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Abstract. In the Batalin—Vilkovisky field-antifield formalism a classi-
cal mechanical system is described by a solution of the classical master
equation. The quantization of this general gauge theory in the La-
grangian approach can be accomplished in closed form. The AKSZ-
formalism is a geometrical construction of such a solution as a QP-
manifold. This can be extended and applied to topological quantum
field theories.

1. Introduction

In physics the fundamental interactions are governed by gauge theories. One
usually does not want to eliminate the gauge degrees of freedom, because
they ensure manifest covariance, the locality of the interactions and they are
convenient for calculational purposes. The quantization is not always straight-
forward. In general it involves the introduction of ghost fields. It is useful to
introduce these ghosts at the classical level, then one is able to quantize the
theory in a canonical way, since all necessary parameters are involved from the
beginning. These so-called pseudo-classical theories are formulated by the
use of fermionic degrees of freedom, which lead to Grassmann algebras and
“supersymmetric theories”.

Ghosts appeared in physics for the first time in the Faddeev—Popov quanti-
zation procedure [8]. This relies on the path integral quantization; the ghosts
are introduced by dividing out the volume of gauge transformations in function
space, which leads to a finite path integral measure. One is left with a sum-
mation over the equivalence classes of gauge fields, bearing in mind the gauge
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invariance, so as to avoid double counting. The presence of ghosts can be here
understood as a measure effect.

Later on it was realized that the action retains a nilpotent, odd, global symmetry
involving transformations of fields and ghosts. This Becci—Rouet—Stora—Tyutin
(BRST) symmetry [5, 19] is what remains from the original gauge invariance.
The BRST symmetry mixes the ghosts with the other fields, all fields including
the ghosts are regarded as different components of a single geometrical object.
The classical phase space is extended by introducing Grassmann valued ‘co-
ordinates’. A generalized Poisson bracket, which induces a closed 2-form, is
defined on this space. The geometry of this phase space is called supersym-
plectic geometry. The central idea is to substitute the original gauge invariance
by a rigid fermionic symmetry {2, acting on the extended phase space, which
contains the new variables, called ghosts. The key property of the BRST opera-
tor, 62, = 0, is that it is a nilpotent derivation, so one can construct cohomology
groups H*(dg ). The original gauge invariance is recovered when one passes to
cohomology, the BRST symmetry completely captures it and leads to a simpler
formulation of the theory. The BRST construction works well in the Hamilton
formalism.

A Lagrange formulation of the theory has the advantage of manifest covariance,
because the Lagrangian L is a scalar under space-time transformations. This is
better for a theory with local symmetries. The construction of a BRST invariant
Lagrangian L.y, with the requirement that the ghost number of L. has to be
zero, leads to the introduction of variables with negative ghost number. Hence
the configuration space has to be extended again with the so-called antighosts.
This procedure was initiated by the work of Zinn—Justin [21], and Batalin and
Vilkovisky [2], who introduced an effective action on a doubled configuration
space and defined an antibracket on it. The BRST invariance of the action can
expressed in the master equation (S,S) = 0, the solutions generate the full
dynamics of the theory.

In the formalism of Alexandrov, Kontsevich, Schwarz and Zaboronsky (AKSZ)
the solutions of the master equation which are of physical interest are directly
constructed in a geometrical way [1].

2. General Gauge Theory

2.1. Canonical Formalism

The non-abelian Yang—Mills theory is the most familiar example of a gauge
structure. In this case, when a choice of a basis is made, the structure constants
of the underlying Lie group determine the commutator algebra. The Jacobi
identity, which expresses the associativity of the Lie group, must be satisfied.
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In other types of theories, which are called reducible, the generators of the
gauge transformations are not independent. There exists a ‘residual gauge
invariance’ for gauge transformations, this makes the structure of the theory
more complicated than in the Yang—Mills case. Another complication occurs
when the commutator of two gauge transformations produces a term which
vanishes “on-shell”, i. €. when equations of motion appear in the gauge algebra.

Now we will recall the canonical formalism in a compact notation. Consider a
system whose dynamics is governed by a classical action S,[¢], depending on
n different fields ¢' with 2 = 1,...,n = n_ + n_, where n_ is the number of
bosons and n_ is the number of fermions. In general ¢ can label space-time
indices of tensor fields, spinor indices of fermion fields or distinguish between
different types of generic fields. Let €(¢*) = ¢, denote the statistical parity,
i. e. the Grassmannn parity of ¢'. Each ¢ is either a commuting bosonic field
with parity €; = 0 or an anticommuting fermionic field with ¢; = 1, so one has
o' () (y) = (—1)9¢’ (y)¢"(x) according to the Koszul sign rule. Here the
new variables are introduced at the classical level.

Assume that the action Sy[¢] is invariant under a set of mg, my < n, non-trivial
gauge transformations, which read in infinitesimal form

d¢' = R'e“, where a=1,2,...,mq.

This is the compact notation, where

«

e® s an infinitesimal gauge parameter

0 di tr
with parity ¢, = { ordinary symmetry
1 supersymmetry

R!  are generators of gauge transformations
with parity €(R.) = (€; + €,) mod 2.

Later on the gauge parameters will be turned into ghosts. Let Sy ;[¢] denote
the variation of the action with respect to ¢"
0.5
09" 14,
where the index r denotes the right derivative. The distinction between left
and right derivatives is necessary in the context of Grassmann algebras with
fermionic and bosonic variables. The statement that the action is invariant

under gauge transformations of the form d¢* = R!e® means that the Noether
identities hold

So,il@] =

SO,iR; == O .
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A theory is irreducible when all gauge transformations are independent, and
L-stage reducible, when a dependence exists. The Noether identities can be
thought of as a definition of when a theory is invariant under gauge transfor-
mations.

To commence canonical quantization of a theory, one searches for solutions
of the classical equations of motion Sp; = 0 and then expands about these
solutions. Assume there exists at least one stationary point ¢, so that

SO,i|¢>0 — 0 .

This equation defines a surface > in configuration space, the restriction of
the full space to the physical hypersurface. As a consequence of the Noether
identities it is necessary to assume certain regularity conditions on . The
key consequence of the regularity conditions for an arbritrary functional F' of
the fields is

F@)ls=0 = F(X)==50,\(s)

i.e. if F' vanishes “on-shell” then F' must be a linear combination of the
equations of motion. This leads to a generalization of the Noether identities

SO,iAi = 0 Wlth )\z = Réao )\ao + S(),jTij

where the last term denotes a trivial gauge transformation. For an irreducible
theory the generators Rgao A% are independent “on-shell”:

z Qo _
rank R, A*|s = mq
where m, is the number of gauge transformations, so at the quantum level m,

ghosts will be needed. It is useful to introduce these ghosts at the classical
level. The rank of the Hessian is

-|E =N — My = Ngof
where n is the number of fields, and n4,¢ the net number of the degrees of free-

dom that enter dynamically in S, regardless of whether or not they propagate.

For the reducible case the generators are not independent

1 a
rank Ry, A* |z <mg .
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2.2. BRST Formalism

Variational principles lead to the classical Poisson bracket on the phase space
{q¢";p,}. Gauge transformations G are local symmetry transformations d¢*, dp;;
they leave the Hamiltonian invariant

§H = {H,G} = 0.

The original phase space must be extended by one degree of freedom for each
symmetry transformation. In the BRST formalism the solutions of the con-
straints will be identified with the cohomology classes of a nilpotent operator 2.
The construction of €2 and the extension of the phase space will be done with
ghosts. Define the generalized Poisson bracket

OF oG OF 0G b1y oF oG OF 0G
dq* Op;  Op; 0q° 00 9w,  Om, 00

{FaG}:

on the extended phase space {q¢; p;; 6°; 7.}, where ¢* are the coordinates, p;
their conjugate momenta, and #“ the ghosts with their conjugate momenta 7.
Let F' and (G are some functions on this space. The BRST operator (2 generates
ghost dependent symmetry transformations of the classical phase variables dqq’,
dap;. Now define BRST transformations for the ghosts and require nilpotence,
52 = 0.

Let I’ be a gauge invariant physical quantity. F’ has to be BRST invariant

and is said to be BRST-closed. The non-trivial solutions
FO — (SQFl — *{Q,Fl}

are called BRST-exact. Hence F|, depends on the ghosts, it is non-physical and
must be divided out. This defines the BRST cohomology

Keré
H((SQ): €r 0

With the requirement of BRST invariance one can construct an effective Hamil-
tonian in the extented phase space

Heff = HO o 5Q¢

which consists of the classical part modulo a BRST-exact term. The latter acts
only in the non-physical sector, ¢ is a function with ghost number N,(¢) =
—1, called a gauge fermion. It ensures a zero ghost number of the whole
Hamiltonian. Here a variable with negative ghost number enters for the first
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time, from now on it will be called an antighost. The construction of an
equivalent BRST invariant Lagranian is straightforward

Leff = LO - 5Q’lvb .

It is quite natural to construct with these variables an effective action on a
doubled configuration space for fields

Sl®*: 0% = S, + /dt 5a® ",

._ 0%
(DA

0
where @7 = 8(1161 is the restriction to the physical hypersurface. The ‘anti-
fields’ are the sources of the BRST variations of the fields
08
5@ = (—1) :

This leads to the Batalin—Vilkovisky field-antifield formalism, which is pre-
sented in the next section. For more details see [11, 15] and [10].

3. The Batalin—Vilkovisky Formalism

3.1. Fields and Antifields
Introduce a system
22 ={®*®3} with A=1,...,N and a=1,...,2N

of fields ®* with Grassmann parity

0 boson
€4 = ;
1 fermion

and antifields ®% with opposite statistics € = (€4 + 1) mod 2, which carry
ghost number

gh[®”] and gh[®%] = —gh[®*] 1.
The collection of fields and antifields for a L-stage reducible theory is
o4 ={¢";Cy*} and @ ={¢];C5,, }

with s = 0,..., L for L-stage reducible and o, = 1, ..., m, for s-level gauge
invariances. For notational convenience define

a7 __ ) * _ * . -
1 = Cb 3 C—l,a_l = le with ad_q1 = 1.

In summary we have
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fields parity ghostnumber antifields parity ghostnumber
Cct =o' € 0 Cryn_, =0 € -1
Cp°=C €ap + 1 1 Corap = C" €ap -2
Ces €as, +5+1 s+1 Csa, €ng 5 —5—2
mod 2 mod 2

In the space of fields and antifields, one can define a bracket relation, the
so-called antibracket or the Batalin—Vilkovisky bracket

o.F 0G 0.F 0G

F,G) = —
(F,G) aeA 99y, 0P 094

_ &,Féab 0,G
0z 0

b
with
g — (gﬁ 5(?) gl (511)%) (e, 1 1) mod 2.
It is analogous to the generalized Poisson bracket with the replacement
€ — €pq1, €c 7 €Gg+1 -

The antibracket carries the ghost number 1

gh[(F,G)] = gh(F) + gh(G) +1
and has odd statistics

el(F,@)] = (ep + e +1) mod 2.
Therefore (-,-) defines an odd symplectic structure. Its properties are

(F,F)=0 for any fermion
0.B 0,B

d (B,B)=2—
and (B, B) aPA 0P

# 0 for any boson

which is opposite to the expectation for the Poisson bracket. The functions
on the space of fields and antifields form together with the Batalin—Vilkovisky
bracket a graded algebra, as the generalized Poisson bracket does for functions
of the phase space. These are special cases of a graded Lie algebra, which is
defined in Section 3.3.
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3.2. The Master Equation and its BRST Symmetry

Start with a functional S[®*; @], which has the dimension of an action, zero
ghost number gh[S] = 0 and even statistics e5 = 0. The classical master
equation requires that the Batalin—Vilkovisky bracket of this bosonic functional
vanishes,

0.5 0,5

—= 2 =
(5, 5) aPA 0P

0.

Not every solution of the master equation produces a dynamical system, only
the proper solution is of interest. This kind of solution contains the original
action and is obtained with the ghost number restriction and several boundary
conditions, which guarantee the postulates of a gauge theory.

The proper solution reads
L
S[2, @] = So[g] + Y _Co o, Rl O+
s=0

with the boundary conditions S[®, ®*||s-—o = So[¢], which guarantee the clas-
sical limit and
0,0,
803*7170_5_18035 @

= R ()

*:0

which reflect the Noether identities. The master equation (S, S) = 0 is a very
compact notation, with certain requirements it determines all gauge structure
equations. The proper solution S is unique up to canonical transformations and
the addition of trivial pairs.

The Batalin—Vilkovisky bracket between a field and an antifield is
(@4, ®3) = 05

A canonical transformation for a field and an antifield is

P4 @4 =  g(d4, F) + O(?)

DY — @Y = D% + (P4, F) + O(?)
which preserves the antibracket up to the order of &2

(@4, %) = 65 + O(?).

The proper solution S has classical BRST-symmetry, which is a substitute for
the gauge invariances.

5sX = (X,8) with X = X[, d]
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where the generator dg for the symmetry is S, the proper solution itself. The
transformation rules are

a8 oS 0,8
55®* = d 5@ =— = (—1)eath ==
s 9o, M4 9sPh=-gem = U EEa

The symmetry of the action is guaranteed by the master equation

0sS=0 <= (5,5)=0.

dg is a nilpotent graded derivation
52X =0
05(XY) = X(0sY) + (1) (65 X)Y

as follows from the properties of the antibracket.

3.3. Graded Algebras

A Z,-graded algebra is a vector space L, which is in the simplest case the
direct sum of

IL - ILO @ ILI
together with a product o
U; 0 Uy € Liiyj) mod 2 u; € L,.

A product with these properties is called a grading. This concept can be ex-
tended to a Z,,-graded algebra, which is a vector space

L=Li®oL,®---®L,

with a product u; 0u; € L1 ) mod n; and to a Z-graded algebra, this is a vector
space
L = Lo fan Ll @---

with a product u,; 0 u; € L4 (degree of o)-

The Z,-graded algebra becomes a graded Lie algebra with the following re-
quirements for the product o, now denoted by [-,-]:

grading [:,2;] € Lts) mod 2
(super)symmetry [z, 2;] = —(-1)7[z;,2;]
and the Jacobi identity
(*l)km[mkv [xlv xm]] + (*l)lk [xla [xmaxk]] + (*l)ml [Ima [mkaxl“ =0. (1
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The signs change with the degree of the bracket. The formulas above are for
an algebra with a Lie bracket of degree 0.

The most general algebra of this type is the Gerstenhaber algebra [9] which
was originally defined for the cohomology groups of an associative ring. In
general a Gerstenhabeer algebra consists of a Z-graded vector space

V=V,oV,D---

together with a commutative associative multiplication of degree 0
V.ANV; €V,

and a graded Lie algebra structure of degree —1

[Vi, Vilg € Vi
i.e. for v,w,y €V, the Gerstenhaber bracket is graded antisymmetric

[v,w]g = —(—1)E Dl Dy 9, 2)
fulfils a graded Jacobi identity
([v, w]g, ylg + (1) Dt [, ylg, v]g

DO 0] wlp = 0 *

and a graded Leibniz rule
[v,w Aylg = [v,w]g Ay + (=) Vww A v, y]g. €))
The Gerstenhaber bracket has the degree —1
6([U7w]g) =€, t+€, 1

so the main step was the redefinition of the Jacobi identity of a graded algebra
where the bracket degree is 0, to one with €([-,]) # 0. This was formulated
by Gerstenhaber [9]:

Theorem 1. The bracket |- ,-|g satisfies the super Jacobi identity if we declare
elements of M*(V) to have degree k — 1, where M*(V) is the space of

multilinear functions.

The classical Poisson algebra can be generalized to a Z,-graded algebra by the
extension of the phase space with fermionic degrees of freedom, the Grassmann
variables.

The generalized Poisson bracket is defined on F({q; 6})

or 9G  OF 0G 1y or oG  or G
Oqt Op;  Op,; O¢' 09 Omr,  Om, 002

{F,G} = ®)
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This is graded antisymmetric in the classical supersymmetric sense
{F7 G} = 7(71)6FGG{G7F} (6)
and fulfils the graded (super) Jacobi identity

{{F7 G}aH} + (71)€F(6G+6H){{Ga H}aF}

exg({ertea) (7)
+ (71) e {{HaF}aG} =0
and a graded (super) Leibniz rule
{F,GH} ={F,G}H + (—1)*"*“G{F,H}. (8

The parity of the generalized Poisson bracket is 0, so this is the classical
supersymmetric approach, which physicists are more familiar with

e{F,G}| =€r +€c
{B,B}=0, {F,F}#0.

In the case of the Batalin—Vilkovisky algebra the phase space is extended again
to a space with fields and antifields, both bosonic (even) and fermionic (odd).
The degree of the bracket is +1, the grading of the algebra is Z,.

The Batalin—Vilkovisky bracket is defined on F({®;d*})
o.F 0G  0.F 0,G

(1.G) = 352 0%, D% 094 ©)

It is graded antisymmetric
(F,G) = —(-1)ler et (G, F) (10)
and fulfils the graded Jacobi identity

(F,G),H) + (-1)ler et m (G, H), F)
4 (71)(5H+1)(€F+€G)((H, F),G) =0 an
and the graded Leibniz rule

(F\,GH) = (F,G)H + (- 1)*"*“G(F,H) .
The parity of the antibracket is

e[(F,G)| =€r+ec+1.
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Now we have to compare these 3 different algebras, especially their Jacobi
identities. For a comparision between the general formula (1) and the general-
ized Poisson bracket (7), the Jacobi identity must be converted to

(1) [y, [z, z]] + (1) [z, [T, 2] + (1™ (2, [24, 21]]
= (D" (DM@ ], 2] + GO0 [T, 2], 7]
F(E1 ()™ [y, @], 2]

= [ler, zml 2] + (D [, 2, @] + (DM [z, @), @] = 0

This is in agreement with (7) with the replacement F' = z;, G = z,,,, H = z},
and ep =1, eg =m, eg = k.

In the case of the Batalin—Vilkovisky bracket the symmetry property reads as
follows

(F,G) = _(_1)(ep+1)(ec+1)(G’ F).
The parity of the bracket is
[(F,G)) =€p +ec+1.
So this means for the change in a “triple”

(F, (G, ) = —(~1)er e (G, 1), F)
- 7(71)(€F+1)(€G+€H+2)((G’ H)a F) .

The generalized Jacobi identity for a graded Lie algebra with a bracket of
degree €. .y =118

(—1)(ertent (R (G, H)) 4 (—1)etDer (@, (H, F))
T (71)(€H+1)(€G+1)(H, (F

@
~—
~

I

o

This is equivalent to

_ (1) D en ) (_p)er D (catentd (G [ F)
( 1)(€G+1)(€F+1) (71)(€G+1)(€H+€F+2) ((H, F), G)
( 1)(6H+1)(€G+1)( 1)(€H+1)(€F+6G+2)((F, G),H) =10

F D ertDUee+tDHer+t)) (2 HY. F
— ((F,G),H)+ (1) (( ,F), ) (12)

F(1)enOlea D) (B FY, G) = 0

So (12) is in agreement with (11).
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In the case of the Gerstenhaber algebra one assumes a Z-grading, so one cannot
calculate modulo 2. The symmetry property and the parity of the Gerstenhaber
bracket is

[, w] = —(=1) D aw, o]
e([v,w]) =€, + €, — 1.
The sign change in a “triple” is
[v, [w, y]] = — (- 1)\ DT, ), 0]
The Jacobi identity which was given by Gerstenhaber [9] reads

(71)(6071)(% -1} [[v, w]’ y] + (71)(%*1)(6“*1) [[w, y], U]

13
Al R I M

This is on the one hand equivalent to

~ e DD Ty 4] 0]

il)(eyfl)((ﬁu*l)Jr(fv*l)) [y, v],w] =0

which is in agreement with (3). On the other hand (13) is equivalent to

1)l D=1 1)er—Dleten=2)]

7(7 (7 Y, [U,U)”
S Al G D A )
_(_1)(€y_1)(5w*1)(_1)(€w*1)(5y+€u*2)[w’ [y,v]] =0

— (71)(614*1)(%71) [y, [,U, w“ 1)(erl)(er1) [U, [w’ y]]

+(-
() D, [y, o] = 0
= ()T y [o,w]] + v, [w,y]]
e e, fy,0]) = 0
which is in agreement with the generalized Jacobi identity for a bracket with
degree €. ; = —1. Moreover it is in agreement with convention made in [17].

So despite their apparent differences the various forms of the Jacobi identity
encountered in these different contexts are consistent.

An algebra can carry more than one grading. In field theory the Z,-grading is
used to distinguish between fermionic and bosonic degrees of freedom, called
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Grassmann parity; the Z-grading is used to distinguish between fields and
ghosts, called ghost number.

4. The Geometry of the Master Equation

The Alexandrov—Kontsevich—Schwarz—Zabronsky formalism [1] reflects the
geometry of the master equation. The solution .S of the classical master equation
(5,S5) = 0, which specifies a classical mechanical system, can be geometrically
considered as a () P-manifold. This is a supermanifold N, equipped with an
odd self-commuting vector field Q, [@, Q] = 0 and an odd symplectic structure
w, which is Q-invariant. F(NN) will denote the Z,-graded algebra of functions
on this supermanifold.

A symplectic structure is defined as a closed, non-degenerate 2-form

1
w=3 dz%wey(2) d2°
with the local coordinates
{z',...,2"} in N, with parity €, = €(2?).

The symplectic structure can be even or odd with respect to the Z,-grading of
F(N).

In the even case the degree of the symplectic form is

degwap = (€, + €;) mod 2

Wap = (_1)(€a+1)(€b+1)wba
while an odd symplectic structure satisfies

degw.y = (€, + €, + 1) mod 2

Wap — (—1)6"6"“wa .

The change of sign in dz%dz® = —(—1)%* dz®dz® is according to the Koszul
sign rule. Define a bracket for functions f,g € F(N)

_ an ab 819
= — =

(f,9) = 520" 55 -

In the even case it corresponds to the generalized Poisson bracket, because its
degree is 0. In the odd case the bracket equipps the algebra with a grading
€.,y = 1, like the BV-bracket. In general it will be called an odd Poisson
bracket.
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Associate to each f € F(N) a vector field X,

(f,9) = X;(9g)-

For an even bracket X, has the same the same parity as f, while in the odd
case X has the opposite parity to f. The odd case is of main interest, because
it produces the BV-bracket.

The connection between the symplectic form, the vector field and the bracket
18

Lx,w=df

(f,9) =: Xf(g) =lx,lx,W.

The fundamental construction of a () P-manifold is given by the following
definitions.

Definition 1. The supermanifold N, which is considered in this context, can
be constructed by associating to an ordinary manifold 3. its tangent bundle
13} and reversing the parity of the vector fields in the fiber. This is a simple
turning of even (bosonic) vector fields into odd (fermionic) vector fields by a
change of the corresponding variables, then N = IIT'. The construction is
also possible with the cotangent bundle, which leads to N = IIT™%.

Definition 2. A ()-manifold is a supermanifold N with an odd self-commuting
vector field ()

0
Q=Q" e in local coordinates, with  deg Q° = (e, + 1) mod 2
le
[QvQ] :O — Q2:0

Le [Q,Q] =2Q° =2(Q°0,Q*)0,, so a Q-structure is the choice of a differ-
ential on F(N).

Definition 3. A P-manifold is a supermanifold N with an odd symplectic struc-
ture w

1
w = 3 dz®wa(2) dz2?, deg wa, = (€, + €, + 1) mod 2.

Proposition 1. There exists a Lie algebra homomorphism by the map
f— Xy
(f5 g) — [Xfan]

which maps an odd Poisson or BV-bracket into a super commutator bracket.
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Definition 4. A vector field X can be represented in the form Xy iff w is
X-invariant, i. e.

[.:X{.U:O.

Then X and w are said to be compatible. Cartan’smagic formula for the Lie
derivative is

Ly =dixy +1xd
50
Lxw=dixw+ tx dw
can be calculated to
Lx,w=d(x,w)=d’f=0

since dw = 0 because w is a symplectic form, and 1x,w = d f for a Hamiltonian
f and a Hamiltonian vector field Xj.

Definition 5. A () P-manifold is a supermanifold with a compatible () and P
structures, i. e. the supermanifold is equipped with an odd self-commuting vec-
torfield () and an odd symplectic structure w which are compatible, Low = 0.

The conclusion is that if
Low =dS

for some functions S, then () is a Hamiltonian vector field and S is a Hamil-
tonian. This function S is even and fulfils (S,.5) = 0, so every solution to the
classical master equation determines a () P-structure and vice versa. The main
point is that the geometrical structure, the () P-manifold, produces solutions of
the master equation, which does not have to be solved in the usual way.

5. Quantization Procedures

Starting from a general gauge theory with well-defined algebraic structures,
one has the choice between several procedures to quantize the theory. This is
not always straightforward, each of these procedures has its own advantages
and disadvantages.

The BV-algebra was quantized by Batalin and Vilkovisky [2], see also [3] for
a more detailed description. This was done in the path integral formalism,
with the help of several boundary conditions, to fulfil the postulates of a gauge
theory. It leads to the quantum master equation, which ensures the BRST
invariance of the partion function and works well for special cases. But for
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other models with a more complicated algebra, respectively open algebras like
in string theory or the Sigma models, several obstructions occur.

Another method is deformation quantization, which takes the algebra structure
and deforms it by expanding in a formal power series [4, 16]. The symmetry
conditions lead to new bracket relations, involving star products, which make
the quantization possible. Moreover, one wishes to consider more general ma-
nifolds than the simplectic ones, such as the Poisson manifolds. The geometry
of these manifolds is more complicated and needs additional techniques. For a
description see the books of Vaisman [20], and da Silva and Weinstein [17].

Cattaneo and Felder study the case of sigma models on manifolds with bound-
ary; a special case of this construction yields the BV-action functional of the
Poisson-sigma model on the disk [6]. Moreover they considered the Poisson
Sigma in the AKSZ formalism [7].

(2 P-manifolds are related to strong homotopy Lie algebras, which are similar
to Lie algebroids [17] and Gerstenhaber algebras [9], a modern generalization
of Lie—Poisson algebras. The quantization of such a theory can be performed
using deformation theory [18].
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