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Abstract. Since Pryce’s 1948 study of the relativistic center of mo-
mentum it is believed that the classical notion of the center of mass can
be extended to special relativity theory only in “at least one Lorentz
frame” (in Goldstein’s words). The aim of this work is, accordingly,
to study the relativistic center of mass in a way fully analogous to its
Newtonian counterpart.

1. Introduction and Historical Notes

In 1948 Pryce [4] reached the conclusion that “there appears to be no wholly
satisfactory definition of the (relativistic) mass-centre”. He thus raised an im-
portant problem in relativistic mechanics that extends to the present day.

Gyrovector space theoretic techniques, however, allow the relativistic center of
momentum to be determined uniquely in a way fully analogous to its Newtonian
counterpart. Furthermore, the resulting relativistic center of momentum enjoys
all the attractive features that the Newtonian one does.

In Newtonian mechanics the notion of the center of mass arises naturally in
the study of motion of isolated systems of particles. Lehner and Moresch [3]
stated in 1995:

The notion of center of mass, however, does not have a direct extension to
relativistic mechanics and several studies ... on this topic have been made to
define such extension through different approaches (references omitted).

L. R. Lehner and O. M. Moresch, 1995

Rowe therefore informed in a book that he had almost completed writing when
his life was brutally terminated in the Yemen in December 1998 [5, p. 111]:

316



The Relativistic Center of Momentum 317

The Newtonian construction of the centre-of-mass point loses interest in special
relativity because the point it identifies turns out to depend on the Galilean frame
used in the construction, and because it seems evident that the particle energies
should be used for the weighting of particle position instead of the masses. No
other definition of a centre-of-mass point has all the attractive features that the
Newtonian one does. There is a useful discussion of six alternatives for the
definition of the [relativistic] centre-of-mass in a paper of M. H. L Pryce [4].

E. G. P. Rowe, 2001

The center of momentum frame is the conceptual successor to the center of
mass frame of Newtonian dynamics. In 1948 Pryce [4] explored the notion of
the mass-center in the special theory of relativity, reaching the conclusion that

In classical mechanics the uniform motion of the mass-centre of a free system is
an expression of the conservation of momentum, and takes its simplest form when

the forces are assumed to act instantaneously. When, as in relativity mechanics,
this cannot be assumed, account must be taken of the momentum resident in the
field through which the interactions are propagated, and this complicates the
problem. But this is not the only difficulty, and even for so simple a system of
two non-interacting particles, for which no field momentum need be considered,

there appears to be no wholly satisfactory definition of the mass-centre.

M. H. L. Pryce, 1948

Accordingly, Goldstein [2, p. 319] believed that the classical notion of the center
of mass can be extended to special relativity theory only in ‘“at least one Lorentz
frame”.

The aim of this article is to present and study the relativistic center of mo-
mentum (or, mass) in a way fully analogous to its Newtonian counterpart. The
study, in turn, uncovers remarkable analogies that Newtonian and Einsteinian
mechanics share.

2. Einstein Addition and the Lorentz Boost
Let V be a real inner product space, and let V,,
Ve=A{veV;|vl<c} ey

be the set of all relativistically admissible velocities in V, that is, all vectors
v € V with magnitude < ¢, c being any fixed positive constant representing the
vacuum speed of light. The set V., of all relativistically admissible velocities
in V is thus the open ball V, of the space V with radius ¢, centered at the
origin of its space. Without loss of generality the vacuum speed of light can be
normalized to ¢ = 1. However, we prefer to leave c as a free positive parameter,
enabling classical results to be recovered in the Newtonian limit ¢ — oc.



318 Abraham Ungar

In physics V is realized by the Euclidean 3-space V, = R? and, accordingly,
V. = R? is the c-ball of R? of all relativistically admissible velocities.

Let u,v € V, be any two relativistically admissible velocities in V. Their
Einstein sum, u & v, is given by the equation
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where 7, 1s the Lorentz factor of u,
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Einstein addition is noncommutative. In general
udv#vaodu 4)
u,v € V,. Moreover, Einstein addition is also nonassociative. In general
(UuBbvV)DWH#ud (vow) ®)

for u,v,w e V,.
Yet, Einstein addition is a gyrocommutative gyrogroup operation that gives rise
to a grouplike structure called a gyrocommutative gyrogroup [7].

Einstein addition is involved in the Lorentz boost, also known as the pure
Lorentz transformation, that is, a Lorentz transformation without rotation.
Let (t,x)" = (¢, vt)" be a spacetime event, v € V., where exponent ¢ denotes
transposition. Furthermore, let B(u) be the Lorentz boost parametrized by
u € V.. Then, the application of the Lorentz boost B(u) to the spacetime
event (¢, vt)! is given by the equation [7]

qu@v t
t\ Yo
B(u) (vt) B ’Y:‘Yﬂ(u OV)t] ©

Hence, in particular, for £ = , we have the elegant identity

509 (35) = lraminon) "

that will prove useful in the sequel.
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3. The Relativistic Law of the Lever

The Lorentz boost is linear. To exploit the linearity of the Lorentz boost let us
consider the linear combination of two spacetime events

Va Y\ _ [ PYat @ ) B ( Yen )
— — ¢ 8
P <7aa) t4a (vbb) (maa+ qyveb YmM ®

p,g>0,a,bcV,, where t >0 and m € V, are to be determined.
Comparing ratios between lower and upper entries in (8) we have

b
m =m(a,b;p,q) = Plad + a7 )

PYa + qb

so that, indeed, m € V. as desired.

The identity (9) has an obvious interpretation in relativistic mechanics. Points
of V, represent relativistically admissible velocities of inertial frames all of
which were coincident at time ¢ = 0. Accordingly, the spacetime coordinates
of the inertial frames of points of V, are related to one another by the Lorentz
transformation. The origin 0 of V., thus, represents a rest frame 33, and a
point v € V, represents an inertial frame X, with velocity v relative to 3g. As
such, the velocity of the frame X, relative to a frame >, is Su @ v.

The positive numbers p and ¢ in (9) are the rest masses of two massive ob-
jects situated at the points a and b of the velocity space V. of relativistically
admissible velocities. These points, accordingly, represent the velocities of the
objects relative to 2y. The relativistically corrected masses of the objects are,
accordingly, py. and ¢y,. Thus, the relativistic center of mass (or, momentum)
of the two objects is situated at the point m. The point m, in turn, represents
the velocity of the relativistic center of momentum (or, mass) ., relative to
39, as we will see from (18).

Applying the Lorentz boost B(x), x € V,, to (8) in two different ways, it
follows from (7) and the linearity of the Lorentz boost that

poo{t ()} =50 {r () o (O}

-t (22) 00 (33

VxéBa ’Yx@b
= +
b (,Y (x® a)) 1 (7 (x® b))

_ ( DYxpa T ¢Yxab )
p’YXGBa(X S5 a) + qYx®b (X D b)

(10)
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Comparing ratios between lower and upper entries of (10) and (11) we have

and

Xoa X b
xom = Pxeax©a) + hen(x O b) (12)

PYx®a + dVxa®b

so that by (9) and (12)
x & m(a,b;p,¢) =m(xda,xdb;p,q). (13)

The identity (13) demonstrates that the structure of m as a function of points
a and b is not distorted by left gyrotranslations. Similarly, it is not distorted
by rotations in the sense that if R represents a rotation of V. (that is, an
automorphism of (V., @) that keeps invariant the inner product that the ball V,
inherits from its space V) then

Rm(a,b;p,q) = m(Ra, Rb;p,q). (14)

It follows from (13) and (14) that the point m € V, possesses, as a function
of the points a,b € V., hyperbolic geometric significance. The associated
relativistic mechanics interpretation of m as the relativistic center of momentum
velocity will be uncovered in (18).

Comparing the top entries of (10) and (11) we have

t — pryxeaa + Q’yx@b . (15)
Vxﬂam
But, we also have from (8)
Ym

implying that the positive scalar ¢ = t(a, b;p,¢) in (15) and (16) is invari-
ant under left gyrotranslations of a and b. Clearly, it is also invariant under
rotations of a and b so that, being invariant under the group of motions of
hyperbolic geometry, it possesses hyperbolic geometric significance. As such,
we call ¢ = t(a, b; p, ¢) a hyperbolic geometric scalar.
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Substituting x = ©m in (15) we have

= pYomea + ¢Yomeb (17)

revealing that the scalar ¢ represents the mass of an object situated at the center
of momentum m in its rest frame 3,,. It is the sum of the relativistically
corrected rest masses p and ¢ in X,,. The center of momentum inertial frame
3 1s represented by the center of mass point m.

Substituting x = ©m in (12) we obtain the identity
PYomea(OmM @ a) + ¢Yomen(Om & b) =0 (18)

revealing that X, is the vanishing momentum inertial frame. As in classical
mechanics, the frame ., is called the relativistic center of momentum (or,
energy) frame (traditionally called the center of mass frame) since the total
momentum in that frame, (18), vanishes. We may note that (18) can be written,
equivalently, as

PYemea(OM @ a) = O¢Vomen(OmM D b). (19)

Owing to its property (19), the relativistic center of mass m(a, b;p, ¢), given
by (9), is called the (p, ¢)-midpoint of a and b. It reduces to the hyperbolic
midpoint m,;, when the two associated masses are equal, p = q.

Rewriting (16) as

1Ym = PYa + ¢ (20)

we obtain the two identities (19) and (20) that form the relativistic law of the
lever. It is fully analogous to the classical law of the lever, to which it reduces
in the Newtonian limit ¢ — co. Taking magnitudes of both sides of (19) and
expressing the resulting equation in terms of rapidities, one can recover the
relativistic law of the lever of Galperin [1].

The origin O of an Einstein gyrovector space V, = (V,,®, ®) represents the
vanishing velocity of a rest frame 3.

The relativistically corrected masses are, therefore, py, and gy, so that the
total relativistic mass of the two massive objects i1s py. + ¢vyp. This, in turn, is
equal to tv,,, that is, the relativistic mass of an object with rest mass £ moving
with velocity m relative to 3g.

The center of momentum of the two points a and b is a single moving ob-
ject with relativistic mass py. + g7, and velocity m(a, b; p, ¢) relative to Xy,
called the (p, ¢)-midpoint of the velocities a,b € V.. The (p, ¢)-midpoint is
homogeneous in the sense that it depends on the ratio p/¢ of the masses p
and ¢, as we see from (9). Since it is the ratio p/q that is of interest, we call
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(p/q) the homogeneous gyrobarycentric coordinates of m relative to the set
A ={a,b}.

The rest masses p and ¢ can be normalized by the condition p + ¢ = 1,
suggesting the notation

m(a,b;p,1 — p) = m(a,b;p) (1)

0 < p < 1, calling it the hyperbolic p-midpoint of a and b. Clearly, the
p-midpoint possesses the symmetry

m(a, b;p) = m(b,a;1 —p). (22)

The p-midpoint m(a, b;p) € V, gives rise to the center of momentum inertial
frame X, that moves with velocity m = m(a, b; p) relative to the rest frame
Yo, and relative to which the center of mass of the massive objects is at rest.
The center of momentum inertial frame 3, of a system of uniformly moving
massive objects is, by definition, the inertial frame where the total momentum
of the objects in the system vanishes.

The identity (18) demonstrates that the relativistic momentum of the moving
objects, with rest masses p,q > 0 and with respective velocities a,b € V.
relative to X, vanishes in the center of momentum frame >,,,.

4. The Relativistic Center of Momentum

We present in this section the relativistic center of momentum (or, mass) in
a way fully analogous to its Newtonian counterpart. As in the classical case,
the relativistic center of momentum of an isolated system of moving massive
objects is, by definition, the inertial frame relative to which the momentum of
the system vanishes.

Let (Y, Vo, ar)' ar € Vo, k =1,...,n, be n spacetime points, and let

= Ya Ve
m ) = o 23
k.z_l k ("Yak ag ) (rYC C) ( )

my > 0, be a generic linear combination of these spacetime events, where
m > 0 and ¢ € V, are to be determined.

Comparing ratios between lower and upper entries in (23) we have

)= > ket Tk Yay, A%

= (24)
Zk:l MkYa,,

c=c(a,...,a,;my,...,m,

so that c lies on the convex set spanned by the points a; of V., k =1,...,n.
Hence, ¢ € V, as desired.
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The center of momentum frame of a system of uniformly moving massive ob-
jects is the inertial frame where the total momentum of the objects vanishes.
Hence, as we will see from (32) below, the point ¢ in the space V, of rela-
tivistically admissible velocities represents the relativistic center of momentum
reference frame X, or, loosely, the relativistic center of mass frame. The rela-
tivistic center of mass system is fully analogous to its classical counterpart to
which it is identical except that the involved masses m, with corresponding
velocities a;, are relativistically corrected into the relativistic masses myYa, ,
k=1,...,n. Indeed, Synge [6, p. 219] describes the right hand side of (24) as
“the Newtonian formula for the mass-centre changed only by the substitution
of relative mass m-y for Newtonian mass”.

Applying the Lorentz boost B(x), x € V., to (23) in two different ways, it
follows from (7) and from the linearity of the Lorentz boost that

Be0 {m ()} = Lm0 (77, )
~ Y ( e ) 25)

Tx®ay (X D ak)

n
_ Zk:l mkFYxéBak

B (EL M Yxpay, (X O ak))

509 (see) =m0 ()

_ mﬁ)/x@c

(o)

and

(26)

Comparing ratios between lower and upper entries of (25) and (26) we have

Z::I Mg Yxpa, (X D ak)

XPc= — (27)
D k=1 T Vxpa,
so that, by (24) and (27)
x@c(ay,...,a,;my,...,my) =c(x@ay,...,xOa,;Mmy,...,my,). (28)

Identity (28) demonstrates that the structure of c as a function of points a;, € V,,
k =1,...,n, is not distorted by a left gyrotranslation of the points by any
x € V..
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Similarly, the structure is not distorted by rotations in the sense that if R
represents a rotation of V. (that is, an automorphism of (V.,®) that keeps
invariant the inner product that the ball V, inherits from its space V) then

Rc(ay,...,a,;mq,...,m,) =c(Ray,...,Ra,;mq,...,m,). (29)

Hence the point ¢ € V.. possesses, as a function of the points a;,...,a, € V,,
hyperbolic geometric significance. Thus, in other words, ¢ is a hyperbolic
geometric object.

Comparing the top entries of (25) and (26) we have

n
_ Zk:l Mg Yxdpay

m 30)

Txd®e

But, we also have from (23)

m = Zk:l mk,yak (31)

Ve
implying that the positive scalar m = m(a,...,a,;my,...,m,) in (30)
and (31) is invariant under any left gyrotranslation of the points a, € V,,
k = 1,...,n, that generate its value. Clearly, it is also invariant under any

rotation of its generating points. Hence, it possesses hyperbolic geometric sig-
nificance. From the relativistic point of view, m is a Lorentz invariant scalar,
that is, a scalar valued vector function which is invariant under the Lorentz
transformation group.

From the point of view of relativistic mechanics we face here an isolated rela-
tivistic system S of n massive objects with masses m;, and respective velocities
ap, k = 1,...,n. The corresponding relativistically corrected masses in the
frame ¥q are accordingly myva,, k=1,...,n.

To determine the center of momentum frame of the system S, that is, the frame
where the total momentum of the system S vanishes, we substitute x = Sc in
(27) obtaining the identity

Y MiYocwa, (O @ ag) = 0. (32)

k=1

The resulting identity, in turn, demonstrates that the relativistic momentum
vanishes in the inertial rest frame 3. of the geometric object c. The geometric
object c is, therefore, the center of momentum of the system S. Thus, the
relativistic center of momentum c of masses m; with respective velocities
a, €V, k=1,...,n, in relativistic mechanics is just the classical center of
mass of corresponding relativistically corrected masses myvYa,, k =1,...,n.



The Relativistic Center of Momentum 325

Substituting x = ©c¢ in (30) we have

m= MYocsa (33)

k=1

revealing the relativistic interpretation of the scalar m. It represents the mass
of a fictitious object situated at the center of momentum c of the system S of
objects with rest masses my, k = 1,...,n, in its rest frame .. It is the sum
of the relativistically corrected masses myYscwa,» K = 1,...,n, relative to X,
where Y. is an inertial frame relative to which the center of momentum c is at
rest.

The center of mass c, (24), and its mass m, (33), are clearly consistent with
the classical picture.

Interestingly, the analogies shared by the center of momentum in classical and
relativistic mechanics go over to corresponding analogies that Euclidean and
hyperbolic centroids share as shown in [8].
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