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Abstract. We propose to determinate the nonadiabatic Hannay’s an-
gle of spin one half in a varying external magnetic field, by using an
averaged version of the variational principal. we also show how the
evolution and this nonadiabatic Hannay’s angle is associated with the
evolution of Grassmannian invariant-angle coherent states.

1. Introduction

After the discovery of the adiabatic geometrical phase by Berry [4], there has
been a substantial interest in works in this research fields. Indeed Aharonov and
Anandan [1] have generalized adiabatic Berry’s phase to nonadiabatic case in
cyclic evolution. Cyclicity means that, after some time, the state returns to itself
up to a phase. A way to get this cyclic states is to consider the eigenvectors
of a Hermitian periodic invariant [15], which play the same basic role as the
Hamiltonian eigenvectors in the adiabatic case. For this reason, invariant theory
takes an important place in works on nonadiabatic phases [7,9, 10, 17].

The classical analogue of Berry’s phase is the so-called Hannay’s angle. Han-
nay [13] has shown that when the adiabatic excursion takes place on a closed
path in the space of parameters, an extra shift analogue to the Berry’s phase is
realized in the angle variables, which is called adiabatic Hannay’s angle. It can
be viewed as a semi classical limit of Berry’s phase [4]. A geometrical angle
can be defined also on a constant-action surface for cyclic evolution [6] in a
classical nonadiabatic integrable Hamiltonian system; this angle is the classi-
cal counterpart of the geometrical phase [1], so it is called the nonadiabatic
Hannay’s angle.
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2. Grassmannian Version of Spin One Half and Nonadiabatic
Hannay’s Angle

The first point with which we start is the determination of the nonadiabatic

Hannay’s angle of a Grassmannian spin % in a time-dependent magnetic field

by using the conveniently averaged variational principle.

As shown in reference [12], the Hamiltonian of a Grassmannian spin % system

in time-dependent magnetic field is

H=— ;—5ksz(t)§m§z (D

and it involves 3 real Grassmann variables &,,, which obey to Grassmann algebra
rule &,,& + &£, = 0. This leads to Pauli spin in the time-dependent magnetic
field

. 1=

i = ZB(t)o )

where after the quant1zat10n the anticommuting three-vectors were replaced
with the Pauli matrices 5 = 75.

The Lagrangian associated to the Hamiltonian (1) is:

= —fkfk + €kmlBk( Yeméi - 3)

It is easy to show that the system described by the Hamiltonian (1) admits a
time dependent invariant

I(t) = = ermBu (D “)
satisfying the relation
oY~ (0,16}, = i H(E0mInI€) 5)

where 5m and 5m are left and right derivatives with respect to &,,, r(t) is the
solution of the following auxiliary equation:

d A B B B3 d /B B
_<L>+f +—+21_(_3) _ 2+ (6)
& \B,/) "1 B, i \ B, 3

where By = B, 1By, Ry = R + iRy, R, = %, R_ = 5 and r* denotes

the complex conjugate of r.
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When expressed in terms of its normal modes, the invariant /() takes the form:

1 1
I= —§¢f¢1 + 5103102 = 11 = Y31 (7

where ¢, = 13 are complex conjugates of each other, while 15 is real. The
complex normal coordinates 1, are deduced from &;’s through the unitary trans-
formation v, = (5%),.& (m,l = 1,2, 3) which diagonalizes the invariant I(t)
and S is the complex unitary matrix given bellow

2

(014 Re) e = (1= Ra) ) g5 (L4 Re) 5 = (1= Ra) =) =5

1| V2 R . 2
5 \_/—‘5((1+R3)TL*—*I—(1—R3)TT) ﬁ((lqth)rT—*l—(l—Rg)rL*) —iZ=r L (®)
-z -7z 2R,

In normal coordinates the Lagrangian associated to the Hamiltonian (1) takes
the form:

L = (wlwl +¢2’¢’2 JF@/)B"/’S) + "/’ Sy, SkﬂbJ _Ekmlqu’b i1 ¥

©
1 B B
@i+ U3+ i)+ 5 (o ) (Wi — Uie)

DN = DN~

which is 1ndependent on 6 (the argument of the normal coordinate /) but each
of the two term 397 St Skabj and €y, Brt] SmZSlJ@bJ depends on 6, and then
we can replace thlS Lagrangian by its averaged value

—L=o /Lde (10)

Thus can be rewritten also as

K

iR, )
= S @i+ s+ usde) — 0 (S D) i - vs) .
1 — D * *
+ §B(t)R(t)(7/)1¢l - ¢2¢2) .
The second term — ﬁi( L)(¥511 — ¥31hs) in this equation is a result of

averaging > Lor S SkJ P, over 0 and is exactly the term which gives nonadiabatic

Hannay’s angle (because it becomes null at fixed parameters (ﬁ = cte)).

The Euler—Lagrange equation: — —— — —— =
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gives

L (B, B_
@-:6@%9?:(1)3(—+ )

*2

(12)

r2 r
Finally the geometric part (or nonadiabatic Hannay’s angle) is

67 = (—1)7 (1) /Rg(di d—'r) (13)

()

These above results agree with those obtained by Maamache [18] for the clas-
sical bosonic model of spin one half in a varying external magnetic field.

3. Invariant-angle Coherent States and Nonadiabatic Hannay’s
Angle

The second point which we want to emphasize in this paper is the determination
of the nonadiabatic Hannay’s angle of a Grassmannian spin % in time-dependent
magnetic field by using the evolution of the invariant-angle coherent states.

The action-angle coherent states are defined in the classical approximation, that
is for small A with respect to the classical action in a way which resemble the
definition of the usual (harmonic oscillator) coherent states:

o, X (¢ Z |n X(t (14)

where |n, X (t)) are the eingenstates of the Hamiltonian which depend on pa-
rameters X (¢) varying slowly in time. We call them “action-angle” coherent
states because the complex number « can be related to the classical action-

angle variables by a = \/g e %, Indeed, when the parameters X are fixed,

the quantum evolution of |a, X(t (t)) amounts up to a global unessential phase
factor, keeps the modulus of o constant and change 6 into 6 + %t This
allows the identification of 6 with the classical angle variable. Moreover in
the classical limit (when A goes to zero, |a| goes to infinity but the product
fi|a|? remaining finite) the sum (14) over n is peaked around N = |a|*® and
the relation I = #|a|? is nothing but the correspondence principle. When

the parameters vary slowly with time each eigenfunction |n,)? (t)) acquires
an extra phase v%(¢) inducing a change of the coherent state such that the

B
modulus of a remains constant while its argument 6 becomes 6 — %“’—&V(t).

Then 0 (t) = — %’i (t) defines the corresponding Hannay’s angle in classical
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mechanics. In this way we have exemplified the quantum-classical correspon-
dence at the level of action-angle coherent states. Let us note also that the
mean value of the quantum Hamiltonian in these states

(a, X ()| H(X ()|, X (£)) = H.(I, X (t)) (15)

can be identified with the classical Hamiltonian H_. (which is a function of the
action only).

Let us now present the Grassmanian invariant-angle coherent state approach
of this model. We shall find suitable Grassmannian (or fermionic) invariant
angle coherent states |£,¢) which have the following property: every change
in the phase of quantum invariant eigenstates |n,t) — e'~|n,t) induces a
change ¢ — £e' of the arguments of the parameter of Grassmannian invariant-
angle coherent states, and the classical fermionic invariants are precisely the
expectation value of the corresponding quantum invariants. The difference with
the commutative case is that now there is no need of the classical limit n — oo
and i — 0. Therefore we can set /i = 1 in the following considerations.

So let us express the quantum invariant I = %E(t)c? corresponding to the
classical one (4) in terms of fermionic operators b(¢) that annihilate the lowest
eigenstate |0,7) of I and b™ (¢) which brings this state onto the other eigenstate
|1,%) as
1
I(t) =br(t)b(t) — 5 (16)
The time dependent fermionic operators b(t) and b (¢) are related to the oper-

ators ¢; via the time-dependent unitary transformation U as:

b(t) b
(b+(t)) =U™(t) (b+) a7
c(t) c

with
(1+Rs) (1 Ry 5
U=3|-0-R)E rR)E
V2 V2 2R;

where the operators & = \%(b + b)), & = %(b b)), and €3 = ¢ = ¢t are
related to the operators &;.
The operators b(t) and b (t) satisfy the relations

{b,b7}, ={c,c"}, =1

{b, b}+ = {b, C}+ =0. (18)
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In the matrix notation one has b™ = o = (0y +ioy), b =0_ =

N [=

(O']_ — 10'2)
and the Clifford number c is %03.
Therefore, the time-dependent operators b(t), b (t) and ¢(t) obviously satisfy

the algebra isomorphic to that given in (18). The initial Grassmannian invariant-
angle coherent states which are taken to be

1£(0),0) = e 28" (10, 0) — £(0)]0,0)) (19)

are eigenstates of b(¢) with eigenvalue £(0) and they are created from the ground
state |0, 0) by the unitary operator e~ (€00 (+&7 (@500 0). According to the
Lewis—Riesenfeld theory one can immediately see that the evolution

0,0) — ™0, ) and |1,0) — & *®[1 ¢) (20)

of the eigenstates of 1(0) induces the evolution of Grassmannian invariant-angle
coherent states

1£(0),0) — e DE(t),t) 1)

with £(t) = £(0) el ~¢1(8)) | The argument of the parameter & changes during
the evolution. As is well known, the global phases ¢,(¢) (n = 0,1) contain
a dynamical part 2 = — [T dt'(n,t'|H(t)|n,t') and a geometrical one ¢G =
i fot dt'(n,t' |% n,t’). The main point of this elementary result is that the
argument of the parameter £(¢) contains a dynamical part ¢ (t) — ¢’ (t) and a
geometrical part ¢§ () — ¢S5 (t). This geometrical part is nothing but (minus)
Hannay’s angle [13] in a cyclic evolution. The second key property I. =
(€(t), t|I(t)|&(t),t) + 5 = &*(t)&(t) is an immediate consequence of (16) and
(21). Tt allows the identification of the &’s entering into the definition of |, )
with the classical normal modes and justifies the Grassmannian invariant-angle
coherent states denomination of |£,%): £* is the classical invariant variable.

Let us embark on the calculation of these angles. From equations (2) and (17),
we have

t

b(t")
oL — /dt’ ((1,t'|(B+(t'),B(t'),\/iBg(t’))U(t’) (b+(t’)) 1,t’>)
0 C(t,)

( b(t') ) (22)
—{0,#'|(B4 (), B_(t'), V2B (¢ ))U(t') [ b (') | 10,¢').
c(t))
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We see that only the term proportional to ¢(¢) contributes to the dynamical
angle and yields the correction

= / B()R(t')dt’ (23)
0

abt (t)
ot

obt(t) Y 1 .. .. AR,

so that

to the geometrical angle. Using equation (17), can be expressed as

G:ijdt’(()ﬂim 'y — (1, t| |1 t})

t

/ 11:|8b+ 0, /dth(——)

0

(25)

for a cyclic evolution of duration 7' the nonadiabatic Hannay’s angle is

—1/R3 (dr d'r) 26)

We note here that r must return to its original value, and indeed there do exist
such solutions to equation (6).

4. Conclusion

These above results agree with those obtained by using the classical Grassman-
nian approach and by Maamache [18] for the classical bosonic model of spin
one half.
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