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Abstract. Let 7 be Frobenius system of even rank. Consider a closed
two-form II € Z A Z of maximal rank. A vector field X such that
LxII = 0 is called a symmetry of II. We determine the relationship
between the solvable Lie group of symmetries of II and the rank of
the reduced system obtained from 7 by Lie reduction. For an Euler—
Lagrange system of ODE’s with the corresponding Lagrangian L, TI
can be taken to be the differential of the Poincaré-Cartan form 77. A
symmetry of II = dny, is a variational symmetry of the Lagrangian L.
A proof of Noether’s theorem for Frobenius systems of even rank is
provided.

1. Introduction

This paper, like many others mentioned below, treats Lie symmetry method for
systems of ordinary differential equations (ODE’s) in the framework of exterior
differential systems. Systems of differential equations in one independent vari-
able may be interpreted as Pfaffian systems of codimension one. Such systems
are examples of Frobenius (completely integrable) systems.

Lie’s symmetry method, named after the famous Norwegian mathematician So-
phus Lie, is one of the most successful methods for finding explicit solutions
of systems of differential equations [10]. It unifies numerous methods used
to integrate special types of equations, such as separable equations, homoge-
neous equations, Euler’s equations, linear equations, Bernoulli equations, and
many others. Lie’s method has even more important applications into partial
differential equations, but we will not discuss this aspect here. It was Sophus
Lie who first realized that if one can associate a solvable s-parameter group
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of symmetries to an n™-order ordinary differential equation, then the equation
can be reduced to an (n — s)"-order differential equation in the sense that one
can recover by quadratures the general solution of the original equation from
the general solution of the reduced equation; if n = s, then the general solution
can be explicitly written out in terms of quadratures. Lie was concerned with
point symmetries since his focus was on the practical implementation of his
method which might have been the reason why he did not study more general
types of transformations — it turns out that the task of finding a solvable Lie
group of intrinsic contact symmetries for a system of ODE’s is equivalent to
solving the system! In many instances one can eyeball some point symmetries
and others can be obtained solving an over-determined system of equations.
On the other hand, one of the advantages of considering more general types
symmetries in more general setting is that this assumption makes the theory
easier (surprisingly). It was Cartan who first proposed to study Lie’s methods
in the framework of exterior differential systems. He, like Lie, never bothered
himself to to write down the general theorems underlying Lee’s method. This
gap was filled by a number of papers in 70’s, 80’s, and 90’s of the past century.
Lie symmetry method have laid long time dormant since the time of Cartan
until Ovsiannikov [12] begun his extensive investigations of this classical sub-
ject. There is a large number of papers mostly by Soviet mathematicians that
deal with various aspects of Lie’s method and include computation of symme-
try groups of point, contact, and generalized symmetries for many particular
classes of physically significant systems of differential equations. The reader
can find a summary of these results in [9]. One should also not forget to
mention the outstanding book of Bluman and Cole [3]. Modern treatment of
Lie’s method can be found in [11], where the reader can also find a large list
of classical and more recent references. Various extension of Lie’s method to
differential systems in the spirit of Cartan’s ideas are found for example in
[7,5,4,2], and [8] (this list is by no means exhaustive).

Symmetries of Lagrangians are called variational symmetries. With the use
of a one-parameter variational symmetry group one can reduce the order of
the associated Euler—Lagrange equation by two (see, for instance, Olver [11],
Theorem 4.17). The easiest way to explain this phenomena is to note that
a variatonal symmetry is also a symmetry of the Euler-Lagrange system and
recall that, thanks to Emily Noether, we know there is a one-to-one corre-
spondence between variational symmetries and conservation laws. Thus, one
can use both the symmetry and the conservation law to reduce the order of the
Euler-Lagrange equation. Now consider s-parameter solvable variational sym-
metry group of a Lagrangian L. Variational symmetries are also symmetries
of the Euler—Lagrange equation and so using the Lie reduction method we can
reduce the Euler—Lagrange equation by s orders. Due to Noether’s theorem,
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we have, in addition, s conservation laws available to us for further reduction.
But, some of them may have been already used in the reduction process using
the symmetries and so, in general, the reduced equation will have order from
s to 2s lower then the original Euler-lagrange equation. The precise order of
reduction is determined by Theorem 4.5 which is the main result of this paper.
In fact, we establish a more general result: Let Z be Frobenius system of even
rank. Consider a closed two-form II € Z A Z of maximal rank. A vector
field X such that LxII = 0 is called a symmetry of [I. We determine the
exact relationship between a solvable Lie group of symmetries of II and the
rank of the reduced system obtained from Z by Lie reduction. In the course of
proving Theorem 4.5 we will provide a simple proof of Noether’s theorem for
Frobenius systems based on Cartan’s formula

Lxw=X_1dw+ d(X1w).

The usefulness of this formula for this paper cannot be overestimated. We will
also explain the process of reduction based only on linear algebra operations
combined with the use of a slightly modified de Rham homotopy operator.
Another interesting question is under what conditions does the reduced equation
admit a variational principle? This question was solved in [1].

2. Preliminaries and Definitions

A Pfaffian system 7 of rank r on an m-dimensional manifold M is a module
over the ring C*° (M) of smooth functions on M generated by r one-forms w,
wa, ..., w, linearly independent at each point of the manifold. We write 7 =
{wy,...,w,.}. A vector field X is called an (infinitesimal) symmetry of 7 if
the Lie derivative LxZ C Z. The set of all symmetries of Z forms a Lie algebra
called symmetry algebra of Z. We call the infinitesimal symmetry X trivial
or a Cauchy characteristic vector field if X 17 = {0}, otherwise we say that
X is non-trivial. More generally, a vector field X is a Cauchy characteristic
of a differential ideal 7 if X 17 C Z. Two infinitesimal symmetries of Z are
called equivalent if their difference is a trivial symmetry. A smooth function
f on M is called a conservation law if df € Z. A constant function is called
a trivial conservation law . Two conservation laws are said to be equivalent if
they differ by a constant. We say that two Pfaffian systems (3, Z) and (M, Z)
are equivalent if there is a diffeomorphism 1: M — M such that ¢*(Z) C Z.

A Frobenius system 7 of rank r on an m-dimensional manifold M is a
Pfaffian system Z = {w,,...,w,} of rank r where wy,...,w, are pointwise
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linearly independent one-forms satisfying

dw; =Za{/\w]—, forall 1<:<r
=1

for some one-forms af . Frobenius theorem implies that two Frobenius systems
are locally equivalent if and only if they have the same rank and the two
manifolds A and M have the same dimension. An integral manifold of 7
is an immersed submanifold of ¢»: N — M such that ¥*(Z) = 0. For a
Frobenius system Z of rank r the maximum dimension of an integral manifold
is m — r. For the given point p € M there is a local coordinate system

(z',...,z™) such that Z is locally generated by the one-forms dz',..., dz",
and so locally the integral manifolds of Z of dimension m — r are given by
! = ay, 2 = aq,...,x" = a, where a,,a,,...,a, are real constants. By

integrating a Frobenius system we mean finding all local integral manifolds. It
is clear that this process is equivalent with finding r functionally independent
local conservation laws for Z.

Definition 1. We say that a system of independent one-forms waq,...,w,,
Wyt .- Weyg 1S reducible to wq,...w, if

dw; =0 mod {wy,...,wry...,w; 1} forall r+1<i<r+s. (1)

This definition generalizes the classical notion of reducibility of one system of
ODE'’s to another system ODE’s, as well as the notion of a solvable structure
introduced in [8]. In fact, if Z is reducible to {0}, then Z is a solvable structure
as defined in [8].

To explain the notion of reducibility, suppose that the reduced system 7' =
{w1,...w,} is Frobenius and assume that we can explicitly write out the general
solution of Z'. In other words assume that we know r independent conservation
laws f* and so Z' = {df*,...,df"}. Let (f*,...,f",z',...,zP) be a local
coordinate system on M. Consider the first equation in (1)

dw,,; =0 mod {dfl,...,df’"}. 2)
We write
p r
wepn = Gi(fFat)de’ + ) F(fF, 2 df 3)
i=1 j=1
and so

P P _
dw, 1 = ZZ gf; (f*, 2" da? Ada' mod {df*,...,df"}. C))

i=1 j=1
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From (2) and (4) we conclude

oG, 0G, .
507 D 0 forall 1<4,57 <p. 5)
We now define a functor H that maps a one-form w to the function
/ dA o
0/ (Vow)(fy .o, fh 2t AaP) — 3 where V = Zx o

Notice that H(w) is just a slight modification of the de Rham homotopy oper-
ator. In particular

1
p
H(w,y) /ijGj(fl,...,fr,)\xl,...,/\:L:”)d)\
0

=1

3.

and we set f™*' = H(w,,,). Using (5) we obtain

8fr+1

1
0 /” .
— = 2G5 (F*, Aat) dA
ox? ox’ / ; J

SR %e)
:/Zzﬂa—xj(f’“,)\xl)+Gi(f",>\xl)d>\
G=1
" (6)
. j 8G'L k 1 k 1
:/qu—_(f Az + Gu(F* Aat) dr
— ox?
0 J=1
1 q .
= [ S OG0 A =G5, 0a!)|| = Gul £, a')
0
for all 1 < ¢ < p. Thus, we have
p afﬂ—l afr+1 )
dfr = dz’ df
f X_; o +Z f
(7N

G (fF, 2" dz" mod {df*,...,df"}

I
.M@

1=1

and so from (3) we deduce w,, = df™" mod {df*',...,df"}. We conclude
that

{w15"'awr+1}:{dfla"'adfraerrl}:{dfla"'adfr+1}'
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By induction argument we can construct (using quadratures) the functions f"*2,
oo, [T, such that {wy,...,w} = {df*, ..., df "5}

3. Lie Algebras of Symmetries and Integration by Quadratures

In this section we will explain how one can reduce a Frobenius system using
a solvable Lie algebra of symmetries.

Theorem 1. Let 7 be a rank r > 1 Frobenius system on a manifold M and let
X be a non-trivial infinitesimal symmetry of 1. Denote

Ix ={weZ; X 1w=0}
and let 0 € T such that X 10 # 0. Then

0
d(X_IQ)_OmOdIX (8)

and Lx is a Frobenius system of rank v — 1. Thus, 1 is reducible to Lx.
Moreover X is a trivial infinitesimal symmetry of Lx.

Proof: Since 6 # Iy we write df = a A 8 mod Zx, for some one-form a.
Using Cartan’s formula we deduce
Lx0=X1d0+d(X18)=(X1a)f— (X1a0)a+d(X16) mod Zx.
©)

Because Lx0 € 7 we have Lx0 N 6§ = 0 mod Zx, so wedging (9) with § we
obtain

d(X1) N0 =(X10)aNb mod Ix. (10)
Next, we have
d( i ) ! d(X0)N0+ = A 6@ mod T (11)
= — 0 .
X6 (X _16)? - xX16" o X

Substituting (10) into (11) we conclude that (8) is satisfied. Let w € Zx. We
have

Xidw=LxweT. (12)
We write

dw=pFA60 mod Ix. (13)
Thus, we obtain

Xi1dw=—(X16)5 modZ. (14)
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From (12) and (14) follows 8 € Z and by (13)
dw =0 mod Zx
and so Zx is Frobenius. By assumption Lyw € Z and
XiLxw=Lx(Xaw)—[X,X|aw=0

and so Lxw € Zx. This proves that X is a trivial infinitesimal symmetry of
Ix. O

We note, that if the Frobenius system Z = {f} is of rank one and X is a

non-trivial infinitesimal symmetry of Z, then the one-form

)
X6

is closed, and so, by the of Poincaré lemma, 0 is locally exact.

6=

Definition 2. Lie algebra g is called a solvable Lie algebra if there is a chain
of Lie subalgebras
such that for every 0 < i < s, dimg® =i and g" Y is a normal subalgebra
(an ideal) of g, i. e.

[V, g9) C gV, for 1<i<s.

Theorem 2. Let T be a Frobenius system of rank r and let g be a solvable Lie
algebra of infinitesimal symmetries of Z. Denote

I, ={we€Z; Xaw=0, forall X € g}.

Then I, is a Frobenius system and L is reducible to Z,. If T, = {0}, then T
is solvable by quadratures.

Proof: Since g is solvable then there is a basis {X;, X,,..., X} of g such
that

7—1

[ X, X;] = Zcijk, whenever 1<i<j<s

k=1
(note that cfj are constants) and denote

Zi={weZ; X;0w=0, foralll <j<i} for 1 <i<s.
To establish the theorem we prove that

1) Z, is a Frobenius system for 0 <z < s, and
i1) X;;1 1s an infinitesimal symmetry of Z; for 1 <1 < s.
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Since Z, = 7 the conditions (1), (ii), are satisfied for 7« = 0. We now proceed
by induction. Assume that (i), (i1), are satisfied for ¢ — 1. By definition
Ir = {w € Z;, 1; Xzaw = 0}, and so, by Theorem 3.1, Z; is Frobenius.
We need to show that X, ; is an infinitesimal symmetry of I,. If w € Z;, then
Ly ., w€Zandforl <j <0

XjJ LXH_I(.U = EXi+1 (X]J (.U) - [XZ'_|_1,XJ']_I(.U =0.

i+1

Thus, Lx,.,w € Z; and so Lx,.,Z, € Z,. Now assume that rank of Z, ; is
greater or equal then rank of Zz, i. e. there is "' € Z;_; such that X, 16" £ 0.

By Theorem 3.1
pi-1

and so Z; is reducible to I;, ;. This ends the proof of the theorem. [J

Note that in general, the search for a solvable s-dimensional Lie algebra of
infinitesimal symmetries is as difficult as finding the family of s forms w, 4,
.., Wry, satisfying (1).

Example 1. Consider the Darboux integrable equation at level one

2,/Us

Ugy + zty

studied by Goursat [6] (see also Vessiot [13]). Together with the two compat-
ible equations

gy vV Uy U £/ U
=+ = f(z)  and o X =g(y)
2yu, Tty 2,/u, Tty

where f(x) and g(y) are arbitrary functions, equation (15) gives rise to the
Frobenius system T = {6',6%,0°}, where

' = du — u, dz — u, dy (16)
2u 2./uzu
6% = du, + * _2./u, de + X224 17
wet (o - e (@) det 2o Ay (7)
2,/Ustly 2
6% =d Y ¥4 Y 2 d 18
Ut = I+($+y Viy9(y)) dy (18)

on the manifold (z,y,u,u,,u,). The integral manifolds of (16), (17), (18) on
which dx ANdy # 0 are solutions to equation (15). Integrating the system (16),
(17), (18) we obtain the general solution of (15). We first integrate the system

C(D,) = {dy, 0*,60%,6°}, which is generated by

dy, w'=du  u,dz
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2u

w® =du, + (—= u, f(x))de
Tty
1 VU
w? = du, + Y 4.
2,/u, Tty
The structure equations for C(D,) are dw' = —w? A dz,
2
dw? = ( — f(z) ) w* Adz mod dy
r+y /U
and
dw® = ! w? Adz mod dy.
2\/uz(z +y)
It is not difficult to see that the vector field
Ju, O
U1 =
r+y ow?

is an infinitesimal symmetry of the Frobenius subsystem {dy,w*} of C(D,).
By Theorem 3.1 the form

(.4)2

1
= € {dy,w”
2X1_|UJ2 { y,(.U}

is closed mod dy. Indeed, ©* = dI, mod {dy}, where Iy = (z + y)\/uz —
(x +y)F'(x) + F(x), and where F"(x) = f(z). We have

—2

oty BPE AP,
(z +y)?
and
e LoF@ @y
2y, (z +y)? '

and so it not difficult to conclude that

1(%u+@F@W

— / F'*(z) da:) mod {dy,dL,}  (19)

w =
r+y
and
F(z) -1,
=d | Ju, + ——— e mod {dy,dl,}. (20)
Denote
I, — F(x))? , I
Ilzu_|_(2x+§/)) _/FQ(x)dZC and I3 U _I_ ;lyQ
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Hence, C(D,) = {dy,dI,,dl,,dI3} and Frobenius system 7 is generated by
one-forms

n'=dh —I{dy, n*=dL+I;dy, and 7’ =dl;—g(y)dy.
We have n* = dJs, where Js = I; — G'(y) and G"(y) = g(y), and so
n' =dl, — (J; + G'(y))*dy and n*=dI, + (J; + G'(y))dy

i e.

v =d (126 - [ e)dy) mod {dih @D
and

n° =d(I, + yJs + G(y)) mod {dJs}. (22)
Denote

Ji =T —yJ; —2G(y)Js /G'Q(y) dy and Jy=1I,+yJs+ G(y).
Thus, T = {dJ,,dJ,,dJ3}, and setting J, = Jo = J3 = 0 we obtain
L= [G*dy, L=-Gl, ad L=GC).

From these equations we solve for u, u,, and u, in terms of r and y. In
particular we get

(F(z) + Gw)*
Tty

U= —

[FPr@dst [y
which is, as one can easily verify, the general solution to ( 15).

4. Frobenius Systems of Even Rank

In this section we extend Noether’s theorem for ordinary differential equations
to Frobenius systems. As a consequence we obtain more powerful Lie reduction
method when dealing with a solvable group of variational symmetries. Exact
relationship between the solvable group of variational symmetries of Z and the
rank of the reduced system will be established.

Recall that a closed two-form w has rank r if w” # 0 and W™ = 0
(W' = wA -+ ANw r-times). For a Frobenius system Z of even rank 2k
we can always find a closed two-form II in Z A Z of rank k. To exhibit this
consider the local coordinates on the underlying manifold A guaranteed by
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Frobenius theorem, (p',q¢'...,p",¢",z ..., x*), such that 7 is generated by
{dp',dq'...,dp*,d¢*}. We now set

I =dp' Adg" +--- +dp* Adg".
A vector field X on M is called an infinitesimal symmetry of IT if £ II = 0.

Since Lixyiw = LxLyw — LyLxw, we easily observe that the set of all
infinitesimal symmetries of II forms a Lie algebra.

Lemma 1. Let 7 be a rank 2k Frobenius system on a manifold M and let
IT € ZAZ be a closed two-form of rank k. If a vector field X on M is an
infinitesimal symmetry of 1, i.e. LxII = 0, then X is also an infinitesimal
symmetry of 1.

Proof: It suffices to work locally. Let m € M. By theorems of Darboux and
Frobenius we deduce there is a neighborhood U C M around m such that on
U the system Z is generated by {dp',dq!,...,dp"* d¢"} and

II=dp' Adg" +--- +dp* Adg". (23)
Let £ xII = 0, then
0= EXH = Z(EX dpz VAN dqZ + dpl VAN EX dqz)
=1
and so it follows that Ly dp’ = Lx d¢* =0 mod Z. O

Lemma 2. Let 7 be a rank 2k Frobenius system on M and let 11 €¢ T N7 be

a closed two-form of rank k. If X is a vector field on M, then X 111 = 0 if
and only if X is a trivial symmetry of 1.

Proof: It suffices to prove the Lemma locally. Applying first the Theorem of
Frobenius and then the Theorem of Darboux we deduce that there are local
coordinates on M, (p*,q'...,p",¢", 2 ..., 2t), (t = dim M — 2k) such that
T = {dp',dq",...,dp" d¢*} and II is given by (23). Let

X = Za Z —I—Zc 8$Z .
Then

k k
X => a;d¢" —> bdp'=0 iff a,=b;=0 forall i=1,...,k.

This is equivalent to X 1 dp* =0and X_1d¢' =0 foralli=1,...,k O
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Theorem 3. Let 7 be a rank 2k Frobenius system on a manifold M and let
IT € Z AT be a closed two-form of rank k. Then there is locally a one-to-one
correspondence between the equivalence classes of infinitesimal symmetries of
LI and the equivalence classes of conservation laws of L.

Proof: As before assume that on some neighborhood U of M, 7 is generated by
{dp',dqt,...,dp"*,dg*} and II is given by (23). From now on we restrict our
considerations to this neighborhood U. Let Sym(II) be the vector space over
real numbers of all infinitesimal symmetries of II and let CL(Z) be the real
vector space of all conservation laws. Let us define an equivalence relation
~ on Sym(II). For X;, X, € Sym(II) we define X; ~ X, if and only if
X1 — X, is a trivial symmetry. Define an equivalence relation ~ on CL(Z):
for f1, f2 € CL(Z) we define f!' ~ f? if and only if f' — f? is a constant.
Define a map ¢: Sym(Il)/~ — CL(Z)/~ as follows: let X € Sym(II)/~
and let X ¢ X. By Cartan’s formula we have

AXJI) =X dII+d(X_JI0) = LxII=0.

By Poincaré Lemma, there is a function f such that df = X _JII € 7 and if
df =dg = X111, then f — g = const. Thus, f is a conservation law of 7
and we set

#(X) = f={f +c;cis areal number} .

By Lemma 4.2 ¢ is an injection. To prove that ¢ is a surjection we consider
a local conservation law f, i. e. a smooth function on U C M such that df =
> (a; dp* + b; dg*) for some functions a; and b;. Let

x =3 (agp thin).

Then X II = ¥ (a; dp* + bl-idqi) = df and so ¢(X) = f. Here again
X € Sym(IT)/~ such that X € X. O

This Theorem generalizes a special case of Noether’s Theorem for ordinary
differential equations and is not, to my knowledge, included in the most general
statement of Noether’s theorem. Recall that Noether’s theorem gives a one-
to-one correspondence between variational (or divergence) symmetries of a
non-degenerate Lagrangian and conservation laws of the associated system of
Euler-Lagrange equations. If the Lagrangian L of order k& depends only on one
independent variable, the corresponding system of Euler-Lagrange equations
can be interpreted in terms of differential forms as a Frogenius system of even
rank 2k. A variational symmetry of a Lagrangian L is a vector field X whose
Lie derivative carries the Poincaré—Cartan form 7);, into an exact one-form,
i.e. Lxn, = df, for some function f. Locally this is equivalent to saying
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that L x dn, = 0 and one can easily show that II = d#, is a closed two-form
in Z A Z of rank k. The minor novelty of Theorem 4.3 lies in the fact that
IT does not have to arise from a variational principle. Note that Lemma 4.1
is a generalization of a well known fact that every infinitesimal divergence
symmetry of a Lagrangian is also a symmetry of its Euler—Lagrange equations.

It is well known that a one-parameter group GG of variational symmetries al-
lows one to reduce the order of the associated Euler-Lagrange equations by
two. What happens when G is an s- parameter solvable group of variational
symmetries is the topic of our further investigations.

As before, let Z be a Frobenius system of rank 2k and let g be a Lie algebra
of infinitesimal symmetries of a closed two-form Il € I A Z of rank k. By
Lemma4.1 g is also a Lie algebra of infinitesimal symmetries of Z. Thus,
Z,={we€Z; X1w=0forall X € g} is a Frobenius system. It is not hard
to see that the set

II, ={XJ1II; X € g}
is a real vector space with generators {X; 1 II}, where {X,} is a basis of g.
Using Cartan’s formula, for X € g, follows d(X _JII) = LxII = 0, and so

every form in Il is closed. Therefore, locally we have ¢ = dim II; functionally
independent conservation laws. If, moreover,

YUX =0, forall X, Y cg (24)

then II; C Z,.

We can now combine Theorem 3.3 with the above observation to obtain an inte-
gration method that essentially doubles the power of the standard Lie symmetry
method.

Theorem 4. Let T be a rank 2k Frobenius system on a manifold M and 11 €
I AT be a closed two-form of rank k. Let g be a solvable Lie algebra of
infinitesimal symmetries of 11 and let

r=rankZ; — dim(II; NZ,).
Then 1T is reducible to a Frobenius system of rank r.

Proof: By Theorem 3.3 7 is reducible to Z,. Let ¢ be the dimension of 11;NZ,
(as a real vector space). Then there are ¢ linearly independent closed forms
that form a basis of 1I; N I;. Therefore Z; can be further reduced using these
closed forms. []

Now consider a special type of solvable Lie algebras g for which condition
(24) is satisfied.
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Theorem 5. Let 7 be a rank 2k Frobenius system on a manifold M and 11 €
I NT be a closed two-form of rank k. Let g be a solvable Lie algebra of
infinitesimal symmetries of 11 of dimension s such that the condition (24) is
satisfied. Let

r =rankZ; — dimII .

Then 1L is reducible to a Frobenius system of rank r. In particular if rank 7, =
dimIl,, then 1 is integrable by quadratures. In that case it is necessary that
s > k.

Proof: Follows from the previous theorem and the fact that when condition
(24) is satisfied, then II; C Z,. To prove the last claim assume that s < & and
SO

rankZ; > 2k — s>k > s > 11

which is a contradiction. [J

Corollary 1. Let 7 be a rank 2k Frobenius system on a manifold M and
II € Z AT be a closed two-form of rank k. Let X be an infinitesimal symmetry
of II. Then T is reducible to a Frobenius system of rank 2k — 2.

Proof: X 1 X 11 = 0 and so the condition (24) is satisfied. rankZ;, = 2k —1
and dimII; = 1 and so the statement folows from Theorem 4.5. [J

This Corollary generalizes Theorem 4.17 in [11], page 258.
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