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Abstract. Let X be a closed and oriented Riemannian four-manifold with
172+ (X) > 1. We discuss the Seiberg—Witten invariants of X and finite group
actions on spin® structures of X. We introduce and comment some of our
results on the subject.

1. Introduction

In the past twenty years, the symbiosis between mathematics and theoretical phys-
ics has always been a source of unexpected and profound results.

Even if we do not make attempt to relate it chronologically, the story begun with
the Donaldson’s gauge theory aiming a nonabelian generalization of the classical
electromagnetic theory.

As results of it the nonsmoothability of certain topological four-manifolds, exotic
smooth structures on R*, and nondecomposability of some four-manifolds have
been established.

The computation of Donaldson invariants however is highly nontrivial.

In 1994, the monopole theory in four-manifolds gave a rise to the Seiberg—Witten
invariant which is much simpler than the Donaldson theory, also had almost the
same effects on the Donaldson theory, and was used for a proof of the Thom con-
jecture.

At almost the same time the Gromov—Witten invariant of symplectic manifolds was
introduced. Using it we may compute the number of algebraic curves, representing
a two-dimensional homology class in a symplectic manifold.

In 1995 Taubes [26] proved that for symplectic four-manifolds the Seiberg—Witten
invariant and the Gromov—Witten invariant are the same.

In 1982 Freedman [15] classified the simply connected closed topological four-
manifolds.
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In 1983 Donaldson [12] proved the nonsmoothability of certain topological four-
manifolds.

In 1994, Witten [29] had introduced the Seiberg—Witten theory which simplifies
the Donaldson’s gauge theory.

In 1994 Kontsevich and Manin [20] introduced the Gromov—Witten invariant and
applied it to enumerative problems of algebraic geometry.

In this article we want to introduce the Seiberg—Witten invariant and its fundamen-
tal consequences. We would like to survey finite group actions in the Seiberg—
Witten theory, and some of our results which were already published (see the ref-
erences at the end of the paper).

2, Review of Seiberg—Witten Invariant

Let X be a closed, oriented four-manifold with b5 (X) > 1. Let L — X be a
complex line bundle with ¢; (L) = ¢1(X) mod 2.

Let W* be the twisted spinor bundles on X associated with the line bundle L. Let
o : WTRT*X — W~ be the Clifford multiplication. There is a correspondence
7 W+ x W+ — End(W+), given by 7(¢, ¢) = (¢ ® ¢ )o which is a traceless
endomorphism of W+.
The Levi-Civita connection on X combined with a connection A on L induces a
Dirac operator

Dy:T(WT) — T(W™)
along with the Seiberg—Witten (SW) equations

Dagp=0,  Fi=-7(6,9) M
whose solutions correspond to the absolute minima of some functional.
The gauge group C'*°(X,U(1)) of L acts on the space of solutions (A, ¢) of the
SW-equations and quotient 91( L) of the space of solutions of the equations modulo
the gauge group is called the moduli space associated to the spin® structure I on
X.
If we perturb the SW-equations or find a generic metric on X, the moduli space
M (L) is a compact orientable d-manifold where d = %[c1(L)? — (2x + 30)].
If z, is some fixed base point in X, the evaluation at x, gives a representation
p:C>®(X,U(1)) — U(1), which induces a U(1)-bundle E — M(L).
If the dimension of 9t(L) is even, i.e., d = 2s, then the Seiberg—Witten invariant
of L is given by

SW(L) = (c1(E)*, M(L)).

The fundamental properties of the SW-invariants are as follows.

Theorem 1. Let X be a closed smooth oriented four-manifold with b (X) > 1.
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1) There is only a finite number of spin® structures L for which SW(L) # 0.

2) If X = Xqtt Xo with b3 (X;) > 0,7 = 1,2, then SW(L) = 0 for all spin°
structures L on X.

3) For a spin® structures L on X, the SW(L) is independent of the metrics on
X, and depends only on the class c1(L).

4) If f is a diffeomorphism of X, then SW(L) = £SW(f*L).

5) If X admits a metric of positive scalar curvature, then SW(L) = 0 for all
spin® structures L on X.

6) If X is a closed symplectic four-manifold with canonical complex line bundle
Kx, then SW(Kx) = =£1.

2

7) A complex curve in a Kdihler surface has minimum genus in its homology
class.

3. Finite Group Actions on spin® Structures

Let X be a closed, oriented, Riemannian four-manifold. Let P be the principal
bundle of oriented orthonormal frames associated to the tangent bundle 7'X of X.
Let L — X be a complex line bundle on X satisfying ¢1(L) = wa(TX) mod 2.
There is a one-to-one correspondence between the set of spin® structure on X and
the set of elements of H' (X, Z5) ® 2H?(X, 7).

Let P, be the principal U(1) bundle associated to the bundle L. Let G be a finite
group. Let GG act on X by orientation preserving isometries. The induced action of
G on the frame bundle P commutes with the right action of SO(4) on P. Choose
an action of G over the principal U(1) bundle P;, — X which is compatible with
the action of G' on X, and commutes with the canonical right action of U(1) on
Py,. If the induced action of G on the product P x Py lifts to an action of G
on the associated principal spin® bundle P which commutes with the right action
of Spin“(4) on P, then the action of G on P is called a spin® action on the spin®
structure P. Thus the spin© action of G on P — X induces a diffeomorphism on
X, P, P;, and P for each element in G and induces bundle automorphisms on P,
Py, and P which cover the action of G on X.

Proposition 1. If the action of a finite group G on a spin® structure P associated
to a line bundle L over X is a spin® action, then for each element h € G, h acts
on P, Py, and P as a bundle automorphism which cover the action of h on X.

Let X be a closed, oriented, Riemannian four-manifold. Let P be a principal spin®
bundle associated to the line bundle . — X. Let the action of a finite group
GonP — Xbea spin® action. For each element h € G there are hftmgs
h:P — Pand h : P — P. We define an action of G on the twisted 1 -spinor

bundle W+ = P x C? by h(p,a) = (hp,a) foreach h € G and (j,a) € W.
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Since the action of G on P commutes with the right action of Spin“(4) on P, this
action is well defined.

On the W+ = P x C2, the action of Spin°(4) on C2 is given by (g1, ¢, €¥)a =
qrae? for each element
[g1,q2,¢"] € Spin®(4) = (SU(2) x SU(2) x U(1))/Z2,  a€C2
If hp = pa for some a = [q1, g2, €] € Spin®(4), then
h(p,a) = (hp,a) = (pa,a) = (5, aa) = (, qrae’).

By the definition of the spin® action, the group G acts on X and L as orientation-
preserving isometries. The induced actions of G on p and P, commute with right
actions of SO(4) and U(1) on P and Py,. Thus the action of G on P commutes
with the lift of the connections to P. If V is the connection of W associated to
the Levi-Civita connection on P and a Riemannian connection A on Py, then we
have the formulas

h{(V,5) = Vi hs, h(Ds) =h (Z e; - Veis> = he; - Vpehs.

SohD = Dh, whereh € G,v € TX,s c T(W¥)and D : T(W*) — T(W ™) is
the Dirac operator associated to the connection V. Thus the Dirac operator D is a
G-equivariant elliptic operator. The G-index of D is a virtual representation
L(G,X) =ker D — coker D € R(G).
For each element i € G, the Lefschetz number is defined by
L(h, X) = trace(h|ker p) — trace(h|coker D) € C.

Theorem 2 (Atiyah-Singer). Let X" be the set of the fixed points of h in X, and
leti : X* — X be the inclusion and N" the normal bundle of X" in X. Then the
Lefschetz number L{h, X) is

wChp (P (W —W-))td(TX" ® C)

L(h, X) = (1) e(TXM)chy,(A_,N*  C) [

where k = % dim X"
4. Finite Group Actions and Seiberg—Witten Equations

Let X be a closed, oriented, Riemannian four-manifold. Let a finite group G acts
on X as orientation preserving isometries. Let 7 : L — X be a complex line
bundle satisfying ¢1 (L) = wo(T'X) mod 2. Let the group G acts on L such that
the projection 7 is a G-map. Choose a metric on L on which G acts by isometries.
Let A(L) be the set of all Riemannian connections on L. The space A(L) is an
affine space modelled on Q'(iR). The set of all bundle automorphisms of I forms
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a group G(L) which is identified with the set of smooth maps from X into S.
The group G(L) acts on A(L) x T(W+) by g(4,¢) = (A — g~'dg, g% ¢) for
g € G(L), (A, ¢) € A(L) x T(W™). The (:I:%)—spinor bundles S* of X and
the square root L= of the bundle L may not exist globally but exist locally. Since
c1(L) = wa(TX) mod 2, the twisted (:i:%)—spinor bundles W* = §* ® L3 do
exist globally.
Foreachh € G, g € G(L),V € A(L), vi € T(T'X), 0 € T(L), ¢ € QF and
¢ € T(WT), we define the actions of G on these as follows:

1) W(V)po = h(Vy-1ey(h710)), h(c) = hoh™!

2) h{P)vy,...vp = h(@h—l*vl,...,h—l*vk)

3) h(g) = hogoh!

4) h(¢) = ¢h™%, where h2 : X — U(2) is given by the lift h2(z) = h(z) of

h(z) : P-1(z) — Px.

Proposition 2. The spaces A(L), G(L), O, T(L) and T(W*) are closed under
the action of G.

For each connection A € A(L) on L we have a Dirac operator
Dy :T(W) = T(W™)

whose symbol is given by the Clifford multiplication. The Clifford multiplication
produces an isomorphism

0: AT ®C — End(WT),

between the complexified self-dual two-forms and the traceless endomorphisms of
W . There is a pairing 7 : W+ x W+ — End(WT™), defined by 7(¢1, ¢2) =
¢10 ¢ — 3 tr(¢1 o ¢4) Id. The Seiberg—Witten equations are defined by

Dag=0,  o(Fy) =7(¢,¢)
where (A, ¢) € A(L) x T(W™) are invariant under the action of G.

Proposition 3. If the action of G on the spin® structure W is a spin® action, then
G acts on the solutions of the Seiberg—Witten equations.

Let G(L) = {g € G(L); hogoh™' = g, h € G} be the G-invariant subgroup
of G(L). Since G acts on L as orientation preserving isometries and the structure
group of L is the abelian group U(1), ho g o h~ = g on the fixed point set X,
for each element h € G and g € G(L). Let SW(L) be the set of solutions of the
Seiberg—Witten equations.
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If by > 0, then the space of solutions to the Seiberg—Witten equations does not
contain (A, ¢) which ¢ = 0 for a generic metric of perturbation of the second
equation by an imaginary-valued G-invariant self-dual two-form on X.

5. Some Results of Finite Group Action on Seiberg—Witten Invariants

Let X be a closed symplectic four-manifold. The tangent bundle 7'X of X admits
an almost complex structure which is an endomorphism J : T'X — 1T'X with
J? = —I. The almost complex structure .J defines a splitting

T X QC = Tl.O ®TO.1

where .J acts on 710 and T%! as multiplication by —i and i, respectively. The
canonical bundle Ky on X associated to the almost complex structure .J is de-
fined by Kx = A27T19.

A symplectic structure w on X is defined as a closed two-form with w A w # 0
everywhere. An almost complex structure J on X is said to be compatible with
the symplectic structure w if w(Jvy, Jve) = w(vi,ve) and w(v, Jv) > 0 for a
non-zero tangent vector v.

The space of compatible almost complex structure of a given symplectic structure
on X is non-empty and constructible. If an almost complex structure .J is compat-
ible with w. Then for any v,w € TX, g(v, w) = w(v, Jw) defines a Riemannian
metric on X. For such a metric on X, the symplectic structure w is self-dual and
w A w gives the orientation on X . On the other hand, any metric on X for which w
is self-dual can define an almost complex structure .J which is compatible with the
symplectic structure w.

Let (X, w) be a closed, symplectic, four-manifold. A diffeomorphism o on X is
symplectic, anti-symplectic if ¢ satisfies 0*w = w or o*w = —w, respectively.
An involution o on X is symplectic, anti-symplectic if and only if it satisfies
oxd = Jo, or 0.J = —Jo,, respectively, for some compatible almost complex
structure J on X with the symplectic structure w. If (X, w) is a Kihler surface
with Kihler form w, then an involution ¢ on X is symplectic, anti-symplectic if
and only if it is holomorphic, anti-holomorphic, respectively.

Now we assume that X is a closed, smooth and oriented four-manifold with a finite
fundamental group. Let G be a finite group.

Theorem 3 ([6]). If G acts smoothly and freely on the four-manifold X which has
a non-vanishing SW-invariant, then the quotient X /G cannot be decomposed as a
smooth connected sum X 14X with by (X;) > 0,4 =1,2.

Theorem 4 ([6]). Let X be a closed and symplectic four-manifold with a finite
fundamental group, c¢1(X)? > 0 and bj (X) > 3.
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If o : X — X is a free anti-symplectic involution on X, then the SW-invariants
vanish on the quotient X /o. In particular, the X /o does not have any symplectic
structure.

Theorem 5 ([7]). Let X be a manifold with a nontrivial SW-invariant, b (X) > 1,
and let Y be a manifold with negative definite intersection form. If n1,...,n; are
even integers such that 4b1(Y) = 2ny + -+ + 2np, +n2 + - + ni and 7 (Y)
has a nontrivial finite quotient, then the connected sum X{Y has a nontrivial SW-
invariant but does not admit any symplectic structure.

Theorem 6 ([10]). Let (X, w) be a closed, symplectic four-manifold and let o
be an anti-symplectic involution on (X, w) with fixed loci X° = 11X as a disjoint
union of Lagrangian surfaces. If one of the components of X7 is a surface of genus
g > land by (X /o) > 1, then the quotient X /o has vanishing SW-invariants.

Example. Let X = (X, x ¥,, w @ w), and an anti-symplectic involution
f:38, — 3%, with [*w= —w.
Letoy: Xy X ¥y — Xy x X4 be given by
or(z,y) = (S~ (W), [ (2)).

Then o is an anti-symplectic involution with fixed points (£, x ¥,)?f ~ % . By
the Hirzebruch signature theorem we have

1
by (X/of) = 5(b2+(X) —D=g¢*>1, if g>1

In [6] Cho shows that if the cyclic group Z, acts smoothly and freely on a closed,
oriented, smooth four-manifold X with a finite fundamental group and with a non-
vanishing Seiberg—Witten invariant, then the quotient X /Z, cannot be decomposed
as a smooth connected sum X1 Xo with b; (X;) > 0,7 =1,2. In[28] Wang shows
that if X is a Kihler surface with b5 (X) > 3and K% > Oandifo : X — X isan
anti-holomorphic involution (i.e., o, o J = —J o ¢,) without fixed point set then
the quotient X /o = X’ has vanishing Seiberg—Witten invariant.

Theorem 7 ([9]). Let X be a Kdhler surface with by (X) > 3 and Hy(X,Z) have
no two-torsion. Suppose that o : X — X is an anti-holomorphic involution
with fixed point set 3. which is a Lagrangian surface with genus greater than 0 and
[X] € 2Ho(X,Z). If K% > 0 or K% = 0and g(X) > 1, then the quotient X /o

has a vanishing Seiberg—Witten invariant.

Let X be a closed smooth four-manifold with Zj, action, where p is a prime. Sup-
pose H1(X,R) = 0and b (X) > 1.
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Theorem 8 ([13]). Suppose Z,, acts trivially on H*(X T, R) of self-dual harmonic

two-forms and for any Zy-equivariant spin®-structure L on X, the index of the
equivariant Dirac operator

Ds:T(WT) — T(W™)
has the form
p—1

indz (D4) = kit/ € R(Z,) = Z[t]/(t? = 1).
Jj=0

Then the Seiberg—Witten invariant satisfies

1
SW(L)=0 (modp) if kjgi(b;(X)—l), j=0,1,....,p— 1.
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