Fourth International Conference on

Geometry, Integrability and Quantization

June 6-15, 2002, Varna, Bulgaria

Ivailo M. Mladenov and Gregory L. Naber, Editors
Coral Press, Sofia 2003, pp 239-247

CONFORMAL MAPPINGS AND SPECIAL NETWORKS
OF WEYL SPACES

FUSUN OZEN and SEZGIN ALTAY

Faculty of Sciences and Letters, Department of Mathematics
Istanbul Technical University, 80626 Maslak, Istanbul, Turkey

Abstract. In this paper, we show that a totally umbilical hypersurface
of a recurrent Weyl space is conformally recurrent. Also, while a totally
umbilical hypersurface of a recurrent Weyl space is conharmonically re-
current or conharmonically Ricci-recurrent, theorems concerning some
special nets are proved.

1. Introduction

A differentiable manifold of dimension n having conformal metric tensor g and
symmetric connection V satisfying the compatibility condition

Vg =2(TXg)

where 7T is a 1-form (complementary covector field) is called a Weyl space
which is denoted by W, (g, T'). After renormalization of the metric tensor g

g=XNg
the vector field 7' is transformed [1] into
T=T+dn\
An object A defined on W, (g,7T) is called a satellite of g of weight {p} if it

admits a transformation of the form A = AP A under the renormalization of g.

Suppose that the metrics of W,, and W,,,, are elliptic and that they are given,
respectively, by g;; du’ du’ and g, dz® dz® which are connected by the rela-
tions

Gij = Gapxi 2" ,7=12,...,n, a,b=1,2,...,n+1

J
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where ¢ denotes the covariant derivative of z* with respect to u'. The pro-
longed derivative and the prolonged covariant derivative in the direction of
vector x of the satellite A of g of weight {p} are defined by the laws, respec-
tively,

DA =0A—p(TXA4), VA=VA-p(TXA) (1)

where 0 is the partial derivative of A [2-4]. By g = A%g and second equality
in (1) it follows that for every z, V,g = 0. It is easy to see that prolonged
covariant derivative preserve weights of the satellites.

The prolonged covariant derivative of A, relative to W,, and W,,,,, are related
by

ViA =25V, A. )

Let n® be the contravariant components of the vector field in W, ,; normal
to W,,, and let it be normalized by the condition g,,n°n® = 1. The moving
frame {z’,n,} in W, reciprocal to the moving frame {z¢,n"} is defined by
the relations [4]

nn, =1, ngxy =0, n’z! =0, xix! =4 . 3)

Differentiating covariantly with respect to u* both sides of the last equality (3)
and remembering that

Vit = Vs = wyn® 4)

we find that ka{;, regarded as a function of 2’s, is a vector of W,,, and so it
can be expressed in the form [5]

Viz! = Vix! = Qin,. 5)
Let v'(r = 1,2,...,n) be the contravariant components of the n independent
T
vector fields v in W,, which are normalized by the condition gl-jvivj = 1.
T T T

Following [1], we define the covector fields v satisfying the equalities
vy, = 6 vit; =6 rp=1,2,...,n. (6)

Let v and v* be, respectively, the contravariant components of the vector fields
T T

v in W, relative to W,,; and W,,. Then, we have
r

e = x?‘ui ] @)

‘s
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The generalised Gauss equation is obtained, in the following form [6]

D, b _c d_.e
Rhyijr = Wpjwag, — WrpWs; + Rpeae®y, T3 25T, (8)

where Rp.q. is the covariant curvature tensor of Wit
A hypersurface of a Weyl space is called totally umbilical if the following

expression holds
Wiy = KGij )]
where p is a satellite of g;; with weight {—1}. From this definition, it follows
M
that 4 = — where M is the mean curvature of the hypersurface, defined by

n
M = w,;g". A hypersurface of a Weyl space is totally geodesic if

wi; =0. (10)

We will use the following relations [7]

ab...ed __ _a b c..d
Byi ik = TRy . Ty (1)

If a* and a’, respectively, the components of the Chebyshev vector fields of

the first kind with respect to W,,,; and W, then the following relations hold
(see [5] and [8])

a® = kn® +a'x}, r#EDp
rp rp rp

a' = "Vt r#p

rp P T

Kk = wyvvk .
P

Tp T

Let any net (11), Useooy v) in W,, be a Chebyshev net of the first kind with respect

to W11, in this case, the following condition holds [9]
a®=0. (12)

(s

If b, and lgl- are, respectively, the components of the Chebyshev vector fields
of the second kind with respect to W,,;; and W,,, then the following relations
hold [5, 8]

T

by = (— 0,00, + bingi = v ViU, Q% = wimg™ (13)
r rk

(no summation over r).
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Let any net (11), Uy v) in W,, be a Chebyshev net of the second kind with

respect to W,,;4, in this case, the following condition holds [9]

b, =0. (14)

If ¢* and ¢’ are, respectively, the components of the geodesic vector fields of
T T
the net (7_1;, Useons v) with respect to W,,,; and W,,, then they are connected by
e

the relations [5, 8]

‘SQ£

= kn® +c'xic = vEVutk = wivt” . (15)
rr T s T T T

T orr

Let any net (11;, Uy ,v) in W,, be a geodesic net with respect to W, 1, in this
T

case the following condition holds [9]
c"=0.
If W,, admits of a tensor field I’ such that

(16)

where A, is non-zero vector field of W, then W, is called a T-recurrent
Weyl space.

We note that since the prolonged covariant derivative preserves the weight, A,
is a satellite of g;; with weight {0}.

Let W,, be a hypersurface of recurrent Weyl space W, ,; with recurrence vector
A, which is not orthogonal to the hypersurface W,,. If we denote the tangential
component of ¢, by ¢,., then we have

b = day; -
Since W, 1, is recurrent Weyl space, we can write
Vi Raea = @1 Rapea an
According to [6], we have

. - D abede D, bed a
Vi Rhige = Vi + e Ravea Bhigrr + Rabea By Wirmy

D acd b D abd c D abe d
+ Rabchhjkwirn + Rabch}w;kwjrn + Rabch}u'jwkrn .
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2. Conformal Mappings and Special Nets of Weyl Spaces

Let 7 be a conformal mapping of W,,(g,T") onto W (g*,T™). In this case, we
have

g =g. (18)
The covariant vector Py is defined by
P=T-T" 19)

is called the vector of the conformal mapping. Clearly, P has zero weight.

Let C be a smooth curve in W, (g,7) and let C* be its image under the
conformal mapping 7. Denote the parameters of C' and C* by S and S~,
respectively. Denote the coordinates of a current point P on C by z' and those
of the corresponding point P* by x*. Then for the tangent vectors zf and 113’”

at corresponding points, we have
vt =t
T T

Let V and V* be the Weyl connections of W, (g, T) and W (g*,T™) and let
the connection coefficients be denoted by F;k and I‘;f,i, respectively, then the

tensor 77, is called the affine deformation tensor, where
Th =075 T, (20)

Another expression for affine deformation tensor can be written in [10] as
follows

In this case, from the conformal transformation which is given by (1), (2),
(3) and (4), the covariant curvature tensor R transforms Rj,.. as in the

following expression, [11]
Ryiir = Ruije + gnePij + 9ij Prr — gir P — gng Pie + 29:n Vie Py (22)
where we have put
1
Py =NiP; — P.P; + 599, PP
and

R*=R+2(n—1)P". (23)
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From this transformation, using (5) and (6), we can easily obtain that the
conformal curvature tensor of W,, Weyl space is in the following form, [12]

1
C'z'hjk == RZk — m(dlIZRZJ - (ﬁszk + gijghmRmk - gikghmij)
2 m m
+ m(ng[iﬂ - 5;-1R[ik] + gijgh Rk — gikgh Rimg (24)
R
—(n — 2)8" Ry Mg —6"gi) .
('I’Z ) 7 [kj])+ (n—l)(an)(ng Jgk)

Let us suppose that the conformal transformation (1) be a conharmonic one,
we obtain from the above expression, [11]

1
Pl = g™V, P, + 5 (n 2)P"P, = 0. (25)

In this case, the conharmonic curvature tensor of Weyl space is in the following
form, [13]

1
Kijw = Rip — —(6¢ Ryl — 85 Riaw + 9i59™" R — gixg"" Rims) + 207 Ryey))
1
R (5ZR(ij) — 5?R(ik) + gijghmR(mk) — gikghmR(mj)) (26)

1 1
where R, = =(R;; — R;;) and R, = =(R,;; + R;;). From (9), the conhar-
[24] 2 J Jj (i5) 2 J J

monic Ricci tensor of a Weyl space can be easily obtained in the form
R

[(Z:Egz‘7 n#?.

Now, we prove the following theorems about the conformally recurrent and
conharmonically Ricci-recurrent Weyl spaces.

Theorem 1. If W, is a totally umbilical hypersurface of a recurrent Weyl space
W11 then W, is also conformally recurrent.

Proof: If we consider that W, is a totally umbilical hypersurface of a recurrent
Weyl space W, ., then we have, [6]
V, Ryiji = ¢ Rpijic + F[(VjM)Ghirk + (Ve M)Ghijr + (Vi M) Grjrn,

. 2M . M?
+ (Vi M) Ghjir] + T (V. M)Ghijr — ?Cerhijk

27

where Grijx = gnjgik — GnkJij-
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If we consider the form VrChijk — ¢, Ch,jk, taking the prolonged covariant
derivative of the conformal curvature tensor, then we obtain from (7)

V,Chrijk = &+ Chijie + (Ve Rpijr — Or Rpijr) — 2 ((V; M) Ghrirr + (Vi M )Gy

+ (VM) G + (VM) Gy + 2(V, M) — M$,)Ghrij) . (28)
From (10) and (11), we can obtain
vrchz'jk = ¢rChz‘jk
which is the required result. [

Theorem 2. Let a totally umbilical hypersurface W, of recurrent Weyl space
W,.11 be conharmonically Ricci-recurrent (n > 2). If any net (11;,12), )

in W,, is a Chebyshev net of the first kind with respect to W, ., it is also a
Chebyshev net of the first kind with respect to W, and the converse is also
true.

Proof: Let a totally umbilical hypersurface W,, of recurrent Weyl space W,,
be conharmonically Ricci recurrent (n > 2). According to [14], we say that
W,, is also recurrent.

If a totally umbilical hypersurface of a recurrent Weyl space is recurrent then
we have, [15]

M=0, A #0,n> 2. (29)
With the help of (9), (12) and (12), we get
a® = a'z?, r#p. (30)

From (12), (13) and (30) the proof is clear. (]

Theorem 3. Let a totally umbilical hypersurface W, of recurrent Weyl space
W11 be conharmonically Ricci-recurrent (n > 2). If any net (111, Uy ,U) in

W, is a Chebyshev net of the second kind with respect to W, 4, it is also a
Chebyshev net of the second kind with respect to W, and the converse is also
true.

Proof: Let a totally umbilical hypersurface W,, of recurrent Weyl space W,, 1
be conharmonically Ricci-recurrent (n > 2). Then, M = 0. From (9) and
(14), we get

ol
)

Il
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o
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Using (14), (15) and (31) the proof is completed. ]

Theorem 4. Let a totally umbilical hypersurface W,, of a recurrent Weyl space
W, 11 be conharmonically Ricci-recurrent (n > 2). If any net (111,12;, ...,0) in

W, is a geodesic net with respect to W, ., it is also a geodesic net with
respect to W,, and conversely.

Proof: Let a totally umbilical hypersurface W,, of recurrent Weyl space W,
be conharmonically Ricci-recurrent (n > 2). Then, M = 0. In this case, using
(9) and (16), we get

‘Sﬁs

=c'z? 32)

i

With the help of the equations (16) and (32) and the expression ¢* = 0, the

result is easily obtained. [J

Remark 1. Conharmonically recurrent Weyl space is also conharmonically
Ricci-recurrent, [13].

Corollary 1. Let a totally umbilical hypersurface W,, of recurrent Weyl space
W, 11 be conharmonically recurrent (n > 2). If any net (7_1), Uy v)in W, is

a Chebyshev net of the first kind with respect to W, .., it is also a Chebyshev
net of the first kind with respect to W,, and the converse is also true.

Corollary 2. Let a totally umbilical hypersurface W,, of recurrent Weyl space
W11 be conharmonically recurrent (n > 2). If any net (11;, Uy ,u)in W, is a

Chebyshev net of the second kind with respect to W, .1, it is also a Chebyshev
net of the second kind with respect to W,, and conversely.

Corollary 3. Let a totally umbilical hypersurface W,, of recurrent Weyl space
W,..1 be conharmonically recurrent (n > 2). If any net (11), Uy v)in W, is

a geodesic net with respect to W, .., it is also a geodesic net with respect to
W,, and conversely.
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