Fourth International Conference on Geometry, Integrability and Quantization June 6–15, 2002, Varna, Bulgaria Ivaïlo M. Mladenov and Gregory L. Naber, Editors Coral Press, Sofia 2003, pp 284–295

g-SYMPLECTIC ORBITS AND A SOLUTION OF THE BRST CONSISTENCY CONDITION

RUDOLF SCHMID

Department of Mathematics, Emory University Atlanta, Georgia 30322, USA

Abstract. For any Lie algebra \mathfrak{g} we introduce the notion of \mathfrak{g} -symplectic structures and show that every orbit of a principal G-bundle carries a natural \mathfrak{g} -symplectic form and an associated momentum map induced by the Maurer-Cartan form on G. We apply this to the BRST bicomplex and show that the associated momentum map is a solution of the Wess-Zumino consistency condition for the anomaly.

1. Introduction

We first introduce the notion of Lie algebra g-valued symplectic structures and we show that every orbit of a principal G-bundle carries a natural q-symplectic form, which is exact and induced from the Maurer-Cartan form on the Lie group G. The G-action has a natural momentum map which is an invariant for any fundamental vector field. In order to give a solution to the BRST (Wess-Zumino) consistency condition, we generalize these results to infinite dimensional group \mathcal{G} of gauge transformations which acts on g-valued differential forms. On these orbit spaces we have the natural g-valued 1-form Θ , induced by the Maurer-Cartan form on the Lie group \mathcal{G} , and the corresponding momentum map. We summarize the classical BRST transformations described as coboundary operator of the Chevalley-Eilenberg complex of the infinite dimensional Lie algebra g of infinitesimal gauge transformations, [10–12]. Next we describe the chiral anomaly as element of the first cohomology of the local BRST complex [11, 12] using an induced representation of g on local forms. We consider the Wess-Zumino consistency condition as a problem in this BRST cohomology. To find a solution we combine the BRST bicomplex with the idea of g-valued symplectic geometry and momentum maps. We show that

this momentum map is a solution of the Wess–Zumino consistency condition for the 1-form Θ .

2. The g-symplectic Structure on Orbits

For a principal G-bundle (P,π,M) we denote by $\Omega^k(P,\mathfrak{g})$ the space of \mathfrak{g} valued k-forms on P, called \mathfrak{g} -forms for short. For \mathfrak{g} -forms the usual Cartan calculus holds like for classical real valued forms. For instance, if f is a \mathfrak{g} -function on P (0-form), $f\colon P\to \mathfrak{g}$, then $\mathrm{d} f$ is a \mathfrak{g} one-form on P, i. e. $\mathrm{d} f(p):=T_pf\colon T_pP\to T_{f(p)}\mathfrak{g}\simeq \mathfrak{g}$. If $\varphi\colon P\to P$ is a smooth map and $\alpha\in\Omega^k(P,\mathfrak{g})$, then the pull back $\varphi^*\alpha\in\Omega^k(P,\mathfrak{g})$. The Lie derivative L_X with respect to a vector field X, the inner product operator i_X and exterior derivative d are defined analogous to the classical real valued case and we have the Cartan formula $L_X\alpha=\mathrm{d} i_X\alpha+i_X\,\mathrm{d} \alpha$ for any $\alpha\in\Omega^k(P,\mathfrak{g})$.

We define g-valued symplectic forms as follows:

Definition 1. A g-symplectic structures on P is a g-form $\Omega \in \Omega^2(P, \mathfrak{g})$ which is closed and nondegenerate, i. e. $d\Omega = 0$ and for each $p \in P$ the map $\Omega(p) \colon T_pP \times T_pP \to \mathfrak{g}$ is bilinear and nondegenerate, meaning that if $\Omega(p)(u,v) = 0$ for all $u \in T_pP$ then $v \equiv 0$.

A g-symplectic form Ω on P induces a linear injective map

$$\Omega(p)^{\#}: T_pP \to L(T_pP,\mathfrak{g}), \qquad \Omega(p)^{\#}(v) \cdot w = \Omega(p)(v,w).$$

A vector field X on P is called \mathfrak{g} -Hamiltonian if there exists a \mathfrak{g} -function $f: P \to \mathfrak{g}$ such that $\mathrm{d} f = i_X \Omega$, or equivalently $\Omega(p)^\# X(p) = \mathrm{d} f(p)$.

A g-vector field X is locally g-Hamiltonian if and only if its flow φ_t is g-symplectic, i. e. $\varphi_t^*\Omega = \Omega$, indeed $\varphi_t^*\Omega = \Omega$ iff $0 = \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \varphi_t^*\Omega = L_X\Omega = 0$

 $\mathrm{d}i_X\Omega+i_X\,\mathrm{d}\Omega=\mathrm{d}i_X\Omega$ and by the Poincare lemma for \mathfrak{g} -forms, there exists locally a \mathfrak{g} -function f such that $\mathrm{d}f=i_X\Omega$. We will later use the explicit formula for f. There is a general local formula. For any closed \mathfrak{g} -form $\alpha\in\Omega^p(\mathbb{R}^n,\mathfrak{g}),\,\mathrm{d}\alpha=0$, there exists locally a $\beta\in\Omega^{p-1}(\mathbb{R}^n,\mathfrak{g})$ such that $\alpha=\mathrm{d}\beta$ and β is given by

$$\beta(x) = \int_{0}^{1} i_x \alpha(tx) dt$$
 (1)

Let θ be the *right* invariant Maurer–Cartan form on G, that is $\theta(g) = T_g r_{g^{-1}} : T_g G \to \mathfrak{g}$, where $r_g : G \to G$ is right multiplication on G, $r_g(h) = hg$. Note that with respect to the left multiplication l_g on G the right Maurer–Cartan form θ satisfies $l_g^* \theta = \mathrm{Ad}_g \circ \theta$. Furthermore we have $\mathrm{d}\theta(v, w) = \mathrm{d}\theta(v, w)$

 $v \cdot \theta(w) - w \cdot \theta(v) - \theta[v, w]$ and if v, w are vertical tangent vectors we get $d\theta(v, w) = -\theta[v, w] = -[\theta(v), \theta(w)].$

Let $R: P \times G \to P$ denotes the right action of G on P and for each $p \in P$ let \mathcal{O}_p be the G-orbit through p, i. e. $\mathcal{O}_p = R(p,G)$ with the diffeomorphism $R_p: G \to \mathcal{O}_p; R_p(g) = R(p,g)$ and the G-action $R_g: \mathcal{O}_p \to \mathcal{O}_p, g \in G$.

Theorem 1. If G is semi-simple, then every G-orbit \mathcal{O}_p is a \mathfrak{g} -symplectic manifold.

Proof: Let $p \in P$ and define the $\mathfrak g$ one-form Θ_p on the orbit $\mathcal O_p$ by $\Theta_p := R_{p*}\theta$. The $\mathfrak g$ 2-form Ω_p on the orbit $\mathcal O_p$ defined by $\Omega_p := \mathrm{d}\Theta_p$ is clearly closed, $\mathrm{d}\Omega_p = 0$ and Ω_p is nondegenerate; indeed let $\Omega_p(q)(v_q, w_q) = 0$ for all $v_q \in T_q \mathcal O_p, \ q \in \mathcal O_p$. Then

$$0 = \Omega_p(q)(v_q, w_q) = d\Theta_p(q)(v_q, w_q) = d(R_{p*}\theta)(q)(v_q, w_q)$$

= $R_{p*}(d\theta)(q)(v_q, w_q) = -R_{p*}[\theta(q)v_q, \theta(q)w_q]$.

This implies that $[\theta(q)v_q, \theta(q)w_q] = 0$ for all v_q and since \mathfrak{g} is semi-simple, this implies that $\theta(q)w_q = 0$ for all q and w_q , but w_q is vertical, hence $w_q = 0$. Therefore Ω_p is a \mathfrak{g} -symplectic form. \square

Remark 1. We don't need to assume that G is semi-simple, only that \mathfrak{g} has no center.

Proposition 1. The canonical \mathfrak{g} one-form Θ_p and the \mathfrak{g} -symplectic form Ω_p are G-invariant. For each $R_g \colon \mathcal{O}_p \to \mathcal{O}_p$, $g \in G$

$$R_q^* \Theta_p = \Theta_p R_q^* \Omega_p = \Omega_p.$$

The \mathfrak{g} -Poisson bracket for any two \mathfrak{g} -functions $f,g\colon \mathcal{O}_p\to \mathfrak{g}$ such that $\mathrm{d} f(q),\mathrm{d} g(q)\in \Omega^\#(p)(T_qP)$ (i. e. X_f,X_g exist) is defined by

$$\{f,g\}(p) = \Omega(p)(X_f(q),X_g(q)) \in \mathfrak{g}.$$

This bracket makes $C^{\infty}(\mathcal{O}_p, \mathfrak{g})$ into a Lie algebra.

2.1. The Canonical Momentum Map on \mathcal{O}_p

Proposition 2. For every $\xi \in \mathfrak{g}$ the fundamental vector field ξ_P on \mathcal{O}_p defined by

$$\xi_P(q) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} R_{\exp t\xi}(q) \tag{2}$$

is locally g-Hamiltonian.

Proof: The flow of ξ_P is $\varphi_t(q) = R_{\exp t\xi}(q)$, but $R_{\exp t\xi}^*\Theta_p = \Theta_p$, hence $R_{\exp t\xi}^*\Omega_p = \Omega_p$. So the flow is \mathfrak{g} -symplectic, hence ξ_P is locally \mathfrak{g} -Hamiltonian. \square

Therefore, for every $\xi \in \mathfrak{g}$, there exists a \mathfrak{g} -function $H: \mathcal{O}_p \to \mathfrak{g}$ such that $\xi_P = X_H$ i. e. $dH = i_{\xi_P} \Omega_p$. We explicitly compute the function H. Locally from (1) we get for $\alpha = i_{\xi_P} \Omega_p$, $X_H = \xi_P = T_e R_p(\xi)$, $\xi \in \mathfrak{g}$, $\Omega = \Omega_p = d\Theta_p$, $\Theta_p = R_{p*}\theta$. Then locally H is given by

$$H(x) = \int_{0}^{1} i_{x} i_{\xi_{P}} \Omega_{p}(tx) dt = \int_{0}^{1} \Omega_{p}(tx)(x, \xi_{P}(tx)) dt$$

$$= \int_{0}^{1} d\Theta_{p}(tx)(x, \xi_{P}(tx)) dt = \int_{0}^{1} dR_{p*}\theta(tx)(x, \xi_{P}(tx)) dt$$

$$= \int_{0}^{1} (R_{p*} d\theta)(tx)(x, \xi_{P}(tx)) dt$$

$$= \int_{0}^{1} d\theta(R_{p}^{-1}(tx))(TR_{p}^{-1}(x), TR_{p}^{-1}TR_{tx}(\xi)) dt$$

$$= \int_{0}^{1} -[TR_{p}^{-1}(x), T(R_{p}^{-1}R_{tx})(\xi)] dt$$

$$= -\int_{0}^{1} t[TR_{p}^{-1}(x), T(R_{p}^{-1}R_{x})(\xi)] dt$$

$$= -\frac{1}{2}[TR_{p}^{-1}(x), T(R_{p}^{-1}R_{x})(\xi)] \in \mathfrak{g}, \qquad x \in \mathcal{O}_{p}.$$

For simplicity we write $H(x) = -\frac{1}{2}[x, x \cdot \xi]$.

The \mathfrak{g} -momentum map of the right action of G on \mathcal{O}_p is the map $J\colon \mathcal{O}_p\to \mathcal{L}(\mathfrak{g},\mathfrak{g})$ defined by $\langle J(q),\xi\rangle=H(q),q\in \mathcal{O}_p,\ \xi\in \mathfrak{g}$. Notice that $\mathcal{L}(\mathfrak{g},\mathfrak{g})$ replaces the dual \mathfrak{g}^* from the real case.

Proposition 3. The momentum map of the action of G on \mathcal{O}_p is given by

$$J(q) = \mathrm{ad}_{\eta} \circ TR_q \tag{3}$$

where $\eta = R_p^* X_t(g)$, $q = p \cdot g$.

Proof: We have $R_p^* \xi_P(g) = R_p^* Z_{\xi}(g) = Z_{\xi}(R_p g) = Z_{\xi}(pg) = T R_{pg}(\xi) \in T_{pg} \mathcal{O}_p$, hence $\langle J(q), \xi \rangle = -[R_p^* \xi_P(g), R_p^* X_t(g)] = \operatorname{ad}_{R_p^* X_t(g)}(R_p^* \xi_P(g)) = \operatorname{ad}_{\eta}(T R_{pg}(\xi))$, where $\eta = R_p^* X_t(g)$. \square

3. Local Differential Forms

A Lagrangian (or variational principle [16, 20]) on a fiber bundle $\pi: P \to M^n$ is an operator L which assigns to each local section s of π an n-form L(s) on the domain of s such that L(s)(x) depends smoothly on the value of s(x) and on only a finite number of derivatives $D^j s(x)$, $0 \le j \le k < \infty$. This leads to the notion of local differential forms, [16, 20, 19], and to the associated variational bicomplex and its cohomology, [1, 11, 12], which we will recall.

Let $\pi\colon P\to M$ be a smooth fiber bundle and let $\Gamma^\infty(\pi)$ denote the manifold of smooth sections of π . The spaces of k-jets $J^k(\pi)$, $0\le k\le\infty$, of local sections of π are smooth manifolds and we have the canonical projections, for $0\le l\le k$, $\pi_k^l\colon J^k(\pi)\to J^l(\pi)$, and $\pi_k\colon J^k(\pi)\to M$, as well as the k-jet extension maps $j^k\colon M\times\Gamma^\infty(\pi)\to J^k(\pi); j^k(x,s)=[x,s]_k$ the k-jet equivalence class of (x,s). Note that $J^0(\pi)=M$ and $\pi_0=\pi$.

There is a natural splitting of the tangent space $T_sJ^\infty(\pi)=H_s\oplus V_s$ at each $s\in J^\infty(\pi)$ and hence of the space of vector fields on $J^\infty(\pi)$ — $\mathrm{Vec}(J^\infty(\pi))=\mathbf{H}\oplus\mathbf{V}$ as follows: \mathbf{H} is the space of horizontal vector fields, i. e. lifts of vector fields \bar{X} on M; $\bar{X}\in\mathrm{Vec}(M)\mapsto X\in\mathrm{Vec}(J^\infty(\pi))$ defined by $(X(f))(s)=\bar{X}(f\circ S)(\pi_\infty(s))$ where $f\in C^\infty(J^\infty(\pi)), s\in J^\infty(\pi)$ and S is a local section at of π such that $j^\infty(x,S)=[x,s]_\infty$, i. e. the ∞ -jet of S in $\pi_\infty(s)$ equals s. The subspace \mathbf{V} is the space of vertical vector fields on $J^\infty(\pi)$; i. e. $Y\in\mathbf{V}$ if and only if $Y(f\circ\pi_\infty)=0$ for all $f\in C^\infty(M)$. It should be remarked that such a canonical splitting of $\mathrm{Vec}(J^\infty(\pi))=\mathbf{H}\oplus\mathbf{V}$ cannot be constructed for $J^k(\pi)$ if $k<\infty$, [9,16].

We denote by $\Omega_p^q(\pi)$ the vector space of those (q+p)-forms ω on $J^\infty(\pi)$ with $\omega(X_1,\ldots,X_{q+p})=0$ if more than q of the vector fields X_i , $1\leq i\leq q+p$, are vertical or more than p of them are horizontal. Elements of $\Omega_p^q(\pi)$ are called **local forms** on $J^\infty(\pi)$. If $\omega\in\Omega_p^q(\pi)$ then $\mathrm{d}\omega\in\Omega_p^{q+1}(\pi)\oplus\Omega_{p+1}^q(\pi)$, which imp Lies that the (total) exterior derivative $\mathrm{d}\colon\Omega_p^q(\pi)\to\Omega_p^{q+1}(\pi)\oplus\Omega_{p+1}^q(\pi)$ splits into the **vertical exterior derivative** $\mathrm{d}_V\colon\Omega_p^q(\pi)\to\Omega_p^{q+1}(\pi)$ and the **horizontal exterior derivative** $\mathrm{d}_H\colon\Omega_p^q(\pi)\to\Omega_{p+1}^q$ defined by $\mathrm{d}=\mathrm{d}_H+\mathrm{d}_V$. Then $\mathrm{d}^2=\mathrm{d}_H^2=\mathrm{d}_V^2=\mathrm{d}_H\,\mathrm{d}_V+\mathrm{d}_V\,\mathrm{d}_H=0$. This bicomplex of local forms is often called the **variational bicomplex**, (see e. g. Anderson [1], Saunders [9]). Horizontal and vertical derivatives satisfy certain exactness theorems and

Poincaré lemmas [16], so that we have the variational bicomplex [1, 16]:

The **local cohomology** of π is defined as $H^p(\pi) = \operatorname{Ker} d / \operatorname{Im} d$. These are local cohomologies in the physical sense as the following shows.

There is another characterization of local forms, which justifies their names. Consider the de Rham complex $\Omega(M \times \Gamma^{\infty}(\pi))$ of smooth differential forms on $M \times \Gamma^{\infty}(\pi)$ with exterior derivative d. From the product structure of $M \times \Gamma^{\infty}(\pi)$ the space $\Omega(M \times \Gamma^{\infty}(\pi))$ inherits a bigradation and we can write

$$\Omega(M \times \Gamma^{\infty}(\pi)) = \coprod_{p,q} \Omega^{p,q}(M \times \Gamma^{\infty}(\pi)).$$

Corresponding to this bigradation the exterior derivative d on $M \times \Gamma^{\infty}(\pi)$ breaks into two operators; D of type (1,0), $D: \Omega^{p,q}(M \times \Gamma^{\infty}(\pi)) \to \Omega^{p+1,q}(M \times \Gamma^{\infty}(\pi))$, and ∂ of type (0,1), $\partial: \Omega^{p,q}(M \times \Gamma^{\infty}(\pi)) \to \Omega^{p,q+1}(M \times \Gamma^{\infty}(\pi))$. With these we have $d = D + \partial$ and $d^2 = D^2 = \partial^2 = D\partial + \partial D = 0$. If $A \in \Omega^{p,0}(M \times \Gamma^{\infty}(\pi))$ and $s \in \Gamma^{\infty}(\pi)$ we can define a p-form A(s) on M by A(s)(x) = A(x,s), $x \in M$. Then $DA \in \Omega^{p+1,0}(M \times \Gamma^{\infty}(\pi))$ and we have $(DA)(s) = \mathrm{d}_M(A(s))$ where d_M is the exterior derivative on M. More generally, if $A \in \Omega^{p,q}(M \times \Gamma^{\infty}(\pi))$, $s \in \Gamma^{\infty}(\pi)$ and $X_1, \ldots, X_q \in \mathrm{Vec}(J^{\infty}(\pi))$ we can define a p-form $A(s, X_1, \ldots, X_q)$ on M by $A(s, X_1, \ldots, X_q)(x) = (i_{X_1} \ldots i_{X_q} A)(x, s)$. Again $DA \in \Omega^{p+1,q}(M \times \Gamma^{\infty}(\pi))$ is given by $(DA)(s, X_1, \ldots, X_q) = \mathrm{d}_M(A(s, X_1, \ldots, X_q))$. $\Omega(M \times \Gamma^{\infty}(\pi))$ has a canonical sub-bicomplex $\Omega_{\mathrm{loc}}(M \times \Gamma^{\infty}(\pi))$ defined as follows: The ∞ -jet extension map $j_{\infty} \colon M \times \Gamma^{\infty}(\pi) \to J^{\infty}(\pi)$ induces a map of the de Rham complexes $j_{\infty}^* \colon \Omega(J^{\infty}(\pi)) \to \Omega(M \times \Gamma^{\infty}(\pi))$. The image $j_{\infty}^* \Omega(j^{\infty}(\pi))$ in $\Omega(M \times \Gamma^{\infty}(\pi))$ is stable under both D and ∂ , and hence is a sub-bicomplex which we denote by $\Omega_{\mathrm{loc}}(M \times \Gamma^{\infty}(\pi))$. We write

$$\Omega_{\mathrm{loc}}(M \times \Gamma^{\infty}(\pi)) = \coprod_{p,q} \Omega_{\mathrm{loc}}^{p,q}(M \times \Gamma^{\infty}(\pi)).$$

The map j_{∞}^* induces an isomorphism of bicomplexes between local forms in $\Omega(J^{\infty}(\pi))$ as defined above, and $\Omega_{\text{loc}}(M \times \Gamma^{\infty}(\pi))$, i. e. $\Omega_p^q(\pi) \simeq \Omega_{\text{loc}}^{p,q}(M \times \Gamma^{\infty}(\pi))$ [20].

We call a form A on $M \times \Gamma^{\infty}(\pi)$ local if A lies in $\Omega^{p,q}_{loc}(M \times \Gamma^{\infty}(\pi))$. Thus if $A \in \Omega^{p,q}_{loc}(M \times \Gamma^{\infty}(\pi))$, then for $s \in \Gamma^{\infty}(\pi)$ and $X_1, \ldots, X_q \in \mathrm{Vec}(J^{\infty}(\pi))$ the p-form $A(s, X_1, \ldots, X_q)$ on M depends on $s, X_1(s), \ldots, X_q(s)$ in a local fashion, that means $A(s, X_1, \ldots, X_q)(x)$ depends only on finite jets (i. e. finitely many derivatives) of $s, X_1(s), \ldots, X_q(s)$ at x. In local coordinates of M, a local form A can be written as follows:

$$A = \sum_{i,j} A_{i_1 \dots i_p, j_1 \dots j_q} \, \mathrm{d} x_{i_1} \wedge \dots \wedge \mathrm{d} x_{i_p} \wedge \partial u_{j_1} \wedge \dots \wedge \partial u_{j_q}$$

where the coordinates $A_{i_1,\dots,i_p,j_1,\dots,j_q}$ are local (0,0)-forms, the $\mathrm{d}x_i$'s are local (1,0)-forms and the ∂u_j 's are local (0,1)-forms. This justifies the terminology of local forms.

We see from our discussion that a Lagrangian L on π is an element of $\Omega^{n,0}_{\mathrm{loc}}(M \times \Gamma^{\infty}(\pi))$, $n = \dim M$. Indeed, any $L \in \Omega^{n,0}_{\mathrm{loc}}(M \times \Gamma^{\infty}(\pi))$ defines an n-form L(s) on M by L(s)(x) = L(x,s) which is local in the physical sense above. Interpreting this n-form L(s) as Lagrangian density (we fix a volume on M) the action $\mathcal{L}(s)$ in a domain $U \subset M$ is defined by

$$\mathcal{L}(s) = \int_{U} L(s) \,.$$

4. BRST Transformations

The BRST bicomplex described in [3, 11, 12] is related to the variational bicomplex as follows: Let $\pi\colon P\to M$ be a principal G-bundle, let $\mathfrak g$ be the Lie algebra of G and $\pi^p\colon \Omega^p(P,\mathfrak g)\to M$ the bundle of Lie algebra valued p-forms. Let $\mathcal G$ denote the Lie group of gauge transformations and $\mathfrak g$ its Lie algebra. Set $\mathbf C^{q,p}_{\mathrm{loc}}:=\mathbf C^q_{\mathrm{loc}}(\mathfrak g,\Omega^p(P,\mathfrak g))$ the space of local q-cochains with values in $\mathfrak g$ -valued p-forms. $\phi\in \mathbf C^{q,p}_{\mathrm{loc}}$ is local in the sense of differential operators $\phi\colon \bigotimes_q \mathfrak g\to \Omega^p(P,\mathfrak g)$, i. e. decreasing the supports. Define $\delta\colon \mathbf C^{q,p}_{\mathrm{loc}}\to \mathbf C^{q+1,p}_{\mathrm{loc}}$ to be the Chevalley–Eilenberg coboundary operator with respect to a representation ρ of $\mathfrak g$:

$$(\delta\phi)(\xi_0, \dots, \xi_q) = \sum_{i=0}^q (-1)^i \rho'(\xi_i) \phi(\xi_0, \dots, \hat{\xi}_i, \dots, \xi_q) + \sum_{i< j} (-i)^{i+j} \phi([\xi_i, \xi_j], \dots, \hat{\xi}_i, \dots, \hat{\xi}_j, \dots, \xi_q)$$
(4)

where ρ' is the induced derived representation of \mathfrak{g} on $\Omega^p(P,\mathfrak{g})$. We have $\delta^2_{\text{loc}}=0$. Then we define the **BRST operator** $\mathbf{s}\colon \mathbf{C}^{q,p}_{\text{loc}}\to \mathbf{C}^{q+1,p}_{\text{loc}}$ as

$$\mathbf{s} \equiv \frac{(-1)^{p+1}}{q+1} \delta_{\text{loc}} \,. \tag{5}$$

It is clear that s is nilpotent, $s^2 = 0$. We call $\{C_{loc}^{q,p}, s\}$ the BRST bicomplex. In [11, 12] we derived the classical BRST transformations using the Chevalley–Eilenberg differential for $\rho = ad_x$, $x \in \mathfrak{g}$, the **adjoint representation** of \mathfrak{g} :

Theorem 2. (Schmid [11]) For a vector potential $A \in \mathbf{C}_{loc}^{0,1}$ and the ghost field $\eta \in \mathbf{C}_{loc}^{1,0}$ (being the Maurer–Cartan form on \mathcal{G}), the classical BRST transformations are:

$$\mathbf{s}A = \mathrm{d}\eta + [A, \eta], \qquad \mathbf{s}\eta = -\frac{1}{2}[\eta, \eta], \qquad \mathbf{s}\bar{\eta} = b \quad \mathbf{s}b = 0.$$
 (6)

In this case, the derived representation ρ' of the Lie algebra \mathfrak{g} on $\Omega^0(P,\mathfrak{g}) \simeq \mathfrak{g}$ is identical with the adjoint representation of \mathfrak{g} , $\rho' = \mathrm{ad}_{\xi}$, $\xi \in \mathfrak{g}$.

5. Anomalies

Next we describe the cohomology which accommodates the Adler-Bardeen anomalies as elements of its first cohomology group [11, 12]. We combine the BRST bicomplex with local forms.

Consider $\Omega_{\text{loc}}(M \times \Gamma^{\infty}(\pi))$ with $\Gamma^{\infty}(\pi) = \Omega^{p}(P, \mathfrak{g})$ i. e. $\pi = \pi^{p}$. Let C be a smooth p-chain on M and $\omega \in \Omega^{p,0}_{\text{loc}}$. We consider functionals \mathcal{L} on $\Omega^{*}(P, \mathfrak{g})$ given by

$$\mathcal{L}(A) = \int_{C} \omega(A), \qquad A \in \Omega^{p}(P, \mathfrak{g})$$

and denote the space of all such functionals by Γ^p_{loc} ,

$$\Gamma^p_{ ext{loc}} = \left\{ \mathcal{L} \colon \Omega^p(P, \mathfrak{g}) o \mathbb{R} \, ; \, \mathcal{L}(A) = \int\limits_C \omega(A)
ight\}, \quad \omega \in \Omega^{p,0}_{ ext{loc}} \, .$$

We define the representation ρ_{loc} of the gauge group \mathcal{G} on the space Γ^p_{loc} by

$$(\rho_{\text{loc}}(\phi)\mathcal{L})(A) = \mathcal{L}(\rho(\phi^{-1})A), \qquad \phi \in \mathcal{G}, \qquad A \in \Omega^p(P, \mathfrak{g}). \tag{7}$$

For short $\phi \cdot \mathcal{L}(A) = \mathcal{L}(\phi \cdot A) = \int_C \omega(\phi \cdot A)$. Then the derived representation ρ'_{loc} of the gauge algebra \mathfrak{g} on Γ^p_{loc} is given by

$$(\rho'_{loc}(\xi)\mathcal{L})(A) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \mathcal{L}(\rho_{loc}(\mathrm{e}^{-t\xi})A) = \mathcal{L}(\rho(Z_{\xi})A)$$
(8)

where $\xi \in \mathfrak{g}$, $A \in \Omega^p(P, \mathfrak{g})$, and Z_{ξ} denotes the fundamental vector field generated by ξ .

Now we consider the Chevalley–Eilenberg complex of $\mathfrak g$ with respect to the representation ρ'_{loc} on Γ^p_{loc} . That means that the coboundary operator $\delta_{\mathrm{loc}} \colon C^q(\mathfrak g, \Gamma^p_{\mathrm{loc}}) \to C^{q+1}(\mathfrak g, \Gamma^p_{\mathrm{loc}})$ is given by

$$(\delta_{\text{loc}}\omega)(\xi_{0},\ldots,\xi_{q}) = \sum_{i=0}^{q} (-1)^{i} \rho'_{\text{loc}}(\xi_{i})\omega(\xi_{0},\ldots,\hat{\xi}_{i},\ldots,\xi_{q}) + \sum_{i< j} (-i)^{i+j} \omega([\xi_{i},\xi_{j}],\ldots,\hat{\xi}_{i},\ldots,\hat{\xi}_{j},\ldots,\xi_{q}).$$
(9)

Again $\delta_{\text{loc}}^2=0$ and we have the double complex $\mathcal{C}^{q,p}=\mathcal{C}^q(\mathfrak{g},\Gamma_{\text{loc}}^p)$ with $\delta_{\text{loc}}\colon \mathcal{C}^{q,p}\to \mathcal{C}^{q+1,p}$, and $\mathrm{d}\colon \mathcal{C}^{q,p}\to \mathcal{C}^{q,p+1}$ induced by the exterior derivative d_M on M as follows: define $\mathrm{d}\colon \Gamma_{\text{loc}}^p\to \Gamma_{\text{loc}}^{p+1}$ by

$$(\mathrm{d}\mathcal{L})(A) = \int_{D} (\mathrm{d}_{M}\omega)(A) \tag{10}$$

where $\mathcal{L}(A) = \int_C \omega(A)$, $\omega \in \Omega_{loc}^{p,0}$, $d_M \omega \in \Omega_{loc}^{p+1,0}$ and D is a p+1 cocycle such that C is the boundary of D. The two operators δ_{loc} and d anticommute:

Proposition 4. $\delta_{loc} d + d\delta_{loc} = 0$.

We define the **total differential** $\Delta = \delta_{loc} + (-1)^p d$. We have $\delta_{loc}^2 = d^2 = \delta_{loc} d + d\delta_{loc} = 0$, which implies $\Delta^2 = 0$. We denote the total cohomology with respect to Δ by $\mathbf{H}_{loc}^*(\mathfrak{g})$.

A homotopy formula ("Russian formula") on this bicomplex is derived in [11,12] and with the introduction of Chern–Simons type forms $\omega_{2q-i}^{i-1}=a_ip(A,[A,A]^{i-1},F_A^{q-1})$ we obtain the associated descent equations $\delta_{\text{loc}}\omega_{2q-1}^0=-\mathrm{d}\omega_{2q-2}^1$, $\delta_{\text{loc}}\omega_{2q-2}^1=-\mathrm{d}\omega_{2q-3}^2$, ..., $\delta_{\text{loc}}\omega_0^{2q-1}=0$. We identify the non-Abelian anomaly as a cohomology class in $H^1_{\text{loc}}(\mathfrak{g})$ represented by ω_{2q-2}^1 in n=2q-2 dimensions.

For example, for q=2, q=3 we get the 2- and 4-dimensional non-Abelian anomaly respectively, represented by $\omega_2^1=\operatorname{Tr}(\eta\delta_{\operatorname{loc}}\tilde{A})$ and $\omega_4^1=\operatorname{Tr}(\eta\delta_{\operatorname{loc}}(\tilde{A}\delta_{\operatorname{loc}}\tilde{A}+\frac{2}{3}\tilde{A}^3))$ resp., where $\tilde{A}=A+\eta$. For $M=S^3$ the Chern-Simon form $\omega_5^0=Tp(A)$, where p is an invariant polynomial and T the transgression operator, moreover $\mathrm{d}Tp(A)=p(F)=\operatorname{Tr} F^3$. We get the stair

case equations [14]:

 ω_3^2 represents the anomaly.

6. The Consistency Condition

We consider the Wess–Zumino consistency condition as a problem in *local cohomology* [21]. In our bicomplex $\mathcal{C}^*_{loc} = \{\mathcal{C}^{q,p}_{loc}, \Delta\}_{q,p \in \mathbb{N}}$ we have the differentials $\Delta = \delta_{loc} + (-1)^p d$, where $\delta_{loc} \colon \mathcal{C}^{q,p}_{loc} \to \mathcal{C}^{q+1,p}_{loc}$ and $d \colon \mathcal{C}^{q,p}_{loc} \to \mathcal{C}^{q,p+1}_{loc}$ satisfying $\Delta^2 = \delta_{loc} d + d\delta_{loc} = \delta^2_{loc} = d^2 = 0$.

The Wess–Zumino consistency condition on $\omega \in \mathcal{C}^*_{loc}$ means there exists a $\alpha \in \mathcal{C}^*_{loc}$ such that

$$\delta_{\text{loc}}\omega + d\alpha = 0. \tag{11}$$

Any solution of (11) of the form $\omega = \delta_{\rm loc}\beta + {\rm d}\gamma$, β , $\gamma \in \mathcal{C}_{\rm loc}^*$ is considered to be trivial, since then $\delta_{\rm loc}\omega = \delta_{\rm loc}^2\beta + \delta_{\rm loc}\,{\rm d}\gamma$ so $\delta_{\rm loc}\omega - {\rm d}(\delta_{\rm loc}\gamma) = 0$. We restrict ourselves to the subalgebra $\Omega_{inv}^p(P,\mathfrak{g})$ of G-invariant \mathfrak{g} -forms. The consistency condition (11) produces the so called descent equations. If $\delta_{\rm loc}\omega + {\rm d}\alpha = 0$ then taking $\delta_{\rm loc}$ of (11) we get $\delta_{\rm loc}^2\omega + \delta_{\rm loc}\,{\rm d}\alpha = 0$ hence $\delta_{\rm loc}\,{\rm d}\alpha = 0 = -\,{\rm d}\delta_{\rm loc}\alpha$. So by the Poincare lemma there exists a local form β such that $\delta_{\rm loc}\alpha = -\,{\rm d}\beta$, or $\delta_{\rm loc}\alpha + {\rm d}\beta = 0$. By definition $\delta_{\rm loc}[\omega] = [\alpha]$. If ω is trivial, i. e. $\omega = \delta_{\rm loc}\beta + {\rm d}\gamma$ then $\delta_{\rm loc}\,{\rm d}\gamma = -\,{\rm d}\alpha$, and ${\rm d}\alpha = -\,{\rm d}\delta_{\rm loc}\gamma$, hence α is of the form $\alpha = \delta_{\rm loc}\gamma + {\rm d}\lambda$, that is $[\alpha] = 0$. We get the descent equations

$$\delta_{loc}\omega + d\omega_1 = 0$$

$$\delta_{loc}\omega_1 + d\omega_2 = 0$$

$$\vdots$$

$$\delta_{loc}\omega_{k-1} + d\omega_k = 0$$

where k is the smallest integer such that $[\omega] \in \mathbf{H}^k_{loc}(\mathfrak{g})$ with $\delta_{loc}\omega = 0$.

7. A Solution to the Consistency Condition

We now combine the ideas of the previous sections. The costruction of \mathfrak{g} -symplectic orbits and the momentum map is generalized from the finite dimensional case to the infinite dimensional situation as follows (we use the same notation with script symbols): we consider the principal \mathcal{G} bundle $(\mathcal{P}, \pi, \mathcal{M})$, where $\mathcal{P} = \Omega^*(P, \mathfrak{g})$ with the \mathcal{G} action ρ_{loc} defined by (7), and $\mathcal{M} = \mathcal{P}/\mathcal{G}$ is the orbit space (under the usual assumptions on the action and topologies). Then for $A \in \Omega^*(P, \mathfrak{g})$ the canonical one-form Θ_A on the orbit \mathcal{O}_A induced from the Maurer-Cartan form on \mathcal{G} becomes a map

$$\Theta_A \colon \mathcal{O}_A o \Omega^1(P,\mathfrak{g}) \simeq \mathcal{C}^{0,1}_{\mathrm{loc}}$$

and the momentum map

$$J \colon \mathcal{O}_A o \mathcal{L}(\mathfrak{g},\mathfrak{g}) = \mathcal{C}^{1,0}_{\mathrm{loc}}$$
 .

Theorem 3. The momentum map J satisfies the consistency condition for the canonical one-form (Maurer-Cartan) Θ

$$\delta_{loc}\Theta_A + \mathrm{d}J = 0. \tag{12}$$

Proof: We have $\delta_{\text{loc}}\Theta_A \in \mathcal{C}^{1,1}_{\text{loc}}$ and $\mathrm{d}J(A) \in \mathcal{C}^{1,1}_{\text{loc}}$ and from (6) we get for any $\xi \in \mathfrak{g}$

$$\delta_{\text{loc}}\Theta_A(\xi) = dJ(A)(\xi) + L_{Z_{J(\xi)}}\Theta_A$$

where $Z_{J(\xi)}$ is the induced fundamental vector field. From (2) we conclude that $L_{Z_{J(\xi)}}\Theta_A=0$. \square

References

- [1] Anderson I., The Variational Bicomplex, Academic Press, 1998.
- [2] Becchi C., Rouet A. and Stora R., *Renormalization of Gauge Groups*, Ann. Phys. **98** (1976) 287–321.
- [3] Bonora L. and Cotta-Ramusino P., Some Remarks on BRS Transformations, Anomalies and the Cohomology of the Lie Group of Gauge Transformations, Comm. Math. Phys. 87 (1983) 589-603.
- [4] Chevalley C. and Eilenberg S., Cohomology Theory of Lie Groups and Lie Algebras, Trans. Amer. Math. Soc. 63 (1948) 85–124.
- [5] Fisch J., Henneaux M., Stasheff J. and Teitelboim C., Existence, Uniqueness and Cohomology of the Classical BRST Charge with Ghosts of Ghosts, Comm. Math. Phys. 120 (1989) 379-407.

- [6] Henneaux M., Classical Foundations of BRST Symmetry, Biblionopolis, Naples 1988.
- [7] Kastler D. and Stora R., A Differential Geometric Setting for BRS Transformations and Anomalies I & II, J. Geom. Phys. 3 (1986) 437–505.
- [8] Kostant B. and Sternberg S., Symplectic Reduction, BRS Cohomology, and Infinite Dimensional Clifford Algebras, Ann. Phys. 176 (1987) 49–113.
- [9] Saunders D., *The Geometry of Jet Bundles*, Cambridge Univ. Press., Cambridge 1989.
- [10] Schmid R., The Geometry of BRS Transformations, Illinois J. Math. **34** (1990) 87–97.
- [11] Schmid R., Local Cohomology in Gauge Theories BRST Transformations and Anomalies, Differential Geometry and its Applications 4 (1994) 107–116.
- [12] Schmid R., BRST Cohomology and Anomalies. Geometrical and Algebraic Aspects of Nonlinear Field Theory, S. de Filippo et al (Eds), Elsevier, 1989, pp 159–172.
- [13] Schmid R., A Few BRST Bicomplexes, In: Proc. Conf. Diff. Geom. Methods in Theor. Phys., Nankai Inst. (1992).
- [14] Stasheff J., *The de Rham Bar Construction as a Setting for the Zumino, Faddee'v, etc. Descent Equations*, In: Proc. Symp. Anomalies, Geometry, Topology, Argonne Nat. Lab. 1984, W. Bardeen, and A. White (Eds), World Scientific, Singapore 1985, pp 220–233.
- [15] Stasheff J. and Teitelboim C., Existence, Uniqueness and Cohomology of the Classical BRST Charge with Ghosts of Ghosts, Comm. Math. Phys. 120 (1989) 379-401.
- [16] Takens F., A Global Version of the Inverse Problem of the Calculus of Variations, J. Diff. Geom. 14 (1979) 543–562.
- [17] Tyutin I., Gauge Invariance in Field Theory and in Statistical Mechanics, Preprint FIAN 39 (1975).
- [18] Viallett C., Some Results on the Cohomology of the Becchi-Rouet-Stora Operator in Gauge Theory, In: Proc. Symp. Anomalies, Geometry, Topology, Argonne Nat. Lab., W. Bardeen and A. White (Eds), World Scientific 1985, pp 213–219.
- [19] Vinogradov A., On the Algebro-Geometric Foundations of Lagrangian Field Theory, Sov. Math. Dokl. 18 (1977) 1200–1204.
- [20] Zuckerman G., *Action Principles and Global Geometry*, In: Proc. Conf. Math. Aspects of String Theory, San Diego 1986, S. Yau (Ed.), World Scientific 1987, pp 259–284.
- [21] Zumino B., Lectures at UC Berkeley, 1983–84.
- [22] Zumino B., Anomalies, Cocycles and Schwinger Terms, In: Proc. Symp. Anomalies, Geometry, Topology, Argonne Nat. Lab. 1984, W. Bardeen and A. White (Eds), World Scientific 1985, pp 111–128.