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Abstract. We define a kind of branching process on the loop space by using
the branching mechanism of a loop of string theory.

1. Introduction

In conformal field theory or in string theory [7, 17] people look at random applica-
tions v/ from a Riemann surface ¥ into a Riemannian manifold M endowed with
the probability measure:

dp(y) = Z~ exp[~1(¥)] dD () (1)

where dD(v)) is the formal Lebesgue measure over the set of maps ¢ and I(2))
is the energy of the map ¢/. If 3 has boundaries, let us say exit boundaries which
are circles S} and input boundaries which are circles S2, the amplitude related to
the measure (1) should realize a map from ®gytput H N0 Qippye H where H is an
Hilbert space associated to the loop space [42].

In the case where the manifold is the linear space R", (1) is a Gaussian measure,
which corresponds to the free field measure. Since in two dimension, the Green
kernel associated to the Laplacian has a singularity on the diagonal, the random
field lives on random distributions [18]. It is difficult to state what is a distribution
with values in a curved manifold, because the notion of distribution is linear.

If ¥ = [0,1] x [0, 1], there is another process indexed by ¥ with values in R,

which is the Brownian sheet and which is continuous. %w is the white noise
over [0, 1] x [0,1]. On X, there is a natural order, and it is possible after the work
of Cairoli [11] to study the stochastic differential equation in [t6 meaning:

5s,txs,t = A(l's,t)(ss,t'l/) (2)

by using martingale theory, where A is a vector field over R. This gives an example
of a non-gaussian random field parametrized by the square. In the Gaussian case,
this gives the Brownian motion over the path space. Doss and Dozzi [13] have
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studied the formal action which is associated to (2), that is they have studied the
large deviation theory. Norris [41] has succeeded to give a geometrical meaning
to (2) and has constrained x, ; to live over a curved manifold.

But it is difficult to generalize (2) to the case where the world sheet is not the square
[0,1] x [0, 1], because (2) uses the multi-parameter martingale theory.

Airault—-Malliavin in a series of paper (some of them are published for instance
in [1]) have constructed the Brownian motion over a loop group. For that, they use
the Brownian motion in a Sobolev space with values in the Lie algebra of the group
G. This gives a random field from the cylinder [0, 1] x S into G.

Infinite dimensional diffusion processes over infinite dimensional manifolds have
a long story initiated by Kuo [21] in 1972. The Russian school has studied infi-
nite dimensional processes over infinite dimensional manifolds [5,12]. Brzezniak—
Elworthy [8] have done a general theory of infinite dimensional diffusion processes
over infinite dimensional manifolds over M — 2 Banach spaces. The interest of
M — 2 Banach spaces is that there is a Doob inequality for martingales over them.
They apply their theory to the case of the free loop space of a manifold. This
produces random cylinders with values in a compact Riemannian manifold, or the
Brownian motion with values in the loop space of a Riemannian manifold. The
loops are only Holder.

Brzezniak—-Léandre [10] have extended the construction of [8] to the case with
Brownian pants. The world sheet has two output boundaries and one input bound-
ary. This gives one application from E. X E. into E., where E. is the Banach
space of continuous functions over the loop space. This means that the Brown-
ian pants are Feller. This gives an approach to one of Segal’s axiom of conformal
field theory [42], the Hilbert space of the loop space being replaced by the Banach
space of continuous functionals over it. Moreover, the theory is 1+1 dimensional.
We refer to [34] for similar statement.

For more general surfaces, in a series of papers Léandre [24,26-33] had considered
a 142 dimensional theory, for instance the Brownian motion on a torus group, or
the Brownian motion on the punctured sphere group. Léandre has adapted to this
stochastic situation a lot of classical considerations in mathematical physics.

For instance, in [26] we have averaged over all the metric of the surface, the genus
of the surface being fixed and obtain a stochastic analoguous of a string theory.

In [31] or in [33] we have used the Markov property of the nonlinear random field
in order to sew together random punctured sphere. The relation with operads is
exhibited, as it is classical in mathematical physics [19,22]. In these two papers
we sew together deterministic punctured spheres in the world sheet.

The archetype of an operad is the set of trees. It is classical that we can put mea-
sures on the set of trees, for instance Galton—Watson measures. So in this paper, we
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would like to get a random world sheet, as it is done in string theory, but in a little
bit different set-up: instead to choose the geometry at random of a given surface
whose genus is fixed, we choose the topology at random (a tree at random), but
when we fix the topology, we do not perform any randomization of the considered
geometry of the surface. Our goal is to perform a 1+1 dimensional theory (that is a
kind of branching process on the loop space) instead of a 1+2 dimensional theory
as it was done in [31, 33].

But let us recall that the classical branching mechanism for loops initiated in
physics in the so-called dual resonances models (see [38] or [43]), is a branching
mechanism which is different than traditional branching mechanism of the theory
of branching process [4,36]. In the first part, we repeat the consideration of [10]
of construction of the elementary branching mechanism of a loop in two loops in
a 1+1 dimensional theory. In the second part, by using a certain Galton—Watson
process, we iterate this branching mechanism, and since we get in the theory of
Galton—Watson process a time, we deduced a random tree labelled by the loop
space, which satisfies a certain Markov property.

The reader interested by the relation about analysis over loop space and mathemat-
ical physics can see the survey of Albeverio [2] and the two surveys [23, 25].

2. The Elementary Branching Mechanism

We recall briefly the construction of the Brownian pants of Brzezniak—ILéandre [10].

We consider a compact Riemannian manifold M of dimension d embedded in R"
isometrically. If z € M, II(x) is the orthogonal projection from R" into 7, (M).
It can be extended to a map from R" into the linear applications over R", which
is smooth and have bounded derivatives of all orders. We introduce the Hilbert
Sobolev space H = H2(S*, R™) of the set of loops in R” such that

1 1
| h@Fds+ [ W(@Rds = i < oo.

Let By(+) be the Brownian motion with values in H.

We can construct it as follows. Let ¥ 4 be the linear map from H into R" defined as
follows: W,(y(-)) = 7(s). Since H is an Hilbert space and since ¥ is continuous,
we get

1
0

where t — B;(s) is a Brownian motion with covariance [|a(+)||%. (We did as we
were working on R in order to simplify the notation, but it is easy to reduce our
study to the case of R by looking the coordinates of ¥,.) Moreover, if s # s/,

U is independent of W, as a linear map. This shows us that a4(-) and ay (-) are
independents and that the couple ¢t — (By(s), B:(s")) realized a non degenerated

V.00) = [ G du+ [ (), 0l w) d
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Brownian motion over R™ x R"™, although t — B;(s) and ¢t — B;(s’) are not inde-
pendent. Moreover, the covariance matrix of B;(s) and B;(s’) are not degenerated.
In others words, we can write

Bt(sl) - C]tl(S, S,)Bt(S) + 042(8, S,)Bt(sa S,) (3)
where B, (s, s’) is independent of B;(s) and where the two constants in the decom-

position (3) are not equal to O.
The family of Stratonovitch equations

dixs(s) = T(xe(s)) de Be(s), xo(s) =z

has a meaning. It constitutes a family of Brownian motions over the manifold over
M parametrized by the circle. (In this work, s will denote the internal time of the
loop and ¢ the propagation time of the loop)

Let 51 < s be two times. We constrain the elliptic diffusion ¢ — (z:(s1), z:(s2))
to be equals at y at time 1.

Let us recall that if we consider an elliptic diffusion ¥;(Z) over a compact manifold
M, it has an heat kernel ¢;(Z,y) satisfying the estimate

| grad log ¢:(Z,§)| < C/td(Z,7)

for the associated Riemannian metric and the natural Riemannian distance d asso-
ciated to the elliptic diffusion if = and ¥ are close [6,39]. Let us recall that if the
stochastic differential equation of the elliptic diffusion is given by

dg (@) = Y Xi(5:(@)) dw; + Xo(3:(7)) dt (4)

over the compact manifold, the bridge between x and y satisfies to the following
stochastic differential equation (in Stratonovitch sense)

dgi(%,9) = Y Xi(@(#.9)) (dw; + B; db) + Xo(5:(7, 7)) dt )

where 8/ = (X i(Ut(Z,9)), grad log q1-+(¥(Z, y),¥)). This means that we trans-
form duw! into dw? + 3 dt in the equation (5) [6,39]. By the previous estimate of
the gradient of the logarithm of the heat-kernel, we have

E[/Ol|ﬂﬂdt]<oo.

Let us recall briefly Brzezniak—Elworthy theory [8].
Let Wj,, the Sobolev—Slobodetski space of maps « from S into R” such that

v(s) =@ p
p —
(/Sl WP dst | e dsdt) = |ly

The Brownian motion with values in H takes in fact its values in Wy, for some p
and some 6. Moreover, Wy, is a M-type 2 Banach space, where there is a nice

l6,p < 0.
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stochastic integration theory [40]. H is continuously embedded in some Wy ,,. Let
H! the finite dimensional sub-Hilbert space of H spanned by a, (-) and as, (-).
Let 7(a;) be the Hilbert projection of a into H'. s — 7(as) belongs to Wy, for
some # and some p.

Let = be the Nemytski map

7() = {s = TI(¥(s))}-
As it was shown in [8], = is Lipschitz and Fréchet smooth with linear growth on
W p-
We want to solve the stochastic differential Stratonovitch equation starting from a
given element (-) of Wy, on Wy,

dX; = B(X¢) dBi(-) + E(X¢){m(a.), B¢) dt. (6)

Since Z(m(a.), B¢) is smooth on Wy, (6) has a unique solution on Wy , [8] up to
a stopping blowing time 7. Let us show that 7 = 1. Let O,, be the event where
fol |84| dt < n. Over O,, we have

sup [| X115
s<t

2 t
+ sup ”Xu”g,p|6u| du) .
8.p 0 u<ls

2
8,p

Since Wy ,, is a M -type 2 Banach space, we deduce since = has linear growth that
on O,

JACCALERS

0

<cC (||~yuz,p +sup\
s<t

By Gronwall lemma we deduce that on O,,

[ =(x)aB.0)

sup || X; 5., < Cn (IIvllg,p + sup
s<t s<t

where ), depends only on n.

sup E[[| X,][5 ,] < o0
s<1

by using Gronwall lemma [6, (2.15)].

If we start from a loop v € Wy, in M, we deduce that X1 (7y) is a random loop in
M which belongs almost surely to Wj ,. Moreover, almost surely, X;(v)(s1) =
X1(y)(s2) = y by (5). The loop s — X1 ()(s) is split in two loops.

3. Galton—Watson Trees

Let Y be a binary Galton—Watson tree. The probability that a vertex has one child
1S p1 > 0 and that it has two children is p» > 0. Moreover, we suppose that
p1+p2 = 1. At the step n, we consider the labelled exit vertices «;(n). Each label
a;(n) are indexed in increasing order and the set of children is ranged in increasing
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order. If two vertices at step n + 1 are coming from two different parents, the order
of the two exit vertices is the same than the order of their parents. We get a random
interval of N, and if at time n, there is no vertex at the site z, we will say that
a;(n) = oo. We get a set of random variable X;(n), 7 € N, where X;(n) is
the label of the parent of i (if a;(n) = oo, we put X;(n) = oo). Moreover,
Xi(n) £ Xita(n).

Let us define our random tree with values at Wy ,,. At the root, we start from a loop
in M belonging to Wy ,:

e Either the root has two children. We consider s; = 0, s = 1/2 and the
given loop at the root. We consider the branching mechanism of the starting
loop in two loops given at the first part. We get two 10ops 74, (1) and vq,(1)-

e Or the root has only one child. We consider with the notation of the previous
part the equation:

dX; = E(X¢) dBy(") (7
starting from the initial loop. X is a random loop belonging to Wy , de-
noted by vq, (1)-

Let us iterate the procedure. Let us suppose that at step n, we get I vertices a;(n)
associated to the random loops 7y, () Either, a;(n) has two children, and we
consider the Branching mechanism given before associated to a leading infinite
dimensional Brownian motion independent of the others considered. Or «;(n)
has one child, and we perform the transformation (3.1). All the leading Brownian
motions considered are independents. If a;;(n) = oo, we put g, () = 0.

We get by this procedure a set of random loops 74, (,+1) belonging to Wy ,. (We
omit to describe the different rescaling which occur when a loop branches in two
loops.)

We complete all the o-algebras which are considered. Let Pa,, be the o-algebra
spanned by the X;(j) and v,,(;) for j < n. Let Pr;, be the o-algebra spanned
by the X;(n) and v,, (). And let F}, be the o-algebra spanned by the X;(j) and
Yai(j)» J > N Since we work on a Galton—Watson tree and since the leading flat
infinite dimensional Brownian motions are all independents, we get

Theorem 1. Let V be a random variable which belongs to L' and which is F,-
measurable. Then almost surely,

E[Qr/j | Pan] :E['l/} | Prn]'

It is a kind of Markov property for our random tree.
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