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Abstract. The Moyal product is considered on the complex plane C2.
Path integral representation of x-exponential function is given for a
quadratic form on C?, H = ax? + 2bxy + cy? for (x,y) € C?, where
a,b,ce C.

1. Introduction

The formal deformation quantization theory was started by Bayen, Flato, Frons-
dal, Lichnerowicz and Sternheimer [1] and the general theory is well designed
studying the existence, classification and applications (cf. [2-4,7-9]). How-
ever, if we take as a deformation parameter a number, we have no general
theory of non-formal deformation quantization at present (see e. g. [5]).

In this note, we consider a deformation quantization with a deformation para-
meter /o > 0. The star product is given by the Moyal product formula. As is
well known, any formal star product is locally isomorphic to the Moyal star
product, hence we deal with local theory in this sense, but non-formal.

Let H = ax? + 2bxy + cy* be a quadratic form on C? with a,b,c € C. We
consider the Moyal product xq given in Definition 1 below. We will study the
s-exponential function e!f’/i" In [6], the star exponential function is defined
by solving a certain differential equation which characterizes the x-exponential
function. The purpose of this paper is to give a path integral description of this
x-exponential function (see Theorem 2 below).
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2. x-Exponential Function of Quadratic Functions

We first give the Moyal product on C2. Let x,y be coordinate functions of C?
and let & be a positive real parameter. The canonical Poisson bracket is given

¢y

Using the binomial theorem formally, we set the bidifferential operators

(0.08)" = ¥ 21 (0.5,) (5,6.)"

I
= 'm!

oo (0.05) = - 1 (4) 08"

The Moyal product is then given by

and

Definition 1.
j_h < —
f*0g=fexp Eﬁx/\f)y g

We remark here that the product fxgg is not necessarily convergent for arbitrary
smooth functions, however it is well defined when at least one of f,g is a
polynomial function.

With the Moyal product, we can define the x-exponential function of a quadratic
form in the following way. Let us consider the quadratic form on C? given by

H = az® + 2bxy + cy?, a,b,cc C. 2)

The x-exponential function is formally given by

fZ()nf 3)

:r|»’~E

H n
for every polynomial function f(z,y) where (_h) = ke k — .
1 *
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3. Normal Forms and the Invariance of x,

Given a quadratic function H = ax?® + 2bzy + cy® on C?, we consider the
discriminant

D =10 —ac. )

We will show that H with a nonvanishing discriminant can be transformed into
x? — y?* via linear transformations by SL(2, C).

1
First we consider the case where H has the discriminant D = 1 We will
prove

Proposition 1. There exists (2; g) € SL(2,C) such that

1 2 1 2

() -(90). ®

Such matrices (2; z) are not unique and are parametrized by C.

where

We put w = px + qy, z = rx + sy with ps — gr = 1 into the right hand side
of (5) and consider the identity

ax® + 2bzy + cy? = — %(px +qy)* + %(T:C + sy)?.
Then we have

—p? + 7% = 2a, —q¢* + s° = 2¢, —pqg+rs=2b.

The identities ps — gr = 1 and —pg + rs = 2b yield

(—¢° + s5°)r = 2bs + q, (—¢° +5)p=2bg+s.
When ¢ # 0, we have

1 1
p=—(2bg+5s), r=—(2bs+gq), s>=2ctq.
2¢ 2¢
Hence, for every ¢ € C, one take p, q,r, s by the equations above. Then one
can check that these p, ¢, r,s gives an element of SL(2,C) and these satisfy
the desired equations.
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1 1
When, ¢ =0, then D = b? = 1 If b= 3 then the previous identities induce

2bq+ s =q+ s =0, hence s = —q. Further we see ps —qr = —(p+r)g=1
which gives p+r = —1/g and —p* +r* = (—p + r)(p + r) = 2a. Then we
have

1 1
PZGQ*Za TZ*GQ*%, §=-q.
1 . .
Ifb= 3 the similar argument gives
1 1
p:*aqﬁ“Q_qa Tziaq72_q7 s=4q.

This proves Proposition 1.

Now, we consider quadratic forms with an arbitrary D # 0. We can easily
reduce the problem to the previous case.

We set H = H / 2\/ D. The quadratic form
H = az® + 2bazy + ¢y°

has discriminant D = i, where a = a/2\/5, b= b/2\/5 and ¢ = c/2\/5.
Hence, we obtain

T s

Proposition 2. There exits (p q) € SL(2,C) such that

H=2VD (%uﬂ + 322)

where D = b* — ac (# 0) is the discriminant and
w = pxr + qy, z=rx+ sy.

Remark 1. By a similar manner one can also transform H via SL(2,C) with
D # 0 into the normal form 2v/Dzxy.

Now, we consider the invariance of the Moyal product under the linear trans-
formation of SL(2,C). Let us consider (f Z) € SL(2,C) and put coordinate
functions by

w = px + qy, z=rx+ sy. (7)
We then easily see that the commutator satisfies

[w,z] =w*q z — z % w = ih.
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Furthermore, by a direct calculation we have the following invariance property
of the Moyal product:

Proposition 3. The Moyal product can be expressed in terms of the coordinate
functions w, z as follows:

P
fxgg= fexp (%&u/\@z)g.

4. Path-Integral Representation

In this section we give a path-integral representation of the x-exponential func-
tion of quadratic forms. Fist we consider H = —%xQ + %yQ and then by the

propositions in the previous section, we obtain the x-exponential functions for
a general H with D # 0.

In the sequel, we write x = %, for simplicity.

4.1. x-exponential of —Zx? 4 242

First, we give the x-exponential function of —Zz* + 14°.

The basic tool is the following Mehler’s formula:

Lemma 1. Let H,(t) be the Hermite polynomial of degree n. Then it holds

2 2OO z" 1 1
e ¥ Y —H, (x)H, = ————exp | — 224 y? - 2zx ) .
S g @) = e (7@ 1ot 2

Step 1. For the first step of path integral, we consider the product exp (t %) *
exp (s %) for H = (—z* +y*)/2. In what follows, we will show the formula:

Proposition 4.

o (155) w0 (o) = e e (e )
X —_ X §— | = — 8 —— X _  — .
P\"1 P\P ) T T ts/a “P\11ts/4 1

First, we remark the basic relation for the Hermite polynomials H,,(z)

(%)nexz = (*1)11 e ” Hn(x)a n= 031’23‘ e (8)
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and hence we see

( d )n t x? ( d )n _y?
— | e —— | == e
az) TP\ dy

Then the relation (8) yields

Lemma 2.

dz ih 2

By definition we have
ihe = =1 /iR e o\
exp (58“*‘ Aay) =y = (7> (0. 10,) .

Using formally the binomial theorem

(0.78,)" = 3 _L!-(nm (2.5,) (5,5.)"

I+m=n

we have

ihe - 1 /ib\ o, N (1D ik o -
oo (30.00) =3 7 (5) 20y - () oear

2 =0 ! k=0

Using (10) we obtain

H H = 1 ‘h : 1 ac2 3
o (157) o (+57) = 5 (3) e ¥ e

Lemma 2 gives

(157) w0 (o)
JR— %k J—
exp = exp Sih

)

( d )"exp ( ! “””') = (-1 ( gi—th)nexp (%%) Ha (\/g‘”) '
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X
I

and then it holds

H
exp (tﬁ) * eXP (s

= exp (H—SH)

)
5 o (2 (/) 59

Applying the Mehler’s formula, we have

3o (o) (V3e) m (V50)

2 2

M s

O

1 1

= L4z oY L (Lt z sy _yis
- /1+_ts/4 CXP 7 (tQ SZ)GXP 1+ts/4( ih 2 +ih 2 1

St (4 () (5

1

- (8) ) () () e () o (o)

1D

_ z? t ts
= T P ( ty +57)6XP THaT (—57 + £ +1ﬁ$y)

Substituting these identities into (11), we obtain Proposition 4.

Step 2. For the next step, we consider the 1terated product of exponential

functions e'* -sxetnH | where we put H = & = (—22 4 y2)/2ih.

n
In what follows, we will prove the formula:

Proposition 5.

cn(t) cn(t)
where
ki2<2k<n 1<ty <ip <---<igk<n
and

sat)=2 Y > (i /2) o (tigr /2)-

k,lSQk—i—lSn 1§11 <i2 <"'<i2k+1 Sn

(a)

(b)

(©)
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We will prove the formula by induction with respect to the length of the product
n.

For n = 2, the functions ¢, (¢) and s,(t) in the formula are

ot)y=1+ > > (t,/2) ... (i, /2) =1+ %tth

k;2<2k<2 1<y <ig<---<igp <2

So(t) =2 Z E

ki1<2k+1<2 1<i1 <ip<---<igpyq <2

(t1,/2) - (tigen /2) = 11 + o

Then the formula (4) shows that the formula (5) is true when n = 2.

We assume that the formula is valid for n and we will show that it is true in
the case n + 1. We put

- ~ 1 4
Cn(t) Cn(t)

Using the formula (4) we see that the right hand side is

ﬁ) s« etnr1H

1 1 Sn/cn + tn+1 r
— T exp T H
cn 1+ 7(8n/Cu)tnia 1+ Z(sn/cn)tns
1 n ntn r 3
= - exp > —|—lc 2 H.
Cn + antn—i—l Cn + antn—f—l

We calculate by using the assumption

Cn + lesntn+1 =1+ > > (ti,/2) ... (ty,, /2)

k;QSQkSTL 131‘,1 <i2<"'<i2k Sn

+ ( Z Z (tll /2) s (ti2k+1 /2)) (tn+1/2) .
E1<2k+1<n 1<i1<ip<---<iggp+1<M

The third term of the right hand side is written as

2 2

(til /2) cee (tizk—l /2) (tlzk /2)
k;2<2k<n+1 1<i;<ig<---<izk_1<n,izpx=n+1

) ) 1
which gives ¢, + —s,t,11 = Cpya-

As to s,, we find

Sn+ Culnpr =2 Z Z (til /2) s (ti2k+1 /2)

k1<2k+1<n 1<i) <ip<---<igpi,<n
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+ (1 + o) > (i, /2) ... (tis /2)) tnia

k2<2k<n 1<i)<iz<---<izp<n
n+1

= Z: t+2 Y y (ti/2) o (tigeor /2)

E2<2k<n—1 1<11<i2<---<lgp4+1n

+2 ) > (ti/2) - - (tig /2) (Bigyrr /2)

k;2<2k<n—1 1<iy <ig<---<igp <n,iggx41=n+1
+ 2 E : § : (t’h /2) fe. (tizk /2) (tizk+1 /2)
En<2k;2k+1<n+1 1<i;<ip<---<igp<n,izx4+1=n-+1

= Sp+41 -

Thus, we obtain that the formula holds for » 4 1 and thus we get the proof.
Step 3. As a third step, we take the limit of the iterated products in the previous
step.

For ¢ > 0, we divide the interval [0, ] into N equal segments for every positive
integer N. We will then take the limit NV — oo and we will check the conver-
gence of the iterated product. We will find also the limit explicitly. Then we
will obtain the star exponential function of the quadratic form — %2 + %

Let us put At = t/N. First, we consider cy(At), sy(At) and their limit
N — oo. Form the formulae (12), (12) we have

en(At)y =1+ > (At/2)* 3 1

k;2<2k<n 1< <ip <---<igy <n.
SN(At) — 2 z : (At/2)2k+l Z 1.
k;1<2k+1<n 1<i1 <l <---<igg+1 <N

Notice that

N N!
2 1= (%) ~ (N —2k)1(2k)!

1< <ig<---<i2p <n

and

N N
2 1:<2k+1>:(N2k1)I(2k+1)!'

1< <t <---<l2p+1 <N

Hence we have

ex(At)= > a(t/2)%, sn(Af) =2 3 b(t/2)*

E;0<2E<N k1<2k+1<N
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where the coefficients are given by

akzﬁ(l—%) (1—%)...(1—2]“N1)
(0w () F):

It is easy to see that the coefficients of ¢y (At) and s (At) converge as N — 0o
and the limits are

and

t t
lim cy(At) = cosh o1 lim sy (At) = 2sinh 5

N—oo N—oo

Thus, we have

Theorem 1. The N-iterated product converges

lim e(t/N)IjI % .- e(t/N)I:I — 1 . eQﬁtanh%
N—sco cosh 3

B 2y
where H = H/(ih) and H = 5 + 5

4.2. x-Exponential in the General Case

We consider the x-exponential function for H = ax?*+2bxy +cy® with a,b, c €
Cand D =b* —ac # 0.
1

1
Using Proposition 2, we have H = 2v/D ( §w2 + 522) , Where w = px+qy,

z =rx + sy and (p q) € SL(2,C).

Notice that the commutator of w, z satisfies [w, z| = ih. Then the transforma-
tion formula in Proposition 3 yields

Theorem 2. The *-exponential function of H is

tanh \/_t)

ts
*

Sl

B cosh\/_t P (\/_

€
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