Fourth International Conference on Geometry, Integrability and Quantization June 6–15, 2002, Varna, Bulgaria Ivaïlo M. Mladenov and Gregory L. Naber, Editors Coral Press, Sofia 2003, pp 257–270

HARMONIC FORMS ON COMPACT SYMPLECTIC 2-STEP NILMANIFOLDS

YUSUKE SAKANE† and TAKUMI YAMADA‡

- † Department of Pure and Applied Mathematics Graduate School of Information Science and Technology Osaka University, Toyonaka, Osaka, 560-0043, Japan
- [‡] Department of Mathematics Graduate School of Science Osaka University, Toyonaka, Osaka, 560-0043, Japan

Abstract. In this paper we study harmonic forms on compact symplectic nilmanifolds. We consider harmonic cohomology groups of dimension 3 and of codimension 2 for 2-step nilmanifolds and give examples of compact 2-step symplectic nilmanifolds G/Γ such that the dimension of harmonic cohomology groups varies.

1. Introduction

Let (M,\mathbf{G}) be a Poisson manifold with a Poisson structure \mathbf{G} , that is, a skew-symmetric contravariant 2-tensor \mathbf{G} on M satisfying $[\mathbf{G},\mathbf{G}]=0$, where $[\,,\,]$ denotes the Schouten-Nijenhuis bracket. For a Poisson manifold (M,\mathbf{G}) , Koszul [5] introduced a differential operator $\mathrm{d}^*:\Omega^k(M)\to\Omega^{k-1}(M)$ by $\mathrm{d}^*=[\mathrm{d},i(\mathbf{G})]$, where $\Omega^k(M)$ denotes the space of all k-forms on M. The operator d^* is called the **Koszul differential**. For a symplectic manifold (M^{2m},ω) , let \mathbf{G} be the skew-symmetric bivector field dual to ω . Then \mathbf{G} is a Poisson structure on M. Brylinski [1] defined the star operator $*:\Omega^k(M)\to\Omega^{2m-k}(M)$ for the symplectic structure ω as an analogue of the star operator for an oriented Riemannian manifold and proved that the Koszul differential d^* satisfies $\mathrm{d}^*=(-1)^k*\mathrm{d}^*$ on $\Omega^k(M)$ and the identity $*^2=\mathrm{id}$. A form α on M is called **harmonic form** if it satisfies $\mathrm{d}\alpha=\mathrm{d}^*\alpha=0$. Let $\mathcal{H}^k_\omega(M)=\mathcal{H}^k(M)$ denote the space of all harmonic k-form on M. Brylinski [1] defined symplectic harmonic k-cohomology group $H^k_{\alpha k}(M)=H^k_{k k}(M)$

by $\mathcal{H}^k_\omega(M)/(B^k(M)\cap\mathcal{H}^k_\omega(M))$, as a subspace of de Rham cohomology group $H^k_{DR}(M)$. We denote by $L_\omega\colon\Omega^k(M)\to\Omega^{k+2}(M)$ the linear operator defined by ω and the induced homomorphism in de Rham cohomology groups by $L_{[\omega]}\colon H^k_{DR}(M)\to H^{k+2}_{DR}(M)$.

Mathieu [6] proved the following theorem.

Theorem 1. (Mathieu) Let (M^{2m}, ω) be a symplectic manifold of dimension 2m. Then the following two assertions are equivalent:

- a) For any $k \leq m$, the homomorphism $L_{[\omega]^k}: H^{m-k}_{DR}(M) \to H^{m+k}_{DR}(M)$ is surjective.
- b) For any k, $H_{DR}^{k}(M) = H_{\omega hr}^{k}(M)$.

Mathieu's theorem is a generalization of Hard Lefschetz Theorem for compact Kähler manifolds. Mathieu [6] proved also that, for i=0,1,2, $H^i_{hr}(M)=H^i_{DR}(M)$. Yan [10] gave a simpler, elegant proof of Mathieu's Theorem by using a special type of infinite dimensional $\mathfrak{sl}(2)$ -representation theory.

In connection with the study of harmonic forms, we are interested in the following question raised by Khesin and McDuff (see Yan [10]).

Question: On which compact manifold M, there exists a family ω_t of symplectic forms such that the dimension of $H^k_{\omega_t - hr}(M)$ varies for some k?

For 6-dimensional compact nilmanifolds, the above question is considered independently by one of the present authors [9] and Ibáñez et al [3]. Actially Ibáñez et al [3] have proved that there exist at least five 6-dimensional nilmanifolds M with a family ω_t of symplectic forms such that the dimension of $H^k_{\omega_t-hr}(M)$ varies by computing $H^4_{\omega_t-hr}(M)$ and $H^5_{\omega_t-hr}(M)$. Note that, in [9], it is proved that the dimension of $H^{2m-1}_{\omega_t-hr}(M)$ for compact 2-step nilmanifold M^{2m} is independent of symplectic forms ω (cf. Theorem 5).

In this paper we study symplectic harmonic cohomology groups $H^3_{\omega-hr}(M)$ of dimension 3 and $H^{2m-2}_{\omega-hr}(M)$ of codimension 2 for compact nilmanifolds and give examples of higher dimensional compact 2-step symplectic nilmanifolds G/Γ such that the dimension of harmonic cohomology group varies.

2. Harmonic Cohomology Groups of Nimanifolds

For a 2m-dimensional symplectic manifold (M,ω) let \mathbf{G} be the skew-symmetric bivector field dual to ω . Then \mathbf{G} is a Poisson structure on M. By the Darboux's theorem, going to the canonical coordinates $\{p_1,q_1,\ldots,p_m,q_m\}$, we can write symplectic structure ω as $\omega=\mathrm{d}p_1\wedge\mathrm{d}q_1+\cdots+\mathrm{d}p_m\wedge\mathrm{d}q_m$ and respectively the Poisson structure \mathbf{G} as $\mathbf{G}=\frac{\partial}{\partial q_1}\wedge\frac{\partial}{\partial p_1}+\cdots+\frac{\partial}{\partial q_m}\wedge\frac{\partial}{\partial p_m}$.

Brylinski [1] defined the star operator $*: \Omega^k(M) \to \Omega^{2m-k}(M)$ by requiring

$$\alpha \wedge *\beta = (\wedge^k(\mathbf{G}))(\alpha, \beta)v_M$$

for k-forms α, β , where $v_M = \omega^m/m!$. The star operator * satisfies the identities

$$*^2 = id, \quad d^* = (-1)^k * d*$$

and consequently, the Koszul differential d^* is a symplectic codifferential of the exterior differential d with respect to the star operator *. We denote by $L_{\omega} = L \colon \Omega^k(M) \to \Omega^{k+2}(M)$ the operator defined by $L(\alpha) = \alpha \wedge \omega$.

The following Propositions are due to Yan [10]:

Proposition 1. (Duality on forms) The linear mapping $L^k : \Omega^{m-k}(M) \to \Omega^{m+k}(M)$ is an isomorphism for any k.

Proposition 2. (Duality on harmonic forms) The linear mapping $L^k: \mathcal{H}^{m-k}(M) \to \mathcal{H}^{m+k}(M)$ is an isomorphism for any k. In particular, we have $H^{m+k}_{hr}(M) = \operatorname{Im}\{L^k: H^{m-k}_{hr}(M) \to H^{m+k}_{DR}(M)\}.$

Note also that we have $H^i_{hr}(M)=H^i_{DR}(M)$ for i=0,1,2. Thus we have the following corollary from Proposition 2.

Corollary 1. We have

$$H_{hr}^{2m-1}(M) = \operatorname{Im}\{L^{m-1}: H_{DR}^1(M) \to H_{DR}^{2m-1}(M)\}$$

and

$$H_{hr}^{2m-2}(M) = \operatorname{Im} \{ L^{m-2} : H_{DR}^2(M) \to H_{DR}^{2m-2}(M) \}.$$

Let \mathfrak{g} be a Lie algebra and put $\mathfrak{g}^{(0)} = \mathfrak{g}$ and let $\mathfrak{g}^{(i+1)} = [\mathfrak{g}, \mathfrak{g}^{(i)}]$ for $i \geq 0$. A Lie algebra \mathfrak{g} is said to be (r+1)-step nilpotent if $\mathfrak{g}^{(r)} \neq (0)$ and $\mathfrak{g}^{(r+1)} = (0)$ and a Lie group G is said to be (r+1)-step nilpotent if the Lie algebra \mathfrak{g} is (r+1)-step nilpotent. If G is a simply- connected (r+1)-step nilpotent Lie group and Γ is a lattice of G, that is, a discrete subgroup of G such that G/Γ is compact, then G/Γ is called an (r+1)-step compact nilmanifold. We denote by $\bigwedge^k \mathfrak{g}^*$ the space of all left G- invariant k-forms on G and regard it as a subspace of $\Omega^k(G/\Gamma)$. Then we have a subcomplex $(\bigwedge^* \mathfrak{g}^*, \mathrm{d})$ of the de Rham complex $(\Omega^*(G/\Gamma), \mathrm{d})$ of compact nilmanifold G/Γ and denote by $H^k(\mathfrak{g})$ the k-th cohomology groups of the complex $(\bigwedge^* \mathfrak{g}^*, \mathrm{d})$.

Theorem 2. (Nomizu) For a compact nilmanifold G/Γ , the inclusion $\iota : (\bigwedge^* \mathfrak{g}^*, d) \to (\Omega^*(G/\Gamma), d)$ induces an isomorphism on cohomology groups

$$\iota^*: H^k(\mathfrak{g}) \cong H^k_{DR}(G/\Gamma)$$
.

For a symplectic form ω on a compact nilmanifold G/Γ , there exists a G-invariant closed 2-form ω_0 on G/Γ such that $\omega - \omega_0 = \mathrm{d}\gamma$. Note that ω_0 is also a symplectic form on G/Γ . For a G-invariant symplectic form ω_0 , we denote by $\mathcal{H}^k(\mathfrak{g})$ the space of all G-invariant harmonic k-forms on G/Γ and by $H^k_{\omega_0-hr}(\mathfrak{g}) = \mathcal{H}^k(\mathfrak{g})/(B^k(\mathfrak{g})\cap\mathcal{H}^k(\mathfrak{g}))$ a subspace of Lie algebra cohomology group $H^k(\mathfrak{g})$.

In [9] we have proved the following propositions:

Proposition 3. Let $(G/\Gamma, \omega)$ be a compact symplectic nilmanifold and let ω_0 be a G-invariant symplectic form such that $\omega - \omega_0 = d\gamma$ as above. Then we have

$$H^{k}_{\omega - hr}(G/\Gamma) = H^{k}_{\omega_{0} - hr}(G/\Gamma) = H^{k}_{\omega_{0} - hr}(\mathfrak{g}) \tag{1}$$

for any k.

Proposition 4. Let $(G/\Gamma, \omega)$ be a 2m-dimensional compact symplectic nilmanifold with a G- invariant symplectic form $\omega \in \bigwedge^2(\mathfrak{g}^*)$. Then the linear mapping

$$L^k\colon \mathcal{H}^{m-k}_{\omega\cdot hr}(\mathfrak{g}) o \mathcal{H}^{m+k}_{\omega\cdot hr}(\mathfrak{g})$$

is an isomorphism for any k.

Now we may assume that symplectic structures on G/Γ are G-invariant in order to study harmonic cohomology groups on compact nilmanifolds M. A nilpotent Lie algebra $\mathfrak g$ with a non-degenerate invariant closed 2-form is called a symplectic nilpotent Lie algebra. For an (r+1)-step nilpotent Lie algebra $\mathfrak g$, let $\mathfrak a^{(i)}$ denote a complementary vector subspace of $\mathfrak g^{(i+1)}$ in $\mathfrak g^{(i)}$: $\mathfrak g^{(i)} = \mathfrak g^{(i+1)} + \mathfrak a^{(i)}$ for $i=0,1,\ldots,r$. For simplicity, put $\bigwedge^{i_0,\ldots,i_r} = \bigwedge^{i_0}\mathfrak a^{(0)^*}\wedge\cdots\wedge\bigwedge^{i_r}\mathfrak a^{(r)^*}$. Then we have $\bigwedge^s\mathfrak g^* = \sum_{i_0+\cdots+i_r=s}\bigwedge^{i_0,\ldots,i_r}$.

The following lemma is due to Benson and Gordon [2].

Lemma 1. Each closed 2-form $\theta \in \bigwedge^2 \mathfrak{g}^*$ belongs to $\bigwedge^{1,0,\dots,0,1} + \sum \bigwedge^{i_0,\dots,i_{r-1},0}$.

Let $\{\lambda_1, \ldots, \lambda_{n_r}\}$ be a basis of $\bigwedge^{0,\ldots,0,1}$. By Lemma 1, a G-invariant symplectic form ω can be written in the form

$$\omega = \beta_1 \wedge \lambda_1 + \dots + \beta_{n_r} \wedge \lambda_{n_r} \quad \text{modulo} \quad \sum^{i_0, \dots, i_{r-1}, 0}$$
 (2)

where $\beta_1,\ldots,\beta_{n_r}$ are elements of $\bigwedge^{1,0,\ldots,0}$. Note that $\beta_1,\ldots,\beta_{n_r}$ are linearly independent, since ω is non-degenerate. We extend these elements to a basis $\{\beta_1,\ldots,\beta_{n_r},\ldots,\beta_{n_0}\}$ for $\bigwedge^{1,0,\ldots,0}$. Put $\mathfrak{a}_1^{(0)^*}=\operatorname{span}\{\beta_1,\ldots,\beta_{n_r}\}$ and $\mathfrak{a}_2^{(0)^*}=\operatorname{span}\{\beta_{n_r+1},\ldots,\beta_{n_0}\}$. Then $\mathfrak{a}_1^{(0)^*}=\mathfrak{a}_1^{(0)^*}+\mathfrak{a}_2^{(0)^*}$. Put $n_0^1=\dim\mathfrak{a}_1^{(0)^*}=n_r$ and $n_0^2=\dim\mathfrak{a}_2^{(0)^*}=n_0-n_r$. For simplicity, we also put $\bigwedge^{(i_0^1,i_0^2),i_1,\ldots,i_r}=n_r$

 $\bigwedge_{0}^{i_0^1} \mathfrak{a}_1^{(0)^*} \wedge \bigwedge_{0}^{i_0^2} \mathfrak{a}_2^{(0)^*} \wedge \bigwedge_{0}^{i_1} \mathfrak{a}_2^{(1)^*} \wedge \cdots \wedge \bigwedge_{0}^{i_r} \mathfrak{a}_1^{(r)^*}$. Moreover, let $\{\beta_1^{(k)}, \dots, \beta_{n_k}^{(k)}\}$ be a basis of $\mathfrak{a}^{(k)^*}$ and put

$$\{\omega_1, \ldots, \omega_{2m}\} = \{\beta_1, \ldots, \beta_{n_0}, \ldots, \beta_1^{(k)}, \ldots, \beta_{n_k}^{(k)}, \ldots, \lambda_1, \ldots, \lambda_{n_r}\}.$$

Let $\{X_1, \ldots, X_{2m}\}$ be a basis of \mathfrak{g} which is dual to the basis $\{\omega_1, \ldots, \omega_{2m}\}$. If we write the symplectic form ω as

$$\omega = \sum a_{ij}\omega_i \wedge \omega_j \quad a_{ij} = -a_{ji} \in \mathbb{R}$$

then it is easy to see that the Poisson structure G which is dual to ω is given by

$$\mathbf{G} = -\sum c_{ij} X_i \wedge X_j \tag{3}$$

where c_{ij} is the inverse of the transposed matrix of (a_{ij}) .

Lemma 2. With respect to the basis $\{X_1, \ldots, X_{2m}\}$ above, **G** is given in the form

$$(c_{ij}) = \begin{pmatrix} 0_{n_r,n_r} & 0_{n_r,n_0-n_r} & 0_{n_r,2m-n_0-n_r} & E_{n_r} \\ \hline 0_{n_0-n_r,n_r} & * & * & * \\ \hline 0_{2m-n_0-n_r,n_r} & * & * & * \\ \hline -E_{n_r} & * & * & * \end{pmatrix}.$$
(4)

Proof: Note that (c_{ij}) is an alternating matrix. We have $a_{j\,n_0+\cdots+n_{r-1}+i}=\delta_{ji}$ for $i,j=1,\ldots,n_r$ and $a_{jk}=0$ for $j=1,\ldots,n_r;\ k=1,\ldots,n_0+\cdots+n_{r-1}$ from (2). Then we have

$$c_{ik} = c_{ik} a_{i \, n_0 + \dots + n_{r-1} + i} = \sum_{l=1}^{n_0 + \dots + n_r} c_{lk} a_{l \, n_0 + \dots + n_{r-1} + i} = \delta_{k \, n_0 + \dots + n_{r-1} + i}$$

for $i = 1, \ldots, n_r$ and $k = 1, \ldots, n_0 + \cdots + n_r$. \square

Lemma 3. Let G/Γ be a 2-step compact nilmanifold with a G-invariant symplectic form $\omega = \beta_1 \wedge \lambda_1 + \cdots + \beta_{n_1} \wedge \lambda_{n_1} \mod \lambda_1$. Then we have

$$d\lambda_k = \sum_{i < j \le n_1} b_{ij}^k \beta_i \wedge \beta_j + \sum_{i \le n_1 < j} b_{ij}^k \beta_i \wedge \beta_j \in \bigwedge^{(2,0),0} + \bigwedge^{(1,1),0}$$

for $k = 1, ..., n_1$.

Proof: Put $d\lambda_k = \sum_{i < j \le n_1} b_{i,j}^k \beta_i \wedge \beta_j + \sum_{i \le n_1 < j} b_{i,j}^k \beta_i \wedge \beta_j + \sum_{n_1 < i < j} b_{i,j}^k \beta_i \wedge \beta_j$. Since ω is closed, we have

$$\beta_1 \wedge \sum_{n_1 \leq i < j} b_{ij}^1 \beta_i \wedge \beta_j + \dots + \beta_{n_1} \wedge \sum_{n_1 \leq i < j} b_{ij}^{n_1} \beta_i \wedge \beta_j = 0.$$

Therefore, since $\beta_1 \wedge \beta_{i_1} \wedge \beta_{j_1}, \dots, \beta_{n_1} \wedge \beta_{i_{n_1}} \wedge \beta_{j_{n_1}}$ $(n_1 < i_k < j_k)$ are linearly independent, we conclude that $b_{ij}^k = 0$ for $n_1 < i < j$. \square

Note that, from Lemma 2, we have $i(\mathbf{G})(\Lambda^{(2,0)}) = i(\mathbf{G})(\Lambda^{(1,1)}) = 0$.

Theorem 3. Let G/Γ be a 2-step compact nilmanifold with a G-invariant symplectic form ω . Then we have $B^3(\mathfrak{g}) \subset \mathcal{H}^3(\mathfrak{g})$.

Proof: Since $d \wedge^{2,0} = 0$ and $d \wedge^{1,1} \subset \wedge^{3,0}$, we have to consider only the case of $\wedge^{0,2}$. From Lemma 3, we end with

$$\bigwedge^{0,2} \stackrel{d}{\longrightarrow} \bigwedge^{(2,0),1} + \bigwedge^{(1,1),1}.$$

Thus, from (4) in Lemma 2, we get

$$i(\mathbf{G})(\operatorname{d}^{0,2}\bigwedge) \subset \bigwedge^{1,0} \stackrel{\operatorname{d}}{\longrightarrow} 0,$$

which implies that $d \wedge^{0,2} \subset \mathcal{H}^3(\mathfrak{g})$. \square

By a straightforward computation, we have also that

$$* (\omega_{i_1} \wedge \cdots \wedge \omega_{i_s})$$

$$= \sum_{j_1 < \cdots < j_s} (-1)^s a \det (c_{kh})_{h=i_1,\dots,i_s}^{k=j_1,\dots,j_s} \omega_1 \wedge \cdots \wedge \hat{\omega}_{j_1} \wedge \cdots \wedge \hat{\omega}_{j_s} \wedge \cdots \wedge \omega_{2m}$$
(5)

where $\omega^m/m! = a \cdot (\omega_{j_1} \wedge \cdots \wedge \omega_{j_s}) \wedge (\omega_1 \wedge \cdots \wedge \hat{\omega}_{j_1} \wedge \cdots \wedge \hat{\omega}_{j_s} \wedge \cdots \wedge \omega_{2m})$. In fact, let

$$*(\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}) = \sum_{j_1 < \cdots < j_s} a_{i_1 \dots i_s}^{j_1 \dots j_s} \omega_1 \wedge \cdots \wedge \hat{\omega}_{j_1} \wedge \cdots \wedge \hat{\omega}_{j_s} \wedge \cdots \wedge \omega_{2m}.$$

Then, we get that

$$(\omega_{j_1} \wedge \cdots \wedge \omega_{j_s}) \wedge *(\omega_{i_1} \wedge \cdots \wedge \omega_{i_s})$$

$$= (\bigwedge^s(\mathbf{G}))(\omega_{j_1} \wedge \cdots \wedge \omega_{j_s}, \omega_{i_1} \wedge \cdots \wedge \omega_{i_s})\omega^m/m!$$

$$= \det(i(\mathbf{G})(\omega_k, \omega_h))_{h=i_1, \dots, i_s}^{k=j_1, \dots, j_s}\omega^m/m! = (-1)^s \det(c_{kh})_{h=i_1, \dots, i_s}^{k=j_1, \dots, j_s}\omega^m/m!.$$

Thus we have finally

$$a_{i_1...i_s}^{j_1...j_s} = (-1)^s a \cdot \det(c_{kh})_{h=i_1,...,i_s}^{k=j_1,...,j_s}$$

Theorem 4. Let \mathfrak{g} is an (r+1)-step symplectic nilpotent Lie algebra. Then, for $q=0,\ldots,n_r$, we have

$$igwedge^{n_0,...,n_{r-1},n_r-q}\subset \mathcal{H}^{2m-q}(\mathfrak{g}).$$

Proof: Note that the star operator $*: \mathcal{H}^{m-k}(\mathfrak{g}) \longrightarrow \mathcal{H}^{m+k}(\mathfrak{g})$ is an isomorphism for each k and we have $\bigwedge^{(q,0),0,\dots,0} \subset \mathcal{H}^q(\mathfrak{g})$ from (4) in Lemma 2. Now, from (5) and (4) in Lemma 2, we see that the star operator

$$*: \bigwedge^{(q,0),0,\dots,0} \longrightarrow \bigwedge^{n_0,\dots,n_{r-1},n_r-q}$$

is an isomorphism. Thus we have $\bigwedge^{n_0,\dots,n_{r-1},n_r-q}\subset\mathcal{H}^{2m-q}(\mathfrak{g})$ for $q=0,\dots,n_r$. \square

Corollary 2. Let G/Γ be a 2-step compact nilmanifold with a G-invariant symplectic form ω . Then we have

$$igwedge^{n_0,n_1-q}\subset \mathcal{H}^{2m-q}(\mathfrak{g})$$
 .

In particular, we have that

$$\dim H^{2}_{DR}(G/\Gamma) - \dim H^{2m-2}_{hr}(G/\Gamma)$$

$$= \dim(\operatorname{d} \bigwedge^{n_{0}-3,n_{1}} \cap \mathcal{H}(\mathfrak{g})) + \dim \operatorname{d} \bigwedge^{n_{0}-2,n_{1}-1} - n_{1}.$$
(6)

Proof: Since $d \bigwedge^{n_0-2,n_1-1} \subset \bigwedge^{n_0,n_1-2}$, $d \bigwedge^{n_0-2,n_1-1}$ is a subspace of $\mathcal{H}^{2m-2}(\mathfrak{g})$. Thus we have that

$$\dim H^{2}(\mathfrak{g}) - \dim H^{2m-2}_{hr}(\mathfrak{g})$$

$$= \dim \mathcal{H}^{2}(\mathfrak{g}) - \dim(B^{2}(\mathfrak{g}) \cap \mathcal{H}^{2}(\mathfrak{g})) - \dim \mathcal{H}^{2m-2}(\mathfrak{g})$$

$$+ \dim(B^{2m-2}(\mathfrak{g}) \cap \mathcal{H}^{2m-2}(\mathfrak{g}))$$

$$= \dim(B^{2m-2}(\mathfrak{g}) \cap \mathcal{H}^{2m-2}(\mathfrak{g})) - \dim B^{2}(\mathfrak{g})$$

$$= \dim(\operatorname{d} \bigwedge^{n_{0}-3,n_{1}} \cap \mathcal{H}^{2m-2}(\mathfrak{g})) + \dim \operatorname{d} \bigwedge^{n_{0}-2,n_{1}-1} - \dim B^{2}(\mathfrak{g})$$

$$= \dim(\operatorname{d} \bigwedge^{n_{0}-3,n_{1}} \cap \mathcal{H}^{2m-2}(\mathfrak{g})) + \dim \operatorname{d} \bigwedge^{n_{0}-2,n_{1}-1} - n_{1}.$$

Theorem 5. Let G/Γ be a 2-step compact nilmanifold with a G-invariant symplectic form ω . Then we have

$$\bigwedge^{(n_0^1, n_0^2 - p), n_1 - q} \subset \mathcal{H}^{2m - p - q}(\mathfrak{g}). \tag{7}$$

In particular,

$$\bigwedge^{(n_0^1, n_0^2 - 1), n_1} + \bigwedge^{(n_0^1, n_0^2), n_1 - 1} = \mathcal{H}^{2m - 1}(\mathfrak{g})$$

which implies dim $H_{hr}^{2m-1}(\mathfrak{g}) = n_0^2 = \dim \mathfrak{g} - 2\dim[\mathfrak{g},\mathfrak{g}].$

Proof: From Lemma 3, it is obvious that $\bigwedge^{(n_0^1, n_0^2 - p), n_1 - q} \subset Z^{2m - p - q}(\mathfrak{g})$. Since $d^* = (-1)^k * d*$ on $\bigwedge^k(\mathfrak{g}^*)$, it is enough to prove that

$$*: \bigwedge^{(n_0^1, n_0^2 - p), n_1 - q} \longrightarrow \bigwedge^{p+q, 0}.$$

Note also that

$$* (\omega_{i_1} \wedge \cdots \wedge \omega_{i_s})$$

$$= \sum_{j_1 < \cdots < j_s} (-1)^s a \det (c_{kh})_{h=i_1,\dots,i_s}^{k=j_1,\dots,j_s} \omega_1 \wedge \cdots \wedge \hat{\omega}_{j_1} \wedge \cdots \wedge \hat{\omega}_{j_s} \wedge \cdots \wedge \omega_{2m}$$
(8)

where $s = n_0^1 + n_0^2 + n_1 - p - q$. Thus if $\{j_1, \ldots, j_s\} \not\supseteq n_0 + j$, then we get that $\det(c_{kh})_{h=i_1,\ldots,i_s}^{k=j_1,\ldots,j_s} = 0$ from Lemma 2. In fact, noting that $n_0^1 = n_1$, we have

$$\det(c_{kh})_{h=i_{1},...,i_{s}}^{k=j_{1},...,j_{s}} = \begin{vmatrix} c^{j_{1}}_{1} & \dots & c^{j_{1}}_{n_{0}^{1}} & \dots & c^{j_{1}}_{i_{s}} \\ \vdots & & \vdots & & \vdots \\ c^{j_{r}}_{1} & \dots & c^{j_{r}}_{n_{0}^{1}} & \dots & c^{i_{s}}_{j_{s}} \end{vmatrix}$$

$$= \begin{vmatrix} c^{j_{1}}_{1} & \dots & 0 & \dots & c^{j_{1}}_{n_{0}^{1}} & \dots & c^{j_{1}}_{i_{s}} \\ \vdots & & \vdots & & \vdots & & \vdots \\ c^{j_{s}}_{1} & \dots & 0 & \dots & c^{j_{s}}_{n_{0}^{1}} & \dots & c^{i_{s}}_{j_{s}} \end{vmatrix} = 0.$$

Thus we get that if $\det(c_h^k)_{h=i_1,\dots,i_s}^{k=j_1,\dots,j_s} \neq 0$, $\{j_1,\dots,j_s\} \supset \{n_0+1,\dots,n_0+n_1\}$. Therefore we have $*(\bigwedge^{(n_0^1,n_0^2-p),n_1-q}) \subset \bigwedge^{p+q,0}$. \square

In particular, we have $\bigwedge^{(n_0^1,n_0^2-1),n_1} + \bigwedge^{(n_0^1,n_0^2),n_1-1} \subset \mathcal{H}^{2m-1}(\mathfrak{g})$. Since $L^{m-1}:\mathcal{H}^1(\mathfrak{g})\to \mathcal{H}^{2m-1}(\mathfrak{g})$ is an isomorphism by Proposition 2, we obtain that $\dim \mathcal{H}^{2m-1}(\mathfrak{g})=n_0$. On the other hand, we have that $\dim (\bigwedge^{(n_0^1,n_0^2-1),n_1} + \bigwedge^{(n_0^1,n_0^2),n_1-1})=(n_0-n_1)+n_1=\dim \mathcal{H}^{2m-1}(\mathfrak{g})$. Thus we have proved our second claim. The last claim follows from the fact that $B^{2m-1}(\mathfrak{g})=\bigwedge^{(n_0^1,n_0^2),n_1-1}$ which is due to Benson and Gordon [2].

3. Examples

Example 1. We consider a 2-step nilpotent Lie algebra of dimension 2m given by $\mathfrak{g}=\operatorname{span}\{X_1,\ldots,X_m,Y_1,\ldots,Y_m\}$ with $[X_i,X_{i+1}]=Y_i$ $i=1,\ldots,m$, where we set $X_{m+1}=X_1$. Then a simply connected nilpotent Lie group G with the Lie algebra \mathfrak{g} has a lattice Γ . Let $\{\beta_1,\ldots,\beta_m,\lambda_1,\ldots,\lambda_m\}$ be the dual basis of $\{X_1,\ldots,X_m,Y_1,\ldots,Y_m\}$. Note that $\mathrm{d}\bigwedge^{k,0}=(0)$ and $\mathrm{d}\bigwedge^{k,j}\subset\bigwedge^{k+2,j-1}$. It is easy to see that $\mathrm{d}:\bigwedge^{0,j}\to\bigwedge^{2,j-1}$ is injective.

The space of invariant closed 2-forms $Z^2(\mathfrak{g})$ is given by

$$Z^{2}(\mathfrak{g}) = \left\{ \sum_{i=1}^{m} a_{ii+1} (\beta_{i} \wedge \lambda_{i+1} - \beta_{i+2} \wedge \lambda_{i}) + \sum_{i=1}^{m} a_{ii} \beta_{i} \wedge \lambda_{i} + \sum_{i=1}^{m} a_{i+1i} \beta_{i+1} \wedge \lambda_{i}; a_{ii+1}, a_{ii}, a_{i+1i} \in \mathbb{R} \right\} + \bigwedge^{2,0}$$

where we have put $\beta_{m+1} = \beta_1$, $\beta_{m+2} = \beta_2$, $\lambda_{m+1} = \lambda_1$.

Now we consider a symplectic form ω given by an element of $\bigwedge^{1,1}$. Then the Poisson structure **G** is of the form

$$\mathbf{G} = -\sum_{i,j=1}^{m} c_{ij} X_i \wedge Y_j$$

with respect to the basis $\{X_1,\ldots,X_m,Y_1,\ldots,Y_m\}$. We see that

$$i(\mathbf{G}) \colon \bigwedge^{3,0} o (0), \quad i(\mathbf{G}) \colon \bigwedge^{2,1} o \bigwedge^{1,0}, \quad i(\mathbf{G}) \colon \bigwedge^{1,2} o \bigwedge^{0,1}$$

and the space of harmonic 3-forms $\mathcal{H}^3(\mathfrak{g})$ is given by

$$\mathcal{H}^3(\mathfrak{g}) = \bigwedge^{3,0} + Z^3(\mathfrak{g}) \cap \bigwedge^{2,1} + \mathcal{H}^3(\mathfrak{g}) \cap \bigwedge^{1,2}.$$

For $m \ge 6$, we see that

$$Z^{3}(\mathfrak{g}) \cap \bigwedge^{1,2} = \left\{ \sum_{j=1}^{m} b_{j} \beta_{j+1} \wedge \lambda_{j} \wedge \lambda_{j+1} ; b_{j} \in \mathbb{R}, \ j = 1, \dots, m \right\}$$

where we have put $\beta_{m+1} = \beta_1$, $\lambda_{m+1} = \lambda_1$.

Case 1. The case when $\omega = \sum_{j=1}^{m} a_{jj} \beta_j \wedge \lambda_j$ where $a_{jj} \neq 0$.

Note that $\mathbf{G} = -\sum_{j=1}^{m} \frac{1}{a_{jj}} X_j \wedge Y_j$ and hence we have $\mathcal{H}^3(\mathfrak{g}) \cap \bigwedge^{1,2} = (0)$ for m > 6.

Case 2. The case when $\omega = \sum_{j=1}^{m-1} a_{jj+1} (\beta_j \wedge \lambda_{j+1} - \beta_{j+2} \wedge \lambda_j)$.

Note that for the above basis ω can be written in the form $\begin{pmatrix} 0 & A \\ -{}^t A & 0 \end{pmatrix}$, where

We can prove also that, for $m \geq 3$, the matrix A is non-degenerate if and only if $m = 3\ell$ for $\ell \in \mathbb{N}$. Put $A^{-1} = (c_{ij})$ for $m = 3\ell$. Then we have also that the components of the matrix $A^{-1} = (c_{ij})$ satisfy the conditions

$$c_{jj} = 0$$
 for $j = 1, \dots, m$, $c_{j+1j} = 0$ for $j = 1, \dots, m-1$ and $c_{1m} = 0$.

Since \mathbf{G} is given by $\begin{pmatrix} 0 & -A^{-1} \\ {}^tA^{-1} & 0 \end{pmatrix}$, we see that for $\alpha = \sum_{j=1}^m b_j \beta_{j+1} \wedge \lambda_j \wedge \lambda_{j+1}$, $i(\mathbf{G})\alpha = 0$ and α therefore is harmonic. This implies that $\mathcal{H}^3(\mathfrak{g}) \cap \bigwedge^{1,2} = Z^3(\mathfrak{g}) \cap \bigwedge^{1,2}$ and $\dim(\mathcal{H}^3(\mathfrak{g}) \cap \bigwedge^{1,2}) = 3\ell$ for $\ell \geq 2$. Thus, from Theorem 3, we see that compact 2-step nilmanifolds G/Γ admit such symplectic structures that the dimension of harmonic cohomology group $H^3_{\omega\text{-}hr}(G/\Gamma)$ varies.

Example 2. For $p \ge 2$ let $\mathfrak{h}(1,p)$ be a 2-step nilpotent Lie algebra of dimension 2p+1 spanned by $\{X_1,\ldots,X_{2p+1}\}$ with

$$[X_1, X_i] = X_{p+i}$$
 $i = 2, \dots, p+1$

We consider the Lie algebra $\mathfrak{g}=\mathfrak{h}(1,p)\oplus\mathbb{R}$ of dimension 2p+2. Then a simply connected nilpotent Lie group G with the Lie algebra \mathfrak{g} has a lattice Γ . Let X_{2p+2} denote a generator of the Lie algebra \mathbb{R} and let $\{\omega_1,\ldots,\omega_{p+1},\omega_{p+2},\ldots,\omega_{2p+1},\omega_{2p+2}\}$ be the dual basis of the basis $\{X_1,\ldots,X_{p+1},X_{p+2},\ldots,X_{2p+1},X_{2p+2}\}$. Then we have

$$\bigwedge^{(0,1),0} \supset \operatorname{span}\{\omega_{2p+2}\}, \quad \bigwedge^{(0,0),1} = \operatorname{span}\{\omega_{p+2}, \dots, \omega_{2p+1}\}.$$

Consider a G-invariant symplectic structure ω on G/Γ . We write the Poisson structure G dual to ω as $G = -\sum c_{ij}X_i \wedge X_j$ with respect to the basis $\{X_1, \ldots, X_{2p+1}, X_{2p+2}\}$ above.

We prove that

$$\dim H^{2}(\mathfrak{g}) - \dim H^{2p}_{\omega - hr}(\mathfrak{g}) = \begin{cases} {}_{p}C_{2}, & \text{if } c_{1 \, 2p + 2} \neq 0 \\ {}_{p}C_{2} + (p - 1) & \text{if } c_{1 \, 2p + 2} = 0 \end{cases}.$$

In this example we use the following notations. For i < j, we put

$$\hat{\omega}_i \hat{\omega}_j = \omega_1 \wedge \cdots \wedge \hat{\omega}_i \wedge \cdots \wedge \hat{\omega}_j \wedge \cdots \wedge \omega_{2p+2}.$$

Similarly, for $i_1 < \cdots < i_k$ we put

$$\hat{\omega}_{i_1} \dots \hat{\omega}_{i_k} = \omega_1 \wedge \dots \wedge \hat{\omega}_{i_1} \wedge \dots \wedge \hat{\omega}_{i_k} \wedge \dots \wedge \omega_{2p+2}.$$

For $2 \le i < j \le p+1$, we put

$$\alpha_{ij} = \omega_2 \wedge \cdots \wedge \hat{\omega}_i \wedge \cdots \wedge \hat{\omega}_j \wedge \cdots \wedge \omega_{p+1} \wedge \omega_{2p+2} \wedge d(\omega_{p+2} \wedge \cdots \wedge \omega_{2p+1}).$$

Then we have that

$$\begin{array}{ll} \text{for } 2 \leq i < j < k, & \mathrm{d}(\hat{\omega}_{i}\hat{\omega}_{j}\hat{\omega}_{k}) = 0 \\ \text{for } 2 \leq i < j \leq p+1, & \mathrm{d}(\hat{\omega}_{1}\hat{\omega}_{i}\hat{\omega}_{j}) = -\alpha_{ij} \\ \text{for } 2 \leq i \leq p+1, & \mathrm{d}(\hat{\omega}_{1}\hat{\omega}_{i}\hat{\omega}_{2p+2}) = (-1)^{p}\hat{\omega}_{p+i}\hat{\omega}_{2p+2} \\ \\ \text{for } 2 \leq i, j \leq p+1, & \mathrm{d}(\hat{\omega}_{1}\hat{\omega}_{i}\hat{\omega}_{p+j}) = \begin{cases} \pm \hat{\omega}_{p+i}\hat{\omega}_{p+j} & \text{for } i < j \\ \pm \hat{\omega}_{p+j}\hat{\omega}_{p+i} & \text{for } j < i \\ 0 & \text{for } i = j \end{cases} \\ \\ \text{for } 2 \leq i < j \leq p+1, & \mathrm{d}(\hat{\omega}_{1}\hat{\omega}_{p+i}\hat{\omega}_{p+j}) = 0 \\ \\ \text{for } 2 \leq i \leq p+1, & \mathrm{d}(\hat{\omega}_{1}\hat{\omega}_{p+i}\hat{\omega}_{2p+2}) = 0. \end{array}$$

From (6) of Corollary 2, we have

$$\dim H^{2}(\mathfrak{g}) - \dim H^{2p}_{\omega \cdot hr}(\mathfrak{g}) = \dim(\operatorname{d}^{p-1,p} \bigcap \mathcal{H}^{2p}_{\omega}(\mathfrak{g})) + \dim \operatorname{d}^{p,p-1} \bigcap p. \quad (10)$$

Note that $d(\hat{\omega}_1\hat{\omega}_i\hat{\omega}_{2p+2}) = (-1)^p\hat{\omega}_{p+i}\hat{\omega}_{2p+2} \in \bigwedge^{(p,1),p-1}$ for $2 \leq i \leq p+1$. Thus, from Theorem 5, we see that $d(\hat{\omega}_1\hat{\omega}_i\hat{\omega}_{2p+2}) \in \mathcal{H}^{2p}_{\omega}(\mathfrak{g})$. From (9), we see that $\dim d \bigwedge^{p,p-1} = {}_pC_2$. We put

$$V = \text{span}\{\alpha_{ij}; 2 \le i < j \le p+1\}.$$

Then, from (10), we have

$$\dim H^2(\mathfrak{g}) - \dim H^{2p}_{\omega, hr}(\mathfrak{g}) = \dim(V \cap \mathcal{H}^{2p}_{\omega}(\mathfrak{g})) + {}_{p}C_2. \tag{11}$$

Note that $\mathfrak{a}^{(0)}=\operatorname{span}\{X_1,...,X_{p+1},X_{2p+2}\}$ and $\mathfrak{a}^{(1)}=\operatorname{span}\{X_{p+2},...,X_{2p+1}\}$. Put $\bigwedge_{i_0,i_1}=\bigwedge^{i_0}\mathfrak{a}^{(0)}\wedge\bigwedge^{i_1}\mathfrak{a}^{(1)}$ and write the Poisson structure \mathbf{G} dual to ω as

$$\mathbf{G} = \mathbf{G}_{2,0} + \mathbf{G}_{1,1} + \mathbf{G}_{0,2} \qquad \mathbf{G}_{i,j} \in \bigwedge_{i,j}.$$

Note that

$$di(\mathbf{G}_{2,0})(\bigwedge^{p+1,p-1}) = d \bigwedge^{p-1,p-1} \subset \bigwedge^{p+1,p-2}$$

$$di(\mathbf{G}_{1,1})(\bigwedge^{p+1,p-1}) = d \bigwedge^{p,p-2} \subset \bigwedge^{p+2,p-3}$$

$$di(\mathbf{G}_{0,1})(\bigwedge^{p+1,p-1}) = d \bigwedge^{p+1,p-3} = (0).$$

$$(12)$$

Note that, from Lemma 1, the G-invariant symplectic structure ω on G/Γ is of the form

$$\omega = \sum_{i < j \le p+1} a_{ij} \omega_i \wedge \omega_j + \sum_{j \le 2p+1} a_{j \cdot 2p+2} \omega_j \wedge \omega_{2p+2} + \sum_{i \le p+1 < j \le 2p+1} a_{ij} \omega_i \wedge \omega_j \ .$$

Since $d\omega_{p+i} = -\omega_1 \wedge \omega_i$, we see that $a_{p+i\,2p+2} = 0$ for $2 \le i \le p+1$. Thus the matrix form of G with respect to the basis $\{X_1, \ldots, X_{2p+1}, X_{2p+2}\}$ is given by

$$-\begin{pmatrix}c_{1\,p+2}&\dots&c_{1\,2p+1}&c_{1\,2p+2}\\0&\vdots&&\vdots&\vdots\\c_{p+1\,p+2}&\dots&c_{p+1\,2p+1}&c_{p+1\,2p+2}\\\vdots&&\vdots&&\vdots\\-c_{1\,2p+1}&\dots&-c_{p+1\,2p+1}\\-c_{1\,2p+2}&\dots&-c_{p+1\,2p+2}\end{pmatrix}.$$

Thus $G_{2,0} = -c_{12p+2}X_1 \wedge X_{2p+2}$. Moreover, we have

$$di(\mathbf{G}_{2,0})(\alpha_{ij}) = -di(\mathbf{G}_{2,0})(\omega_{1} \wedge \cdots \wedge \hat{\omega}_{i} \wedge \cdots \wedge \omega_{p+1} \wedge \omega_{2p+2} \\ \wedge \omega_{p+2} \wedge \cdots \wedge \hat{\omega}_{p+j} \wedge \cdots \wedge \omega_{2p+1}) \\ + di(\mathbf{G}_{2,0})(\omega_{1} \wedge \cdots \wedge \hat{\omega}_{j} \wedge \cdots \wedge \omega_{p+1} \wedge \omega_{2p+2} \\ \wedge \omega_{p+2} \wedge \cdots \wedge \hat{\omega}_{p+i} \wedge \cdots \wedge \omega_{2p+1}) \\ = -2c_{1\,2p+2}(\omega_{2} \wedge \cdots \wedge \omega_{p+1} \wedge \omega_{p+2} \wedge \cdots \wedge \omega_{2p+1}).$$

$$(13)$$

i) The case of $c_{12p+2} \neq 0$.

From (12) and (13), we see that $V \cap \mathcal{H}^{2p}(\mathfrak{g}) = (0)$, and hence we get

$$\dim H^2(\mathfrak{g}) - \dim H^{2p}_{\omega - hr}(\mathfrak{g}) = {}_pC_2.$$

ii) The case of $c_{12p+2} = 0$.

Since **G** is non-degenerate, $c_{1p+k} \neq 0$ for some $k \in \{2, \ldots, p+1\}$. For simplicity, we may assume that $c_{1p+2} \neq 0$.

Now we put

$$W = \operatorname{span} \{ \hat{\omega}_{p+i} \hat{\omega}_{p+j} \hat{\omega}_{p+k} ; 2 \le i < j < k \le p+1 \}.$$

Note that dim $V = {}_{p}C_{2}$ and dim $W = {}_{p}C_{3}$.

We consider the linear mapping $di(\mathbf{G}_{1,1}): V \longrightarrow W$. We claim that

$$\dim di(\mathbf{G}_{1,1})(V) = {}_{p-1}C_2.$$

Then dim Ker $(di(\mathbf{G}_{1,1})) = {}_{p}C_{2} - {}_{p-1}C_{2} = p-1$ and hence

$$\dim H^{2}(\mathfrak{g}) - \dim H^{2p}_{\omega - hr}(\mathfrak{g}) = {}_{p}C_{2} + p - 1.$$

By a straightforward computation, we see

$$di(\mathbf{G}_{1,1})(\alpha_{ij}) = 2\sum_{k < i} (-1)^{p+k} c_{1\,p+k} \hat{\omega}_{p+k} \hat{\omega}_{p+i} \hat{\omega}_{p+j}$$

$$-2\sum_{i < k < j} (-1)^{p+k} c_{1\,p+k} \hat{\omega}_{p+i} \hat{\omega}_{p+k} \hat{\omega}_{p+j}$$

$$+2\sum_{j < k} (-1)^{p+k} c_{1\,p+k} \hat{\omega}_{p+i} \hat{\omega}_{p+j} \hat{\omega}_{p+k}.$$
(14)

Consider the basis

$$\{\alpha_{34},\ldots,\alpha_{3\,p+1},\alpha_{45},\ldots,\alpha_{p\,p+1},\alpha_{23},\ldots,\alpha_{2\,p+1}\}$$

of V and the basis

$$\{\hat{\omega}_{p+2}\hat{\omega}_{p+3}\hat{\omega}_{p+4}, \hat{\omega}_{p+2}\hat{\omega}_{p+3}\hat{\omega}_{p+5}, \dots, \hat{\omega}_{p+2}\hat{\omega}_{2p}\hat{\omega}_{2p+1}, \hat{\omega}_{p+3}\hat{\omega}_{p+4}\hat{\omega}_{p+5}, \dots, \hat{\omega}_{2p-1}\hat{\omega}_{2p}\hat{\omega}_{2p+1}\}$$

of W. Then, from (14), we see that, with respect to the bases above, the matrix form of $di(\mathbf{G}_{1,1})$ is of the form

$$di(\mathbf{G}_{1,1}) = \begin{pmatrix} 2(-1)^p c_{1\,p+2} & 0 & \\ & \ddots & \\ 0 & 2(-1)^p c_{1\,p+2} & \\ \hline & D & 0 \end{pmatrix}$$

where D is a matrix of $_{p-1}C_3 \times _{p-1}C_2$ and C is a matrix of $_{p-1}C_2 \times (p-1)$. Then we see that the $\operatorname{rank}(\operatorname{d}\! i(\mathbf{G}_{1,1})) \geq _{p-1}C_2$ and hence $\operatorname{dim}\operatorname{Ker}(\operatorname{d}\! i(\mathbf{G}_{1,1})) \leq _{p}C_2 - _{p-1}C_2 = p-1$.

For $j = 3, \ldots, p + 1$, we put

$$\gamma_j = (-1)^{p+2} c_{1\,p+2} \alpha_{2j} + \sum_{2 < \ell < j} (-1)^{p+\ell} c_{1\,p+\ell} \alpha_{\ell j} + \sum_{j < \ell \le p+1} (-1)^{p+\ell} c_{1\,p+\ell} \alpha_{j\ell}.$$

From (14), it is easy to conclude that, for j = 3, ..., p + 1,

$$di(\mathbf{G}_{1,1})(\gamma_i) = 0.$$

Since $\{\gamma_j; j=3,\ldots,p+1\}$ are linearly independent, we have proved our claim.

References

- [1] Brylinski J., A Differential Complex for Poisson Manifolds, J. Diff. Geom. 28 (1988) 93-114.
- [2] Benson C. and Gordon C., Kähler and Symplectic Structures on Nilmanifolds, Topology 27 (1988) 513-518.
- [3] Ibáñez R., Rudak Yu., Tralle A. and Ugarte L., On Symplectically Harmonic Forms on Six-dimensional Nilmanifolds, Comm. Math. Helv. 76 (2001) 89–109.
- [4] Ibáñez R., Rudak Yu., Tralle A. and Ugarte L., Symplectically Harmonic Cohomology of Nilmanifolds, arXiv:math.SG/0111074 7 Nov 2001.
- [5] Koszul J.-L., Crochet de Schouten-Nijenhuis et cohomologie, In: Élie Cartan et les Mathématiques d'Aujourd'hui, Soc. Math. de France, Astérisque, hors serie (1985) 257–271.
- [6] Mathieu O., Harmonic Cohomology Classes of Symplectic Manifolds, Comm. Math. Helv. 70 (1995) 1–9.
- [7] Nomizu K., On the Cohomology of Compact Homogeneous Spaces of Nilpotent Lie Groups, Ann. of Math. 59 (1954), 531-538.
- [8] Tralle A. and Oprea J., Symplectic Manifolds with no Käher Structure, Lecture Notes in Mathematics 1661, Springer, Berlin 1997.
- [9] Yamada T., Harmonic Cohomology Groups on Compact Symplectic Nilmanifolds, Osaka J. Math. **39** (2002) 363–381.
- [10] Yan D., Hodge Structure on Symplectic Manifolds, Adv. in Math. 120 (1996) 143–154.