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Abstract. In this work we present a brief summary of the “geometry
of mass”. We show how the notion of mass of elementary particles
is related to the geometrical concept of curvature. In particular, the
bosonic mass matrices are related to the extrinsic curvature of specific
sub-manifolds of the Higgs bundle and the underlying gauge bundle.
In contrast, the mass matrix of the fermions is related to the intrinsic
curvature of bundles that geometrically represent “free fermions” within
the context of spontaneously broken Yang—Mills gauge theories.

1. Introduction

When seen from a geometrical viewpoint the electric charge of an electron can
be considered as the coupling constant of a U(1) Yang-Mills gauge theory.
That means that the electrons charge parameterizes the most general Killing
form on u(1) = Lie(U(1)). One of the still outstanding and deep secrets of
nature is why all of the electric charges of free particles is given by an integer
multiple of this coupling constant. In general, the electric charge of a particle
may be defined as

charge = / *Flan (1)
S

where F,, € Q?(M) denotes the electromagnetic field generated by the charge
and § C M any closed two dimensional space like surface of an orientable
spacetime (M, gaq)-

In other words, electric charge is tied to the curvature of the total space of the
underlying principal U (1)-bundle. However, by formula (1) electric charge is
also tied to the metric on spacetime (* denotes the Hodge map that is defined
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with respect to gp, and a choice of orientation of M). No similar relation
seems to hold true in the case of the “mass” of an elementary particle. Even
more unsatisfying, there is no unique definition of mass at all in physics (see,
e. g. the book by Jammer [3]). Nonetheless, in particle physics the mass of an
elementary particle usually refers to the notion of “rest mass”. Geometrically,
this means that mass is defined by the four momentum p € C* C T* M of the
particle in question, i. e. by the well-known formula®

m’ := gum(p,p) . 2)

This again, relates the notion of mass to that of the metric of spacetime. How-
ever, for this to make sense the particle must be considered as “free”, i.e.
as a closed system.®® 1In relativistical mechanics (2) is being considered as
evaluated along the particles world line . If the particle is free, then the cor-
responding value of the particle’s four momentum squared is constant along 7.
However, elementary particles are not considered as point like constituents of
spacetime. Rather they are mathematically described by fields on spacetime.
These fields obey specific equations which are in a semi-classical approxima-
tion of a full quantum theory determined by a differential operator of first or
second order, depending on the spin of the corresponding particle. Then, the
four momentum of the particle geometrically corresponds to the symbol of the
differential operator in question. In particular, the four momentum of a free
particle corresponds to the symbol of a differential operator that is determined
by the metric only.

In 1928 P.A.M. Dirac introduced his famous equation
(i — m) = 0 3)

that describes the dynamics of a free fermion of spin 1/2 (at that time identified
with an electron). Since the non negative real parameter “m” in (3) is physically
interpreted as mass the symbol of the Dirac operator @ corresponds to the
(positive) square root of the four momentum of the fermion, 1. e.

Sym(id)(p) = \/gm(p,p) - 4)

Therefore, the Dirac operator has a clear interpretation both in geometry and in
physics. However, besides of being a parameter in Dirac’s equation what is the
geometrical meaning of mass? Moreover, since the notion of mass is related to

(U In what follows we consider gam either as a metric on the tangent bundle {74, Or as a metric
on the cotangent bundle &7+ a¢ of M; Cf C T M is the future oriented part of the light cone at
z e M.

(2) Since quarks do not occur as free particles in nature the definition of mass in this case is
different from (2) and will not be taken into account here.
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the notion of “freeness” of a particle one also has to geometrically understand
the meaning of a free particle within the context of gauge theories. This is
far from being obvious indeed. In a gauge covariant description of elementary
particle dynamics the symbol of the corresponding differential operator cannot
only be determined by the metric. Hence, the notion of mass becomes gauge
dependent. Of course, this is physically unacceptable. At a first glance, the
concept of mass of an elementary particle seems to be in conflict with gauge
symmetry and thus also with the notion of charge. In what follows we will
briefly summarize some ideas that show that in fact charge and mass can live in
“peaceful harmony” when neither of these classical concepts is being considered
as fundamental, actually.

2. Orbit Bundles and Vacuum Pairs

Today, the notion of mass is not considered to be a fundamental one like in
mechanics. Rather all particles are assumed to be massless in some sense. What
we call “mass” is considered to be a manifestation of specific interactions of
the (massless) particles with the so-called Higgs boson. Within the frame of
the Standard Model of particle physics one has to distinguish three different
kinds of gauge invariant interactions that give rise to the notion of mass. One
of which is given by the gauge coupling. It yields the “masses of (some of) the
gauge bosons”. Another type of gauge invariant interaction is given by what
is called the Yukawa coupling between the fermions and the Higgs boson and
which give rise to the “masses of the fermions”. The third kind of interaction
to be considered is the interaction of the Higgs boson by itself and which leads
to the “mass of the (physical) Higgs boson”. Note that the latter two kinds
of interaction are usually regarded as non-geometrical in contrast to the gauge
coupling. Nonetheless, the self interaction of the Higgs boson is known to be
of fundamental significance since it yields a reduction of the gauge symmetry
which underlies all of the various couplings.

In what follows we want to present some ideas how such a reduction can be
used to geometrically describe the notion of mass in terms of curvature.

3. Bosonic Mass and Extrinsic Curvature

In this section we briefly summarize the general notion of vacuum pairs without
going into the technical details that can be found, e. g. in [6]. We will use the
notion of vacuum pairs in order to describe a relation between the bosonic mass
matrices and the extrinsic curvature of specific sub-manifolds that are defined
by a vacuum section.
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An Yang-Mills—Higgs gauge theory is specified by the following data:
(PM,G),p,V) &)

where P(M,G) denotes a principal G-bundle P - M over a connected,
orientable (pseudo)Riemannian manifold (M, gus). G > Aut(CV) is a Her-
mitian representation of the semi-simple Lie group G with Lie algebra g. The

smooth function CV 5 R is supposed to be G-invariant and positive definite
transversally to the orbit of minimum. We call V' a general Higgs potential.
Associated to these data are the Higgs bundle &y:
wH:E::Pxp(CN—>M

(6)

[(p,2)] > 7(p)
and the orbit bundle &4,y = (O(20), o, M) with respect to a minimum
z, € CV of the Higgs potential:

Ton: O(2g) 1= P X, orb(zg) — M @)
where orb(z,) C CV denotes the orbit of z, and pog is the restriction of p to

the orbit.

The data (5) also give rise to the well-known Yang-Mills—Higgs functional .
For this let us denote by A({y) the affine set of associated connections on the
Higgs bundle and by I'(¢y) the module of sections of the Higgs bundle. Notice
that the Higgs bundle serves as the geometrical object that represents the Higgs
boson. Correspondingly, a section of the Higgs bundle may be interpreted as a
state of the Higgs boson. The Yang—Mills—Higgs action reads

Zymu: A(&u) X I'(&u) — R
(A,\If) — S<FA,FA> -+ <8A\If,aA\IJ>—|—S<\I’*VH,1> (8)
=Zym + 2y -
Here, s = + depends on the signature of the (pseudo) metric gpq. The pair-
ing (-,-) on Q(M, F) and on Q(M,End(F)) is defined with respect to the
(pseudo) metric together with the choice of an orientation on M and the Hermit-
ian structure on ¢y. The covariant derivative and the curvature of the connection
A are denoted by 94 and F, respectively. The function ¥*V is defined by
the mapping (also denoted by V)
V:T(én) — C*(M)

T UV €))

where UV () := V((p))|per—1 (=) Here, ¥ € C52(P,C) is the equivariant
mapping that corresponds to the section W, i.e. ¥(z) = [(p, ¥(p))]|per-1(x)-
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Since Eom(z,) C &u any section V of the orbit bundle can also be considered
as a section of the Higgs bundle. It can be shown that there is a one-to-one
correspondence between the set of sections I‘({orb(ZO)) and the H-reductions
of P(M,G), with H C G being isomorphic to the isotropy group of the
minimum z,. We denote such a reduction by (Q,:), where Q(M, H) is the
principal H-bundle (with projection mp) that reduces P(M,G) and Q — P
is the corresponding embedding (of principal bundles). Note that V(z) =
[(L(q),zo)quw(Sl(x). A connection A on P(M, @) is called reducible if ¢*A

is a connection on Q(M, H). We call a Yang-Mills-Higgs pair (A, P) €
A(&y) x T'(&y) a vacuum pair iff A = O is associated to a flat reducible
connection on P(M,G) and & = V is a section of the orbit bundle. The
covariant derivative associated to the connection © is denoted by 0.

Clearly, every vacuum pair (0, V) defines a minimum of the energy functional
that corresponds to (8). In particular, any vacuum section V € I'({onzy))
minimizes the functional associated to the mapping (9). It therefore corresponds
to a possible ground state of the Higgs boson. We call a reduction (Q,:)
a vacuum with respect to the minimum z,. Notice that in the case where
two minima z, and z; are on the same orbit the corresponding reductions are
equivalent. However, the orbit bundle with respect to some minimum of a
general Higgs potential may have gauge inequivalent vacuum sections. Thus,
the Higgs boson may give rise to gauge inequivalent vacua even if the Higgs
potential in question has only one orbit of minima. We call the gauge group of
a reduced principal bundle Q(M, H) an invariance group of the vacuum. The
gauge symmetry defined by P(M, ) is called spontaneously broken by a
vacuum (Q, ¢) if the invariance group of the vacuum is a proper subgroup of the
original gauge group. The gauge symmetry is called completely broken by the
vacuum if the invariance group of the vacuum is trivial. Of course, a necessary
condition for a gauge symmetry to be completely broken is that P(M, G) is
trivial. We call a vacuum (Q, ¢) trivial iff Q(M, H) is trivial. Notice that the
H -reductions of a trivial principal GG-bundle are nontrivial in general. Thus,
the possible vacua of a spontaneously broken gauge theory might be nontrivial
even if P(M,G) is trivial.

Let (Q,:) be a vacuum that spontaneously breaks the gauge symmetry of a
Yang—Mills—Higgs gauge theory. Let g be an arbitrary associated fiber bundle
with respect to P(M, G) with total space E, typical fiber F and G - Diff (F).
We call the fiber bundle g ,eq

TH, red + Ered = Q X prad F— M
[(¢,9)] — 7q(q)

the reduced fiber bundle with respect to the vacuum (Q,:). Here, prq := p|x-

10)
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Notice that the vacuum section V' that corresponds to (Q,:) is (covariantly)
constant when considered as a section of the reduced Higgs bundle. Moreover,
regarded as a real (orthogonal) vector bundle the reduced Higgs bundle is Z,-
graded (cf. [6])

§E,red — gG @ §H, phys * (11)

The real vector bundle &g is called the Goldstone bundle. It has rank equal
to dim G — dim H. The real vector bundle &y 4, is called the physical Higgs
bundle. It has rank equal to 2N + dim H — dim G (if this is a nonnegative
number). Both the Goldstone and the physical Higgs bundle refer to a vacuum.
However, the rank is independent of the vacuum chosen. In particular, it can
be shown that the rank of the Goldstone bundle equals the number of “massive
gauge bosons”. The rank of the physical Higgs boson bundle equals the number
of “massive Higgs bosons” (cf. l.c.).

Definition 1. Let (Q, 1) be a vacuum with respect to a minimum z, € R*N of
a general Higgs potential V. The global mass matrix of the Higgs boson is the
section V* My, € I'(€gnacen)) defined by the equivariant mapping

v*Myg: P — End(R*Y)

_ (12)
p =u(q)g — p(g " YMF(2o)p(g) -

Here, M%(z,) € End(R?N) is given by M3 (z()z -z’ := Hess V(z,)(z,2') for
all z,z' € R*N. The equivariant mapping v € Cyy (P, 0rb(z,)) corresponds to

the vacuum section of (Q,1), i. e. v(p) = p(g ')z, for all p=1(q)g € P.

With respect to a vacuum pair (©,V) the set of (principal) connections on
P(M,G) can be identified with the module of sections of the Yang—Mills
bundle 7}, ® £&ym where Ty, is the cotangent bundle of M and &yy is defined
by

Eyw:=Q xpg— M. (13)
Notice that the Yang-Mills bundle is also Z,-graded since
gYM = éadQ D §G7 (14)

where £.4¢ is the “adjoint bundle” with respect to Q(M, H).

The Yang—Mills bundle serves as the geometrical quantity that corresponds to
a “real gauge boson”. Accordingly, I'(7x, ® £ym) represents the possible states
of the real gauge boson.
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Definition 2. The global mass matrix of the real gauge boson is the section
VM3, € I'(érnd(aa p)) defined by the equivariant mapping

v*"M3y: P — End(g)

: (15)
p=1(q)g — adg-1 o My (%) o ad, .

Here, M2,,(zo) € End(g) is defined by B(M3,(zo)n,7') = 2p'(n)z -
o (n)zy for all n,n’ € g. The ad-invariant bilinear form 3 denotes the most
general Killing form on g parameterized by the “Yang—Mills coupling con-
stants”. By p' := dp(e) we mean the “derived” representation of g.

It can be shown that the spectrum of the global mass matrix of the gauge and
the Higgs boson is constant and independent of the vacuum. Moreover, both
endomorphisms are in the commutant of the invariance group of the vacuum,
cf. [6]. In the same reference it is also shown how the spectrum of the global
mass matrices can be interpreted as the masses of the gauge and Higgs boson.

In order to describe the geometrical meaning of the (nontrivial part of the)
global mass matrix of the Higgs boson we consider the reduced Higgs bundle
as a real vector bundle over ImV C O(z), i.e.

T Ba @ T By onys — Im(V) C O(20) . (16)

Notice that 7}, Eq = V O(2¢)|1m(v) and that the tangent bundle of O(z,) along
Im(V) splits into

TO(ZO)|Im(V) == Im(dV) D ™ EG . (17)

orb

Consequently, 7, &y phys €an be regarded as the normal bundle along the va-
cuum Im(V) which in turn is a sub-manifold of the total space of the reduced
Higgs bundle. Note that the vacuum gives rise to a specific embedding of
spacetime into the total space of the Higgs bundle.

A vacuum pair admits to define a (pseudo) metric on the total space of the
reduced Higgs bundle and which is denoted by gz. For this let £ € E4, then

gE,é: TEEred X TgEred — R

(W1, Wa) > hpe(ver(wi), ver(wz)) + (T eagr)e (Wi, wa) .

(18)

Here, w = ver(w) + hor(w) is the decomposition of w € T E., into its
vertical and horizontal part with respect to the connection ©. The vertical
metric (real form of the Hermitian product) is denoted by hy. Consequently,
the tangent bundle of £ = E4 decomposes as

TE = Torb(zo) D Vorb(zg) - (19)
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Here, Vom(z,) denotes the normal bundle defined by the metric g on the total
space of the reduced Higgs bundle and 7,44,y denotes the tangent bundle of
the total space of the reduced orbit bundle. Again, when restricted to Im(V)
the normal bundle can be identified with 75, &y phys-

The crucial point is that the reduced Higgs bundle decomposes into the Whitney
sum of eigenbundles of the global mass matrix of the Higgs boson. In particular,
the physical Higgs bundle decomposes into eigenbundles that correspond to
nonzero eigenvalues of V*MZ

& phys = & Etim? - (20)

m?2espec(V*M7 )\ {0}

Consequently, along the vacuum Im(V) C E,.4 there exists a distinguished set
of normal sections. Notice that the eigenbundles of V*MJ7, are line bundles
iff all of the (mass) eigenvalues are different. Also notice that the normal
sections are nowhere vanishing iff the appropriate eigenbundles are trivial.
We also mention that the restriction to Im(V) of any reducible connection A
on P(M, ) coincides with the horizontal distribution that is defined by the
vacuum section V (cf. [6]). Of course, this holds true especially in the case of
*»©. Thus, when restricted to Im(V) the (pseudo) metric g reads

7Torb

IE ltmey = PE @ Tongm (21)

i.e. 9Ei(qum0)1 ([(u1,21)], [(u2,22)]) = 21 - 22 + IM o (dTo(g)ur, dmg(g)us)
for all u;,u, € T,Q and z,,2, € T, R*V,

Let, respectively, “nor” and “tang” be the normal and the tangential projection
with respect to g and let V¥ be the covariant derivative with respect to the
connection on Ey 4 that is defined by gg. Also, let Y € T'(Vop(s,)) be a
normal vector field and X', X’ € I'(7om(s,)) be tangential vector fields. Then,
the metric connection on 7g splits according to (see, €. g. [4])

ViX = VPX 4 op(X,X") (22)
Viy=Vy"Y—an(X,)). (23)

Here, V? is the covariant derivative that is defined by tang(VEZX’). It coin-
cides with the metric connection that is defined by j*gx, where j: orb(zy) < F
is the inclusion mapping. Correspondingly, the covariant derivative V™" is
given by nor(VEY).

The two bilinear mappings oy and ay are defined by

Of - F(Torb(ZO)) X I_1(7-orb(zo)) - 1_1(7/orb(zo))

(X, &) > nor(Vy X') 24)



Mass and Curvature 311

Q. F(Torb(zo)) X F(Vorb(zo)) - F(Torb(zo))
(X,Y) — —tang(VZY).

They are related to each other by the relation

gelan (X, V), X)) = grlog(X, X)), Y.), a=1,...,L (26)

(25)

where (j)l, e ,)A)L) C I'(Vorb(z,) ) 1s a set of (locally defined) orthonormal sec-
tions of the normal bundle of O(zy) C Ey -

For each Y, (a =1,..., L) the mapping

O[a[-‘r: I1(’7-0rb(zo)) - I1(7-orb(z0))

R 27
X — ag(X,V,) @7)

is called a second fundamental form of the sub-manifold O(z,). It generalizes
the usual second fundamental form in the case of a hyper-surface. Of course, in
general (27) strongly depends on the choice of normal sections (yl, . yL)
However, along the vacuum Im(V) C Ey 4 the global mass matrix of the
Higgs boson gives rise to a distinguished set of normal sections because of the
splitting (20) and the identification Vew(z,)|tm(v) = Tomén, phys-

We call the set of bilinear forms =5 = (2%) (e =1,...,L = rank(fH phys)) @
second fundamental form of the vacuum, whereby (V*M2)Y, = m2Y, and

EaH: F(TOI'b(Zo)hm(v)) X F(Torb(zo)hm(v)) - C ( ( ))
(&, &) = gp(ag (X), X').

Notice that oy (X, X') = Y5 B22(X, X')D,.

Clearly, the second fundamental forms (28) determine the extrinsic geometry of
the ground state of the Higgs boson in terms of the physical Higgs bosons. In
this sense the global mass matrix of the Higgs boson determines the extrinsic
geometry of the vacuum.

(28)

In quite an analogous manner the global mass matrix V*M3,, of the Yang—
Mills gauge boson determines a set of second fundamental forms Zyy = (E9y,)
of the sub-manifold +(Q) C P, where a = 1,..., L = rank({g), cf. [6]. The
global mass matrix of the gauge boson thus determines the extrinsic geometry
of the vacuum in terms of the Goldstone bosons like the global mass ma-
trix of the Higgs boson determines the extrinsic geometry of the vacuum in
terms of the physical Higgs bosons. This might be considered as a geometri-
cal variant of the well-known Higgs—Kibble mechanism of a spontaneously
broken gauge symmetry, cf. [2]. Notice that rank({s) = dim(Ker(V*M§)) =
dim(Im(V*M3,))-
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4. Fermionic Mass and Intrinsic Curvature

In the preceding section we have discussed how the global bosonic mass ma-
trices are related to the extrinsic geometry of the vacuum. In this section we
briefly discuss how the global mass matrix of the fermions is related to the
intrinsic curvature of the “reduced fermion bundle”. For the technical details
we refer to [7].(Y

Let (M, gar() be a connected (pseudo)Riemannian spin-manifold of dimension
2n. We denote by &g the spinor bundle with respect to a chosen spin structure.
Also, let (» be an associated Hermitian vector bundle with respect to the
geometrical data (P(M,G),py,Vy) of a Yang—Mills—Higgs gauge theory.
That is

mp: BEp =P X, chNr - M (29)

where pp: G — Aut(CM*) is a unitary representation of the structure group
G. In addition we will assume for physical reasons that the vector bundle (p
is Z,-graded.

We call the twisted spinor bundle

Eri=&s ®(p (30)

the Fermionic bundle. It geometrically represents a fermionic particle of spin
1/2. Notice that the fermion bundle is Zj-graded and admits a natural action of
the Clifford bundle & associated to (M, gaq). We denote this Clifford action
by .

Let A({r) be the affine set of all associated connections on the fermion bundle
&p. Moreover, let D(€r) be the affine set of all Dirac type operators which are
compatible with the Clifford action, i.e. D € D({p) fulfills [D, f] = y(df)
for all f € C*(M). The set A({r) of all connections on the fermion bundle
has a distinguished affine subset A (€r). It consists of those connections that
are compatible with the Clifford action. For this reason these connections are
referred to as Clifford connections. We denote the covariant derivative of a
Clifford connection by 04. Then, any D € D(&fr) reads

D=p,+0 31)

where @, = o0 04 is the twisted spin-Dirac operator with respect to the

chosen Clifford connection and ® € Q°(M, End(£)) (see, e.g. [1] and [5]).
Here, £ := S ® EFr is the total space of the fermion bundle (30).

W An appropriate English version is in preparation and will be published elsewhere.
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A Dirac type operator (31) is called of simple type iff the zero order part of
D reads ® = 75 ® ¢. Here, ¢ € Q°(M,End (EFr)) and ~s is the canonical
grading operator on the spinor bundle &g.

Notice that in general D({r) ~ A(¢r)/ Ker(y). However, the connection class
representing a Dirac operator of simple type has a natural representative called
a Dirac connection.) The appropriate covariant derivative is denoted by

Drp =04 +EA (s @) (32)

Here, £ € Q' (M, End(£)) is the canonical one-form which is defined on every
Clifford module bundle (over an even dimensional base manifold). The two
basic properties of this one form are: (a) it is covariantly constant with respect
to every Clifford connection on £p; (b) it is a right inverse of the Clifford
action y (cf. [S]).

Let & be the Higgs bundle with respect to the data (P(M,G), pu,Vy). A
linear mapping

Gy:T'(u) — F(ﬁEnd—(Ep))

33
@ — ¢y = Gy(p) G

is called a Yukawa mapping. A Dirac type operator is called a Dirac-Yukawa
operator Dy iff its zero order part reads & = ®y := y5R¢y. The corresponding
Dirac connection on the fermion bundle is called a Dirac-Yukawa connection
and the covariant derivative is denoted by Jy.

Let (©,V) be a vacuum pair that spontaneously breaks the gauge symmetry
that is defined by P(M,G). Then, on the corresponding reduced fermionic
bundle .4 we have a natural non-flat connection

Op =0+ &N (5 ® D) (34)

with D := Gy(V). The (total) curvature on the reduced fermion bundle is
given by

Fp=R+mpENE (35)

where R denotes the lifted (pseudo)Riemannian curvature tensor of g, and the
section my = —iys; ® D is the global fermionic mass matrix.

Like in the case of the global bosonic mass matrices the spectrum of the Her-
mitian operator m? is constant. Since this operator is in the commutant of

(U In fact, it can be shown that this property fully characterizes Dirac operators of simple type.
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the invariance group of the vacuum one may decompose the reduced fermion
bundle into the Whitney sum of eigenbundles of m%.:

€F,red = @ é.F,m2 . (36)

m2eSpec(m?)

The vector bundles ¢ ,,,» geometrically represent “free fermions of mass m”. Of
course, the curvatures on these bundles are given by Fp = F,, = R+ m2¢ A&.
In other words, the mass of the fermion determines the relative curvature on
the fermion bundle which represents a free fermion of the mass in question.

Instead of a summary we close our considerations by three remarks:

1. Dirac’s original first order differential operator i@ — m is not an operator
of Dirac type. However, the operator

idp, =19 —mp 37

is, of course, a well-defined Dirac operator of simple type on the reduced
fermion bundle. Notice that the odd zero order operator mp (i.e. the
global fermionic mass matrix) is defined with respect to a vacuum.

2. The Dirac potential V;, := D? — Ap € Q%(M, End(£)) defines a uni-
versal Lagrangian that is naturally associated to a Dirac type operator

(cf. [7]):
L:D(¢p) — Q"(M)

38
D +— x trace V. (38)

The second order differential operator Ay is the Bochner—Laplacian. It
is uniquely defined by the Dirac operator D and can be explicitly calcu-
lated by using, for instance, the generalized Lichnerowicz decomposition
formula (see, e. g. [S]). In fact, it can be shown that the Dirac potential
generalizes the Higgs potential (see [7]). In the case of the Dirac—Yukawa
operator @, the Dirac potential reads

Vp = (TTM +m§> (39)
with 7, the scalar curvature on M with respect to g¢. Therefore, L( @)
naturally gives rise to gravity with a cosmological constant in terms of
the fermionic masses.

3. It can be shown that for a given minimum of a general Higgs poten-
tial there exist gauge inequivalent vacuum pairs only if spacetime is not
simply connected. If spacetime is simply connected, then there exists a
vacuum pair iff P(M,G) is trivial. In this case all vacuum pairs are
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gauge equivalent to the canonical one that is defined by the canonical va-
cuum section M % M x orb(z,), z + (x, z,) and the trivial connection
on M x G % M. Notice that in the case of m, (M) = 0 all vacua are
also trivial.
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