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Abstract. We study reparametrization-invariant systems, mainly the
relativistic particle and its D-dimensional extended object generaliza-
tion d-brane. The corresponding matter Lagrangians naturally contain
background interactions, like electromagnetism and gravity. For a d-
brane that doesn’t alter the background fields, we define non-relativistic
equations assuming integral sub-manifold embedding of the d-brane.
The mass-shell constraint and the Klein—Gordon equation are shown
to be universal when gravity-like interaction is present. Our approach
to the Dirac equation follows Rund’s technique for the algebra of the
~v-matrices that doesn’t rely on the Klein—Gordon equation.

1. Introduction

There are two very useful methods in classical mechanics: the Hamiltonian and
the Lagrangian approach [14, 10, 11, 16,4]. The Hamiltonian formalism gives
rise to the canonical quantization, while the Lagrangian approach is used in the
path-integral quantization. Usually, in classical mechanics, there is a transfor-
mation that relates these two approaches. However, for a reparametrization-
invariant systems there are problems when changing from the Lagrangian
to the Hamiltonian approach [10,11,16,20,15]. Classical mechanics of a
reparametrization-invariant system and its quantization is the topic of the cur-
rent study.

Fiber bundles provide the mathematical framework for classical mechanics,
field theory, and even quantum mechanics if viewed as a classical field theory.
When studying the structures that are important to physics, we should also un-
derstand why one fiber bundle should be more “physical” than another, why the
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“physical” base manifold seems to be a four-dimensional Lorentzian manifold
[3,26,21], how one should construct an action integral for a given fiber bundle
[14,4,8,9,19], and how a given system may be quantized. Starting with the
tangent or cotangent bundle is natural because these bundles are related to the
notion of a classical mechanics of a point-like matter. Since our knowledge
comes from experiments that involve classical apparatus, the physically acces-
sible fields should be generated by matter and should couple with matter as
well. Therefore, understanding the matter Lagrangian for a classical system is
very important.

In this paper we outline some aspects of the non-relativistic, relativistic, and a la
Dirac-equation quantization of reparametrization-invariant classical mechanics
systems. In its canonical form, the matter Lagrangian for reparametrization-
invariant systems contains well known interaction terms, such as electromag-
netism and gravity. For a reparametrization-invariant systems there are con-
straints among the equations of motion which is a problem. Nevertheless, there
are procedures for quantizing such theories [16,5,25,13,24]. For example,
changing coordinates (z,v) <> (z,p) is one problem, when h = pv — L = 0
is another. This h = 0 problem is usually overcome either by using a gauge
fixing to remove the reparametrization-invariance or by using some of the con-
straint equations available instead of & [16]. Here, we will demonstrate another
approach (v — -y) which takes advantage of h = 0.

In section two we briefly review the classical mechanics of reparametrization-
invariant d-branes. In the third section we argue for a one-time-physics as an
essential ingredient for a non-relativistic limit. The fourth section is concerned
with the relativistic Klein—Gordon equation, relativistic mass-shell equation,
and Dirac equation. Our conclusions and discussions are in section five.

2. Classical Mechanics of d-branes

In this section, we briefly review our study of the geometric structures in the
classical mechanics of reparametrization-invariant systems [12] by focusing on
the relativistic charged particle and its [J)-dimensional extended object gener-
alization (d-brane). In reference [12] we have discussed the question: “What
is the matter Lagrangian for a classical system?” Starting from the assump-
tion that there should not be any preferred trajectory parameterization in a
smooth space-time, we have arrived at the well known and very important
reparametrization-invariant system: the charged relativistic particle. Imposing
reparametrization invariance of the action S = [ L(z,v)d7 naturally leads to
a first order homogeneous functions [12].

The Lagrangian for the charged relativistic particle corresponds to the first two
terms in a series expression of a first order homogeneous function. When this
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expression is considered as a Lagrangian, we call it canonical form of the first
order homogeneous Lagrangian:

L(Z,7) = ZQn\”/Sn (U,...,0) = qAv™ + my/gapvevP + ... (1)
n=1

The choice of the canonical form is based on the assumption of one-to-one
correspondence between interaction fields .S, and their sources [12]. Finding
a procedure, similar to the Taylor series expansion, to extract the components
of each symmetric tensor (S,,.,. «,), for a given homogeneous function of
first order, would be a significant step in our understanding of the fundamental
interactions.

Encouraged by our results, we have continued our study of reparametrization-
invariant systems by generalizing the idea to a [)-dimensional extended objects
(d-branes). In doing so we have arrived at the string theory Lagrangian (1-brane
extended object) [16] and the Dirac—Nambu—Goto Lagrangian for a d-brane
[18].

The classical mechanics of a point-like particle is concerned with the embedding
¢: R — M. The map ¢ provides the trajectory (the world line) of the particle
in the target space M. In this sense, we are dealing with a O-brane that is a one
dimensional object. If we think of an extended object as a manifold DD with
dimension denoted also by D (dim D = D =d + 1 where d = 0,1,2,...),
then we should seek ¢: DD — M such that some action integral is minimized.
From this point of view, we are dealing with embedding of a D-dimensional
object in to a target space M. If z® denote coordinate functions on A/ and
z* coordinate functions on D), then we can introduce a generalized velocity
vector & with components w':

r_ Q_F _ 0 (x¥r x®...x%P)
dz O(z'22...2P)

dim M)

w

dz=dz'A---AdZP, T=1,...
z FANVAN A dz™, , ’(dimD

0 (x* x> ... .x*)
0(z122...2P)
transformation from coordinates {x*} over the manifold M to coordinates
{z°} over the d-brane [7]. In this notation the canonical expression for the

homogeneous Lagrangian of first order is:

L (5,(3) = i {/Sn (D,...,3) = Arw" + v/ gr,r,wliwl= +.... (2
n=1

In the above expression, represents the Jacobian of the
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Notice that #, v, and ¢ = & o ¢ have the same number of components while

the generalized velocity & has ().

From the above expressions (1) and (2), one can see that the corresponding
matter Lagrangians L, in their canonical form, contain electromagnetic (A)
and gravitational g interactions, as well as interactions that are not clearly
identified yet (S,,, n > 2). At this stage, we have a theory with background
fields since we don’t know the equations for the interaction fields A, g, and
S,.. To complete the theory, we need to introduce actions for these interaction
fields. If one is going to study the new interaction fields S,,, n > 2, then some
guiding principles for writing field Lagrangians are needed.

One such principle uses the external derivative d, multiplication A, and Hodge
dual * operations in the external algebra A (7 M) over M to construct objects
proportional to the volume form over M. For example, for any n-form (A)
the expressions A A xA and dA A xdA are forms proportional to the volume
form.

The next important principle comes from the symmetry in the matter equation.
That is, if there is a transformation A — A’ that leaves the matter equations
unchanged, then there is no way to distinguish A and A’. Thus the action for the
field A should obey the same gauge symmetry. For the electromagnetic field
(A — A’ = A+df) this leads to the field Lagrangian £ = dAAxdA = FAxF,
when for gravity it leads to the Cartan—Einstein action S [R] = [ R,gAx(dz*A
dz”) [12,1]. In our study we have also found an extra term R”" that exists only
in four dimensional theories. This term R” comes from fully anti-symmetrized
R.3,41) Ricci tensor R.

3. Non-relativistic Limit

Here, we briefly argue that a one-time-physics is needed to assure causality
via finite propagational speed in case of point particles. For d-branes the one-
time-physics reflects separation of the internal from the external coordinates
when the d-brane is considered as a sub-manifold of the target space manifold
M. The non-relativistic limit is considered to be the case when the d-brane is
embedded as a sub-manifold of A.

3.1. Causality and Space-Time Metric Signature

It is well known that the Einstein general relativity occurs more degree of free-
dom in four and higher dimensions. We have already mentioned the R" term
which is only possible in a four-dimensional space-time. Another argument for
4D space-time is based on geometric and differential structure of various brane
and target spaces [12,21]. All these are reasons why the spacetime seems



172 Vesselin Gueorguiev

to be four dimensional. Why the space-time seems to be 1 4+ 3 have been
recently discussed by using arguments a la Wigner [3,26]. However, these
arguments are deducing that the space-time is 1+ 3 because only this signature
is consistent with particles with finite spin. In our opinion one should turn this
argument backwards claiming that one should observe only particles with finite
spin because the signature is 1 + 3.

Here we present an argument that only one-time-physics is consistent with

a finite propagational speed. Our main assumptions are: a gravity-like term
g(&, @) is always present in the matter Lagrangian, and the matter Lagrangian

is a real-valued; thus ¢(#,v) > 0. For simplicity, we consider the 0-brane

mechanics first.

The use of a covariant formulation allows one to select a local coordinate

system so that the metric is diagonal (+,+,...,+, —,--- —). If we denote the

plus coordinates as time coordinates and the minus ones as space coordinates,
then there are three essential cases:

1. No time coordinates. Thus ¢(7,7) = — Y., (v*)° < 0, which contradicts
(9(v,7) = 0).

2. Two or more time coordinates. Thus ¢(7,7) = (v°)* + (v')* —
ZZ:Q (UQ)Q = 1 + )\ 2 US%)ECC'

3. Only one time coordinate. Thus g(7,7) = (v°)2 = X"_, (v*)* = 1 >
=2

space *
Clearly for two or more time coordinates we do not have finite coordinate
velocity dz/ dt) when the coordinate time ¢ is chosen so that t = 2° = v =1
and z' = A. Only the space-time with one time accounts for a finite velocity
and thus a causal structure.

For a d-brane one has to assume a local coordinate frame where one component
of the generalized velocity can be set to 1 (w® = 1). This generalized velocity
component is associated with the brane “time coordinate.” In fact, w® = 1
means that there is an integral embedding of the d-brane in the target space M,
and the image of the d -brane is a sub-manifold of M. If the coordinates of M
are labeled so that z° = 2%, i = 1,..., D, then z' are internal coordinates that
may be collapsed in only one coordinate — the “world line” of the d-brane.

3.2. The Quantum Mechanics of a D-brane

In this section we briefly describe the gauge-fixing approach that allows canon-
ical quantization. This approach is mainly concerned with a choice of a coor-
dinate time that is used as the trajectory parameter [16, 6, 13,23]. Such choice
removes the reparametrization invariance of the theory.
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In a local coordinate system where w” = 1 and the metric is a “one-time-

metric”’ we have:

L= Arw" + /gr,p,whwlz 4 -+ ”\’/Sm (&,...,d)
; / — : 1 o
—>A0+Aiwl+ 1 *giiwzwl+...%A0+Aiwl+1* §gu-wlwl+... .

Thus the Hamiltonian function is not zero anymore, so we can do canonical
quantization, and the Hilbert space consists of the functions ¥(z) — ¥(z, Z)
where £ = 2%, i = D +1,...,m. The brane coordinates z shall be treated as ¢
in quantum mechanics in the sense that the scalar product should be an integral
over the space coordinates Z.

4. Relativistic Equations for Matter

Even though canonical quantization can be applied after a gauge fixing, one is
not usually happy with this situation because the covariance of the theory is
lost and time is a privileged coordinate. In general, there are well developed
procedures for covariant quantization [16, 5, 25, 13,24]. However, we are not
going to discuss these methods. Instead, we will employ a different quantization
strategy. In this section we discuss the mass-shell constraint, the Klein—Gordon
equation and the Dirac equation [22] for d-branes.

4.1. The Mass-shell and Klein—-Gordon Equation

Since the functional form of the canonical Lagrangian is the same for any d-
brane, we use v, but it could be w as well. We define the momentum p and
generalized momentum 7 for our canonical Lagrangian as follow:

oL = S B e
pr = —5(451:0)) :eAp —|—m—gFEw IT...5, Y 1—ui/n + ...,
w g(,3) (S(w,...,w))
Sosr 5 VP 0P 0
Wa:pa_eAa_-.. IBI.“'Bn’U n/(’l:L+1) --.:m%.
(S (v,...,v)) g (,7)

In the second equation we have used v instead of w for simplicity. Notice that
this generalized momentum 7 is consistent with the usual quantum mechanical
procedure p — p — eA that is used in Yang-Mills theories, as well as with the
usual GR expression p, = mg,zv”. Now it is easy to recognize the mass-shell
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constraint as a mathematical identity:

il il

. - 1= 7,7%=m?
=9 =9 @
U VU

= (5 ed S 8w ..) T=m’T.

Notice that “gravity” as represented by the metric is gone, while the Klein—
Gordon equation appears. The v dependence in the S terms reminds us about
the problem related to the change of coordinates (z,v) — (z,p). So, at this
stage we may proceed with the Klein—Gordon equation, if we wish.

4.2. Rund’s Approach to the y-matrices

An interesting approach to the Dirac equation has been suggested by H. Rund
dZ

[20]. The idea uses the Heisenberg picture —ihd— = [H, Z], a Hamiltonian
T

linear in the momentum H = ~v%p,, and a principle group G with gener-
ators X, that close a Lie algebra [X;, X,] = C’i"“ij. To have the Hamil-
tonian H invariant under G-transformations, the < objects should transform
appropriately [X;,v*] = (p(X;))5y”. The next ansatz is the important one:
Xi = (2:) g7y

By using this ansatz in [X;, X;] = C[ X, one writes [X;, (2;)ap7*Y’] =
Cl(xr)apy*y” and solves for (z;)as. In order for the linear system of equa-
tions to have a solution, additional algebraic conditions on the v matrices are
imposed. For the Lorentz group, this procedure gives A*” = Z+*~+" with
{v*,~+"} = 26*P. Notice that in H = v*p,, the momentum transforms accord-
ing to the fundamental representation, and thus the y-vector should transform
as the conjugate one, so that H stays a scalar. The ansatz means that we
are constructing the adjoint representation, which is the Lie algebra itself, by
coupling two fundamental representations.

4.3. Dirac Equation from H = 0

Since we want v and p to transform as vectors, it is clear that p should be a
covariant derivative, but what is its structure? Consider a homogeneous La-
grangian that can be written as L (¢,w) = w'pr = w"9L (¢,w) /0w’ with
a Hamiltonian function that is identically zero: h = wW'OL (¢,w) /Ow" —
L(¢,w) = 0. Notice that w' is the determinant of a matrix (the Jacobian
of a transformation [7]); thus w' — ~! seems an interesting option for quanti-
zation. Even more, for the Dirac theory we know that v* are the “velocities”

(dz/dT = 0H/0p).
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If we quantize using (h — H), then for the space of functions we should
have: HV = 0. By applying w' — ~', which means that the (generalized)
velocity is considered as a vector with non-commutative components, we have
(v'pr — L(¢,v)) ¥ = 0. For a 0O-brane, using the canonical form of the
Lagrangian (1) and the algebra of the v matrices following Rund’s approach,
as described in the previous section, we have:

H =7, — L(¢,7)

A Da — €A™ — ] Gy A — e — r\n/gm(»y’___ﬁ)’
— YDy — €AY —m — - — RS g™ — o — TN SS9y

Since g,p is a symmetric tensor, then g,s7*Y? ~ gap{¥*, 7’} ~ Gapg®® ~ 1.
Therefore, gravity seems to leave the picture again. The symmetric structure of
the extra terms S, can be used to reintroduce g by using {v*,v°} ~ ¢*f and
to reduce the powers of . Thus the high even terms contribute to the mass m,
making it variable with Z [2].

5. Conclusions and Discussions

In summary, we have discussed the structure of the matter Lagrangian L for
extended objects. Imposing reparametrization invariance of the action S natu-
rally leads to a first order homogeneous Lagrangian. In its canonical form, L
contains electromagnetic and gravitational interactions, as well as interactions
that are not clearly identified yet.

The non-relativistic limit for a d-brane has been defined as those coordinates
where the brane is an integral sub-manifold of the target space. This gauge
can be used to remove reparametrization invariance of the action S and make
the Hamiltonian function suitable for canonical quantization. For the O-brane
(the relativistic particle), this also has a clear physical interpretation associated
with localization and finite propagational speed.

The existence of a mass-shell constraint is universal. It is essentially due to
the gravitational (quadratic in velocities) type interaction in the Lagrangian and
leads to a Klein—Gordon equation. Although the Klein—Gordon equation can
be defined, it is not the only way to introduce the algebra of the y-matrices
needed for the Dirac equation. The algebraic properties of the -y-matrices
may be derived using the Lie group structure of the coordinate bundle; these
properties are closely related to the corresponding metric tensor g*° = {~*,v"}
and may restrict the number of terms in the Lagrangian. Once the algebraic
properties of the y-matrices are defined, one can use v — <y quantization in the
Hamiltonian function h = pv — L(x,v) to obtain the Dirac equation.
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