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TWO SUB-SUPERMANIFOLDS
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Abstract. Let L defines a regular problem in the calculus of variations
on supermanifolds. The necessary conditions for a piecewise superdif-
ferentiable supercurve C' in sense of Rogers to be a weak local minimum
relative to two sub-supermanifolds are given.

Let V' be a supervector space [3], V* be the dual supervector space [S], M be a
supermanifold in the sense of Rogers [7] and T'(M ) be the tangent superspace
or superbundle [S] over M.

Let us consider only algebras over the real numbers. For each positive integer
L, By [7] will denote the Grassmannian algebra over the real numbers with
generators 17, B ... B} and relations

1*.pF=p-1"=pF i=1,...,L,
Bl BE=-pr-pr ij=1,...,L.
By, is a graded algebra [8] and can be written as a direct sum [7]
Bp = (Br)o @ (Bo)

where (By,), and (By,); are the even and the odd parts of (B},) respectively. We
consider the (m, n)-dimensional supereuclidean space B;"" = (B )y @& (BL)}
[7] with L > n. Let M, denote (following Kostant [6]) the set of finite
sequences of positive integers pt = (foy, ..., pp) with 1 < p; < -+ < pp, < L.
M, includes also the sequence with no elements, which is denoted by ¢. As
it follows from [6] for each p in M,

ﬁfLL):/B;(f)"' (L) k=1,...,L

My )
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and
By =1®
a typical element b of By may be expressed as
— (L)
b= > g
HEM

where the coefficients b* are real numbers. With the norm on B defined by

[olf == [b]

pneEMp

By, 1s a Banach algebra [7].
We consider the body map (in de Witt’s terminology [S])

€LZBL—>R

given by
Er, (b) = b¢.

As explained in [3] B]"™" = B}"" @ B}"™ where n = 2r, one can define the
following scalar product

<U,U)> :xlyl+...+xmym+glelr+l+.“+9r9/n

o 9r+19/1 . 9719/7"
for all v=/(z" ..., 2™ 0 ..., 0",
and w=(y,...,y™, 0", ..., 0" ¢ B~

Definition 1. (Rogers [7]) A function f: B}"" — By, is called a superdiffer-
entiable function if there exist f,, € C*(R™,R) such that:

flz,0)= > fu(x)e"

HEM,,
where M, = {(pa,... fta); 1 < pr2 <-+- < p, <} [6].

Let M be a Hausdorff topological space. Then: (a) an (mm,n) chart on M over
By, is a pair (U,v) with U an open set of M and ¢ a homeomorphism of U
onto an open subset of B;"" and (b) an (m, n) superdifferentiable structure on
M over By is a collection {(U,,?,); a € A} of (m,n) charts on M such
that (i) M = U,eaU,; (ii) for each pair o, # in A the mapping vz o Yo s
a superdifferentiable function of 1, (U, N Ug) onto ¢5(U, N Up), and (iii) the
collection {(U,,v,); @ € A} is a maximal collection of open charts for which
(i) and (ii) hold.



Necessary Conditions for a Superdifferentiable Supercurve ... 163

Definition 2. An (m,n)-dimensional superdifferentiable supermanifold over
By, is a Hausdorff topological space M with an (m,n) superdifferentiable
structure over By,

Definition 3. (de Witt [S]) A subset M’ of a supermanifold M of dimen-
sion (m,n) is called a sub-supermanifold of dimension (m',n'), m >
m/, n > n/, if M' is contained in the union of a set {(U,¢)} of
charts each of which has the property that, for all (z,0) € U N
M, p(x,0) = (2, ...,z a™ . .,a™, 0% ..., 0% L ") where
(@™, .. 0™, "t L ™) is a fixed element of B™ ™ depending on
the chart in question.

The pairs {(U’,¢')} where U' = U N M' and ¥'(z,0) = (z',..., 2™,
6',...,6™) constitute an atlas for M.

Example 1. Let us consider the (m,n)-dimensional supereuclidean space
B7"". It is an (m,n)-dimensional superdifferentiable supermanifold over
B, from the Definition 2. We consider the subset S7° " % of B}"", where
Pt = {(x,0) € Bty (@) e (2™) 420007 e 20707 =
14261 Bryr +- -+ BB} and we conclude that S7* ™" * isan (m—1,n—2)-
dimensional sub-supermanifold of B]"".

Definition 4. The function C': [a,b] — M is called a superdifferentiable super-
curve [3] if the functions ' o C for all i € [1,m] and ° o C for all a € [1,n]
are superdifferentiable [7], the functions €5, o x* o C for all i € [1,m] and
er 000 C for all a € [1,n] are differentiable in R and (z',0*) are the
coordinates of a point p € M.

Definition 5. Let L be a superdifferentiable function on T(M) x B;, and we
make distinction between this superdifferentiable function L and the positive
integer L. Then L defines a superdifferentiable map L': T(M) x B, —
T*(M) x By, called the Legendre supertransformation, which is given in local
coordinates by " o L' = &' for all i € [1,m], §* o L' = 0* for all o € [1,n),
y ol = a—L_for alli € [1,m], 6*c L’ = a—Lfor all a € [1,n] andto L' =t.
ox? 00

Definition 6. If the Legendre supertransformation is an immersion [5] of
T(M) x By, into T*(M) x By, then the function L will be called a regu-
lar super-Lagrangian.

Definition 7. If the Legendre supertransformation is an immersion, the map
L' comes locally in a similar way from a function H on T*(M) x By, is
called super-Hamiltonian:

H(y,0) = (L' '(y,0),(y,8)) — Lo L '(y,0).
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The function £ = H o L' is globally well-defined on T'(M) x By.

Theorem 1. If M is a Riemannian supermanifold and L(v,t) = £ (v,v), then

L is a regular super-Lagrangian and L' coincides on each tangent superspace
[5] with the map of T,(M) — T (M) given by the scalar product introduced
in [3]. Furthermore, in this case E = Ho L' = L.

Proof: This is proved in [4]. [0

Definition 8. Let C: [a,b] — M be a superdifferentiable supercurve on M.
Then C determines a supercurve C, on T (M) x By, defined by
C(t) = (C'(t),1)
for each t € [a,b]. Therefore, we can consider the integral
b
I(C) = /L(é(t)) dt .

Let C; and C’j1 be the restrictions of C' and C' respectively to the interval
[s;,8;11], where a = 5y < --- < s, =band W C M, C; and C} be super-
differentiable supercurves of (s; + €, s;41 — €) into W.

Definition 9. A supercurve C is called weak local minimum if there are W and
e > 0 such that e (I(C)) < e (I(C")) for all piecewise superdifferentiable
supercurves satisfying

C'(a) = C(a) and C*(b) = C(b). (1)

Proposition 1. Let C' be a weak local minimum of L. Then at every point t
where C'is superdifferentiable the tangent supervector Y, = C'(t) satisfies

Y, 4 dw, =0 2)
for 62(t) =t (0°(t) + 6>17(t)) and 67 (t) = ¢ (6> (t) — 6*(t)) for all o €
{1,...,7} and (y,8) are coordinates on (B}'™")* where

e, el A Nelm
_ 0 | if 1% j, forany k
(_1)(l)+k_1ej1 Ao Aedh=1 A elk+1 Ao A @lr if 1= 7ji

and i is 0 if e; € B]"" or 1 if e; € B} and where (e;),_
of By and (€7) is a basis of (B7")*.

is a basis
J=1,..., m-n

Proof: This is proved in [4]. O
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Theorem 2. ([4]) Let L define a regular problem in the calculus of variations
on supermanifolds. A necessary condition that a piecewise superdifferentiable
supercurve C' in sense of Rogers to be a weak local minimum for L is that

C' is superdifferentiable and C is an integral supercurve of X where X is
defined by

X1do=0, w=dL, (X,dt)=1 (3)

along with the superform o = L' w to be well defined on T(M) x By, and L'
to be an immersion of T(M) x By, into T*(M) x By,

Proof: This is proved in [4]. (J

Definition 10. Let N, and Ny be two sub-supermanifolds of M. A superdif-
ferentiable supercurve is called a weak minimum of L relative to N1 and N,
if it satisfies the conditions of Definition 9 with

C'(a) € Ny and C'(b) € Ns. (4)

Theorem 3. Let C' be a weak mimimun relative to N, and N,. Then C' is an
extremal of L and furthermore

(v1,C(a)) = (v, C(b)) = 0 5)
for all vy € Te )Ny and for all vy € Ty No.

Proof: The first part of the Theorem 3 is easy: if C' is a weak minimun relative
to IV; and N,, it is certainly a weak minimum in the sense of Definition 9. Thus
Theorem 2 implies that C is an extremal and it suffices to prove one of the
equalities in (3). Let h = (z',...,2™,0',...,0™) be a coordinate system
in a neighborhood U of C(b) such that N, N U is the set of points, where
gl = ... =0,0"% = ... =0 withl < r orl > r. Let the supervector

vy be given as vy = a4 (B%I)C(b) + -+ ay (3%)0(1,) +m (%)C(b) N

)
7 (37>C(b)' Choose tq close enough to b so that C(¢t) € U for t, <t < b.

Let X1(¢),..., X*(t), X'(¢),..., X '(t) be superdifferentiable functions with
X (t) =0fori=1,...,k and for t < t; and X"*(t) = 0 for i = 1,...,]1,
t<tyand X'(b)=a,(i=1,...,k)and X*(b) = 0 for i > k and X'*(b) = n;
(i =1,...,1) and X"(b) = 0 for i > I. Choose £ so small that z'(¢) +
sX1(t),...,x™(t) + s X, (t),0(t) + sX|(t),...,0"(t) + sX.(t) € h(U) for
to <t < band |s| <& where hoC(t) = z'(t),...,z™(t),0(t),...,0™(t).
Let K be the map of the rectangle D = {|s| < ¢’;a <t < b} into M
defined by K (s,t) = C(t) for a <t < t, and 2’ o K(s,t) = z'(t) + s X' (¢)
and % o K(s,t) = 0%(t) + sX'®(t) for t, < t < b. Then as before, we
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have ¢, (f[a’b] C* (w)) > ep (f K*(s,-)w) for sufficiently small |s|. As in the
proof of Lemma 2.2 from [9] and Proposition 1 this implies that, for s > 0
€L (f[o,s} K’*(-,t)w) >e€r (fD+ K~ dw). Dividing by s and letting s — 0 we

obtain, since C is an extremal ¢ (<K*(-,t) (63—8)(0 b)‘ wc(b)>) > 0 where

D, ={0<s<¢;a<t<b}.
Doing the same for the negative s we obtain

eL(<K*(-,t) (%)(O’b) ‘w@(,,)» <0.

Thus €, ((K*(,t) (%)(0 . | w(jv(b)>> = 0. But

_ 0 0 0
(510(2),) () (2
L( SRAW> (o,b)> "\ 0zt ) o "\ ok ) o

Wey = Z y'(b) dz), — Z (0%(b) A" — 61" (b)d6y) — H dt
=1

a=1

where C'(b) = 37,y (b)dz — 327, (6%(b) A6t — 67 (b) d62),b). Thus

5L(<K‘("t) (%)m’b) \wc<b>>) Xk:y )a; +Z — 5t (b

if I <7 and

({0 (8),, o)
zk:yz b)a; + Z 52(b a+r - zr: 5a+r(b),’7a

o O = _

if [ > r, which proves Theorem 3. ]

<

Remark 1. If L the kinetic superenergy associated to the Riemannian super-
metric g [1], [5], then L is given by [4]

Z 9i; T Ll + — Z gaﬁ(;)o‘@ﬁ

131 a,@l
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while condition (3) says that C'(a) is orthogonal to T¢ () (N1 ) relative to inner
product on Tc, (M) given by g and C'(b) is orthogonal to Ty (N2), i e.
(v,C"'(a)) =0 for v € Tewy(N1) and (v, C'(b)) = 0 for v € Ty (Na).
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