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Abstract. The stability problem and the existence of periodic orbits
for the heavy top dynamics are discussed and some of its properties are
pointed out.

1. Introduction

In the last time there was a great deal of interest in the study of the heavy
top dynamics. The goal of our paper is to present some old and new aspects
from its stability problem and from the problem of the existence of its periodic
orbits.

2. The Heavy Top

The heavy top is by definition a rigid body which moves around a fixed point
in the 3-dimensional space. The rigidity means that the distances between the
points when the body moves remain the same, so they are fixed.

The dynamics of the heavy top is described by the following set of differential
equations, usually called Euler equations:

1 = armams + mgl(yaxs — VaX2)
e = asmims + mgl(ysx1 — V1X3)
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and we suppose as usually that:
L >1,>13>0.

In all that follows we shall be interested in the following two particular cases:

1) The center of mass lies on the axis of symmetry in the body, i. e.,
x =(0,0,1).
In this case the equations of motion takes the following form:
my = aymams + mgly,
Mo = aomymsz — mgly,
M3 = Q3M1Mo
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i1) The center of mass lies on the axis of symmetry in the body, i. e.,
x =(0,0,1)
and Il = IQ .

In this case the equations of motion take the following form:
Ty = aymyms + mglys

My = asmims — mgly,

m3 =10
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This top is usually called Lagrangian top.
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3. Stability Problem

In this section we shall discuss the stability problem for the heavy top dynamics.

A long but straightforward computation, or using for example Maple algebra
system, leads us to:

Theorem 1. The equilibrium states of our system (2) are:

e =(0,0,M,0,0,N), M,NcR

I; —I,)MN N2(I; - I
eMN — M,O,N,(3 D 0, Us 1) ., M,NcR
mgll, I mgll3
MN (I3 — IL)MN N?*(I; — I,)
=|0,M,N,0 M,N eR.
€3 ( ’ ’ )y mgl1213 ’ mglf?? ’ ’ S

We shall concentrate here only to the equilibrium states ¢?, where we shall
distinguish three particular cases, namely:

i) el, =(0,0,M,0,0,1), McR
ii) e,; =(0,0,M,0,0,-1), MecR
iii) €%, = (0,0,M,0,0,0), M €R.
Then we have:

Theorem 2. (Holm et al[1]) In the particular case of the Lagrangian top the
equilibrium state e}, is spectrally stable if and only if:

M? > 4mglI, .

Theorem 3. In the particular case of the Lagrangian top the equilibrium state
ey is always spectrally stable.

Proof: The characteristic polynomial associated to the matrix of the linear part
of our system (3) at the equilibrium e,, is given by:

1 M2 M®_MP
A) =2 [\ [ 2mgl— 2 — t2— |\
P l +(mgh oL 132)
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Its roots are given by:

A — VA
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where

a=—2mgllLI; — M*(2I; + I —21,13) < 0

b=1II; >0

A= MI;(Is — 2I)*(M* + 4mgll,) > 0.
Let us now observe that:

A —a® =—AL(M*(Is — I,) + mglI$)* < 0
so that

{(a VA)(a+VA)>0
(a— VA)+(a+VA)=2a<0

and consequently we can conclude that:
a—VA<0, and a+VA<O.

Hence the roots A3 45 ¢ are purely imaginary. Moreover, A = 0 is a simple root
of the minimal polynomial and therefore it follows that the equilibrium state
ey 1s spectrally stable. [

Theorem 4. The equilibrium state €}, is always spectrally stable.

Proof: An easy computation shows that the characteristic roots have the fol-
lowing values:

1 — Ty = O, $3Y4 = :El_, $5’6 = :tMi\/ —Qaq10Q9

and then our assertion follows immediately via the expression for the minimal
polynomial. ]

We shall now analyze the nonlinear stability of our equilibrium states e},, e,
e),;. More exactly we have:

Theorem 5. (Puta and Caruntu [3]) If
M? > 4mgll,
then the equlibrium state e}, is nonlinearly stable.

Remark 1. In the particular case of the Lagrangian top we refined the result
of Holm et al [1].

Theorem 6. If

then the equlibrium state e,; is nonlinearly stable.
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Proof: We shall use the energy-Casimir method. Let H, € C*(R°, R) be the

energy-Casimir function given by:
2 2 2
1 {mi m5; m;

H,(mq,mo, m3,v1,Y2,73) = > (I—l + T + I_3> + glvys

1, 2 2
+ @ [ miyn + moys + mays, 5('7’1 + 73 +73)

where ¢ € C*(R?,R).
Then the first variation of H, is given by:

DHLp = E5’)’7'1/1 + %5’)77,2 + @(57713 +mgl5"y3
I I, I3

+ @(m1dy1 + madys + madys + v10mq + Y26mso + y3dms)
+ @ (0 + 12y + 7367s).

At the equilibrium of interest we have:
DH,(ey) = 0

if and only if:

where
: Iy d : dp
Y= an p = .
o(m -7) o (3111°)
Now, the second derivative of H, at the equilibrium of interest has the matrix:
1 M
— 0 0 — 0 0
( Loy ! M

0 — 0 0 — 0

IQ 13

1 M
0 0 —+ A 0 0 ~AM + B+ —
I3 , I3

M M
— 0 0 mgl + — 0 0
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where

) 1 . 1
2

M 1
3

Then the principal determinants are given by:

1
1_1 )

1
LI’
1+ Al

LI,
(1 + AL)[mglI3 + M*(Is — I)]

LI ’
(1 + AL)[mglIi + M?(I; — I)|[mglIi + M?(I5 — I,)]
LT ’
[mgll2 + M?(I3 — I)|[mgll + M?(I3 — I,)]
LI
AM?A—AMB + ¢" (=M, ) + mgl + Ap" (—M, L) I

% LI

Amglfg, — BZIg
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If we choose now ¢ such that:

() =g v (cang) e
QO 32 _]—3’ SO ’2 _mg IS’

1 1 1
% —M — = o A/f — — LN - (‘/ﬁ — =
(p ( Y 2) 07 (10 ( Y 2) 07 (p ( Y 2) O

then all the principal determinants are positive and so e,, is nonlinearly stable.
For instance, such a ¢ is given by:

M M2
olz,y) = ot mgl + ~ v
3 3
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Remark 2. It is an open problem to decide the nonlinear stability or instability
of the equilibrium state €.

4. Periodic Orbits in the Heavy Top Dynamics
Let G, € C(R® R) be the real valued function given by:

1 ({m? m2 m? M?
Glp(ml,mz,ms,’Yh’YQ,’Ys) = 5 (I_ll + 1—22 + I—;) — 2—13

+ mgl(1 + ~3)
1 2 2 2
+ @ | min + maye + ma7ys, 5 (’Yl + 73 ‘I"Ys)
(23)
% "5

where ¢ € C°°(R? R) and moreover the following conditions are satisfied:

2 I’
1 2
"M, =} = [+ —
1
s| —M,=— 1 =0
@( ’2) bl
1
! M’_) :Oa
¢ (a3
1
1" *M _ :O
v ( ’2)
where
& = %
d(myy1 + mavys + mays)
and

/ I
Y = 1 .
o (307 +3+9)

Then it is easy to prove that:

i) G, is an integral of the system (2)
i) Gy(ex) =0
iii) dG,(ey) =0
iv) If M?* < mgll;/(I, — I3), then D*G,(e,,) is positive definite.
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Using now the Moser theorem (see Moser [2]) we have:

Theorem 7. Let M € R be a real number such that:
M?* <mglI3/(I, — I3).

Then for each ¢ sufficiently small any integral surface:

G@(mlam23m3’71’72’73) =’

contains at least one periodic solution of (2) whose periods are close to those
of the corresponding linear system.

Let K, € C>(R% R) be the real valued function given by:

1 (m% m32 mg) M?

ch(mlamZ,m:i,FYl;'YQ;’YS) =z|—-—+ =+ =
o1,

2\ I I, I
+ mgl(ys — 1)
l 2 2 2
+ @ | myy1r + mays + m3ys, 5 ('71 + 73 +’7’3)
1
oM 2
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where ¢ € C*°(R? R) and moreover the following conditions are satisfied:

1 M
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Then it is easy to prove that:
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i) K, is an integral of the system (2)
i) K (e3;) =0
iii) dK,(e};) =0
iv) If M? > 4mgll,, then D*K (e};) is positive definite.
Using again the Moser theorem (see Moser [2]) we have:
Theorem 8. Let M € R be a real number such that:
M? > 4mgll, .

Then for each ¢ sufficiently small any integral surface:

K, (my,ma,m3,v1,72,73) = e?

contains at least one periodic solution of (2) whose periods are close to those
of the corresponding linear system.
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