr. (3.1)

In classical mechanics two observables are multiplied by using the pointwise
multiplication of functions:

(f-9)(r) = f(r)g(r). (3.2)

Hence the algebra of classical observables is associative and commutative.

To go over to quantum mechanics we replace the pointwise multiplication of
functions by the star product of these functions:
ih

f*g=§;<5)nmn(f,g)- (3.3)

The algebra of observables is now associative but non-commutative. In the
classical limit 7 — 0 we have

fxg— f-g=my(f,9). (34)

In the semi-classical limit we have

1

This replaces Dirac’s quantization condition [f, j] = ih{f,’,\g}, where f and
g are the operators corresponding to the phase space functions f and g. The
star product thus reproduces Heisenberg’s uncertainty relations, and obvi-
ously incorporates the characteristic quantum mechanical non-locality, as can
be seen directly in either the differential or integral representations, Eqgs (2.25)
and (2.33).

A physical system is specified by its Hamilton function H(q,p). The time-
evolution function is a solution of the differential equation

d
iha Exp,(Ht) = H = Exp_ (Ht), (3.6)
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which is just telling us that the Hamilton function is the generator of the time
evolution of the system. When the Hamilton function is time-independent this
equation has the solution

< 1/ it\" N
Exp, (Ht) = nz_:o ~ (7) (Hx) (3.7
with
(Hx)" = HxHx---x H . (3.8)

L—— ntimes —!
The Fourier-Dirichlet expansion of the time-evolution function is

Exp (Ht) =Y mpe B/h (3.9)
E

where the projectors 7w (g, p) describe the states of energy E. Inserting this
into the time-evolution equation yields the x-eigenvalue equation

Hxnmp=FErg. (3.10)

The projectors are normalized and idempotent:

1
2mh
The spectral decomposition of H is

H=)> FErg. (3.12)
E

3.1. The Simple Harmonic Oscillator

In this case the Hamilton function of the system is

H = ﬁ + w—2q2 = waa (3.13)
2 2

where a and a are the holomorphic coordinates of Eq. (2.27). These variables
have the Poisson brackets {a,a} = 1. We then have from Eq. (2.26) the normal
star products

a*y a = aa, axy a=aa+ h, (3.14)

and the star commutator is [a,a], = h, as required. The time-evolution equation
in terms of the normal star product is

d
iha Expy(Ht) = (H + hwad;) Exp (Ht), (3.15)
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with the solution
Exp, (Ht) = e*"exp (e “'aa/h) . (3.16)
Expanding the exponential yields the Fourier-Dirichlet expansion:

= 1

__ _—ad/h —n _n _—inwt
Expy(Ht) =e Z:O atate . (3.17)
We read off
_ 1
ﬂ_(()N) _ efaa/h’ 71_7{1N) _ FW((’N)anan’ E, = nhw. (3.18)
n!

To go over to the Moyal product scheme apply the transition operator

T = 4000 .
The result is
Tﬂ'((,N) = WSM) — 9o 20a/h
TrN) = z(M) — %an oo 1M 4 (3.20)
and
= (n+ %) M 3.21)

The projectors may also be written as

AH
aM) = e 2/ ( ) (3.22)

T

where L, (x) are the Laguerre polynomials, related to the Hermite polynomials
by

e L,(a® 1+ %) = /da: ¢ H,(z — a)H,(z +a)e 2" (3.23)

compare Eq. (3.25) below.
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3.2. The Operator Formalism

A quantization prescription is a map ©: C*(M) — A from the smooth
functions on phase space to linear operators on a Hilbert space. Groenewold
[25] showed that

O(f)B(g) = O(f * g). (3.24)

This means that the operator algebra is a representation of the star product
algebra. Indeed, results obtained in the star product formalism are intimately
related to results in the operator formalism. For example, the projectors (often
called Wigner functions for pure states) are related to the Schriodinger wave
functions by

mo(ap) = [Uila + €/20nlg— €/ e (329)

From this we find
1
—h/ (¢,p)dp = [¥e(q)|?

(3.26)
1 -
[ To(a.p) dg = [d5(p)

where 1 (p) is the Fourier transform of ¢5(¢). The expectation value of the
Hamilton function in the state characterized by 7g is

E = /dpqu(q,p) * (g, p) - (3.27)

In Eqgs(3.24) and (3.27) we may use different star products and their cor-
responding projectors. Different choices for the star product correspond to
different choices for the operator ordering in Eq. (3.24) [11,2].

The relation of the operator formalism to the path integral approach in a general
ordering scheme has been studied by Cohen [12]. A direct relation of the
deformation quantization procedure to quantization procedures involving the
path integral has been worked out by Sharan [39] and Dito [16].

3.3. The Forced Harmonic Oscillator

In this subsection we follow [27], which can be consulted for further details.
The Hamilton function for an oscillator acted on by the external source J(t) is

H =waa — J(t)a — J(t)a. (3.28)
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The time evolution of this system is determined by the differential equation

ih%UJ(t,ti) = H %, U;(t,t;) = [H + h{wa — J(t))0:]U;(t,t;) (3.29)

where we are working in the normal product scheme. The solution is

1
UJ(tf,ti) _ aa/ﬁeXp [haaelw{tf t)+ haelwtf/dse IWSJ( )

gd lwtf/dseleJ - _/dS/duelw(“ S)J )J( )] . (330)

Figure 2. The scattering function

In the scattering situation the source acts only in the time-interval [T, 7.
The asymptotic dynamics is governed by the time-evolution function U =
U;(J = 0). The scattering function relates asymptotic in- and out-states, see
Fig. 2. The formula is:

S[J] = lim U(0,T) =, U;(T, ~T) % U(—T, 0). 3.31)

T—o0

One can show in general [13] that the free time-development of a phase space
function is given by

U(0,T) xy fla,a) xy U(—T,0) = flae ™, ae“"). (3.32)

For our case this yields

S[J] = exp ihaj(w)Jr igaj(w) ;h //dsdue“"'s“'J(s)J(u) (3.33)
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where
jlw) = / dse“*J(s) (3.34)

is the Fourier transform of J(s). Define now a field function
d(t) = ae ™ + ae™’, (3.35)

We may then write

S[J] = e J 4/t exp[ / dtdt' J(t)Dp(t —t)J ()| (3.36)

1
- 2m2
with
Dp(t)=h [G(t) e Wt 6(—t) ei“t] . (3.37)

Here 6(t) is the Heaviside function

(3.38)

fort <
o(t) — 0 fort <0
1 fort > 0.

S[J] corresponds to the scattering operator in quantum field theory, Dr () to
the Feynman propagator, see Egs (3.69) and (3.74) below.

The generating functional is the vacuum expectation value of the scattering
operator:

1 1 ’ ’ ’
ZlJ) = 5 / da2S[J] 5, mY = e w7 J [ AW IOD)IE) (3 30)

To calculate off-diagonal matrix elements use the Wigner functions

1
) =

" vV hmtrmln!

with 7(%) = 7{¥). The transition amplitudes are then

SMama® (3.40)

1 . n ) .
Amp(0 — n) = pyrs /daQﬂ'O’n sy S[J] sy w§N) = % e~ liw)?/2n
" hir/+/ml (3.41)

The probability for the transition is

_ i)

P, = | Amp(0 — n)|? = e o l@I*/n (3.42)
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In quantum field theory this gives the Poisson distribution for the number of
emitted quanta [29]:

P, = e—ﬁ”—1 (3.43)
1.
with
=3 nP, = |j()/h. (3.44)
n=0

3.4. Multiple Star Products and Wick’s Theorem

In this subsection we again follow [27]. Related work was done earlier by
Lesche [32]. Define

i\ < ,, 0 90
My, = (—) aV — — (3.45)
o2 Z Oz} O}
where 2!, (i = 1,...,2m) is the i-th component of phase space point z,, and

o are the coefficients of the Poisson structure on M. The star product of two
phase space functions may then be written as

(f % 9)(@) = ™ f(21)9(22) ]2, o s - (3.46)

For the star product of r functions of the holomorphic coordinates a,a we
obtain

(fl * f2 koeee ok fr)(a” EL) = e(ZKj Mij)fl(alaal) o 'fr(am&r)' om—e - (347)

Consider functions f; which are linear in a and a:
fi(a,a) = A;a + Bia. (3.48)

For such functions the star product may be written in the form of a Wick
theorem by expanding the exponential: for example for r = 4

fixu foxu faxa fa= fifofafa+ G12(f3f4) + G13(f2f4) + G14(f3f3)
+ Gos(fifa) + Gau(fifs) + Gsa(fifo)
+ G12Gss + G13G o + GraGas (3.49)

where the contractions

N S
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are constants. We may also write

0 0
M. =G — —— Sl
ij G”afi T (3.51)

and Eq. (3.47) then becomes

fl*MfQ*M---*Mfr_exp(Z QgF af)Hfm. (3.52)

It should be clear from the above that not only the original form [46], but
also the various generalized Wick theorems which have been discussed in the
literature [2,33] are direct consequences of the structure of the relevant star
products.

A product of operators is the Weyl transform of the star product of the cor-
responding phase space functions [25]. For example, for the Moyal product
scheme:

fl"'fr = G)M{(fl Kap o0 Ky fr)(aﬂa)}

r (3.53)
“ oy few (z: M) I fufamanlzgs |
m=1 }

{ i<j

For a quantization scheme which is c-equivalent to the Moyal scheme we
use the corresponding contraction factors X,; instead of the Moyal contraction
factors M,;. We may write X,; = X5y + M,;, where X;; = %(Xl-j + X,i)
is the symmetric part of X,;, since the antisymmetric part is fixed for all

c-equivalent star products by the definition, see Eq. (2.23).

The time-ordered product of r time-dependent operators is given by the pre-
scription

T{fi(t) - fot)} (3.54)
= Ox [GXP (Z(X{u} +e(ts ) H fn(@m, @yt )| 2rn=e

since the transposition of two operators leaves Xy, invariant, while the signs
of e(t; —t;) and of M,; reverse. For the case of normal ordering we may write
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the exponent in Eq. (3.54) as
T

Y]

h
= 5[(8%051. + 04,04,) + €(t; — 1;)(0n, 04, — 0a,04,)]
3 (3.55)
— 5[(1 + G(tl‘ — tj))aaiaaj + (1 — E(tl — tj))a&iaaj]

= h[@(tz - tj)aaiaaj + 9(75] - ti)&—zi&zj] .

Suppose now that the functions f,,, are linear in a,,, and a,,,, and have a periodic
time dependence:

fm(t) = Anan, e + B,a,, e“". (3.56)
By Eq. (3.50) the relevant contractions are

D;;(t —t') =T, f:(t) f;(t)

i ' - , 3.57
B [ABO(E— #)e R 4 A B gy, O

which is a generalization of the expression in Eq. (3.37). We write, in analogy
to Eq. (3.51),

4] 4]
T, :/ dtdt/ ——D,,;(t — t' (3.58)
’ s @)
where the §/0 f(t) are functional derivatives. For the operators
fn(t) = Aae ™ + Bpat et (3.59)

we get a quantum mechanical form of Wick’s theorem by inserting these ex-
pressions into Eq. (3.54):

T{fi(t) - fr(t,)} (3.60)
I 5 I 5
- On]ewp (Z;//dt Ysrm U@ Yt £z

Since we have modified the star product contractions in Eq. (3.54) by the inser-
tion of the €(t; —t;) factors, the time-ordered product is not the Weyl transform
of a star product. This can be seen from the fact that the time-ordered product
1s symmetric in its arguments, whereas the star products have an antisymmetric
part fixed by their definition, Eq. (2.23).
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3.5. Quantum Field Theory

A free scalar field may be written as

oue) = [ Bz <= [0 ¥ ane™] G

2m) % 2wy
where hwy, = v h?k? +m?2. This is the infinite-dimensional generalization
of the formula (3.56) for the finite-dimensional case. Corresponding to the
formulae
h (o 0 o 0
My, = = — 3.62
12 2 (8@1 8&2 8&1 8@2) ( )

and
M;;fif; (3.63)

we now have

1D( = b // e d3k1 d3k2 1 1
2 “ T2) = 2 )% \/2(.4)1(1 w?wkz

y 5 0 ) }
5a1(k) dax(k)  day(k) Sas(k)

X (al (kl) “ikim + al(kl)e]klml) (364)
% (GQ(kQ)efikzmz + @ ( 2)elk21‘2)
1

=5 [DF (21 — 23) + D™ (@1 — )]

where
+ _ dgk h ikx

are the propagators for the components of positive and negative frequencies,
and D(z) is the Schwinger function [29].

For the quantum field operators

= _ d3k 1 ~ —ikx ~F ikx
b(z) = / T T [a(l) e + af (k) ] (3.66)

we obtain, in analogy to Eq. (3.53),

~ ~

b(21) - B(z,) (3.67)
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1<)

_@M{exp Z//d4xd4y6¢ Dz } H e |¢m—¢}

and, in analogy to Eq. (3.60),

T{®(z1) - d(x,)} (3.68)
= @N{exp [Z/ d4:cd4 ) Dp(z — ] H P (@ |d>m<!>}

Here Dy, the Feynman propagator, is given by the infinite dimensional gen-
eralization of Eq. (3.37):

oy, hy d3k2 1
D —IQ // d 3 3
2 E 2% Vi Vor
5 5 P
h|0(t; —t O(t, —t
<0~ ) Sas s O T W s s

% (ar (k) e ™71 1 ay (k) ™70 (3.69)
X ((IQ (kg) eiik2m2 + ag(kg) eiksz)
= 9(t1 — tQ)D+(I1 — .'EQ) — 9(252 — tl)Df(xl — IIZ'Q)) .

We may simplify Eq. (3.68) by using the symmetry of the Feynman propagator,
Dp(xy — x3) = Dp(xy — x1). It becomes:

~

T{®(z,) - (z,)} (3.70)

= on{ew |5 [[rzay 5¢(z> (xy)(squ 8r) 6w}

Note that in this case it is no longer necessary to use different fields which
are set equal only after the differentiation; because of the symmetry the correct
combinatorics are guaranteed by the Leibnitz rule for differentiation. Eq. (3.70)
is the field-theoretic version of Wick’s theorem.

For n = 2 Wick’s theorem is
T{&)(xl)é(%)} = On{P(71)0(22)} + Dp(x1 — 22) . (3.71)

Since the vacuum expectation value of the normal product vanishes, this yields
the familiar relation

Dp(xy — 3) = (0|7 {®(x1)®(22)}|0). (3.72)
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Wick’s theorem may also be written in the form of a generating function:
T {et Jd'=i@b@n (3.73)
L 4rd(x x 1
= Opn{e™ Jatzs@e( )Y exp [ﬁ //d4x d*yJ(z)Dp(z — y)J(y)

where J(z) is an external source. Eq.(3.70) then results by expanding both
sides of Eq. (3.73) in powers of J and comparing coefficients. Note that

S[J] = T{e* J /@@y — o f [ d'ehint)y (3.74)

is the scattering operator of quantum field theory [29], so that Eq. (3.73) cor-
responds to the perturbation expansion of the scattering operator. This is just
the operator form of our previous result, Eq. (3.36), which was derived com-
pletely within the phase space formalism of deformation quantization theory.
The generating functional for the perturbation series is, by Eq. (3.73),

1

Zald] = QISL7)0) = exp |~ 57

[[atzdtys @) Drta - I 373)
in agreement with our previous result, Eq. (3.39). When a self-interaction term
is included in the interaction Hamiltonian, H;,, = —J¢ + V' (¢), the generating
functional for the interacting theory becomes

)

Z1J]) = % e J4V (¥ ) 7, ] (3.76)

where the normalization constant is N = Z[J = 0].

4. Star Products on Poisson Manifolds

4.1. The Kontsevich star product

We may write the Moyal product of two phase space functions as

_ Y i 0:0) + L (Y avigin (o, |
frg=fo+ (3 )a"@N@9) + 5 (5 ) a0 @A) O0m0) ro

In a graphical notation we represent a vertex {f,g} = a“(9;f)(9;9) as in
Fig. 3. The graphical representation for the Moyal product then takes the form
given in Fig. 4. Here the phase space M is a symplectic manifold and the
coefficients of the Poisson structure ¥/ are constants. If we consider functions
on a Poisson manifold M then the coefficients o’/ (z) are in general functions
of z € M.
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Figure 3. Graphical representation of a vertex

frg=- @ @ +f\. + 1/2M+ UnIM+M

Figure 4. Graphical representation of the Moyal product

The Kontsevich star product [31] of two functions f,g € C°°(M), where
M 1s a Poisson manifold, is represented graphically as in Fig.5. The series
includes the graphs which appear in the representation of the Moyal product,
plus graphs such as the the last one in the figure, which stands for the expression

K 2 .
(13) o™ (8107 )(8;5) (D50mg) 4.2

In this way the Kontsevich product may be seen as a natural extension of
the Moyal product on symplectic manifolds to the more general framework of
Poisson manifolds.

Figure 5. Graphical representation of the Kontsevich product

Kontsevich tells us in his paper which graphs are admissible; e. g. graphs with
closed loops such as Fig.6 are forbidden. He also provides the numerical
coefficients for the various graphs in terms of certain angular integrals; e. g.
the coefficient of the graph in Fig. 3 is

1 1
e [ dndee= 3. 43)

2
1<z
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We shall see in the following how these coefficients can be understood in a
field theoretic framework.

Figure 6. Graphical representation of a forbidden graph

Note that when the Poisson manifold is symplectic the coefficients a* are
constants, so that terms like that corresponding to the last graph in Fig. 5 vanish,
see Eq. (4.2), and the Kontsevich product reduces to the Moyal product.

4.2. The Poisson-Sigma Model

This is a two-dimensional topological field theoretic model defined on the disc
D, € R? and involving a set of scalar fields X': Dy — M and gauge fields
A;: Dy — T*M, where M is a Poisson manifold [38]. The classical action
for the model is

S[X, A] = / (4, dX" 1 0 (X) A A;) . (4.4)

Do

Here the o/ (X) are the coefficients of the Poisson structure on M, and the
X" can be thought of as coordinates on M.

Cattaneo and Felder [9] give a remarkable formula for the Kontsevich product
of two functions on a Poisson manifold in terms of the expectation value of
the ordinary product in the Poisson-sigma model:

(f+9)@) = [ DXDAFXW)gX@)et ™0, @)

One has to integrate over all the field configurations X which satisfy the bound-
ary condition X (occ) = x € M. Here 1,2, 00 are three points on the boundary
of Dy, in anti-clockwise ordering, as in Fig. 7. The Kontsevich expression for
the star product results from the perturbative expansion of the above expectation
value in terms of Feynman graphs, as we shall explain below.
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Figure 7. The disc and its boundary

When the manifold M is symplectic the Poisson structure is non-degenerate,
and the matrix [a"] is invertible: the coefficients of the inverse matrix are
Q;; = [a”]"". In this case we may perform the Gaussian integration over the
A-fields in Eq. (4.5), with the result

(f*g)(w /DXf )g(X(2)) e J s axtax’ (4.6)

where [ ,;;dX"dX7 is the symplectic area of the image of the disc D, in
M. At first sight it would seem as if we are dealing here with an infinite-
dimensional functional integration. As a matter of fact, topological field theo-
ries involve only a finite number of degress of freedom, so the above integration
must actually be finite-dimensional. In this case the reduction may be described
as follows. We have to integrate only over field configurations which are not
topologically equivalent, so that the integration reduces to a sum over represen-
tatives of the various homotopy classes [28]. Because we are doing perturbation
theory about a trivial solution of the equations of motion (see Eq. (4.11) below),
we can restrict ourselves to the trivial topological sector. Hence the expression
in Eq. (4.6) is actually a single integration over the phase space A, and the
formula (4.6) for the star product is the same as von Neumann’s expression for
the Moyal product, Eq. (2.33).

4.3. The Superfield Formalism

Before we can quantize a gauge theory using path integral techniques we must
replace the gauge invariant classical action by an effective action, which is no
longer gauge invariant, but which satisfies instead the BRST-symmetry [6]. For
general gauge theories this is done by using the Batalin—Vilkovisky formalism
[4]. This involves an extended phase space constructed by first including the
Faddeev—Popov ghost fields, one for each gauge degree of freedom, and then
doubling the number of degrees of freedom by including for each field an
antifield of opposite Grassman parity. Since we arrive in this way at a theory
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with the same number of bosonic and fermionic fields, it is plausible that the
effective action is the supersymmetric extension of the original classical action
[8]. In the model considered here this is indeed the case, and we shall construct
the supersymmetric extension of the action by using the superfield formalism.

We therefore replace the original fields of the Poisson-sigma model, X* and
Ais by

g , 1
X' (w, () = X" (w) + C#A;i(w) N §C#Cllci*uu(w) 4.7)

Ai(2,0) =Ci(2) + 0"AL (=) + %9“9”)(?“ (z). (4.8)

LY

Here z,w € D, and the 8*,(* (p = 1,2) are Grassman variables. The C;(z)
are the Faddeev—Popov ghosts. A7 (2),C}  (2), X}, () are the antifields. The

Lagrangian of the theory is L = [ d?#L, with L the supersymmetric Lagrangian
density

L=ADX"+a"(X)AA;. (4.9)
Here DX denotes the supersymmetric covariant derivative,

D=0 — (4.10)

ou,,

where (u',u?) parametrize the points of D,. In the following we shall perform
a perturbation expansion about the trivial classical solution

X*(u) =z, Ai(u) =0 (4.11)

where the z* are constants. We then write X = z + £, with £(00) = 0, and

L=A,DE 1 a?(X)AA, (4.12)

where the first term gives rise to the kinetic term in the action, the second to the
interaction term. From the Taylor expansion o/ (z+¢) = a(z) +E*pa™ +- --
we get derivatives of o, from f(X (1)) = f(z+£(1)) = f(2)+E (1) f+---
we get derivatives of f. From these derivatives we shall form the Moyal,
respectively the Kontsevich star products, see Eq. (4.26) below.
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4.4. The Propagator

In field theory the key ingredient in the perturbation expansion is the propagator.
In the superfield formalism the propagator arises from the kinetic term in the
Lagrangian density A, D¢, It is

- ~ ih .
(€ (w,Q)A;(z,0)) = 5-8,D¢(z,w) (4.13)
where
D= gﬂi Z 4.14
T Oz 6 OwH .19

and ¢(z,w) is an eigenfunction of the Laplacian D?¢(z,w) = 27d(z — w), so
that

D(€'(w)A;(2)) = ih8i6(z — w). (4.15)

We see that the propagator is the Green’s function corresponding to the differ-
ential operator in the kinetic term of the Lagrangian, as expected.

To determine the function ¢(z,w) we consider the differential equation
dy A dyd(z,w) = 278(z — w) d*w (4.16)

where the derivative is

B )
dy, = dw =+ div . (4.17)

The solution which satisfies the correct boundary conditions is

1 (z —w)(z —w)
o) = g e G —w)

(4.18)

since ¢(z,w) = 0 for z real, i. e. for z on the boundary of the disc.

4.5. Hyperbolic Geometry

The two-dimensional disc ), can be conformally mapped to the Poincaré half-
plane as depicted in Fig. 8. The geodesics in the Poincaré half-plane are vertical
lines (these are the geodesics connecting interior points to oc), and semi-circles
(these are the geodesics connecting two interior points).

Proposition 4.1. The function ¢(z,w) of Eq. (4.18) is the angle between the
geodesic through the points (z,w) and the geodesic through the points (z,00),
see Fig. 9.
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Figure 8. The Poincaré half-plane

[ AL

Figure 9. Angles between geodesics

Indeed, define the function

(4.19)

Now scale the diagram in the above figure to the unit circle, and choose for
the origin of coordinates the center of the semi-circle which contains the points
(z,w). Neither of these choices affects the value of 7T'(z,w). Then we may
calculate

2 1 . — 1 _ &
T(ow) = tizzwdw) etz zwzo)  z 5,
2+1-zwt+w) 2Zz+5-—w—-—w) 2z
In the last equation we have used the fact that zz = 1 implies z = % and
1 = z. From the geometry of the figure T'(z,w) = z/Z = €%, or
InT(z,w) = 2ig(z,w) 4.21)

which agrees with Eq. (4.18).
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4.6. The Perturbative Expansion

We now have all the tools assembled which we need in order to evaluate the
perturbative expansion of the expression (4.5). In the superfield formalism

(f+0)(@) = [ DRDAFR)g(X @)t Sts0. @22)
The vacuum expectation value of a function O(f( , fl) is
(O(X, A)) = / DXDAO(X, A)etSe. 4.23)
Hence by expanding the last exponent we may write

(FX1)g(X (2))ef S oAy (4.24)
=3 (3 Y (rxanecke) ([orad,)).

It turns out that the terms involving non-physical fields (Faddeev—Popov ghosts
and antifields) do not contribute to the expectation value [9]. The first relevant
non-trivial term, which corresponds to the graph of Fig. 3, comes from using
the Taylor expansions mentioned after Eq. (4.12), and is

(0.1)(@39)a"™ (@€ (D€ (2) Ai(w) An(u)
= "™ (@)(0.£)(059) // NE @A) @26)
(WA (um

where in the last line we have used Wick’s theorem. Insert the values of the
propagators, and use the antisymmetry of a*/, to obtain

2(3) e @O 9) [[ o1 w sz

= S (0.1)(350) = 5 5.0}

(4.25)

(4.27)

We have used here

(27)> (4.28)

/ de(1, u) dg(2, u) = %

since the angles range from 0 to 27 with the restriction ¢(1,u) < ¢(2,u), as
can be seen from Fig. 10.
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Figure 10. Comparison of angles

Some of the vanishing terms in the expansion of Eq. (4.24) are shown in Fig. 11.
In quantum field theory one uses a renormalization scheme in which the con-
tributions of the tadpole graphs vanish. This coincides with Kontsevich’s rule
excluding graphs involving closed loops [31].

5.

(K J.

Figure 11. Some vanishing graphs

Summary

We hope to have convinced the reader of the following points:

1.

Deformation quantization provides a unified conceptual framework for clas-
sical and quantum physics.

The passage from a classical system to its quantum counterpart is clarified.
Dirac’s quantization rule is generalized in a way which avoids the no-
go theorems affecting previous treatments. The admissible quantization
schemes are classified.

One has a viable alternative to operator methods and path integrals for
treating problems in relativistic quantum field theory.

Star products provide an important bridge between mathematics and physics.
Methods from quantum field theory can be used to gain insight into modern
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mathematical developments. This last aspect was illustrated here for the
case of Kontsevich’s star product defined on Poisson manifolds.
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