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Abstract. Equivariant cohomology in general and the equivariant lo-
calization theorems in particular have taken on a role of increasing
significance in theoretical physics of late (see e. g. [3], [4] and [10]).
These lectures are an attempt to provide a self-contained and elemen-
tary introduction to the Cartan model of equivariant cohomology, a
complete proof of the simplest of the localization theorems, and, as an
application, a proof of the famous Duistermaat-Heckman theorem on
exact stationary phase approximations.

1. Stationary Phase Approximation

We consider a compact, oriented, smooth manifold M of dimension n = 2k
and denote by v a volume form on M. Suppose H: M — R is a Morse
function on M, i.e., a smooth function whose critical points p (dH (p) = 0)
are all nondegenerate (this means that the Hessian H,,: T,,(M) x T,,(M) — R,
defined by H,(V,,W,) = V,(W(H)), where V,, W, € T, (M) and W is a
vector field on M with W (p) = W, is a nondegenerate bilinear form). Finally,
let 7" denote some real parameter. We consider the integral

/ elTHy (1.1)

M

and are especially interested in its asymptotic behavior as 1" — oco. The Sta-
tionary Phase Theorem (Chapter I of [6]) asserts roughly that, for large 7', the
dominant contributions to such an integral come from the critical points of H.
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More precisely, one has

. o2r\F . L
/elTHU: Z (%) eWI(Sgan)/4|detHP(ei’ej”—EelTH(p)

i BN (1.2)

+ O(Tf(k+1) )

where Sgn'H, 1s the signature (number of positive eigenvalues minus the num-
ber of negative eigenvalues) of any matrix representing H,, {€1,... €9} is
a basis for T,(M) with v,(ey, ..., ex) = 1, and O(T—*+1) stands for terms
which, in modulus, are bounded by M /T*™! for some constant M and all
T outside some compact set in R. The terms preceding O(T~*+1)) on the
right-hand side of (1.2) constitute the stationary phase approximation of the
integral. These terms arise in the proof of (1.2) from writing H near p as a
quadratic function in some coordinates (that this is possible is the content of
the Morse Lemma) and computing directly the resulting Gaussian integral. It
follows from the Morse Lemma that the critical points of a Morse function are
isolated. Since M is compact, H can have only finitely many critical points
so the sum in (1.2) is necessarily finite.

Let us write out a simple example used by Witten [12] to illustrate the phe-
nomenon we wish to study. We take M to be the 2-sphere S? in R? and
let v be the usual metric volume form on S? (this is the restriction to S? of
the 2-form zdy A dz — ydz A dz + zdz A dy on R?). Let H: S* — R
be the “height function” (H(z,y,z) = z for any (z,y,z) € S5%). We claim
that the critical points of H are the north and south poles, i.e., N = (0,0, 1)
and S = (0,0, —1), and that both are nondegenerate so H is a Morse func-
tion on S?. For example, on z > 0 in S?, (z,y,2) — (x,y) is a chart
with inverse (z,y) — (z,y,(1 — 2> — y*)?) and, in these coordinates,
H(z,y) =(1—2>—y*)% sodH (z,y) = —(1—2*>—y?) * (zdz+ydy). Thus,
the only critical point in z > 0 occurs when (z,y) = (0,0), i.e., at N(0,0,1).
Furthermore, the Hessian (which, in any coordinate system, is represented by
the matrix of second order partial derivatives) is given by

2 (1—y* wy
2 2\— 2
7(1*x *y) ( Ty 1_x2>-

Thus, at (z,y) = (0,0) we obtain Hy = (1 0) and this is, indeed,

0 -1
nonsingular. The region z < 0 on S? is, of course, handled in the same way
and projecting onto other coordinate planes shows that there are no critical
points with z = 0.
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Now we shall write out the stationary phase approximation for the integral

/ eTzy . (1.3)

52

From (1.2) with £k =1 and p = N, S, this is

2 , L
(_ﬂ-) e7r1(Sgn'HN)/4| det HN(ei,ej)|7E esz(N)
1.4)

2 : L
T (%) em(Sgn’HS)/4|det Hs(ei,ej”ii GITZ(S).

Now, Sgn’H = Sgn ( (1) (1)) —2. Next note that evaluating z dy A dz —
ydz Adz + zdz Ady at (£, ai) gives z so, at N, vy (= (N), aa—y(N)) = 1.
Thus, {e1,ex} = {a (N), ai( )} is a basis of the required type for T (S5?)
SO

| det H(es,e;) F = |det (é 2)‘ ~1.

Similarly, SgnHg = 2 and |det Hg(e;,e;)| # = 1. Substituting all of this
into (1.4) gives, for the stationary phase approximation to (1.3),

2mi . . inl’
oo T ) = dn (T, (1.5)

T

Next we observe that the integral (1.3) is actually easy to compute exactly.

Let +: S* < R? be the inclusion map so that v = 1*(x dy Adz — ydz Adz +
zdxz A dy). Define an orientation preserving diffeomorphism ¢ of (0,7) x
(—m, ) into S? by

(Low)(d,0) = (singcosb, singsin b, cos @).

The image of this map covers all of S# except a set of measure zero. A simple
computation shows that ¢*v = sin ¢ d¢ A df and so

" (77 v) =T’ singpdep A df.
Denoting by dm Lebesgue measure on the plane we therefore have

/eiTZI/ = / eTes?sin ¢ dep A df

S2 0,m)x (—=m,m)

= / el eos¢ gin pdm

[0,7] X [—7,7]
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://eiTC°S¢sin¢d¢d9
—7 0
_ 27 iT cos ¢ T
=T [e ]0
= @ e —eT] =4n (sinT) )
T T

We find then that, in this particular case, the stationary phase approximation
(1.5) to the integral (1.3) actually gives the exact value of the integral. Our
goal now is to uncover the underlying features of this example which account
for this exactness of the stationary phase approximation.

2. Hamiltonian Actions on Symplectic Manifolds

We begin with a few observations on the example which concluded the pre-
ceding section. Note that the volume form v on S? is also a symplectic
form, i.e., a closed, nondegenerate 2-form. Indeed, any volume form v on
any orientable surface is a symplectic form (it is closed because it is a 2-
form on a 2-dimensional manifold and nondegenerate because, at each point,
an oriented basis {e;,e,} for the tangent space satisfies v(e;,e5) > 0 so if
v =uv'e; +viey # 0 (say, v' # 0), then v(v,e;) = v'v(e,ez) # 0). When
thinking of v as a symplectic form on S* we will denote it w. Now, the height
function H, like any smooth, real-valued function on the symplectic manifold
(S%,w), determines a corresponding Hamiltonian vector field V; on S2. This
is defined to be the unique vector field on S? satisfying

lypw =dH (2.1)

where 1y, 1s interior multiplication by Vy (so that, for any vector field W on
S?, dH(W) = w(Vg,W)). We claim that if % is the #-coordinate velocity
field of the spherical coordinate chart on S? (taken to be zero at N and 5),

then

0

VH:%.

First note that (2.1) and the nondegeneracy of w imply that Vy must vanish at
the critical points N and S of H and so it agrees with % there. At any other
point, H(¢,0) = cos¢ so dH(¢,0) = —sin¢pde¢. Since w = sin¢pdeo A db
(here and henceforth we adopt the time-honored custom of omitting references
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to the diffeomorphism ¢ whenever it is convenient to do so), we have

Law=1lzg (singpd¢p ® df — sin ¢ df ® do)

o (06 (2)) a0 s a0 2))as
— singdé = dH

as required. The integral curves of Vg = % are then easily found. They
are points at [N and S and elsewhere they are “horizontal” circles traversed at

speed one. The unique one through p = ¢(¢,8) at time ¢t = 0 is
a, (t) = (sin¢gcos (0 + t), sin¢sin (0 +t), cos @)

(we shall also omit references to the inclusion +: S? < R3). These integral
curves are therefore periodic with period 27. The flow

a: 8% xR — §?
a(p,t) = a,(t)

is therefore also periodic in £. Finally, recall that any symplectic manifold
(M?*,w) has a canonical orientation (volume form) v, called the Liouville
form and defined by
1 k 1,
Vy, = —wN\ - Aw

k! T
For k = 1 this is just w so, in our example on S?, v, w and v,, are all the same.

Duistermaat and Heckman [5] have shown that the exactness of the stationary
phase approximation of [, €”*v is a consequence of the fact that the Hamil-
tonian vector field of the height function on S? has a periodic flow. More
generally, we have

Theorem 2.1. (Duistermaat-Heckman) Let M be a compact manifold of di-
mension n = 2k with symplectic form w and oriented by the corresponding
Liouwville form v,, = -w*. Let H € C*(M) be a Morse function on M and
Vy its Hamiltonian vector field (1y,w = dH). If the flow of Vy is periodic,
then, for any real number 1" > 0,

. 2r\* . 1
/elTHUw: Z (_ﬂ-> e7r1(Sgn’H,,)/4 |d€th(€i,8j)| 2elTH(p)

pEM T
dH(p)=0

where H,: T,(M) x T,(M) — R is the Hessian of H at p and {ey, ..., e}
is a basis for T,(M) with v,(e1,...,ez) = 1.
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Note that the set of critical points must be nonempty since M is compact and
so H must achieve maximum and minimum values. We intend to provide a
complete proof of this result, but will proceed toward it in a rather roundabout
fashion. First we return to our example on S? and isolate a group action which
suggests a more general perspective on the Duistermaat—-Heckman Theorem.
We formulate this new perspective as a Generalized Duistermaat—-Heckman
Theorem that concerns itself with Hamiltonian actions on symplectic manifolds
and show that this new result implies our Theorem 2.1. Still our perspective is
not broad enough, however, and we focus our attention on general group actions
on manifolds and their associated equivariant cohomologies. In this context we
prove the simplest of the so-called Equivariant Localization Theorems and find
that it has as a simple consequence the Generalized Duistermaat—-Heckman
Theorem and therefore also Theorem 2.1.

Let us then consider again the height function H on the symplectic manifold
S?. Since the Hamiltonian vector field Vy has a periodic flow it gives rise
to an obvious action of S' on S? (rotate points of S? around the integral
curves containing them). Specifically, if ¢ = 7 € S* and p = ¢(¢,0) =
(sin @ cosf, singsin 6, cos @) € S?, then we define

g-p=-cel -(sin¢cosh, sin¢sinf, cos @)
= (singcos (6 +T), singsin (6 + T), cos ¢)
(if p= N or S we define g-p = p for all g € S'). This clearly defines a
(left) action of S* on S2. As usual, we identify the Lie algebra of S with iR.

Each ¢ = ia in the Lie algebra gives rise to an associated vector field ¢# on
S? defined by

d
&*(p) = 7 (exp( &) - p)li=o (2.2)

(the minus sign is introduced here because we take our actions to be on the
left and we want £ — £# to be a Lie algebra homomorphism). It is a simple
matter to compute &% (p) explicitly. At p = N, S it is zero and, otherwise,

(1) = - (exp( 6) - )l

dt
d .
- E(eﬂat “P)e=0
d
=3 (sin ¢ cos(f — at), sinpsin(f — at), cos @)|;—g
= —a(—sing¢sinf, sin ¢ cosh, 0)
0

= *a%(p)
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= —aVu(p) = Voau (D)
(the last equality is easy to check by verifying that d(—aH) = ¢ _,y,w). Thus,
E=ia=¢*=V_ ,y.

In particular, every £# is the Hamiltonian vector field of some smooth function
on S?. We can therefore define a map

p: Lie(S') = iR — C>~(8?)
by

which has the following properties

1. g is linear.
2. £# is the Hamiltonian vector field on S? determined by p(€).

3. i is equivariant with the respect to the natural actions of S on Lie(S")
and C*°(5?), i.e.,

(g -&) =g-pé).

Remarks: Regarding (3), the natural action of S' on Lie(S') is the adjoint
action (g - & = g€g ') which, in this case, is trivial since S* is Abelian. Thus,
p(g-€) = p(&). The action of S* on C*°(S?) is defined by (g-¢)(p) = ¢¥(g*-
p) 5o (g-u(&))(p) = n(€)(g ™" -p) = (~aH)(g"-p) = (aH)(p) = u()(p)
because H is constant on the orbits. Thus, g - (&) = (&) = p(g - £).

Now we abstract these properties of our example and formulate general defini-
tions. Let (M,w) be a compact symplectic manifold of dimension n = 2k
and G a compact Lie group (with Lie algebra g) that acts smoothly on
M on the left (we will write such an action as o: G x M — M with
o(g,p) = g-p = o,(p) = 0,(g9)). The action is said to be Hamiltonian
if there is a map

pi g — C=(M)
such that

1. p is linear.

2. For each £ € g the vector field £# on M (defined by (2.2)) is the Hamil-
tonian vector field associated with p(¢), i.e.,

dp(é) = Lerw. (2.3)
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3. p is equivariant, i. e.,

w(g-€) =g-p&).

The function (&) is called the symplectic moment of £ and one defines the
associated moment map

O: M — g
(where g~ is the dual of the vector space g) by
(@()(&) = (1(&)(P) -

Although they will play no role in our story here, these moment maps have
many striking and beautiful properties (see, e. g., [1] and [7]).

Notice that it follows at once from (2) and the nondegeneracy of w that the
critical points of (&) coincide with the zeros of £%. Moreover, every fixed
point of the G-action is, by (2.2), a zero of every £# (and so, a critical point of
every p(€)). If € € g has the property that £# vanishes only at the fixed points
of the (G-action, then £ is said to be nondegenerate and, in this case, one can
show that (&) is necessarily a Morse function (see [7]).

Remark: Before proceeding we must recall that for any action of a compact
Lie group G on a manifold M it is always possible to construct a Riemannian
metric <,>G on M that is G-invariant, i.e., for which the diffeomorphisms
og: M — M are all isometries. Roughly, this is done by selecting some
Riemannian metric (,) on M and, at each point p € M, averaging over GG
relative to some invariant measure dG on G, i. e., defining, for all V,,, W, €
T, (M),

<Vp5Wp>G :/((Ug)*p(vp)a(Ug)*p(Wp)>dG'

We assume that some such invariant Riemannian metric (,)s on M has been
selected and note that any vector field £ defined by (2.2) for some £ € g is
then necessarily a Killing vector field for (,)q, i.e.,

E§#<,>G:0

where L¢+ denotes the Lie derivative with respect to £#. This last condition
can be written equivalently as

& (V,W)a) = (€%, V], W)a + (V, [, W]) 24)

for all vector fields V and W on M.
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Now, fix a £ € g. We denote by Z(£#) the set of zeros of the vector field £#.
For each p € Z(£%) we define a linear transformation

Ly(&): T,(M) — T,(M)

Ly(&)(V,) = (Lex V), = [€%,V], (2.5)

where V' is any vector field on M with V (p) = V,,. By writing out the definition
of the Lie derivative explicitly one obtains the following alternative expression

for L, (£)(V,)-

d
Lp()(Vp) = — 7 (0exp(-16))-p(V3) (2.6)
Note that, since &£#(p) = 0, Oopig(p) = p for every t so

(Cexp(—te) )sp: Tp(M) — T,(M) and the derivative in (2.6) is computed in
the single tangent space 7,,(M). We claim that L,(&) is skew-symmetric with
respect to the inner product on T,,(M) supplied by (, )g. i. e., that

<Lp(£)(vp)aWp>G = *<V;OaLp(§)(Wp)>G (2-7)

for all V,,, W, € T,,(M). To see this one simply evaluates (2.4) at p and uses
the fact that £#(p) = 0 and the definition (2.5) of L,(§). Next we will require
a lemma which follows from a simple manipulation of well-known identities
from differential geometry, but, since we use the result several times, we supply
a proof.

Lemma 2.1. Let H be an arbitrary smooth function on the symplectic manifold
(M,w) and Vy its Hamiltonian vector field (1y,w = dH). Suppose p € M
and Vg (p) = 0. Then, for any V,, W, € T,(M),

Hp(‘/p’Wp) = 70}(([’VH V)paWp) (28)

where H,, is the Hessian of H at p, Ly, is the Lie derivative with respect to
Vi and V is any vector field on M with 'V (p) =V,

Proof: By definition, H,(V,, W,) = V(W (H)) and

W(H) = LwH = dH(W) = (v, w)(W) = (1w © 1y )(w) .
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Now compute

VIW(H)) = Ly(W(H)) = Ly o tw © vy, (w)
= (¢ywy + tw 0 Ly) 0 Ly, (w)
Lv.wi © by, (W) + tw o Ly o Ly, (w)
= tyw) © by (W) +ew 0 (L) + vy © Ly) (w)
=w(Vu, [V,W]) — w([Va, V], W) + (Lyw)(Va, W).

Now, evaluate at p and use V (p) = 0 to obtain

V,(W(H)) =0—w([Vg,V],,W,)+0

Hy (Vo Wy) = —w((Lvy V)p, W)
as required. [

Proposition 2.1. Let (M,w) be a symplectic manifold with a Hamiltonian ac-
tion of the compact Lie group G. Let £ € g be nondegenerate and p € Z(£%).
Then L,(§): T,(M) — T,(M) is nonsingular.

Proof: We apply Lemma 2.2 to H = p(). Then Vi = Ve = &#. For
any V, € T,(M) we select a vector field V on M with V(p) = V. Then
(Lyvy V) = (Lex V), = L,(€)(V,). Since £ is nondegenerate, ¢(€) is a Morse
function so its Hessian H,, is nondegenerate. Thus, the equality

Hy(Vo, W) = —w(Ly(§)(Vp), W))
implies that L,(&)(V,) cannot be zero unless V, = 0. O

Remark: We will improve this result shortly by showing that if GG is any
compact Lie group acting on any (not necessarily symplectic) manifold M and
if £ € g has the property that £# (defined by (2.2)) has only isolated zeros,
then each L,(¢) (defined by (2.5)) is nonsingular.

Now, let us assume that £ € g is nondegenerate and p € Z(£#). Then L,(&)
is nonsingular and skew-symmetric with respect to (,)s. Thus, we can find
a basis {eq,...,eq} for T,(M) that is orthonormal with respect to (,)s and
oriented (with respect to the Liouville form) and relative to which the matrix
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of L,(¢) is of the form

0 A 0 0 0 0
~XA 0 0 0 0 0
0 0 0 X 0 0
0 0 —X 0 0 0 (2.9)
0 0 0 0 -+ 0 X\
0 0 0 0 -+ X O

with A; € R\{0} for j =1,..., k. We define a square root of the determinant
of L,(§) by taking

[det(L,(€))]% = MAg--- A (2.10)

Remark: This is, in fact, the Pfaffian of the matrix (2.9). Although this
observation will play no role in what we do here it is crucial in formulating
more general localization theorems than the one we will prove since these
involve the so-called equivariant Euler class of a certain (equivariant) vector
bundle and this is constructed, a la Chern—Welil, from the Pfaffian.

With this we are prepared to formulate what we will call the Generalized
Duistermaat-Heckman Theorem .

Theorem 2.2. Let (M, w) be a compact, symplectic manifold of dimension n =
2k with a Hamiltonian action of a compact Lie group G and corresponding

symplectic moments given by p: g — C°°(M). Orient M with the Liouville
- 1

form v, = w* (and assume that a G-invariant Riemannian metric (,)q on

M has been chosen). If £ € g is nondegenerate, then

/ Oy, = 3 (2m)" [det(L, (€))7 T €O, 2.11)
M pEM
£%(p)=0

Remarks: Since £ is nondegenerate, 14(&) is Morse and so has (at least two
and at most) finitely many critical points. These critical points coincide with
the zeros of ¢# so the sum in (2.11) is (nonvacuous and) finite. Furthermore,
L,(¢) is nonsingular so det(L,(£)) # 0 and the right-hand side of (2.11) is

meaningful.

As we mentioned earlier we shall eventually derive Theorem 2.4 as a conse-
quence of our equivariant localization theorem. Our task for the present is
simply to show that Theorem 2.4 implies Theorem 2.1. Thus, we begin with a
compact, symplectic manifold (M, w) of dimension n = 2k and oriented by the
the Liouville form v,,. We let H € C*°(M) be a Morse function and Vy the
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corresponding Hamiltonian vector field on M. The assumption of Theorem 2.1
is that the flow of Vj is periodic. By rescaling we may assume that the period
is 2. Now, just as for our example on S?, this gives rise to a circle action on
M with the property that

¢ =ia € Lie(S') = ¢* =V_.y. (2.12)

In somewhat more detail, the action moves p € M along the integral curve of
Vi that begins at p so

. d, .. d .
((=1)%(p) = 5 (¢ 7 - p)lico = T (" - P)lizo = Vur (D).
Moreover, V_,g = —aVy because d(—aH) = —adH = —aty,w = t_,y,w

SO

£*(p) = (ia)*(p) = —a(i(—1))*(p) = —aVu(p) = V_au(p) .

Consequently, the S*-action is Hamiltonian with symplectic moments given by

u(§) = plia) = —aH

(equivariance is proved in the same way as for the S example). Next we
record a simple, but crucial fact about S*-actions in general.

Lemma 2.2. Let M be a smooth manifold and suppose S* acts smoothly on
M on the left. Then, for any nonzero £ in the Lie algebra of S*, the zero set
Z (&%) of the vector field £¥ (defined by (2.2)) coincides with the fixed point
set of the S'-action.

Proof: Since £ # 0 and S' is 1-dimensional, £ spans the Lie algebra of S*,
i.e., Lie(S') = {—t£; t € R}. The exponential map of Lie(S') to S* is onto
so the orbit of any p € M coincides with {exp(—t£)-p; t € R}, i. e, with the
integral curve of £# through p. If £#(p) = 0, then this integral curve is a point
and therefore the orbit of p is a point, i. €., p is a fixed point for the S*-action.
Since a fixed point is obviously a zero of any £#, the result follows.

Returning to the derivation of Theorem 2.1 from Theorem 2.4 we now have
that any nonzero £ in the Lie algebra of S* is nondegenerate. In particular, for
any T > 0, we may apply Theorem 2.4 to £ = i(—T) to obtain



100 Gregory L. Naber

/eiTHVw = Z (QWi)k[det(Lp(—iT))]—% e TH(p)

peEM
M % (p)=0
2r\* | k . — L TH(p)
= > [ =) (7)F[det(L,(—iT))] 7 €TH®).
peEM T
dH(p)=0

Comparing this with the conclusion of Theorem 2.1 we find that we need only
show

(iIT)*[det( Ly, (—1T))] " * = ™™/ det Hy (e, €)% (2.13)

to complete the proof (here {e;,...,eq} is a basis for 7,,(M) that satisfies
=(wA L Aw)(eq, ...,eq) = 1). While largely computational, the proof of

(2.13) relies on one nontrivial result so we shall go through it in some detail.
First note that

Ly (—iT)(V,) = (E(*iT)#V)p = T(E(i(*l))#v)p =T(Lyy V)p.
Thus, (2.8) can be written
TH,(Vp, W) = —w(Lp(—iT)(V,), W) . (2.14)
In particular, if {e;,...,eqs} is any basis for 7T,,(M),
THy(ei, €5) = —w(Lyp(—iT)(€:), ;)

and if we write L,(—iT")(e;) = Lle;, then

THp(6i7 ej) = —Lﬁw(el, ej)
forall 4,57 =1,...,2k. As a matrix product this is

THy(er,e1) -+ THp(er, eax)

THP(BQk’ 61) e THp (€2ka e2k)
_Li _L?k w(el’el) w(eher)
| : : : . (2.15)

*Lék *ng w(e2kael) w(62k,62k)
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Now we will make a particular choice of basis. The classical Darboux Theorem
guarantees the existence of an oriented, orthonormal basis for 7,,(M) relative
to which

0 100 0 0
~-1000 0 0
(wlei,e)) =1+ 11 Do (2.16)
0 000--- 0 1
0O 000----10
and — (WA L Aw)(€1,...,e0) = 1. We know also that we can find an

oriented, orthonormal basis in which the matrix of L,(—i7") has the form (2.9).
It so happens that for circle actions (and, more generally, for torus actions) it is
possible to do all of this simultaneously, i. €., to find one oriented, orthonormal
basis {ej,...,eq} for T,(M) in which (2.9), (2.16) and v,(e1,...,€e0) =
1 are all satisfied (see Section 32 of [7]). Making such a choice of basis,
substituting (2.9) and (2.16) into (2.15) and taking determinants gives

T2k det(Hp(ei, 63)) = )\% R Ai .

Thus,
T*| det(H,(e:, ;)| = Sign(Ay - M)Ay -+ Ay
= Sign(\; - - - A\ [det (L, (—iT))] =
where Sign(A;---Ag) = 1if A\y--- A > 0 and Sign(A\;---\;) = —1 if

A1 A < 0 and so

N

T* [det(L,(—iT))] = = Sign(\; - -~ A)| det(H, (e;, ;)| "2, (2.17)

Comparing (2.17) and (2.13) we see that all that remains is to prove
Sign(A; -+ A) = (—i)F emi(SenHplenes))/a, (2.18)

This will follow easily by induction if we can show that it is true for £ = 1.
In this case, (2.15) gives

(THp(elael) THp(€1,€2)> _ (0 >\1> ( 0 1)
THP(GQ,Gl) THp(GQ,GQ) N )\1 0 —-10

el e = (M7 o)

and so
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Now, if A\; > 0 (Sign A; = 1), then Sgn H,(e;,€;) = 2 so

(_1)1 eﬂ‘i(sgan(ei’ej))/4 — _ieWi/Q =1= Slgl’l )\1

and, similarly, if A; < 0 (SignA\; = —1), then Sgn H,(e;,e;) = —2 so

(71)1 eﬂ'i(Sgn’Hp(ei,ej))/él — 716771'1/2 - 1= Slgn )\1 .

Leaving the induction to the reader this completes the proof of (2.18) and there-
fore the derivation of the Duistermaat-Heckman Theorem 2.1 from the Gen-
eralized Duistermaat—-Heckman Theorem 2.4. We shall find that Theorem 2.4
itself is a simple consequence of a beautiful localization theorem in equivariant
cohomology, but for this we must briefly digress.

3. The Cartan Model of Equivariant Cohomology

Equivariant cohomology arose from attempts to understand the topology of the
orbit space M /G of a topological space M on which some topological group G
acts. We will be concerned only with the case in which M is a smooth manifold
and G is a compact Lie group (for an introduction to the more general subject,
see Chapter 1 of [8]). In this case there are a number of (equivalent) algebraic
constructions which give rise to the appropriate cohomology groups, but we
will describe only one (see [9] for a concise description of the others).

Thus, we begin with a smooth manifold A/ and a compact, connected Lie group
G (which, for simplicity, we assume is a matrix group). The Lie algebra of G
will be denoted g. Assume also that there is a smooth left action of G on M,
for which we employ the usual notation:

o:Gx M —- M
o(g,p) =g-p=04(p) =0,(9) .

The action of G on M induces various other actions of interest to us. First we
denote by Q2" (M) the graded algebra of complex-valued differential forms on
M and define, for any ¢ € Q*(M) and any g € G,

g Q=040 (3.1

(the reason for the inverse is that we wish to define a left action). An element
@ of Q*(M) is G-invariant if g - ¢ = ¢ for every g € G. Notice that, since
the exterior derivative d commutes with pullback, d of a GG-invariant form is
G-invariant. The subalgebra of Q*(A) consisting of the G-invariant elements
will be denoted

Q (M),
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One can show that, because G is compact, GG-invariance is equivalent to g-
invariance, i. e., ¢ € Q*(M) is G-invariant if and only if, for each £ € g,

Eg#(p = 0

where L¢# is the Lie derivative with respect to the vector field {# defined
by (2.2). Finally, we observe that any @ € Q*(M) can be “G-invariantized”
in the sense that there is a chain map 1: Q*(M) — Q*(M)¢ which reduces
to the identity on Q*(M)¢ C Q*(M) (“chain map” means d o I = I o d).
The map is constructed in much the same way as the GG-invariant Riemannian
metric in Section 2, i. €., by averaging over the group. In somewhat more detail,
we choose an invariant measure dG on G and, for a € Q'(M), p € M and
v1,..., 0 € T,(M), define

(@), (- 0) = [(@5a)y(wn, -, 0) dG

ap ((0g)ep(V1)s -5 (0g)p(vi)) dG

Q\Q

The conclusion we need to draw from the existence of the map I is contained
in

Lemma 3.1. If n € Q" (M) is exact, then there exists a ¢ € Q'(M)“ with
dp =n.

Proof: Since 7 is exact there is an a € Q'(M) such that da = 7. Let ¢ =
I(a) € Q*(M)“. Then

n=1(n) = I(da) = d(I(a)) = dp.
U

Next we consider the graded algebra C[g] of complex-valued polynomial func-
tions on the Lie algebra g. This can be thought of as the complexification
Slg*] ® C of the symmetric algebra S[g*] of the dual g* of g. Thus, if
{&4,...,&} is a basis for g and {z',...,z'} the corresponding dual basis
for g*, we think of the z* as linear functions on g and S[g*] = S[z',...,z"] is
the polynomial algebra generated by {z',...,z'} with real coefficients. The
corresponding algebra with complex coefficients is C[g|. We define a left action
of G on Clg| by conjugating the variable (in g). In more detail, if P € Cl[g]
and g € G we define g - P € Cl[g] by

(g-P)(&) ="P(g '&g) (3.2)
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for each £ € g. Those P € Clg| for which g - P = P for every g € G are said
to be G-invariant and the subalgebra of C[g] consisting of all such is denoted

Clg]®

(this is the domain of the classical Chern—Weil map in the theory of char-
acteristic classes). Notice that if G is Abelian (i.e., the circle S or some
higher dimensional torus), then g 'ég = & for all ¢ € GG and all £ € g so
Clg]® = Cla].

The object of real interest to us is the tensor product C[g] ® Q*(M) of the
two preceding examples. The elements of Clg] ® Q*(M) are sums of terms
of the form P ® ¢ (which we will call basic), where P € C[g] and ¢ is a
(homogeneous) form on M. Such an a = P ® ¢ is most conveniently thought
of as a form-valued polynomial on g whose value at £ € g is

a§) = (P ¢)(€) =Pl)¢.

Now, Clg] = @, C’[g] and Q" (M) = P, Q' (M) are graded by algebraic and
cohomological degree in the usual way, but, rather than the usual tensor product
grading on C[g] ® Q*(M) we wish to “double the degrees” in C[g]

deg(a) =deg(P ® ¢) = 2deg P + deg ¢

so that

Clal@ (M) = @ Cg] @ (M)

2j+i=k

(the reason will become clear shortly).

The actions of G on Cl[g] and Q*(M) combine to give a left action of G on
Clg] ® Q*(M). Specifically, if « = P ® ¢ is basic, and g € G, we define g -«
to be the Q*(M)-valued polynomial on g whose value at &£ € g is

(9-a)(é)=g-(PRe)&) =P (g '¢g) o, ¢. (3.3)

An a € Clg| ® Q*(M) is G-invariant if g - @ = « for each g € G and the
subalgebra of all such is denoted

[Clo] ® Q" (M)]° .
It is easy to verify that a € Clg] ® Q*(M) is G-invariant if and only if

alg-&) =g-a(f), ie algy')=o,a(f) (3.4)
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for every £ € g and every g € . Being an element of Q2*(M) each a(¢) can
be written as

a(§) = al)m +al€)p + -+ al§)m

where () is a form of degree ¢ and n = dim M.

Let us write out a few concrete examples. We consider the standard action of
G = S on M = S? that gives rise to the complex Hopf bundle. Specifically,
we consider

§*={(z",2") € C*; |2'[* + 27" = 1}
and define a left action of S* = {e%; 6 € R} on S® by
efi (', 2%) = (eeiz1’eeizg) _

The action is clearly free and the orbit space S*/S* is, by definition, the
complex projective line CP!', which is diffeomorphic to S*. Since S' is 1-
dimensional, its Lie algebra has a single generator. We choose one such and
denote it &. We denote by z' the corresponding dual basis vector so that
C[g] can be identified with C[z'] (the algebra of polynomials with complex
cocfficients in the single “variable” z'). Since S! is Abelian, all of these
polynomials are S'-invariant so

[Cle'] @ @7 (5%)] = Cla'] (5%

Thus, for example, an element of degree 2 (in our grading for [C[z'] ®
Q*(S:’)]Sl) can arise either from a polynomial of degree 0 and a form of
degree 2, or from a polynomial of degree 1 and a form of degree 0, i.e., the
subspace of degree 2 elements is

((Co[xl] Q 92(53)51) ® (Cl[xl] R QO(SS)SI) )
Any element of degree 2 can therefore be written in the form
1Qw+2'® f,

where w is an S'-invariant 2-form on S® and f is a complex-valued function
on S? that is constant on each S'-orbit. Similarly, the subspace of degree 3
elements is

((Co[xl] & 93(53)51) @ (Cl[xl] ® 91(53)Sl> .

Now we wish to define a cochain complex analogous to the familiar de Rham
complex (Q*(M),d) and consider the corresponding cohomology. The ana-
logue of the graded algebra Q*(M) of forms is precisely our algebra [C[g] ®
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Q*(M)]€ which, in this context, we call the algebra of G-equivariant differ-
ential forms on the G-manifold M and denote

Qz (M) = [Clg) ® Q" (M)]7 .

What is needed now an analogue of the exterior derivative operator d. We begin
by defining the G-equivariant exterior derivative d; on all of C[g] ® Q* (M)
and will then show that its restriction to Q7, (M) has the properties required to
produce a cochain complex.

Each a € Clg] ® Q*(M) is regarded as an Q*(A)-valued function on g and
we define dga to be the 2*(AM)-valued function on g whose value at £ € g is

(dea)(§) = d(a(E)) — ter ((£)) 3.5)
where v¢# is interior multiplication by the vector field £# defined by (2.2). We
note the following alternative description of dg. Let {&1,...,&;} be a basis for

g and {z',...,z'} the dual basis for g*. We will write
La = Lg# and L, = Lgf

for each a = 1,...,t. Then & € g implies £ = z(£)€, and so &% = z(&)EF.
Thus, te# = x*(€)1, and, for each basic element oo = P ® ¢ of C[g] ® Q* (M),

ver (&) = 2 (§)ra((§)) = 2" (§)P(E)tayp

Since

we find that

and so
dg =1®d—2z"®t,. (3.6)
Proposition 3.1. The G-equivariant exterior derivative

de: Clg] ® (M) — Clg] ® Q"(M)
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is a linear map which increases the ( Z-graded) degree of basic elements by
1, preserves the subalgebra QU (M) of G-invariant elements and satisfies, for
each o € Clg] @ Q*(M) and € € g,

((dg o dg)(@)) (§) = —Lex (a(§)) - CN)

In particular,

dgode =0 on Q5(M). (3.8)

Proof: ds is obviously linear so suppose a = P ® ¢ is a basic element. Then
dega = 2deg P + deg ¢. Moreover,

deg((l®d)(a)) =2degP + (degyp + 1) =dega + 1
and
deg((z” ® t,)(a)) =2(degP +1) + (degyp — 1) =dega + 1
so deg (dga) = deg a + 1 as required. [J

To show that dg preserves Q% (M), assume that ag - ) = g - a() for all
g € G and all £ € g (see (3.4)). Then

(dee)(g - €) = d(a(g - §)) — gy (g - §))
=d(g - a(§)) — tgeg-1)# (9 - a(§))
=d (o5 a(8) — (020 01 003) (050 0(8))
= 041 (d(a(§))) — o5 (Len((€)))
= 04-1((dg@)(§))
=g+ (dea)(¢))

so dga is also GG-invariant.
Next, for any a € Clg| ® Q2*(M), we have

((dg o dg) (@) (§) = (da(de))(§)
= d((de)(£)) — tex ((dea)(£))
= d(d(a(§)) — tex (a(§)))
— ter (d(a(§)) — rer (a(€)))
= —dotex(af(€)) — ter o d(a(f))
= —(doter + ter 0d) (a(f))
= —Lex (a(§))
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which gives (3.7). To prove (3.8) from (3.7) we assume now that « is G-
invariant (a(g - &) = g - a(&) for all g € G and &€ € g). Then

Ler (0(6)) = T (0upaer (@) o

= %(exp(tf) - ((€)))] =0

= %(a(exp(t{) -&))|i=o

_ %m(exp(ts)sexp(t5>>>|t=o
d
= a(a(é))lt:o =0.

The conclusion we draw from Proposition 3.1 is that (Q27,(A1), dg) is a cochain
complex and we may construct its cohomology in the usual way. Specifically,
an a € Q5 (M) is said to be equivariantly closed if dga = 0. This is the case
if and only if, foreach 7 =1,... n,

d(a(§)i-1) = ter ((€)prn) (3.9

for each £ € g. An o € Q5 (M) is equivariantly exact if o = dg3 for some
B € Q5 (M). Thus, for each & € g,

a(§) = d(B(£)) — tex(B(E)) -

In particular, since t¢# (3(€)) can have no top degree part,

a(&)p = d(BE)m = ABE)m—1) (3.10)

so a(& )[n] is exact in the usual de Rham sense. Now, according to (3.8), every
equivariantly exact form is equivariantly closed so we may consider, for each
1 =0,...,n, the quotient space of equivariantly closed forms of degree ¢ mod-
ulo the equivariantly exact forms of degree 7. This we call the G-equivariant
cohomology group of degree 7 for the G-manifold M and we shall denote it
HE(M).
Q5 (M)~ Q(M) % 0 (M)
H (M) = Ker(dg)/Im(dg ")

(Q' (M) is taken to be the trivial vector space 0). As usual, we denote
by HS5(M) the direct sum of all of the H} (M) and call the elements of
H{. (M) equivariant cohomology classes on M. Just as in the case of de Rham
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cohomology, the multiplication in the algebra QF (M) gives rise to an algebra
structure for H, (M).

To gain some familiarity with these equivariant cohomology groups we will
compute a few examples explicitly. First notice that any P in C[g]® can be
identified with P ® 1 in Q% (M) and that all such elements clearly satisfy
dg(P ® 1) = 0 and so determine equivariant cohomology classes. If M
is a single point (connected, 0-dimensional manifold), then every element of
Q. (M) is of this form and they all determine distinct cohomology classes
(since there are no nonzero exact forms) so

Hg(pt) = Clg]©. (3.11)

Also notice that, if G is trivial, then so is the Lie algebra g so there are
only constant polynomials on g. Everything is GG-invariant so one can identify
Q5L (M) with Q*(M). Furthermore, te# = 1o = 0 so dg agrees with d and we
conclude that

G = {1} = Hé(M) = H:lkeRham(M) . (312)

Next let us return to the example of the S'-action on S? described earlier. To
compute H, (5%) one considers

0 0%.(5%) = QL.(5%).

Then HZ, (S?) = Ker(d%,). But any element of Q%,(S5?) can be written as
1® f, where f € Q°(S®)%" and, for such an element, d% (1 ® f) = (1 ®
d—z'®14;)(1® f) =1 ®df and this is zero if and only if df = 0. Since S°
is connected, d f = 0 implies that f is a constant function so

H(S*)=C.

We will leave it to the reader to show that HZ,(S?) is trivial. As our final
example we will compute H2, (S*). Thus, we consider

qa! d?

QL ($%) 2 02, (5%) S 03, (59).

Then HZ,(S?) = Ker(d%:)/Im(dg.). Now, we have already seen that any
@ € Q2%,(S?) can be written as

D=1wt+z'® f
where w € Q2(5%)5" and f € Q°(S%)%". Thus,
o =(10d—2'@u)(1Qw—1a'® f)
=1®dw +z'@df — ©w).
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Thus, d?,& = 0 implies
dw=0and df = w. (3.13)

We show first that it follows from (3.13) that there exists an a € C and an
n € Q'(5%)5" such that

lewtz'®@f) alx'®1)=du(1®7) (3.14)

1Qwt+z'@(f —a)=1xdy — 2' @ 7. (3.15)

Now, in order for this to be true we must have dn = w and 117 = a— f. We will
solve these equations for n and a. Since dw = 0 and since Hj. g, (5%) =0, w
must be exact (in the de Rham sense). According to Lemma 3.1, there exists an
n € Q'(S®)5" with dn = w. Thus, the first condition is satisfied. Furthermore,
since 77 is S'-invariant,

0=Lin=d(un) + u(dn) =d(un) + nw=d(un+ f).

Since S? is connected this implies that 1,77 + f is some constant function a.
For this a we have 117 = a — f and the second condition is satisfied as well.
This completes the proof of (3.15) and therefore of (3.14). To understand the
conclusion to be drawn from (3.14) we observe that z' ® 1 is equivariantly
closed (d%:(z' ® 1) = z' ® d1 — ' ® 1,(1) = 0) and so determines an
equivariant cohomology class. Thus, (3.14) implies that the cohomology class
of ® =1®w+ z' ® f is a multiple of the class of ! ® 1. Since & was an
arbitrary dg:-closed 2-form we conclude that HZ, (S?) is generated by the class
of z' ® 1. If ' ® 1 were dg:-exact this would imply that H2, (S?) is trivial,
but we now conclude by showing that ! ® 1 is not exact so its cohomology
class is not trivial and therefore

HZ (8% ~C.

N

To prove this we assume to the contrary that there is an element 77 of Q}, (S?) =
COlz'] ® Q'(5°%)%" for which d%, 7 = z' ® 1. Any such 7 can be written
ij = 1 ® 1 for some 5 € Q'(S%)5". Thus, dL, (1®7) =2' ®1, i.e,

l@dy —z'@un=2'®1
so0 we must have

dp=0 and 7= 1. (3.16)
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But d = 0 and Hj, 4,,(S?) = 0 implies that 7 is exact and then Lemma 3.1
implies that there is an f € Q°(5%)%" with = df. Thus,

1 =u(df)=L1f—d(tf)=0-d(0)=0

so the second condition in (3.16) could not be satisfied. Thus, z! ® 1 cannot
be dj.-exact and the proof is complete.

We should point out that, for each of the examples we have computed for
H3;.(S%), the S'-equivariant cohomology group of S* agrees with the cor-
responding ordinary de Rham cohomology group (with complex coefficients)
of the orbit space S*/S' = S?. That this is no accident is the content of a
beautiful theorem of Henri Cartan (see [8] for a proof of a much more general
result).

Theorem 3.1. (Cartan) Let M be a smooth manifold and G a compact, con-
nected Lie group. Suppose there is a smooth, free action of G on M on the
left. Then the G-equivariant cohomology algebra H}. (M) is isomorphic to
the de Rham cohomology H}, p.. (M /G) with complex coefficients of the orbit
manifold M/G.

Before turning to the localization theorems we must introduce a notion of
integration for equivariant forms and cohomology classes. For this we now
assume that M is compact and oriented and that the G-action on M preserves
the orientation (each diffeomorphism o,: M — M is orientation preserving).
For each o € QF, (M) we define an element [,, o € C[g]® by setting, for each

§cy,
(M/Q) (&) = /a(&) = /a(g)[n] 3.17)

M

where n = dim M. Note that [, « really is G-invariant since
(W/a) (9€g™") = /a(gﬁgl)[n]
-1 (&) m))
[n]

a(§)

¥
°/
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Notice also that if « is dg-exact (say, a = dg/3), then, for each £ € g, (3.10)
gives a(&)p = d(B(€)n-1)) so, by Stokes’ Theorem, [;, & =0 € C[g]®. The
conclusion is that the integration map

[ 9:0m - cla®

descends to cohomology:

[+ ma0m) - clgl

4. Equivariant Localization

The basic philosophical principle behind all of the equivariant localization the-
orems is that, in some sense, “G-equivariant cohomology is determined by the
fixed point set of the G-action”. Our first lemma is an initial indication of
what this means and why it is true. Roughly, it says that if a € Q5 (M) is
G-equivariantly closed, then, for each ¢ € g, a({),(n = dim M) is coho-
mologically trivial away from the zero set Z(£#) (which contains the fixed
point set of the G-action and, for S*-actions and £ # 0, coincides with it by
Lemma 2.5).

Lemma4.1. Let M be a smooth n-manifold and G a compact Lie group that
acts smoothly on M on the left. Let o € Q5 (M) be G-equivariantly closed.
Then, for each & € g, a(£)},) is (de Rham) exact on M — Z(£%).

Proof: Fix a nonzero & € g (the result is vacuous if £ = 0). [

Remarks: We will actually prove more than is asserted in the lemma. Since
the additional strength will be required in the derivation of the Duistermaat—
Heckman Theorem in Section 5 we will elaborate. Note that, with & € g held
fixed,

{a(§); a c Q (M)} = Q" (M)
and, for any a € QF (M),

(dga)(§) = (d —ter )((€)) -
Define

dew =d —ter . (4.1)
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Then d¢# acts on Q*(M), and, by (3.7),
de# oder = —Leg# .
Consequently, on the subspace
Qex (M) = {p € Q" (M); Lerp = 0} (4.2)
of ¢#-invariant forms
de# oder =0 on Qg (M). 4.3)
Applying analogous formulas for d and ¢+ one obtains the Leibnitz Rule
der (WAM) = (derw) A+ [wop — wpy + -+ + (1) W] Adern (44)

for any w, n € Q*(M). The proof of Lemma 4.1 will rely only on the fact
that de# (a(€)) = 0 and the properties of dg#+ just described. In particular, the
conclusion will also be true for any Q*(M)-valued map £ — «(£) on g even
if it is not polynomial in &, provided only that de# ((€)) = 0.

Now we return to the proof of Lemma 4.1. Using the GG-invariant Riemannian
metric (, ) on M we construct a 1-form 6 on M dual to £%, i.e., we define

6(v) = (6*,V)_ (4.5)

for each vector field V on M.
Claim #1: 6 is {#-invariant, i.e., L¢460 = 0.

To see this we fix a p € M and V), € T,,(M) and show that (L¢+6),(V,) = 0.
By definition,

Ler = % (szp(—té)e) =0

SO

(Len0), (Vy) =

((U:Xp(t§)0>p (Vp)) |i=0
(0 ((Texp(—t&))sp(Vp))) lizo

<£#(6Xp(7t§) ) p)7 (O-eXp(ftf))*p(‘/p)> |t:0 .

G

Bl gle &l

We leave it to the reader to verify that

E# (exp(—t€) - 1) = (Texp(—16))-» (67 ()
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which gives

(Ls8), (V) = <= { (e ) (E20))  (Guen )0 (Vi) lco

G
= S{ED), =0

because (, )¢ is invariant under the G-action. This proves Claim #1 and from
it and (4.3) we conclude that

de# (dg# 0)=0. 4.6)
Now notice that

d§#0:d0L5#9:d9<§#,§#>G:Hﬁ#HQG—I—dG. 4.7)

This is a (nonhomogeneous) element of Q*(M) whose scalar (i.e., Q°(M))
part is —||€#]|3, and this scalar part is nonzero on M — Z(&%).

Remark: A nonhomogeneous element of Q*(M) with nonzero scalar part
always has a multiplicative inverse (relative to /) obtained from the geometric
series. Indeed, if we write such an element as a + « with a € Q°(M), a # 0,
and a € Q" (M) with ajy = 0 and define

=5 (2)

(a finite sum), then it is easy to verify that (a + a) ' A(a+ a) = (a+ a) A
(a+a)t=1ecQ%M).
We conclude that, on M — Z(¢#), dex0 = —||£#]|Z + d@ is invertible and

-2 -2
-1 _ _ ||¢# #
(des) ™ = — [€#] (1 + e de) . (4.8)
Thus, on M — Z(£#), we can define an element 3 of Q*(M) by
B=60N(dex0)". 4.9

Claim #2: On M — Z(¢#), dex =1 and L4 3 = 0.
To prove this we first compute
dg#ﬁ = dg# (9 AN (dg#@)fl)
= dg#e VAN (dg#e)fl — 0N dg# ((dg# 9)71)
=1-6A dg# ((dg#@)il)
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and
Lewff=Lexr (0N (dg#t‘))’l)
= Le#xO N (dg#@)*l + O A Lex ((der ")
=0+ 0ANdex ((dg#é))*l) .

Now we show that des ((de#6) ") and Le# ((de#6)™") are both zero. Beginning
with

(dg#@) N (dg#@)_l =1

we compute dg# of both sides to obtain
2
des (Aen0) A ([des0) ™+ [ €] + 6] A des ((@es0) ) = 0

so, by (4.6) and (4.7),
(dg# 9) A dg# ((dg# 9)71) =0.

Now multiply on both sides by (d¢#60)~". The proof for Lex ((de#0)~") is the
same so this proves Claim #2.

Finally, we define A € Q*(M) by
A=BAa(l) = (A (dex0) ") Aa(f)
and compute
der A = dex (B A a(§))

= (de#B) N a(€) + [Bo) — By + -] Adex (af))
=1ANalf)+0=a(f).

Thus,
dX — Lex X = ().

Now look at the top n™ degree parts. ¢4 A has none and (d\)},; = d(Ap—1)
SO

a(€)m =d A1)

and this completes the proof of Lemma 4.1.
For future reference we summarize what we have just proved.

dev (a(€)) = 0 and 0 = (%)
= a(¢) =der (6 (der ) 1) A 0(©))
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and
(€ = d (0 A (der0) 1) A a(€)),, )

on M — Z(£#).

In order to proceed further we must understand more about the structure of the
set Z(£#) = {p € M; £#(p) = 0} of zeros of £#. Notice that it is clear from
the definition (2.2) of &% that any fixed point of the G-action on M is a zero
of every £ so every Z(£%) contains the fixed point set

“={pcM;g-p=p forall gc G} .

If £ € g has the property that Z(£#) = M© (i.e., £ vanishes only at fixed
points of the GG-action), then £ is said to be nondegenerate (for G = S*-actions,
every £ in the Lie algebra of S* is nondegenerate by Lemma 2.5). Notice that,
in general, one can define, for any & € g, the subgroup

Te = closureg {exp(—t£); t € R}

of G. Then Z(¢#) clearly coincides with the fixed point set of the action on
M of T, and, being compact, connected, and Abelian, 7; is a torus. Thus, the
zero set of £% is always the fixed point set of a torus action on M.

As in Section 2 for Hamiltonian actions, we define, for each p € Z(¢¥#) a
linear transformation L,(&): T,(M) — T,(M) by (2.5) and note that it is
skew-symmetric with respect to the G-invariant Riemannian metric (,)s on
M. Now we let exp,, be the (metric) exponential map on 7, (M) corresponding

to (,)g. This carries a V,, € T,,(M) onto ~yy, (1), where 7y, is the geodesic of
(,)e with 7y, (0) = V,, and it is a local diffeomorphism of some neighborhood

of 0 in 7},(M) onto some neighborhood of p in M. The G-invariance of (, )¢
implies that, on some neighborhood of 0 in 7,,(M),

exp,(Vp +tL,(§)(V)) = exp(—#) - exp,(V;) . (4.10)
Thus, if £,(£) is the vector field on 7,,(M) corresponding to L, (&), i. e.,

v, 4 L6 (V)] o

Ep(f) = dt

then
§* = (exp,).(L,p(£))

on some neighborhood of p in M. In particular, integral curves of £,(£) are
(locally) mapped by exp, to integral curves of & .
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Now, suppose V,, € Ker(L,(£)). Then L,(£)(V,) = 0 and this is the case if
and only if the integral curve of £,(§) through V,, is a point, i. e., the integral
curve of £# through expp(Vp) is a point. Since this is the case if and only if

¢#(exp,(V,)) = 0 we conclude that, on some neighborhood of 0 in 7},(M)
V, € Ker(L,(£)) <= exp,(V,) € Z(¢¥).

Now Ker(L,(£)) is a linear subspace (and therefore a submanifold) of 7,,(M)
so the restriction of exp,, to some open set in Ker(L,(£)) maps diffeomorphi-
cally onto a neighborhood of p in Z(£#). Thus, Z(£%) has a local manifold
structure near each of its points p whose dimension is dim(Ker(L,(&))). This
dimension need not be the same at each p € Z(£#), but is constant on the con-
nected components of Z(£#). Thus, we find that Z(£#) is a disjoint union of
submanifolds of A each of which has dimension dim(Ker(L,(£))), where p is
any point in the submanifold. In particular, we have the promised generalization
of Proposition 2.3.

Proposition 4.1. Let M be a smooth manifold, G a compact Lie group acting
smoothly on M on the left, & an element of the Lie algebra g of G and p €
Z(E%) a zero of £&#. Then p is an isolated point of Z (&%) if and only if
L,(&): T,(M) — T,(M) is invertible.

Henceforth we assume that p is an isolated zero of £€#. Then L, (£) is invertible
and skew-symmetric with respect to (, ). It follows that the dimension of M
must be even, say,

n = 2k

and that there exists an oriented, orthonormal basis {ej,...,eq} for T,(M)
relative to which the matrix of L,(£) has the form (2.9) with A; € R\{0} for
j=1,...,k. As before we define a square root of the determinant of L,(£) by
(2.10). Now, if V,, € T,(M) and we write V, = Vpiei (summation convention),
then

L&) (Vo) = M (Verl - Vpl€2) et A (Vp%ezk—l - Vp%_lezk> .

If, as before, we identify L, (&) with a vector field £,(§) on T,(M) and recall
that, on some neighborhood of p in M, £# agrees with (exp,).(L£,(£)), then,
in normal coordinates z',...,z%* on that neighborhood determined by exp,

and {ey,..., e}, we have

N P (e - I

x —
ox?! ox? Ox?k-1 Ox?k
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Note that if p happens to be a fixed point of the G-action (e. g., if £ is nonde-
generate), then this neighborhood can be chosen G-invariant (restrict to some
e-ball relative to (,)s). With this we are finally prepared to prove our major
result.

Theorem 4.1. (Equivariant Localization Theorem) Let M be a compact, ori-
ented manifold of dimension n = 2k and G a compact Lie group acting
smoothly on M on the left. Let a be a G-equivariantly closed differential
form on M. Then, for any nondegenerate ¢ C g for which % has only isolated
zeros,

[a© = 3 (2 letL, @] Fal©u@). @12

£# (p)=0

Remarks:

1. Since M is compact and Z(£#) is discrete, the sum in (4.12) is finite. If
Z(&#) happens to be empty, then Lemma 4.1 implies that «(£), is exact
on all of M so Stokes’ Theorem gives [, a(¢) = 0 and (4.12) is vacuously
satisfied.

2. For S'-actions Lemma 2.5 implies that the nondegeneracy assumption in
Theorem 4.3 is unnecessary.

3. As was the case for Lemma 4.1 our proof of Theorem 4.3 will not use the
full strength of the assumption that « is a G-equivariantly closed differential
form on M, but only that de# (a(§)) = 0 for the particular ¢ € g referred
to in the Theorem.

Proof: By the first remark above we may assume Z(£%) # (). Let p € Z(£%).
We have shown that we can find a G-invariant neighborhood U, of p and
(normal) coordinates z',...,z* on U, such that £#|U, is given by (4.11),
where [det(L,(€))]% = A --- Agx # 0. On U, we define a 1-form 67 by

P — )\;1 (x2 de! — 2t de) bt )\};1 ($2k dp2k1 _ g2k dek) . (4.13)

Then a few simple computations show

0P (E%) = (z)” + -+ (2™)". (4.14)
d (1e467) = 22" dz" + - - + 22°% dz®* (4.15)
ve# (dOP) = —22' dat — -+ — 222k dap2k (4.16)

and, from the last two of these,

Eg#gp = (dO Le# + Lew © d) 0? =0. 4.17)
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Now, each of the sets U,, p € Z({#), is G-invariant by construction and
M — Z(£#) is G-invariant because ¢ is assumed nondegenerate (so Z(£%) =
ME which is surely G-invariant). Thus

{Up}peZ(é#) J {M - Z(E#)}

is a G-invariant open cover of M. By choosing a partition of unity subordinate
to this cover and averaging each of its elements over G (as we did to produce
(,)c in Section 2 and the map I in Section 3) one can produce a G-invariant

partition of unity subordinate to the cover. With this and the 1-forms 67 on
U, and (as in the proof of Lemma4.1) 6% = (£#,-)¢ on M — Z(£%), one can
piece together a 1-form 6 on all of A with the following properties:

1. 6 agrees with 67 on some neighborhood of p.
2. Eg#g = 0.
3. de#0 is invertible on M — Z(&%).

Exactly as in the proof of Lemma 4.1, properties (2) and (3) together with
de# ((€)) = 0 imply that

a(§) = dex (O A (dex8) ") AN a(f)) on M — Z(£7). (4.18)

Now we compute the integral on the left-hand side of (4.12). For each p €
Z(£#) and € > 0 sufficiently small we let

B.(p) = {a: = (xl,...,x2k> ;)2 = (331)2 et (ka)Q < 62} c U,

Se(p) ={z; |z|c = €}

and give both their usual orientations. Since Z(£#) is a finite set,

Jar= [ a©=1m [ a@

M M—Z(e#) M—U_,e#)Be(p)
—lm [ de (0 [ded) ) Aal€)

M—U ¢ z(e#) Be(p)

— lim / d((0 A (dex8) 1) A a(€))

e—0
M*Upez(g#) Be(p)

(because the t¢» term can have no top degree part)
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— lim | — Z /(9/\((15#9)1)/\04({)

e—0
PEZ(EF )5, (p)
(the minus sign being due to the switch from boundary

to standard orientations)

e—0

peEM
e (p)=0 Se(p)

= Y lm| /(6’/\(d5#9)_1)/\a(£)

Comparing this with (4.12) we see that it remains only to prove that, for each
p € Z(£%),

lim | — /(QA(dg#Q)l)/\a(ﬁ)

7 Se(p)
= (- 2m)" [det L (6)] % () (p).

Thus, we fix a p € Z(£#). For each e > 0 sufficiently small, § = 67 on S.(p).
For such an € > 0 we introduce a change of coordinates on U, by rescaling
each =’ by a factor of ¢, i. €., we replace z* everywhere with ex’, 7 = 1, ..., 2k:

x' — ex’, 1=1,...,2k. (4.19)

In the new coordinates, S, (p) becomes the unit sphere S; (p). Write a.(&) for
a(€) written in these new coordinates, i. e.,

a.(&)(z,dz) = a(é)(ex,edx).

Notice that, as € — 0, all of the a.(£);; with @ > 0 approach 0, whereas

(&) o) — a(&)(p) since p= (0, ...,0).
Now we consider the effect of this substitution on O A (d¢+6)~'. Near p, 6 = 67
is given by (4.13) so (4.20) introduces an extra factor of €2. On the other hand,

des = A0 — 1640 = —2 (AT da’ Ada? + -+ A7 de ™ A da®) — [a]?,

so this also picks up a factor of €*. Consequently, (d¢#6) ' acquires a new
factor of }2 and, as a result, @ A (de#60) ! is unaffected by the rescaling (4.20).

Thus,

[ en@usyyna© = [ OA@et) ) nae)

Se(p) S1(p)
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and so

e—0

lim | — / (O A (des) 1) A a(€)
Se(p)

()

- ( / N (dé#e)l)) (&) (p) -

We therefore compute

- / 6 A (dex6)

S1(p)
(|:1:|é=1 on S1(p))

_ / oA (do—1)"

S1(p)

— / oA(1 - dg)
)

_ / OA(L+df+ (dB)2 + - + (dB)*" + (d6)*)
S1(p)
where (d6)? = df A d#, etc.

= / O A (d)*t
S1(p)
since dim Sy (p) = 2k — 1

= [ oy

Bi(p)
by Stokes” Theorem since d(6 A (d)*™) = do A (d6)*!

— O Ad((dO)F1) = (d)* — 0
k
= / ((—2)()\1_1 de' Ada® + -+ + A\ dz® A dx%))
Bi(p)
= (—2)FEI\ 0T / dz' A -+ A da®®

B (p)

= (—2)"K! (A A) ! (%)
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= (—2m)*[det L, (£)] " %.

Substituting this into (4.21) yields (4.19) and so completes the proof of Theo-
rem 4.3. O

5. The Duistermaat—-Heckman Theorem

Finally we will derive the Generalized Duistermaat—-Heckman Theorem 2.4
from our Localization Theorem 4.3. Recall that the scenario is as follows.

We have a compact, symplectic manifold (M,w) of dimension 2k and ori-

ented by the Liouville form v, = %wk. There is a Hamiltonian action of a

compact Lie group G on M with corresponding equivariant moments given by
p: g — C°°(M). Finally, we have a £ € g which is nondegenerate. Notice
that, because the action is Hamiltonian, nondegeneracy of ¢ implies that £# has
isolated zeros (14(&) is a Morse function and the zeros of £# coincide with the
critical points of x(£)). Our objective is to prove (2.11).

We consider a (nonpolynomial) map g — Q*(M) called the G-equivariant
symplectic form wg defined by

we = p+ w,

wa(§) = pu(§) +w

for every &£ € g. Of course, this is not a G-equivariant differential form on M
(since g is generally not polynomial in &), but we claim that, nevertheless,

dex (we(€)) =0 ¢.1)
for every ¢ € g. Indeed,

der (we(€)) = (d —ter ) (1(€) +w)
=d (u(§) +w) — ter (1(§) +w)
=du(€) +0—0— terw
=0 (by (2.3)).

Now consider the element e'“¢ &) ¢ Q*(M):

eiwc(&) -1 +in(£) . %wc(g) /\Wc(é) + .-

(a finite sum). Since (5.1) and the Leibnitz Rule (4.4) imply that
der (Wa(§) A+ Awe(€)) =0,
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we conclude that

des (ei‘w(@) —0. (5.2)

Remark (3) following Theorem 4.3 implies that (5.2) is sufficient to apply the
Localization Theorem to €“¢&)_ Since

elwe &) — o) tw) _ Lin(g) Giw
iu(€) oL
=e 1—|—1w—§w + -

we have

(ein@)) — o8
[0]
Thus, (4.12) gives

> (~2m)[det L ()] # O

peEM

:/e

&% (p)=0 M
:/e

M

iwa (£)

iu(€) giw

: 1
_ [ em© [ Ly
= [ (Litt)
M
ik / QO

M

which is (2.11).
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