NECESSARY CONDITIONS FOR A SUPERDIFFERENTIABLE SUPERCURVE TO BE A WEAK MINIMUM RELATIVE TO TWO SUB-SUPERMANIFOLDS

VALENTIN CRISTEA

Department of Mathematics, Valahia University 0200 Târgoviste, Romania

Abstract. Let L defines a regular problem in the calculus of variations on supermanifolds. The necessary conditions for a piecewise superdifferentiable supercurve C in sense of Rogers to be a weak local minimum relative to two sub-supermanifolds are given.

Let V be a supervector space [3], V^* be the dual supervector space [5], M be a supermanifold in the sense of Rogers [7] and T(M) be the tangent superspace or superbundle [5] over M.

Let us consider only algebras over the real numbers. For each positive integer L, B_L [7] will denote the Grassmannian algebra over the real numbers with generators 1^L , β_1^L , ..., β_L^L and relations

$$1^{L} \cdot \beta_{i}^{L} = \beta_{i}^{L} \cdot 1^{L} = \beta_{i}^{L} \quad i = 1, \dots, L,$$
$$\beta_{i}^{L} \cdot \beta_{j}^{L} = -\beta_{j}^{L} \cdot \beta_{i}^{L} \quad i, j = 1, \dots, L.$$

 B_L is a graded algebra [8] and can be written as a direct sum [7]

$$B_L = (B_L)_0 \oplus (B_L)_1$$

where $(B_L)_0$ and $(B_L)_1$ are the even and the odd parts of (B_L) respectively. We consider the (m,n)-dimensional supereuclidean space $B_L^{m,n}=(B_L)_0^m\oplus (B_L)_1^n$ [7] with L>n. Let M_L denote (following Kostant [6]) the set of finite sequences of positive integers $\mu=(\mu_1,\ldots,\mu_k)$ with $1\leq \mu_1<\cdots<\mu_k\leq L$. M_L includes also the sequence with no elements, which is denoted by ϕ . As it follows from [6] for each μ in M_L

$$\beta_{\mu}^{(L)} = \beta_{\mu_1}^{(L)} \cdots \beta_{\mu_k}^{(L)}, \quad k = 1, \dots, L$$

and

$$\beta_{\phi}^{(L)} = 1^{(L)}$$

a typical element b of B_L may be expressed as

$$b = \sum_{\mu \in M_L} b^{\mu} \beta_{\mu}^{(L)}$$

where the coefficients b^{μ} are real numbers. With the norm on B_L defined by

$$\|b\|:=\sum_{\mu\in M_L}|b^\mu|$$

 B_L is a Banach algebra [7].

We consider the body map (in de Witt's terminology [5])

$$\varepsilon_L \colon B_L \to \mathbb{R}$$

given by

$$\varepsilon_L(b) = b^{\phi}$$
.

As explained in [3] $B_L^{m+n}=B_L^{m,n}\oplus B_L^{n,m}$ where n=2r, one can define the following scalar product

$$\langle v, w \rangle = x^{1}y^{1} + \dots + x^{m}y^{m} + \theta^{1}{\theta'}^{r+1} + \dots + \theta^{r}{\theta'}^{n}$$
$$- \theta^{r+1}{\theta'}^{1} - \dots - \theta^{n}{\theta'}^{r}$$
$$v = (x^{1}, \dots, x^{m}, \theta^{1}, \dots, \theta^{n}),$$
$$w = (y^{1}, \dots, y^{m}, {\theta'}^{1}, \dots, {\theta'}^{n}) \in B_{L}^{m+n}.$$

for all

and

Definition 1. (Rogers [7]) A function $f: B_L^{m,n} \to B_L$ is called a superdifferentiable function if there exist $f_\mu \in C^\infty(\mathbb{R}^m, \mathbb{R})$ such that:

$$f(x,\theta) = \sum_{\mu \in M_n} f_{\mu}(x)\theta^{\mu}$$

where
$$M_n = \{(\mu_1, \dots, \mu_n); 1 \le \mu_1 < \dots < \mu_n \le n\}$$
 [6].

Let M be a Hausdorff topological space. Then: (a) an (m,n) chart on M over B_L is a pair (U,ψ) with U an open set of M and ψ a homeomorphism of U onto an open subset of $B_L^{m,n}$ and (b) an (m,n) superdifferentiable structure on M over B_L is a collection $\{(U_\alpha,\psi_\alpha); \alpha\in\Lambda\}$ of (m,n) charts on M such that (i) $M=\cup_{\alpha\in\Lambda}U_\alpha$; (ii) for each pair α , β in Λ the mapping $\psi_\beta\circ\psi_\alpha^{-1}$ is a superdifferentiable function of $\psi_\alpha(U_\alpha\cap U_\beta)$ onto $\psi_\beta(U_\alpha\cap U_\beta)$, and (iii) the collection $\{(U_\alpha,\psi_\alpha); \alpha\in\Lambda\}$ is a maximal collection of open charts for which (i) and (ii) hold.

Definition 2. An (m,n)-dimensional superdifferentiable supermanifold over B_L is a Hausdorff topological space M with an (m,n) superdifferentiable structure over B_L .

Definition 3. (de Witt [5]) A subset M' of a supermanifold M of dimension (m,n) is called a sub-supermanifold of dimension (m',n'), $m \geq m'$, $n \geq n'$, if M' is contained in the union of a set $\{(U,\psi)\}$ of charts each of which has the property that, for all $(x,\theta) \in U \cap M'$, $\psi(x,\theta) = (x^1,\ldots,x^{m'},a^{m'+1},\ldots,a^m,\theta^1,\ldots,\theta^{n'},\eta^{n'+1},\ldots,\eta^n)$ where $(a^{m'+1},\ldots,a^m,\eta^{n'+1},\ldots,\eta^n)$ is a fixed element of $B_L^{m-m',n-n'}$ depending on the chart in question.

The pairs $\{(U', \psi')\}$ where $U' = U \cap M'$ and $\psi'(x, \theta) = (x^1, \dots, x^{m'}, \theta^1, \dots, \theta^{n'})$ constitute an atlas for M'.

Example 1. Let us consider the (m,n)-dimensional supereuclidean space $B_L^{m,n}$. It is an (m,n)-dimensional superdifferentiable supermanifold over B_L from the Definition 2. We consider the subset $S_L^{m-1,n-2}$ of $B_L^{m,n}$, where $S_L^{m-1,n-2} = \{(x,\theta) \in B_L^{m,n}; (x^1)^2 + \dots + (x^m)^2 + 2\theta^1\theta^{r+1} + \dots + 2\theta^r\theta^n = 1 + 2\beta_1\beta_{r+1} + \dots + \beta_r\beta_n\}$ and we conclude that $S_L^{m-1,n-2}$ is an (m-1,n-2)-dimensional sub-supermanifold of $B_L^{m,n}$.

Definition 4. The function $C: [a,b] \to M$ is called a superdifferentiable supercurve [3] if the functions $x^i \circ C$ for all $i \in [1,m]$ and $\theta^\alpha \circ C$ for all $\alpha \in [1,n]$ are superdifferentiable [7], the functions $\varepsilon_L \circ x^i \circ C$ for all $i \in [1,m]$ and $\varepsilon_L \circ \theta^\alpha \circ C$ for all $\alpha \in [1,n]$ are differentiable in \mathbb{R} and (x^i,θ^α) are the coordinates of a point $p \in M$.

Definition 5. Let L be a superdifferentiable function on $T(M) \times B_L$ and we make distinction between this superdifferentiable function L and the positive integer L. Then L defines a superdifferentiable map $L': T(M) \times B_L \to T^*(M) \times B_L$ called the Legendre supertransformation, which is given in local coordinates by $x^i \circ L' = x^i$ for all $i \in [1, m]$, $\theta^\alpha \circ L' = \theta^\alpha$ for all $\alpha \in [1, n]$, $y^i \circ L' = \frac{\partial L}{\partial x^i}$ for all $i \in [1, m]$, $\delta^\alpha \circ L' = \frac{\partial L}{\partial \theta^\alpha}$ for all $\alpha \in [1, n]$ and $t \circ L' = t$.

Definition 6. If the Legendre supertransformation is an immersion [5] of $T(M) \times B_L$ into $T^*(M) \times B_L$, then the function L will be called a regular super-Lagrangian.

Definition 7. If the Legendre supertransformation is an immersion, the map L'^{-1} comes locally in a similar way from a function H on $T^*(M) \times B_L$ is called super-Hamiltonian:

$$H(y,\delta) = \langle L'^{-1}(y,\delta), (y,\delta) \rangle - L \circ \mathcal{L}^{-1}(y,\delta).$$

The function $E = H \circ L'$ is globally well-defined on $T(M) \times B_L$.

Theorem 1. If M is a Riemannian supermanifold and $L(v,t) = \frac{1}{2}\langle v,v \rangle$, then L is a regular super-Lagrangian and L' coincides on each tangent superspace [5] with the map of $T_q(M) \to T_q^*(M)$ given by the scalar product introduced in [3]. Furthermore, in this case $E = H \circ L' = L$.

Proof: This is proved in [4]. \square

Definition 8. Let $C: [a,b] \to M$ be a superdifferentiable supercurve on M. Then C determines a supercurve \tilde{C} , on $T(M) \times B_L$ defined by

$$\tilde{C}(t) = (C'(t), t)$$

for each $t \in [a,b]$. Therefore, we can consider the integral

$$I(C) = \int_{a}^{b} L\left(\tilde{C}(t)\right) dt.$$

Let C_j and C_j^1 be the restrictions of C and C^1 respectively to the interval $[s_j, s_{j+1}]$, where $a = s_0 < \cdots < s_r = b$ and $W \subset M$, C_j and C_j^1 be super-differentiable supercurves of $(s_j + \varepsilon, s_{j+1} - \varepsilon)$ into W.

Definition 9. A supercurve C is called weak local minimum if there are W and $\varepsilon > 0$ such that $\varepsilon_L(I(C)) \leq \varepsilon_L(I(C^1))$ for all piecewise superdifferentiable supercurves satisfying

$$C^{1}(a) = C(a)$$
 and $C^{1}(b) = C(b)$. (1)

Proposition 1. Let C be a weak local minimum of L. Then at every point t where C is superdifferentiable the tangent supervector $Y_q = C'(t)$ satisfies

$$Y_q \perp d\omega_q = 0 \tag{2}$$

for $\theta^{\alpha}(t) = t \left(\bar{\delta}^{\alpha}(t) + \bar{\delta}^{\alpha+r}(t) \right)$ and $\theta^{\alpha+r}(t) = t \left(\bar{\delta}^{\alpha+r}(t) - \bar{\delta}^{\alpha}(t) \right)$ for all $\alpha \in \{1, \ldots, r\}$ and $(y, \bar{\delta})$ are coordinates on $(B_L^{m+n})^*$ where

$$e_i \perp e^{j_1} \wedge \cdots \wedge e^{j_r}$$

$$= \begin{cases} 0 & \text{if } i \neq j_k \text{ for any } k \\ (-1)^{(i)+k-1} e^{j_1} \wedge \dots \wedge e^{j_{k-1}} \wedge e^{j_{k+1}} \wedge \dots \wedge e^{j_r} & \text{if } i = j_k \end{cases}$$

and i is 0 if $e_i \in B_L^{m,n}$ or 1 if $e_i \in B_L^{n,m}$ and where $(e_i)_{i=1,\dots,m+n}$ is a basis of B_L^{m+n} and $(e^j)_{j=1,\dots,m+n}$ is a basis of $(B_L^{m+n})^*$.

Proof: This is proved in [4]. \square

Theorem 2. ([4]) Let L define a regular problem in the calculus of variations on supermanifolds. A necessary condition that a piecewise superdifferentiable supercurve C in sense of Rogers to be a weak local minimum for L is that C is superdifferentiable and \tilde{C} is an integral supercurve of X where X is defined by

$$X \perp d\sigma = 0, \qquad \omega = dL, \qquad \langle X, dt \rangle = 1$$
 (3)

along with the superform $\sigma = L'^*\omega$ to be well defined on $T(M) \times B_L$ and L' to be an immersion of $T(M) \times B_L$ into $T^*(M) \times B_L$.

Proof: This is proved in [4]. \square

Definition 10. Let N_1 and N_2 be two sub-supermanifolds of M. A superdifferentiable supercurve is called a weak minimum of L relative to N_1 and N_2 if it satisfies the conditions of Definition 9 with

$$C^1(a) \in N_1 \quad and \quad C^1(b) \in N_2.$$
 (4)

Theorem 3. Let C be a weak minimum relative to N_1 and N_2 . Then C is an extremal of L and furthermore

$$\langle v_1, \bar{C}(a) \rangle = \langle v_2, \bar{C}(b) \rangle = 0$$
 (5)

for all $v_1 \in T_{C(a)}N_1$ and for all $v_2 \in T_{C(b)}N_2$.

Proof: The first part of the Theorem 3 is easy: if C is a weak minimum relative to N_1 and N_2 , it is certainly a weak minimum in the sense of Definition 9. Thus Theorem 2 implies that C is an extremal and it suffices to prove one of the equalities in (3). Let $h = (x^1, \dots, x^m, \theta^1, \dots, \theta^n)$ be a coordinate system in a neighborhood U of C(b) such that $N_2 \cap U$ is the set of points, where $x^{k+1} = \cdots = 0$, $\theta^{l+1} = \cdots = 0$ with $l \leq r$ or $l \geq r$. Let the supervector v_2 be given as $v_2 = a_1 \left(\frac{\partial}{\partial x^1}\right)_{C(b)} + \cdots + a_k \left(\frac{\partial}{\partial x^k}\right)_{C(b)} + \eta_1 \left(\frac{\partial}{\partial \theta^1}\right)_{C(b)} + \cdots + \eta_{l-1} \left(\frac{\partial}{\partial \theta^{l-1}}\right)_{C(b)} + \cdots$ $\eta_l\left(\frac{\partial}{\partial \theta^l}\right)_{C(b)}$. Choose t_0 close enough to b so that $C(t) \in U$ for $t_0 \leq t \leq b$. Let $\bar{X}^1(t), \ldots, \bar{X}^k(t), \bar{X}'^1(t), \ldots, \bar{X}'^l(t)$ be superdifferentiable functions with $\bar{X}^i(t)=0$ for $i=1,\ldots,k$ and for $t\leq t_0$ and $\bar{X}'^i(t)=0$ for $i=1,\ldots,l,$ $t \leq t_0$ and $\bar{X}^i(b) = a_i$ (i = 1, ..., k) and $\bar{X}^i(b) = 0$ for i > k and $\bar{X}^{\prime i}(b) = \eta_i$ $(i=1,\ldots,l)$ and $\bar{X}^{\prime i}(b)=0$ for i>l. Choose ε' so small that $x^1(t)+1$ $\hat{s}ar{X}_1(t),\ldots,\hat{x}^m(t)+s\hat{X}_m(t), heta^1(t)+sar{X}_1'(t),\ldots, heta^n(t)+sar{X}_n'(t)\in h(U)$ for $t_0 \le t \le b$ and $|s| \le \varepsilon'$ where $h \circ C(t) = x^1(t), \dots, x^m(t), \theta^1(t), \dots, \theta^n(t)$. Let K be the map of the rectangle $D = \{|s| \leq \varepsilon'; a \leq t \leq b\}$ into M defined by K(s,t) = C(t) for $a \le t \le t_0$ and $x^i \circ K(s,t) = x^i(t) + s\bar{X}^i(t)$ and $\theta^{\alpha} \circ K(s,t) = \theta^{\alpha}(t) + s\bar{X}'^{\alpha}(t)$ for $t_0 \leq t \leq b$. Then as before, we have $\varepsilon_L\left(\int_{[a,b]} \bar{C}^*(\omega)\right) \geq \varepsilon_L\left(\int \bar{K}^*(s,\cdot)\omega\right)$ for sufficiently small |s|. As in the proof of Lemma 2.2 from [9] and Proposition 1 this implies that, for s>0 $\varepsilon_L\left(\int_{[0,s]} \bar{K}^*(\cdot,t)\omega\right) \geq \varepsilon_L\left(\int_{D_+} \bar{K}^*\,\mathrm{d}\omega\right)$. Dividing by s and letting $s\to 0$ we obtain, since C is an extremal $\varepsilon_L\left(\left\langle\bar{K}_*(\cdot,t)\left(\frac{\partial}{\partial s}\right)_{(0,b)} \middle| \; \omega_{\bar{C}(b)}\right\rangle\right) \geq 0$ where $D_+=\{0\leq s\leq \varepsilon'\,;\, a\leq t\leq b\}.$

Doing the same for the negative s we obtain

$$\varepsilon_L\left(\left\langle \bar{K}_*(\cdot,t)\left(\frac{\partial}{\partial s}\right)_{(0,b)} \mid \omega_{\bar{C}(b)}\right\rangle\right) \leq 0.$$

Thus $\varepsilon_L\left(\langle \bar{K}_*(\cdot,t)\left(\frac{\partial}{\partial s}\right)_{(0,b)}\mid \omega_{\bar{C}(b)}\rangle\right)=0$. But

$$\varepsilon_L \left(\bar{K}_*(\cdot, t) \left(\frac{\partial}{\partial s} \right)_{(0, b)} \right) = a_1 \left(\frac{\partial}{\partial x^1} \right)_{C(b)} + \dots + a_k \left(\frac{\partial}{\partial x^k} \right)_{C(b)}$$

and

$$\omega_{\bar{C}(t)} = \sum_{i=1}^{m} y^{i}(b) dx_{b}^{i} - \sum_{\alpha=1}^{r} (\delta^{\alpha}(b) d\theta_{b}^{\alpha+r} - \delta^{\alpha+r}(b) d\theta_{b}^{\alpha}) - H dt$$

where $\bar{C}(b) = \sum_{i=1}^m y^i(b) dx_b^i - \sum_{\alpha=1}^r \left(\delta^{\alpha}(b) d\theta_b^{\alpha+r} - \delta^{\alpha+r}(b) d\theta_b^{\alpha} \right), b$. Thus

$$\varepsilon_L\left(\left\langle \bar{K}_*(\cdot,t)\left(\frac{\partial}{\partial s}\right)_{(0,b)} \mid \omega_{\bar{C}(b)}\right\rangle\right) = \sum_{i=1}^k y^i(b)a_i + \sum_{\alpha=1}^l -\delta^{\alpha+r}(b)\eta^{\alpha}$$
$$= \langle v_2, \bar{C}(b)\rangle = 0$$

if $l \leq r$ and

$$\varepsilon_L \left(\left\langle \bar{K}_*(\cdot, t) \left(\frac{\partial}{\partial s} \right)_{(0,b)} \middle| \omega_{\bar{C}(b)} \right\rangle \right) \\
= \sum_{i=1}^k y^i(b) a_i + \sum_{\alpha=1}^{l-r} \delta^{\alpha}(b) \eta^{\alpha+r} - \sum_{\alpha=1}^r \delta^{\alpha+r}(b) \eta^{\alpha} \\
= \left\langle v_2, \bar{C}(b) \right\rangle = 0$$

if $l \geq r$, which proves Theorem 3. \square

Remark 1. If L the kinetic superenergy associated to the Riemannian supermetric g[1], [5], then L is given by [4]

$$L = \frac{1}{2} \sum_{i,j=1}^{m} g_{ij} \dot{x}^{i} \dot{x}^{j} + \frac{1}{2} \sum_{\alpha,\beta=1}^{n} \bar{g}_{\alpha\beta} \dot{\theta}^{\alpha} \dot{\theta}^{\beta}$$

while condition (3) says that C'(a) is orthogonal to $T_{C(a)}(N_1)$ relative to inner product on $T_{C(a)}(M)$ given by g and C'(b) is orthogonal to $T_{C(b)}(N_2)$, i. e. $\langle v, C'(a) \rangle = 0$ for $v \in T_{C(a)}(N_1)$ and $\langle v, C'(b) \rangle = 0$ for $v \in T_{C(b)}(N_2)$.

References

- [1] Bejancu A., A New Viewpoint on Differential Geometry of Supermanifolds I & II, Preprint Univ. Timisoara 1991.
- [2] Bruzzo U. and Cianci R., Variational Calculus on Supermanifolds and Invariance Properties of Superspace Field Theories, J. Math. Phys. 28 (1987) 786–79.
- [3] Cristea V., Existences and Uniqueness Theorem for Frenet Frame Supercurves, Max-Planck Institut für Mathematik, Preprint Series 1999 (94).
- [4] Cristea V., *Euler's Superequations*, Proceedings of the 8th International Conference on Differential Geometry and its Applications, August 27–31, 2001 Opava, Czech Republic, Part II.
- [5] de Witt B., Supermanifolds, Cambridge, Univ. Press, Cambridge, London 1984.
- [6] Kostant B., Graded Manifolds, Graded Lie Theory and Prequantization, Lect. Notes in Math., Vol. 570, Springer-Verlag 1977.
- [7] Rogers A., Graded Manifolds, Supermanifolds and Infinite-dimensional Grassmann Algebras, Commun. Math. Phys. 105 (1986) 375–384.
- [8] Scheunert M., *The theory of Lie Superalgebras*, Lect. Notes in Math., Vol. 716, Springer-Verlag 1979.
- [9] Sternberg S., Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, New Jersey 1964.