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Abstract. For any Lie algebra g we introduce the notion of g-
symplectic structures and show that every orbit of a principal G-bundle
carries a natural g-symplectic form and an associated momentum map
induced by the Maurer—Cartan form on . We apply this to the BRST
bicomplex and show that the associated momentum map is a solution
of the Wess—Zumino consistency condition for the anomaly.

1. Introduction

We first introduce the notion of Lie algebra g-valued symplectic structures and
we show that every orbit of a principal GG-bundle carries a natural g-symplectic
form, which is exact and induced from the Maurer—Cartan form on the Lie
group GG. The G-action has a natural momentum map which is an invariant
for any fundamental vector field. In order to give a solution to the BRST
(Wess—Zumino) consistency condition, we generalize these results to infinite
dimensional group G of gauge transformations which acts on g-valued differ-
ential forms. On these orbit spaces we have the natural g-valued 1-form O,
induced by the Maurer—Cartan form on the Lie group G, and the corresponding
momentum map. We summarize the classical BRST transformations described
as coboundary operator of the Chevalley—Eilenberg complex of the infinite di-
mensional Lie algebra g of infinitesimal gauge transformations, [10-12]. Next
we describe the chiral anomaly as element of the first cohomology of the local
BRST complex [11, 12] using an induced representation of g on local forms. We
consider the Wess—Zumino consistency condition as a problem in this BRST
cohomology. To find a solution we combine the BRST bicomplex with the
idea of g-valued symplectic geometry and momentum maps. We show that
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this momentum map is a solution of the Wess—Zumino consistency condition
for the 1-form ©.

2. The g-symplectic Structure on Orbits

For a principal G-bundle (P, 7, M) we denote by QF(P,g) the space of g
valued k-forms on P, called g-forms for short. For g-forms the usual Cartan
calculus holds like for classical real valued forms. For instance, if f is a
g-function on P (0-form), f: P — g, then df is a g one-form on P, i.e.
df(p) == Tp,f: T,P — Typyg ~ g. If ¢: P — P is a smooth map and
a € QF(P,g), then the pull back ¢*a € QF(P,g). The Lie derivative Ly
with respect to a vector field X, the inner product operator 7x and exterior
derivative d are defined analogous to the classical real valued case and we
have the Cartan formula Lxoa = dixa + ix da for any o € QF(P, g).

We define g-valued symplectic forms as follows:

Definition 1. A g-symplectic structures on P is a g-form Q ¢ Q*(P,g)
which is closed and nondegenerate, i.e. dS) = 0 and for each p € P the
map Q(p): T,P xT,P — g is bilinear and nondegenerate, meaning that if
Q(p)(u,v) =0 for all w € T,,P then v = 0.

A g-symplectic form 2 on P induces a linear injective map
QUp)*: T,P — L(T,P,9),  QUp)*(v)-w=Qp)(v,w).

A vector field X on P is called g-Hamiltonian if there exists a g-function
f: P — gsuch that df = ix€, or equivalently Q(p)# X (p) = df(p).
A g-vector field X is locally g-Hamiltonian if and only if its flow ¢, is g-

symplectic, i.e. ;2 = (Q, indeed ¢;Q? = Q iff 0 = ;2= LxQ =

dt |1
dixQ + i1x dQ2 = dix {2 and by the Poincare lemma for g-forms, there exists
locally a g-function f such that df = 7x€2. We will later use the explicit
formula for f. There is a general local formula. For any closed g-form o €
OP(R", g), da = 0, there exists locally a § € QP '(R™, g) such that o = dj3
and 3 is given by

B(z) = / i a(te) dt (1)

Let 6 be the right invariant Maurer—Cartan form on G, that is (g) =
Tyrg-1: T,G — g, where r,: G — G is right multiplication on G, r,(h) = hg.
Note that with respect to the left multiplication [, on G the right Maurer—
Cartan form 6 satisfies 36 = Ad,of. Furthermore we have df(v,w) =
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v-0(w) —w-0(v) — lv,w| and if v,w are vertical tangent vectors we get
40(v,w) = —O[v,w] = - [O(v), O(w)].

Let R: Px(G — P denotes the right action of G on P and for each p € P
let O, be the G-orbit through p, i.e. O, = R(p,G) with the diffeomorphism
R,: G — O, R,(g9) = R(p, g) and the G-action R,: O, — O,, g € G.

Theorem 1. If G is semi-simple, then every G-orbit O, is a g-symplectic ma-
nifold.

Proof: Let p € P and define the g one-form ©, on the orbit O, by O, =
R,.0. The g 2-form (2, on the orbit O, defined by 2, := dO, is clearly
closed, d€2, = 0 and (2, is nondegenerate; indeed let $2,(¢)(v,, w,) = 0 for all
v, € T,0,, ¢ € Op. Then

0 = Q,(q)(vg, wg) = dO,(q) (vg, we) = A(Rp.0)(q)(vg, wy)
= R, (d0)(q)(vg, wy) = — Ry [0(q)vy, 0(g)wy] -

This implies that [#(¢)v,,0(q)w,] = 0 for all v, and since g is semi-simple,
this implies that 6(¢)w, = 0 for all ¢ and w,, but w, is vertical, hence w, = 0.
Therefore €1, is a g-symplectic form. ]

Remark 1. We don’t need to assume that G is semi-simple, only that g has no
center.

Proposition 1. The canonical g one-form O, and the g-symplectic form (1, are
G-invariant. For each Ry,: O, — O,, g € G

R;0, = 0,R:Q, = Q,.

The g-Poisson bracket for any two g-functions f,g: O, — ¢ such that
df(q),dg(q) € Q*(p)(T,P) (i.e. X, X, exist) is defined by

{f,9}(p) = Qp)(Xs(q), Xo(q)) € 8-
This bracket makes C*°(0,, g) into a Lie algebra.

2.1. The Canonical Momentum Map on O,
Proposition 2. For every £ € g the fundamental vector field &p on O, defined
by

d
Ep(q) = & |, Rexpie(q) 2)

is locally g-Hamiltonian.
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Proof: The flow of {p is ¢i(q) = Rexpie(q), but Ry, .0, = ©,, hence
R .8 = €,. So the flow is g-symplectic, hence &p is locally g-

exptEt P
Hamiltonian. ]

Therefore, for every £ € g, there exists a g-function H: O, — g such that
Ep = Xy 1.e. dH = 1,.(),. We explicitly compute the function H. Locally
from (1) we get for a =i, Q,, Xy =&p =T.R,(£), £ € g, 2 =Q, =dO,,
0, = R,.0. Then locally H is given by

H(z) = ]imigpﬂp(m) dt = jﬂp(tfc)(fmﬁp(tfv))dt
= /1 40, (tz)(z, Ep(ta)) dt = /1 dR,.0(tx)(x,Ep(tx)) dt
_ /1 (R, d6)(tz)(x, &p(tx)) dt
- /1d@(R;l(t:v))(TRgl(fv),TRngRm(é))dt
= [ Ry @1 R E
= jt[TRpl(x),T(Rlex)(ﬁ)] dt
= %[TR;l(x),T(Rgle)(ﬁ)] €g, €0,
For simplicity we write H(z) = — L[z, - £].

The g-momentum map of the right action of G on O, is the map J: O, —
L(g,g) defined by (J(q),¢) = H(q),q € O,, & € g. Notice that L(g, g)
replaces the dual g* from the real case.

Proposition 3. The momentum map of the action of G on O, is given by
J(¢) = ad, oTR, 3)

where 1= R;X,(g), ¢=p-g.
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Proof: We have Ry¢p(g) = R;Z:(g) = Z:(R,g) = Zc(pg) = TRy(&) €

1530y, hence (J(q),§) = —[R;ér(9), B, X (9)] = adr:x,o)(R;6ér(9)) =
ad, (TRpy(€)), where n = Ry X(g). O

3. Local Differential Forms

A Lagrangian (or variational principle [16,20]) on a fiber bundle 7: P — M™
is an operator L which assigns to each local section s of 7 an n-form L(s)
on the domain of s such that L(s)(z) depends smoothly on the value of s(z)
and on only a finite number of derivatives D’s(z), 0 < j < k < oco. This
leads to the notion of local differential forms, [16, 20, 19], and to the associated
variational bicomplex and its cohomology, [1, 11, 12], which we will recall.

Let m: P — M be a smooth fiber bundle and let ['**(7) denote the manifold
of smooth sections of 7. The spaces of k-jets J* (m), 0 < k < oo, of local
sections of 7 are smooth manifolds and we have the canonical projections,
for 0 <1 < k, wb: J*(m) — J'Y(m), and m,: J*(7) — M, as well as the
k-jet extension maps j*: M x> (xw) — J*(m);j*(z,s) = [z, s]x the k-jet
equivalence class of (z,s). Note that J%(7w) = M and m; = .

There is a natural splitting of the tangent space T,J°°(7w) = H, @ V, at each
s € J°°(m) and hence of the space of vector fields on J*°(7w) — Vec(J* (7)) =
Ha&'V as follows: H is the space of horizontal vector fields, i. e. lifts of vector
fields X on M; X € Vec(M) > X € Vec(J>®(m)) defined by (X (f))(s) =
X(f o8)(rs(s)) where f € C(J(n)),s € J(r) and S is a local section
at of 7 such that 7 (z, S) = [z, s]., 1. €. the co-jet of S in 7 (s) equals s.
The subspace V is the space of vertical vector fields on J*(7);i.e. Y € V
if and only if Y(f onm,) =0 for all f € C*°(M). It should be remarked that
such a canonical splitting of Vec(J*(m)) = H @ V cannot be constructed for
JE(m) if k < oo, [9,16].

We denote by Q¢(m) the vector space of those (g + p)-forms w on J*(7) with
w(Xi,-..,X,4p) = 0if more than ¢ of the vector fields X;, 1 <1i < ¢+ p, are
vertical or more than p of them are horizontal. Elements of I() are called
local forms on J>(7). If w € QI(7) then dw € QI (m) © Q7 (), which
imp Lies that the (total) exterior derivative d: Q2(7) — Q¢ (m) © Q3 ()
splits into the vertical exterior derivative dy : QI(m) — QI"'(m) and the
horizontal exterior derivative d; : Q(m) — €27, defined by d = dy +dy.
Then d* = d% = d3, = dgdy + dy dg = 0. This bicomplex of local forms
is often called the variational bicomplex, (see e. g. Anderson [1], Saunders
[9]). Horizontal and vertical derivatives satisfy certain exactness theorems and
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Poincaré lemmas [16], so that we have the variational bicomplex [1, 16]:

dy dy

0 — 0 O3

dy dy

0 — 2 %, 02 97,002 95 g2

dy dy dy dv

0 — O 4o dml 4o

dy dy dy dy

0 — R — Q0 95 00 do,...0 4o

The local cohomology of 7 is defined as H?(7) = Kerd /Imd. These are
local cohomologies in the physical sense as the following shows.

There is another characterization of local forms, which justifies their names.
Consider the de Rham complex Q(M xI'*° (7)) of smooth differential forms on
MxI>*(7r) with exterior derivative d. From the product structure of M xI"*°(7)
the space Q(M xI'*°(m)) inherits a bigradation and we can write

QM xT>(m)) = [[ UM xT>(m)).
P.a

Corresponding to this bigradation the exterior derivative d on M x ['*°(r)
breaks into two operators; D of type (1, 0), D: QP2(Mx['*> (7)) — QL2 (Mx
' (m)), and 9 of type (0, 1), 9: QPI(M xT'*°(m)) — QP (M x T (7))
With these we have d = D + 0 and d* = D?* = 9* = D9 + 0D = 0.
If A € QFY(M xT'(m)) and s € I'°(7) we can define a p-form A(s)
on M by A(s)(z) = A(z,s), x € M. Then DA € QPFLO(M x T'>°(m))
and we have (DA)(s) = duy(A(s)) where djs is the exterior derivative
on M. More generally, if A € QPI(M x ['*°(n7)), s € I'(m) and
Xi,...,X, € Vec(J>(m)) we can define a p-form A(s, X;,...,X,) on M by
A(s, Xq,..., X )(x) = (ix, ...ix, A)(z,s). Again DA € QPTHI(M T (m))
is given by (DA)(s, X1,...,X,) = du(A(s, X1,...,X,)). QM xI'*°(m))
has a canonical sub-bicomplex Q,.(M xT'* (7)) defined as follows: The oco-
jet extension map j..: M xI'*°(m) — J*°(m) induces a map of the de Rham
complexes 7o : Q(J*®(m)) — Q(M xI'*°(m)). The image ;7L Q(7°°(w)) in
Q(M xI'>°(m)) is stable under both DD and 0, and hence is a sub-bicomplex
which we denote by Q. (M x> (71')) We write

Quoe (M x T (7 HQ” M xT°°(7)).

loc
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The map 357 induces an isomorphism of bicomplexes between local forms in
Q(J°(m)) as defined above, and Qo (M xI'°(7)), i.e. QI(m) >~ QPI(M x
e (m)) 1201.

We call a form A on M x I'*°(m) local if A lies in QI (M x T'*° (7). Thus

loc
if Ac QPI(M xI'*°(m)), then for s € I'*°(7) and X,,..., X, € Vec(J>(m))
the p-form A(s, X;,...,X,) on M depends on s, X;(s),...,X,(s) in a lo-
cal fashion, that means A(s, X,,..., X,)(z) depends only on finite jets (i. e.
finitely many derivatives) of s, X1(s),...,X,(s) at z. In local coordinates of

M, a local form A can be written as follows:

A= Z Ai1...ip,j1...jq dxil VARERIVAY dZCiF VAN 3uj1 VANRRIRIVAY 8qu

1,7
where the coordinates A;, ip.1snje are local (0, 0)-forms, the dz;’s are local

(1, 0)-forms and the Ou,’s are local (0, 1)-forms. This justifies the terminology
of local forms.

We see from our discussion that a Lagrangian L on 7 is an element of Q% (M x

loc

(7)), n = dim M. Indeed, any L € Q’(M xI'**(x)) defines an n-form
L(s) on M by L(s)(xz) = L(z,s) which is local in the physical sense above.
Interpreting this n-form L(s) as Lagrangian density (we fix a volume on M)

the action L£(s) in a domain U C M is defined by

L(s) = /L(s).

4. BRST Transformations

The BRST bicomplex described in [3,11,12] is related to the variational bi-
complex as follows: Let m: P — M be a principal GG-bundle, let g be the
Lie algebra of G and #n?: QP(P,g) — M the bundle of Lie algebra valued
p-forms. Let G denote the Lie group of gauge transformations and g its Lie al-
gebra. Set CL? := C[ (g, Q?(P, g)) the space of local ¢g-cochains with values

loc loc
in g-valued p-forms. ¢ € C}P is local in the sense of differential operators
¢: Q.9 — OP(P,g), i.e. decreasing the supports. Define d: C;l — cuthep
to be the Chevalley—Eilenberg coboundary operator with respect to a represen-
tation p of g:

(6¢)(£0’ s agq) = Z(*l)Lp!(é-z)Qb(&o, s 552" s agq)
=0 o )
-+ Z(*i)i_‘_jgb([givé-j]’ e 552" oo ’é-j’ L agq)

1<J
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where p’ is the induced derived representation of g on Q7(P,g). We have
62. = 0. Then we define the BRST operator s: CL” — CZ'7 ag
(—1)pt1
q+1
It is clear that s is nilpotent, s> = 0. We call {C["? s} the BRST bicomplex.

In [11, 12] we derived the classical BRST transformations using the Chevalley—
Eilenberg differential for p = ad,., = € g, the adjoint representation of g:

wn
I

Sloc - ®)

Theorem 2. (Schmid [11]) For a vector potential A € CIOO’C1 and the ghost
field n € Cloc (being the Maurer—Cartan form on G), the classical BRST
transformations are:

1
sA=dn+[Aq, sp=-ghn, sp=b sb=0. (6

In this case, the derived representation p' of the Lie algebra g on Q°(P,g) ~ g
is identical with the adjoint representation of g, p' = ade, £ € g.

5. Anomalies

Next we describe the cohomology which accommodates the Adler—Bardeen
anomalies as elements of its first cohomology group [11, 12]. We combine the
BRST bicomplex with local forms.

Consider Q,,.(M xI'*° (7)) with F°°( ) = QP(P,g)ie.m=m7P. Let C be a
smooth p-chain on M and w € QFY. We consider functionals £ on Q*(P,g)
given by

L) = [wa),  Aewr(pg)

and denote the space of all such functionals by I'?

loc?
[he = {£: 0°(Pg) — B; £(4) = [w(A)}, we o
C

We define the representation py,. of the gauge group G on the space '}, by
(Poc(@)L)(A) = L(p(¢ )A), d€G, AcQ(Pg). D

For short ¢ - L(A) = L(¢p- A) = |, c w(¢ - A). Then the derived representation
pr.. of the gauge algebra g on I'}  is given by

d
dt t=0

loc

(Ploc(§)L)(A) = L{pe(e™)A) = L(p(Z¢) A) ®)
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where £ € g, A € QP(P,g), and Z; denotes the fundamental vector field
generated by &.

Now we consider the Chevalley-Eilenberg complex of g with respect to
the representation p; . on I} That means that the coboundary operator

loc*

6100: C (gﬂ loc) Oq+1 (g’ loc) is giVCn by

q

(61000))(505 .. "gq) = Z(il)lp{oc(&) (503 R aéia e aéq)
+Z hLJw [Eufj] "7éia"-7éja"'7£q)-

1<y

€))

Again 6, = 0 and we have the double complex C%? = (C4(g,I'.) with
Oioc : C¥P — CTTVP and d: C*P — C?P*! induced by the exterior derivative
dy; on M as follows: define d: T2, — I'?I" by

loc

(A£)(A) = [ (duw)(4) (10

D

where L(A) = [, w(A), w € QLY, dyw € Q27 and D is a p + 1 cocycle

loc

such that C is the boundary of D. The two operators .. and d anticommute:

Proposition 4. 9, d + dd,,. = 0.

We define the total differential A = §,,. + (—1)? d. We have 67, = d*? =

Oioe d + ddie = 0, which implies A* = 0. We denote the total cohomology
with respect to A by H; (g).

A homotopy formula (“Russian formula”) on this bicomplex is derived in
[11,12] and with the introduction of Chern—Simons type forms w2q ;=
a;p(A,[A, A", F{ ') we obtain the associated descent equations OlocSy 1 =
—dwl 5, Gewd,_y = —dw? 5, ..., Seewp? | = 0. We identify the non-
Abelian anomaly as a cohomology class in HI})C (g) represented by w%qﬂ in
n = 2qg — 2 dimensions.

For example, for ¢ = 2,¢g = 3 we get the 2- and 4-dimensional non-
Abelian anomaly respectively, represented by wy = Tr(néloc/i) and w; =
Tr(nd10c (A(SIOCA + 2A3)) resp., where A=A+ 1. For M = S3 the Chern—
Simon form w{ = Tp(A), where p is an invariant polynomial and 7 the

transgression operator, moreover dTp(A) = p(F) = Tr F>. We get the stair
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case equations [14]:

q=3|TrF3
Id
¢=2| w = e
Id
g=1 wy Ousy o
d
q=0 w3 O 0
p=20 p=1 p=2 p=3

w3 represents the anomaly.

6. The Consistency Condition

We consider the Wess—Zumino consistency condition as a problem in local
cohomology [21]. In our bicomplex C;. = {ClF, A}, ,en We have the differ-
entials A = J,, + (—1)?d, where 8,,.: CLP — CZ''P and d: CZP — cZP*!
satisfying A® = i d + djoe = 07, = d* = 0.

The Wess—Zumino consistency condition on w € C; means there exists a
a € C;. such that

Ooew +da = 0. (11

Any solution of (11) of the form w = 6.8 + dv, 5, v € C;. is considered to
be trivial, since then di,cw = 673 + Oioc Ay 80 e — d(d1oc7y) = 0. We restrict
ourselves to the subalgebra QF , (P, g) of G-invariant g-forms. The consistency
condition (11) produces the so called descent equations. If d,.w +da = 0 then
taking dc of (11) we get 62 w + djoc dx = 0 hence o dx = 0 = — dfjpe0r.
So by the Poincare lemma there exists a local form 3 such that §,,.a = — d3,
or dcx+dB3 = 0. By definition §oc[w] = []. If wis trivial, i. e. w = §jo. f+d7y
then .. dy = — da, and da = — ddy.7y, hence « is of the form a = d,.y +dA,
that is [a] = 0. We get the descent equations

Ooew +dwy; =0
5locw1 + dw2 =0

OocwWr 1 + dwy, =0
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where k is the smallest integer such that [w] € HE _(g) with d,.w = 0.

loc

7. A Solution to the Consistency Condition

We now combine the ideas of the previous sections. The costruction of g-
symplectic orbits and the momentum map is generalized from the finite dimen-
sional case to the infinite dimesnional situation as follows (we use the same
notation with script symbols): we consider the principal G bundle (P, 7, M),
where P = Q*(P,g) with the G action py, defined by (7), and M = P/G
is the orbit space (under the usual assumptions on the action and topologies).
Then for A € Q*(P,g) the canonical one-form © 4 on the orbit O, induced
from the Maurer—Cartan form on G becomes a map

Q,: 0,4 — QY (P g) ~Cl

loc

and the momentum map

J: 04 — L(g,g) =C.0.

loc

Theorem 3. The momentum map J satisfies the consistency condition for the
canonical one-form (Maurer—Cartan) ©

60e©a +dJ =0. (12)

Proof: We have 6,04 € C' and dJ(A) € C and from (6) we get for any
€y
6100@44 (5) = dJ(A) (5) + LZJ(g) ®A

where Z ;. is the induced fundamental vector field. From (2) we conclude
that Lz, ,©4=0.0
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