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Abstract. In this paper we study a Riemanian metric on the tangent bundle
T (M) of a Riemannian manifold M which generalizes Sasakian metric and
Cheeger—Gromoll metric along a compatible almost complex structure which
together with the metric confers to T(M) a structure of locally conformal
almost Kihlerian manifold. This is the natural generalization of the well
known almost Kihlerian structure on 7'(M). We found conditions under
which T(M) is almost Kéhlerian, locally conformal Kéhlerian or Kihlerian
or when T'(M) has constant sectional curvature or constant scalar curvature.

1. A Brief History

A Riemannian metric g on a smooth manifold M gives rise to several Riemannian
metrics on the tangent bundle 7'(M) of M. Maybe the best known example is
the Sasakian metric gg introduced in [18]. Although the Sasakian metric is natu-
rally defined, it is very rigid in the following sense. For example, Kowalski [11]
has shown that the tangent bundle 7°(M) with the Sasakian metric is never lo-
cally symmetric unless the metric g on the base manifold is flat. Then, Musso and
Tricerri [13] have proved a more general result, namely, that the Sasakian metric
has constant scalar curvature if and only if (M, ¢) is locally Euclidean. In the same
paper, they have given in explicit form a positive definite Riemannian metric in-
troduced by Cheeger and Gromoll [9] and called this metric the Cheeger—Gromoll
metric. In [19] Sekizawa computed the Levi-Civita connection, the curvature ten-
sor, the sectional curvatures and the scalar curvature of this metric. These results
are completed in 2002 by Gudmundson and Kappos [10]. They have also shown
that the scalar curvature of the Cheeger—Gromoll metric is never constant if the
metric on the base manifold has constant sectional curvature. Furthermore, Ab-
bassi and Sarih have proved that 7'(M) with the Cheeger—-Gromoll metric is never
a space of constant sectional curvature (cf. [2]). A more general metric is given by
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Anastasiei [6] which generalizes both of the two metrics mentioned above in the
following sense: it preserves the orthogonality of the two distributions, on the hor-
izontal distribution it is the same as on the base manifold, and finally the Sasakian
and the Cheeger—Gromoll metric can be obtained as particular cases of this met-
ric. A compatible almost complex structure is also introduced and hence 7'(M)
becomes a locally conformal almost Kihlerian manifold.

Oproiu and his collaborators constructed a family of Riemannian metrics on the
tangent bundles of Riemannian manifolds which possess interesting geometric
properties (cf. [14-17]). In particular, the scalar curvature of 7'( M) can be constant
also for a non-flat base manifold with constant sectional curvature. Then Abbassi
and Sarih [3] proved that the metrics considered by Oproiu form a particular sub-
class of the so-called g-natural metrics on the tangent bundle (see also [1,3-5,12]).

2. Introduction

By thinking of T'(M) as a vector bundle associated with O(M) (the space of or-
thonormal frames on M), namely T(M) = O(M) x R"/O(n) (where the or-
thogonal group O(n) acts on the right on O(M)), Musso and Tricerri construct
some natural metrics on 7'(M) (see [13, §4]). The idea is to consider a symmetric,
semi-positive definite tensor field @, of type (2,0) and rank 2n on O(M) x R™.
Assuming that Q is basic for ¢y : O(M) x R* — T(M), (u,¢) — (p,'w),
where u = (p,uy,...,u,) and ¢ = (¢},...,¢") (e, Q is O(n)-invariant and
Q(X,Y) = 0 for all X tangent to a fiber of /) there is a unique Riemannian met-
ric gg on T'(M) such that ¥*gg = Q. In this paper we will show that the metric
introduced in [6] can be constructed by using the method of Musso and Tricerri
and we study it. After a compatible almost complex structure is introduced, we
give the conditions under which 7°(A/) is almost Kéhlerian (Theorem 1). We also
obtain a locally conformal Kihler structure on 7'(M) (cf. Example 2) and Kéhler
structures on portions of T'(M) (cf. Theorem 2). These results extend the known
result saying that 7'(A) endowed with the Sasakian metric and the canonical al-
most complex structure is Kihlerian if and only if the base manifold is locally
Euclidean.

Next we want to have constant sectional curvature and respectively constant scalar
curvature on 7'(M). With this end in view, we compute the Levi-Civita connec-
tion, the curvature tensor, the sectional curvature and the scalar curvature of this
metric. We found relations between the sectional curvature (respectively scalar
curvature) on 7'(M) and the corresponding curvature on the base M. We give an
example of metric on 7'(M) of Cheeger—Gromoll type which is flat. (Recall the
fact that Cheeger—Gromoll metric can not have constant sectional curvature.) See
also Proposition 6. We give some examples of metrics on T'(M) (when M is a
space form) having constant scalar curvature. See Examples 3, 4 and 5.
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3. On the Geometry of the Tangent Bundle 7'(M)

Let (M, g) be a Riemannian manifold and let V be its Levi-Civita connection. Let
7 : T(M) — M be its tangent bundle. If u € T'(M) it is well known that we
have the following decomposition of the tangent space T, T(M )

T, T(M) = V,T(M) & H,T(M)

where V,T(M) = ker ., is the vertical space and H,T' (M) is the horizontal
space obtained by using V. (Acurve 7 : I — T(M), t — (7(t),V (1)) is
horizontal if the vector field V'(t) is parallel along v = 7 o 7. A vector field on
T(M) is horizontal if it is tangent to a horizontal curve and vertical if it is tangent
to a fiber. Locally, if (U, z%),i = 1,...,m, where m = dim M, is a local chart
at p € M, consider a local chart (7=1(U), %, ¢*) on T(M). If Ff](m) are the

Christoffel symbols, then §; = % - I‘fj (x)y? % atu, i = 1,...,m span the
space H,T'(M), while a%i, i = 1,...,m span the vertical space V,T(M).) We

have obtained the horizontal (vertical) distribution HT'M (VT M) and a direct sum
decomposition

TTM =HTM & VTM

of the tangent bundle of T(M). If X € x(M), denote by X (and respectively
XV the horizontal (vertical) lift of X to T'(M).

If u € T(M) then we consider the energy density at u on 7°(M ), namely

t= % 9r(u) (u,u).

3.1. The Sasakian Structure
The Sasakian metric is defined uniquely by the following relations
gs(XT,YH) = gs(XV, YY) =g(X,Y) o7, gs(X",YV)=0 ()
foreach X,Y € x(M).
On T'(M) we also define an almost complex structure Jg by

JeXH =XV JsXV =—-XH forall X € x(M). )

It is known that (T'(M), Jg, gs) is an almost Kihlerian manifold. Moreover, the
integrability of the almost complex structure Jg implies that (M, g) is locally flat

(see, e.g., [T]).
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3.2. The Cheeger—Gromoll Structure
The Cheeger—Gromoll metric on 7'(M) is given by

gCG(p,u) (XHa YH) = gp(X, Y), gCG’(p,u) (XH, YV) =0
3)

1
906G (X", YY) = 152 (95(XY) + g5(X, Wgp(Y,0))

for any vectors X and Y tangent to M.

Since the almost complex structure Jg is no longer compatible with the metric
gcg, one defines on T(M) another almost complex structure Jeog, compatible
with the Chegeer—Gromoll metric, by the formulas

1

1 1 4)
JoeX) =T xH T g (X, uu
cG (pm) r t(l 4 t) gp( au)u
where t = /1 + 2t and X € T,(M). Remark that Jogu! = 4" and Jogu" =
—u’’. We get an almost Hermitian manifold (T'(M), Jog, gcc). Moreover, if we
denote by Q¢ the Kihler two-form (namely Qe (U, V) = gog(U, JogV), for
allU,V € x(T(M))) it is quite easy to prove the following

Proposition 1. We have

dQca = w A Qe o)
where w € AY(T(M)) is defined by
1 1
(XN =0 and iy (4Y) =~ (G + 10 ) (o), X € T(00),

Proof: A simple computation gives

Qea(X7, vy =V, vV)=0

Qea(X YY) = ¢ (400 Y) + T (XY )

(From now on we will omit the point (p, u).)
The differential of Q¢ is given by
dQea(X7, Y, Z27) = dQea(X" . Y, 2Y) = dQea(XV, YV, Z2Y) =0
1/1 1
00X, VY, 2"7) = - (t—Q 1 t) [9(X.Y)g(Z.u) — g(X, Z)g(Y, u)]
forany XY, Z € x(M).
Hence the statement. O
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Remark 1. The almost Hermitian manifold (7'(M), Joa, gog) is never almost
Kihlerian (i.e., dQ2cg # 0).

Finally, a necessary condition for the integrability of Jo is that the base manifold
(M, g) is locally Euclidian.

3.3. The General Structure

A general metric, let us call it g4, is in fact a family of Riemannian metrics (de-
pending on two parameters) and the Sasakian metric and the Cheeger—Gromoll
metric are obtained by taking particular values for the two parameters. Itis defined
(cf. [6]) by the following formulas

gA(p,u)(XHaYH) = gp(XaY)a gA(p,u)(XHaYV) =0
gA(p,u) (Xva YV) = a(t)gp(Xa Y) + b(t)gp(Xa u)gp(K 11)

for all X,Y € x(M), where a,b : [0, +c0) — [0,+00) and a > 0. Fora =1
and b = 0 one obtains the Sasakian metric and for a = b = one gets the
Cheeger—Gromoll metric.

(6)

1+2t

Proposition 2. The metric defined above can be constructed by using the method
described in Musso and Tricerri [13].

Proof: If we denote by § = (6',...,6") the canonical one-form on the frame
bundle O(M) (namely, if p : O(M) — M, 6 is defined by dp,(X) = 6*(X)w;,
foru = (p,uy,...,u,) and X € T,(M)) we have R;(6?) = (a=1)i6" for each
a € O(n). The vertical distribution of ¢/ is defined by

0'=0, D¢ :=d¢" + W)

where w = (W;7 ) denotes the so(n)-valued connection one form defined by the
Levi-Civita connection of g. Since R3(w;) = (a~ 1yt hwka we can also write
Ri(D¢Y) = (a=1)i D¢h, for all a € O(n).

Consider now the following bilinear form on O(M)

n ) 1 n . 1 n . .2
Qa=> (0 +alZlCI?) D (D) +b( 2lICI? ( GDG) NG
4= 20 o () 3 (5191°) (32

It is symmetric, semi-positive definite and basic. Moreover, since the following
diagram

O(M) x R — = (M)

projll J{T

O(M) M
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is commutative, we have 1*g4 = Q 4. (For details see [13, §4] and [4, §3].) O

Again, we have to find an almost complex structure on 7'(M), call it J 4, which is
compatible with the metric g4. Inspired from the previous cases we look for the
almost complex structure .J 4 of the following form

JAX{;’H) =aXV + Bg,(X,u)a”

®
JaX(w =X + pgp(X, w)u”

where X € x(M) and «, 3, v and p are smooth functions on 7'(M ) which will be
determined from Jfl = —1T and from the compatibility conditions with the metric
g4- Following the computations made in [6] we get first & = i% and v = F+/a.
Without lost of the generality we can take

1

o= Ja and v = —+/a.
Then one obtains
1 /71 1 1
8= 5 (ﬁ+67M) and p= %(\/54—6\/@)
where € = +1.
Thus we have the almost complex structure J 4

1 XV 1 ( 1 L 1
—_— —_— —_— 67
Va 2t a va+ 2bt

JaXV = —VaX" + % (\/54— eva + 2bt> g(X,u)uf?

and the almost Hermitian manifold (7(M), g4, Ja).

JaXH = )g(X,u)uV

)

Remark 2. In this case J4 is defined on 7°(M )\ {0} (the bundle of nonzero tangent

vectors), but if we consider e = —1 the previous relations define .J 4 on the whole
T(M).

Remark 3. If we take ¢ = —1, a = 1 and b = 0 we get the manifold
(T'(M),gs,Js) and for e = —1, a = b = ﬁ we obtain the manifold

(T'(M), gcc, Jea)-

If we denote by {24 the Kihlerian two-form (i.e., Q4(U, V) = ga(U, J4V), for
allU,V € x(T'(M))) one obtains

Proposition 3 (see [6]). The almost Hermitian manifold (7'(M ), ga, J4) is locally
conformal almost Kéhlerian, that is

dQpa=w A Qy (10)
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where w is a closed and globally defined one-form on 7'(M) given by

W(XT) =0 and w(XV)= % (% + % (Va+e/at 2bt)> (X, ).

As a consequence of the above one can state also the following

Theorem 1. The almost Hermitian manifold (T (M), ga, Ja) is almost Kiihlerian
if and only if
2a'(t) (ta’(t) + a(t))

a(t)
and for ¢ = —1, a(t) is an increasing function, while for ¢ = +1, ta(t) is a
decreasing function.

b(t) =

Proof: The condition w = 0 is equivalent to

2ta/(t) + alt) = —ey/a(t)y/alt) + 2tb(t).

From here, we get b(t). Moreover it follows that a(t)+/t is a monotone function,
namely it is increasing if e = —1 and decreasing for e = +1. Since b(¢) is positive
we conclude

oife=—-1:2dt+a>0«—2(dt+a)>a —dt+a>0—ad >
0 — a increases (this implies a+/%, at are also increasing functions)

eife=+1:2dt+a<0—dt+a< —adt —dt+a<0— at
decreases (this implies that a+/%, a are also decreasing functions).

O

3.4. The Integrability of .J 4

In order to have an integrable complex structure .J4 on 7'(M) we have to compute
the Nijenhuis tensor N ;, of J4 and to check that it vanishes identically.

We have the following relations for N,

Lt T AW) ()Y — oY )X) + (R

H~yHy [ O
N-]A(X Y )_( 202 a\/‘

Ny (XY, YY)
= (—aRxyu+vVaB(t)g(Y,w)Rxwe — VaB(g(X,wRvw) ()

- == (522 + B0) (X — g(xw)”

where A(t) = 3 (La + eﬁ) and B(t) = 5 (\/H +eva+ 2bt).
(The expression for Ny, (X i YV) is very complicated and will be omitted.)
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Thus if J 4 is integrable then
R < a a+td
Xy'u =

-+ —FA(t Y u)X — g(X,0)Y
7+ U AD)) (V)X ~ (X))
for every X, Y € x(M) and for every point u € T(M). Tt follows that M is a
space form M (c) (c is the constant sectional curvature of M). Consequently,

a a+td

— — At) =c. 12
Example 1. In the Sasakian case (a(t) = 1, b(t) = 0, e = —1) it follows that
c = 0, i.e., the manifold M is flat.

Example 2. Looking for a locally conformal Kihler structure on 7'(M') for which
the metric is of Cheeger—Gromoll type, namely a(t) = b(t), we obtain

e2\/1+2t
2 (ce2\/1+2tt +(Q+t+vV1+ 2t)k)

with k being a positive real constant and ¢ must be nonnegative.

at) = b(t) =

Question: Can (T'(M), ga, Ja) be a Kihlerian manifold?

If this happens then the base manifold is a space form M (c) and the functions a
and b satisfy
_ 2d/(ta’ + a)

b (13)
a
and
a' = 2ca(2ta’ + a). (14)
If ¢ = 0 (M is flat) then a is a positive constant and b vanishes.
If ¢ # 0 the ODE (14) has general solutions
1++1+4+kt
a1 o(t) = —aa (15)

in which x a real constant. Taking into account that ¢ and b are positive functions
and using (13) one gets:

Case 1.
1+V1+kt k(1 ++/1+ kt)
a=—Y"T" nd b=— : (16)
dct 8ct(1 + kt)
Herec> 0,1t >0,k <0,t < —% and e = +1.
Case 2.
2
- r and b= r .an
4e(1 4+ v/1 + kt) 8c(1 + kt)(1 + /1 + kt)
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Here ke < 0,c < 0 (thenk > 0),t < —% and e = —1.
Consider B, = {v € T(M); grwy(v,v) < —%} and By, = B\ M.

Theorem 2. The manifolds By, in Case I and B, in Case 2 are Kiihler manifolds.

Now we give

Proposition 4. Let (M, g) be a Riemannian manifold and let 7' (M) be its tangent
bundle equipped with the metric g4. Then, the corresponding Levi-Civita connec-
tion V4 satisfies the following relations:

VAL YT = (VxY)H - % (Rxyw)

VALYV = (VxY)Y + g (Roy X)H

@;yH:gmﬂmH (18)
Vi YY =L (g(X,0)YY + g(¥,w)X") + Mg(X, V)u"

+ Ng(X,u)g(Y, w)u”

where
a'(t) 2b(t) — a’(t) a(t)b'(t) — 2a'(t)b(t)
L = —, M= a_nd = .
2a(t) 2(a(t) + 2tb(t)) 2a(t)(a(t) + 2tb(t))
Proof: The statement follows from Koszul formula by usual computations. 0

Having determined Levi-Civita connection, we can compute now the Riemannian
curvature tensor R on T(M). We have

Proposition 5. The curvature tensor is given by

~ a
RQHYHZH = (RXYZ)H + Z [Rququ - RHRYZUX + 2RURXYUZ]H

1
+t3 [(VzR)xyu]"
RA,onZV = |RxyZ + 2(R —R'VLZRV
XHYH = XY +4( YR, zXU XRuZYu) + g( ’u)( qu)
+ Mg(Rxyu, Z)u” + % [(VxR)uzY — (Vy R)uz X]?

~ a
R?(HYV z" = D) [(VXR)uYZ]H
v

1
+ E [RXZy — %RXRuyZu -+ Lg(Y, u)szu + Mg(szu, Y)u
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2
~ [4) [4)
RiuyvZ" = —5(RyzX)" — —(Ray RuzX)" (19)
a/
+ 7 (92 0By )T — (¥, 0) (RuzX)"]
/
Rivyv 2" = a(Rxy 2)" + 5 [g(X . 0) Roy Z — g(Y,u) Rox Z)"

2
+ “Z [RaxRuyZ — Ruy Rux 2]

Rivyv 2" = Fi(H)g(Z,u) [g(X,0)YY — g(V, w) X" ]
+ Ba(t) [9(X, 2)YY — (v, 2)X"]
+ F3(t) [9(X, Z)g(Y,u) — (Y, Z)g(X,0)] 0"
where F} = L'—L2—N(1+2tL), Fy = L—M(1+2¢L) and Fy = N— (M +M2+2¢MN).

Remark 4. a) In the case of the Sasakian metric we have: L = M = N = 0,
F, = F, = F3 = 0 (cf. also [8]).
b) In the case of the Cheeger—Gromoll metric we have (see also [10,19]):

1 241 1 2 2(t? +2
L=——, M:i’ N=—, L'=—, M’:_M
2 rd v vd 6
1 21 SRRy | 242
1+2L = =, Fl:t 6 F2:_t +t6+_’ F3:t—fii_
T T v t

where vt = /1 + 2t.

In the following let QA(U , V') denote the square of the area of the parallelogram
with sides U and V for U,V € x(T'(M))

QYU V) = ga(U,U)ga(V,V) = ga(U, V)"
We have
Lemma 1. Let X, Y € T,,M be two orthonormal vectors. Then
QXA yHy=1
QMUX™YY) = a(t) + b(t)g(Y. )? (20)
QXY YY) = a(t)? + a(t)b(t) (9(X, ) + g(Y,u)?) .
We compute now the sectional curvature of the Riemannian manifold (7°(M), ga),
namely K4(U,V) = %%# for U,V € x(T(M)).

Denote by To(M) = T'(M) \ {0} the bundle of non-zero tangent vectors tangent
of M. For a given point (p,u) € To(M) consider an orthonormal basis {e; }

i=1,m
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in the tangent space 7,,(M) of M such that e; = rar- Consider on Tp0) T (M) the
following vectors

Ez:ef{, i=1,...,m
1
E =—— ¢
T Ve 1)
1
Em+k:—e}c/, k=2,...,m.

Va
Itis easy to check that {F1, ..., Eap,} is an orthonormal basis in T{,, ,yT'(M ) (with

respect to the metric g 4). We will write the expressions for the sectional curvature
K# in terms of this basis. We have

- 3a(t 2 ~

RAES B = Kews) = 240 [Rael| KA B =0

- 1 - F5 + 2tF:
KA(Biy Emir) = ;| Rueyeil” s KA (B Bmr) = —72(1@ (22

2
a(t)’

Here | - | denotes the norm of the vector with respect to the metric ¢ (in a point).

KYEpiwEmy) = — ij=1,....,m, kl=2,...,m.

Question: Can we have constant sectional curvature ¢ on T(M)?

If this happens, then it must be 0, so T'(M) is flat. First, one gets easily that M is
locally Euclidean. Then, we should also have F»(t) = 0 and F3(t) = 0 for any
t. It follows that M = and N = Y=L2 (Hence F (t) = 0.) These equalities

L
T+21L I+2iL°
yield two ordinary differential equations (involving a and b), namely

o) t(a')? + 2aa’ — 2ab =0
abl —2a'b  2a"a — 3(a’)?
a+2tb  2(a+ta)

A simple computation shows that ¢¢) is a consequence of ¢). So, we must have

ta'(t)
b(t) =d'(t (1 ) . 23
=20 (1+ 53 23)
It is interesting to fix our attention to the following special cases

Case i) b(t) = ka'(t), where k is a real constant.

If ' = 0 then b = 0 and a is constant, so g4 is homothetic to Sasakian metric.

If o/ # 0 then a(t) = agt>®=Y, (k > 1 ork < 0, ag > 0) and in this case we have
to consider To(M).
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Case ii) b(t) = a(t). We obtain %' = TiEvisat th+2t which gives
o2V1F2t
(1+/1+2t)%
o—2VIT2
a(t) = a
= S Asw

and in this case we have to deal with non-zero vectors.

a(t) = ag ap >0 (%)

or

Remark 5. The manifold T(M) equipped with the Cheeger—-Gromoll metric has
a non constant sectional curvature.

Putting ag = 1 in (*), we can state the following

Proposition 6. Consider g; on T'(M) given by
gl(XH’ YH) =g(X.,Y)

gl(XH,YV) =0 (24)

e2v1+2t

1 +I+2t)2
The manifold (7T(M), g1) is flat.

g (XV,Y"V) = (9(X,Y) + g(X,u)g(Y, )

We compare now the scalar curvatures of (M, g) and (T(M), ga).

Proposition 7. Let (M, g) be a Riemannian manifold and endow the tangent bun-

— A
dle T'(M) with the metric g4. Let scal and scal be the scalar curvatures of g and
ga respectively. The following relation holds

Z |Re ;0

i<J

— A
scal = scal + + - (mF2 + 4tF3) (25)

where {€;}i=1, . m is a local orthonormal frame of T'(M).

Proof: Using that scal = }_ K(e;, ¢;) and the formula
i#j

Z | Rejues|” = Z ‘Reieju

2,j=1 i,j=1

we get the conclusion. |
Let us consider the case when M = M (c) is a real space form.

Question: Could we find functions a and b such that T(M) equipped with the
metric g4 has a constant scalar curvature?
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First of all let us consider the case when a = k (a positive real constant). After
some computations we obtain that b(¢) should satisfy the following ODE

(2 = 3k)k3t + b(t) (k(m + 4¢%(2 — 3k)kt?) 26)
+ 2t( — 24+ m +2c%(2 — 3k)kt?)b(t)) + 2ktd'(t) = constant.

Let us give some examples:

Example 3. If we take a = Z and b = 0 we obtain that (T'(M), g4) has a constant

—— A
scalar curvature scal = m(m — 1)c.

Example 4. Fora = k = % and if the constant in (26) vanishes (and b # 0) we
can integrate the ODE obtaining

b= o 5[(m—2)t+m228t]

—— A
Then, (To(M), g4) has a constant scalar curvature scal = m(m — 1)c.
Ak (3k — 2)t
2 +m + 2¢%(2 — 3k)kt?

— A
(T'(M), ga) has a constant scalar curvature scal = m(m — 1)c.

then

Example 5. If we take a = k € (0, %) and b =

Let us consider now b(t) = a(t), as in the case of Cheeger—-Gromoll metric. Then
(T'(M), ga) has a constant scalar curvature if and only if a satisfies the following
ODE

1
T 2(1 +26)2a(t)3
+ 6t(c + 2ct)?a(t)* + (=6 + m)t(1 + 2t)a’ (t)?
+2a(t)((m + 2(—=1 + m)t)a'(t) + 2t(1 + 2t)a"(t))] = const .

[—2(m +2(=2+m)t)a(t)? — 4t(c + 2ct)a(t)?

which seems to be very complicated to solve.
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