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1. Introduction

The present article summarizes most of the four lectures that I have presented dur-
ing the Varna Conference on Geometry, Integrability and Quantization, June 2007.
They are based on my book An Introduction to Lie groups and the Geometry of Ho-
mogeneous Spaces [4], with additional recent results on homogeneous geodesics
and homogeneous Einstein metrics.
The theory of Lie groups (i.e., a manifold with a group structure) is one of the
classical well established areas of mathematics. It made its appearance at the end
of the nineteenth century in the works of S. Lie, whose aim was to apply algebraic
methods to differential equations and geometry. During the past one hundred years
the concepts and methods of the theory of Lie groups entered into many areas of
mathematics and theoretical physics.
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The basic method of the theory of Lie groups, which makes it possible to obtain
deep results with striking simplicity, consists in reducing questions concerning Lie
groups to certain problems of linear algebra. This is done by assigning to every
Lie group G its “tangent algebra” g. This is the tangent space of G at the identity
element e, equipped with a natural Lie algebra structure. To a large extend, the Lie
algebra g determines the group G, and for every homomorphism f : G → H of
Lie groups, a homomorphism df : g → h of their Lie algebras determines f to a
large extend.

The question “what is geometry?” is a question that was emerged through the
various attempts to prove Euclid’s fifth postulate. After C. F. Gauss’ Theorema
Egregium (curvature is an intrinsic property of a surface) there were two main
directions in the development of geometry. The first, was the theory of Riemannian
manifolds, developed by B. Riemann, and is a generalization of Gauss’ theory of
surfaces.

The other direction was developed by F. Klein in his Erlangen program, according
to which the object of geometry is a G-space M , that is a set M with a given
group G of transformations. If the group acts transitively, that is for all p, q ∈ M
there exists an element in G which transforms p into q, then the G-space is called
homogeneous. As a result, if we pick any point o ∈ M , we can identify M with
the set G/H of left cosets, where H is the subgroup of G consisting of those
elements which map o to itself. Therefore, the homogeneous geometry of such a
space M = G/H is the study of those geometrical properties and of those subsets
of M , which are invariant under G. By varying the group G, we obtain different
geometries (e.g., Euclidean, affine, projective, etc). As a result, if we know the
value of a geometrical object (e.g., curvature) at a point ofM , then we can calculate
it at any other point.

Using the identification of a homogeneous space M with the quotient G/H , sev-
eral geometrical problems can be reformulated in terms of the group G and the
subgroup H . In particular, if G and H are Lie groups the problems can be further
reformulated in terms of their infinitesimal objects, i.e., the Lie algebra g of G and
its Lie subalgebra h associated to H . The major benefit of such an infinitesimal
approach is that difficult nonlinear problems (from geometry, analysis or differen-
tial equations) can be reduced to linear algebra. This is essentially done by use of
the canonical isomorphism To(G/H), of the tangent space of G/H at the identity
coset o = eH , with the quotient Te(G)/Te(H) = g/h.

After Cartan’s classification of semisimple Lie groups, two important classes of ho-
mogeneous spaces were classified, namely symmetric spaces and flag manifolds.
Flag manifolds are adjoint orbits of a compact semisimple Lie group, and equiva-
lently homogeneous spaces of the form G/C(T ), where T is a torus in G. They
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have many applications in real and complex analysis, topology, geometry, dynam-
ical systems, and physics.
There is actually a third direction in the development of geometry, which is Car-
tan’s theory of connections on a fiber bundle (espàces généralizés), which was used
as an appropriate mathematical framework in recent physical theories (Yang-Mills
theory, quantum gravity). I will not enter in this topic.
The object of these lectures was to present some aspects of Lie groups and ho-
mogeneous spaces, as well as their geometrical objects defined on them, such as
invariant metrics and curvature. As an application of the theory, I included a sec-
tion in homogeneous Einstein metrics with some old and new results. I had in
mind an audience of graduate students with a background on linear algebra and an
introductory course on differential manifolds.

2. Lie Groups

A Lie group is a an abstract group with a smooth structure.

Definition 1. A set G is a Lie group if and only if

1) G is a group
2) G is a smooth manifold
3) The operation G×G→ G, (x, y) 7→ xy−1 is smooth.

Examples 1. 1) The sets R, C, H (the quaternions), Rn, Cn, Hn are abelian Lie
groups under addition.

2) The sets R∗, C∗, H∗ are Lie groups under multiplication. The first two are
abelian, the third is not.

3) The set MnR of all n × n real matrices (respectively MnC, MnH) which is
identified with the set End(Rn) (respectively End(Cn), End(Hn)) of all endo-
morphisms (i.e., linear maps) of Rn (resp. Cn, Hn).

4) The set GLnR of all invertible real matrices, which is identified with the set
Aut(Rn) of all automorphisms of Rn. Similarly we can define the Lie groups
GLnC and GLnH.

5) The circle S1 ⊂ C∗ and the three-sphere S3 ⊂ H∗.
6) The torus S1 × S1.
In general, if G and H are Lie groups then the product G×H is also a Lie group.
To obtain more examples we need the following notion.

Definition 2. a) A Lie subgroup H of a Lie group G is an abstract subgroup of G
which is also an immersed submanifold of G.

b) A closed subgroup of a Lie groupG is an abstract subgroup and a closed subset
of G.
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Proposition 1 (Cartan). If H is a closed subgroup of a Lie group G, then H is a
submanifold, so a Lie subgroup of G. In particular, it has the induced topology.

It is possible to have a Lie subgroup which is not a closed subset. The standard
example is the line of irrational slope φ : R ↪→ S1 × S1, t 7→ (e2πit, e2πiαt), α
irrational. The map φ is an one to one homomorphism, and an immersion. It is
known that its image is a dense subset of the torus, so it is not an embedding (e.g.,
[12]).
By use of the above proposition we can obtain more examples of Lie groups.

7) The orthogonal group O(n) = {A ∈ GLnR ; AAt = I}. By using the implicit
function theorem we obtain that the dimension of O(n) is 1

2n(n− 1).
8) The unitary group U(n) = {A ∈ GLnC ; AA∗ = I} and the symplectic group

Sp(n) = {A ∈ GLnH ; AA∗ = I}. Their dimensions are n2 and 2n2 + n
respectively.

9) The special orthogonal group SO(n), and the special unitary groups SU(n)
consisting of matrices in O(n) and U(n) of determinant 1.

Subgroups of GLnK (K ∈ {R,C,H} are known as the classical groups.

We have the following simple isomorphisms: SO(1) ∼= SU(1) ∼= {I}, O(1) ∼=
S0 = Z2, U(1) ∼= SO(2) ∼= S1, SU(2) ∼= S3 ∼= Sp(1).
A result of Hopf states that S0, S1 and S3 are the only spheres that admit a Lie
group structure.

2.1. The Tangent Space of a Lie Group – Lie Algebras

There are two important maps in a Lie group G, called translations.
For a ∈ G, we define the left translation La : G → G by g 7→ ag and the right
translation Ra : G → G by g 7→ ga. These maps are diffeomorphisms, and
can be used to get around in a Lie group. In fact, any a ∈ G can be moved to
the identity element e by La−1 , and (dLa−1)a : TaG → TeG is a vector space
isomorphism.

Proposition 2. Any Lie group is G parallelizable, i.e., its tangent bundle is trivial.

Proof: The map Xg 7→ (g,dLg−1Xg) gives the desired isomorphism TG ∼= G×
TeG. �

Definition 3. A vector fieldX on a Lie groupG is called left-invariant ifX ◦La =
dLa(X) for all a ∈ G.

As a consequence, if X is a left-invariant vector field then Xa = (dLa)e(Xe) for
all a ∈ G, that is its value is determined by Xe.
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The set g of all left-invariant vector fields on G is a real vector space, and this
vector space can be identified with the tangent space of G at the identity, as the
next proposition shows.

Proposition 3. g ∼= TeG.

Proof: We define the map g → TeG by X 7→ Xe. Its inverse is TeG 3 v 7→ Xv,
where Xv

g = (dLg)e(v) is a left-invariant vector field. �

It is easy to see that the set g is closed under the bracket operation of vector fields,
that is ifX,Y ∈ g then [X,Y ] ∈ g. This bracket provides g with a real Lie algebra
structure. This means that [ , ] is bilinear, antisymmetric, and satisfies the Jacobi
identity: Cyclic([X, [Y,Z]) = 0 for allX,Y, Z ∈ g. Using the above isomorphism
this Lie algebra structure can be translated to TeG by [u, v] = [Xu, Xv]e (u, v ∈
TeG).

Definition 4. The Lie algebra of a Lie group G is the vector space TeG equipped
with the Lie bracket defined above.

Examples 2. 1) The cross product operation [x, y] = x × y in R3 defines a Lie
algebra structure.

2) The Lie algebra of G = (Rn,+) is g = Rn with bracket [x, y] = 0.
3) The operation [A,B] = AB − BA defines a Lie algebra structure in MnR ∼=

Rn2
.

4) The Lie algebra of GLnR (i.e., the tangent space at the identity I) is MnR =
g (in fact it is an open submanifold of a Euclidean space). What is the Lie
algebra bracket? To each X ∈ g we associate the n × n matrix A = (aij)
of components of Xe, so that Xe =

∑
i,j

(
∂

∂xij

∣∣∣
e

)
, and write A = µ(X). By

explicit inspection of components one can show that µ([X,Y ]) = µ(X)µ(Y )−
µ(Y )µ(X), giving the Lie algebra structure on g = MnR.

In order to be able to find explicitly the Lie algebra of various Lie groups, we need
to give an alternative description of a Lie group. In fact, this description is close to
Lie’s original concept of a Lie group.

2.2. Infinitesimal Description of a Lie Group

Definition 5. An one-parameter subgroup of G is a smooth homomorphism ϕ :
(R,+)→ G.

Examples 3. 1) The map ϕ(t) = et is a one-parameter subgroup in G = R.
2) Given a vector v ∈ Rn, the map ϕ(t) = tv is a one-parameter subgroup in Rn.
3) Similarly ϕ(t) = eit is an one-parameter subgroup in G = S1 = U(1).
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4) The map ϕ(t) =
(

cos t sin t
− sin t cos t

)
is an one-parameter subgroup in G = U(2).

It can be shown that a path ϕ(t) in a Lie group G is a one-parameter subgroup if
and only if the velocity of ϕ(t) is constant and ϕ(0) = e.
The main result is the following one.

Theorem 1. The map ϕ 7→ dϕ0(1) defines a one to one correspondence between
one-parameter subgroups of G and TeG.

Proof: Let v ∈ TeG and Xv
g = (dLg)e(v) be the value of the corresponding left-

invariant vector field. Let ϕ : (−ε, ε) → G be the unique integral curve of Xv

such that ϕ(0) = e and dϕt = Xv
ϕ(t). Then ϕ is a homomorphism, and extend it

to all R by ϕv(t) = ϕ( tn)n for large n. Then the map v 7→ ϕv is the inverse of
ϕ 7→ dϕ0(1). �

Corollary 1. For each X ∈ g there exists a unique one-parameter subgroup ϕX :
R→ G such that φ′X(0) = X .

Definition 6. The exponential map of G is the map exp : g → G given by
exp(X) = ϕX(1).

It follows that exp(tX) = ϕX(t), therefore

Corollary 2. The curve γ(t) = exp(tX) (X ∈ g) is the unique homomorphism in
G with γ′(0) = X .

The following proposition summarizes some properties of the exponential map.

Proposition 4. 1) The exponential map is smooth, and d exp0 : g → g is the
identity map.

2) exp(tX + sX) = exp(tX) · exp(sX).

3) exp(tX) exp(tY ) = exp(t(X + Y ) + t2

2 [X,Y ] + o(t2)) (Campbell-Baker-
Hausdorff formula).

4) If G is compact and connected, then exp is onto.
5) If θ : G → H is a homomorphism of Lie groups, then dθe : g → h is a

homomorphism of Lie algebras, and θ ◦ exp = exp ◦ dθe.

Examples 4. 1) If G = R∗, then g = R and exp(t) = et.
2) IfG = GLnR, then g = MnR and exp(A) = eA (usual matrix exponentiation).
3) We will show that the Lie algebra of O(n) = {A ∈ GLnR ; At = A−1} is

o(n) = {A ∈ MnR ; At = −A}, the set of all skew-symmetric matrices.
Hence, the dimension of O(n) is 1

2n(n− 1).
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Let γ(s) be a curve in MnR with γ(0) = I that lies in O(n), i.e., γ(s)tγ(s) = I .
Differentiating at s = 0 we obtain that γ′(0)t = −γ′(0), thus TIO(n) ⊂ o(n).
To show the opposite inclusion, we need to use the fact (exercise) that for any
matrix X , (eX)t = (eX)−1 if and only if Xt = −X . Then, if A ∈ o(n), then
γ(s) = esA is a curve in MnR with γ(0) = I and γ(R) ⊂ O(n). Differentiating
at s = 0 it follows that γ′(0) = A ∈ TIO(n), so o(n) ⊂ TIO(n).

4) The Lie algebra of U(n) is u(n) = {A ∈ MnC ; Ā = −At}, the set of all
skew-Hermitian matrices.

5) The Lie algebra of SLnR, of the set of all real matrices with determinant one,
is sl(n) = {A ∈ MnR ; trA = 0}.

Jumping a bit ahead, we mention that if a Lie groupG is given a Riemannian metric
which is invariant under Lg and Rg, then exp : g → G is the usual exponential
map for G at e. In this case the one-parameter subgroups of G are the geodesics
through e.

2.3. Lie’s Fundamental Theorems

The precise relationship between a Lie group and its Lie algebra is described by
the following statements, which are due, in a direct or indirect manner, to S. Lie.

1) Given a Lie algebra g there is a Lie group G whose Lie algebra is g.
2) There exists an one to one correspondence between connected immersed sub-

groups H of a Lie group G and subalgebras h of g (the Lie algebra of G). This
correspondence is given by H 7→ h = TeH . Normal subgroups of G corre-
spond to ideals in g.

3) If G1, G2 are Lie groups with Lie algebras g1, g2, and if g1 and g2 are isomor-
phic as Lie algebras, then G1 and G2 are locally isomorphic (in fact they have
the same covering space). For example, S3 ∼= Sp(1) and SO(3) ∼= RP3 are
locally isomorphic, but not isomorphic.

4) The category of Lie algebras and homomorphisms is isomorphic to the category
of connected, simply connected Lie groups and homomorphisms.

2.4. The Adjoint Representation

We need a measure of the non-commutativity of a Lie group, and this can be pro-
vided by an important representation, called the adjoint representation. Further-
more, this can be used to define important invariants of a Lie group, other from its
dimension and the center.
For g ∈ G, let σ(g) : G→ G be the inner automorphism σ(g)(h) = ghg−1.
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Definition 7. 1) The adjoint representation of a Lie group G is the (smooth) ho-
momorphism Ad : G→ Aut(g) given by Ad(g) = (dσ(g))e : TeG→ TeG.

2) The adjoint representation of a Lie algebra g is the homomorphism ad : g →
End(g) given by ad(X) = (d Ad)e(X).

It follows that ker Ad = Z(G) the center of G, and ker ad = Z(g). If G is
connected the Lie algebra of Z(G) is Z(g).

Proposition 5. If G is a matrix group (i.e., G ⊂ GLnK, K ∈ {R,C,H}) then

1) Ad(g)X = gXg−1 for all g ∈ G, X ∈ g.
2) ad(X)(Y ) = [X,Y ] for all X,Y ∈ g. In fact this is true for any Lie group.
3) For any g ∈ G and X ∈ g, exp ◦ ad(X) = Ad ◦ exp(X).

Examples 5. 1) If G is abelian, then both Ad and ad are trivial (i.e., Ad(g) =
{Id}). This is the case for SO(1), SO(2) ∼= U(1), O(1), O(2).

2) Trying to compute Ad : SU(2)→ Aut(su(2)), consider the basis{
X1 =

(
i 0
0 −i

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i
i 0

)}
of su(2), and let

A =
(

x+ iy u+ iv
−u+ iv x− iy

)
∈ SU(2).

We know that Ad(A)B = ABA−1, so by finding the matrices Ad(A)X1,
Ad(A)X2, Ad(A)X3 we can obtain the matrix representation of Ad(A) (this
is a 3× 3 matrix).
In fact one can do more: Using the following Proposition 6 it follows that Ad :
SU(2)→ O(3), and since SU(2) ∼= S3, then det(Ad g) = 1, therefore Ad is a
homomorphism from SU(2) to SO(3). It can be shown that this homomorphism
is onto.
Using language of the more advanced representation theory, it can be shown that
the complexified adjoint representation of SU(n) is given by AdSU(n)⊗C =
µn ⊗ µ̄n − 1, where µn : SU(n) → SU(n) is the standard representation of
SU(n) and 1 is the trivial representation.

3) If λn : SO(n)→ SO(n) is the standard representation of SO(n), then AdSO(n)

= Λ2λn, the second exterior power of λn.

Towards studying the geometry of a Lie group the following notion is very impor-
tant.

Definition 8. 1) Let g be a Lie algebra. The Killing form of g is the symmetric
bilinear form B : g × g → R given by B(X,Y ) = tr(ad(X) ◦ ad(Y )). The
Killing form of a Lie group is the Killing form of its Lie algebra.
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2) A Lie algebra g is called semisimple if B is non-degenerate. This is equivalent
to Z(g) = 0.

3) A Lie group G is semisimple if its Lie algebra is semisimple. This is equivalent
to the fact that Z(G) is discrete.

The groups GLnR and U(n) are not semisimple. Table 1 gives the Killing form of
the classical Lie groups.

Table 1. The Killing form of the classical Lie groups

G B
U(n) 2n trXY − 2 trX trY
SU(n) 2n trXY
SO(n) (n− 2) trXY
Sp(n) 2(n+ 1) trXY

The Killing form can be used to define an inner product on a compact semisimple
Lie group:

Theorem 2. Let G be a compact semisimple Lie group. Then the Killing form B
is negative definite. The converse is true if G is connected.

This theorem is a consequence of the fact that a compact Lie group G admits an
inner product 〈 , 〉 on its Lie algebra g, which is Ad-invariant, i.e.,

〈Ad(g)X,Ad(g)Y 〉 = 〈X,Y 〉 for all g ∈ G, X, Y ∈ g.

Proposition 6. 1) The Killing form B of a Lie group G is Ad-invariant. As a con-
sequence, for all g ∈ g the operator Ad(g) is B-orthogonal, that is Ad(G) ⊂
O(g).

2) For any Z ∈ g the operator ad(Z) is skew-symmetric with respect to B,
that is B(ad(Z)X,Y ) + B(X, ad(Z)Y ) = 0. Equivalently, B([X,Z], Y ) =
B(X, [Z, Y ]).

Definition 9. A semisimple Lie algebra is called simple if it is non-abelian and it
has no non-trivial ideals.

Simple Lie algebras are the “building blocks” of semisimple Lie algebras, since a
semisimple Lie algebra is a direct product of simple ideals.

2.5. Maximal Tori and the Classification Theorem

Definition 10. 1) A torus T in a Lie group G is a Lie subgroup isomorphic to a
product S1 × · · · × S1.
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2) A maximal torus in G is a torus T if whenever T ⊂ S ⊂ G, with S a torus, then
T = S.

Examples 6. 1) The set of matrices Tn = {diag(eiθ1 , . . . , eiθn)} is a maximal
torus in U(n). By adding the condition θ1 + · · ·+ θn = 0, this set is a maximal
torus in SU(n).

2) If rot θ =

(
eiθ 0
0 e−iθ

)
, then the set of the block diagonal matrices of type

{diag {rot θ1, . . . , rot θ2n}} is a maximal torus in SO(2n), and {diag(rot θ1,
. . . , rot θ2n, 1)} is a maximal torus in SO(2n+ 1).

The following proposition gives a characterization of tori.

Proposition 7. A Lie group H is a torus if and only if H is compact, connected,
and abelian.

The next theorem essentially summarizes the central theory of maximal tori in a
Lie group.

Theorem 3. Let G be a compact, and connected Lie group. Then

1) Any element in G is contained in some maximal torus.
2) Any two maximal tori T1, T2 are conjugate in G, that is gT1g

−1 = T2 for
some g ∈ G.

3) If T is a maximal torus in G, then G =
⋃
g∈G gTg−1.

Several well known theorems of linear algebra can be interpreted by the above
theorem. For example, if G = U(n) then any unitary matrix can be diagonalized.
Due to part above the following concept is well defined.

Definition 11. The rank of a compact and connected Lie group G is the dimension
of a maximal torus.

Denoting by rk(G) the rank of the Lie group G, then rk(U(n)) = rk(SO(2n)) =
rk(SO(2n+ 1)) = n, and rk(SU(n)) = n− 1.
There is an analogous concept for Lie algebras. A Cartan subalgebra of a Lie
algebra g is a maximal abelian subalgebra of g. In turns out that the Lie algebra t
of a maximal torus T of G, is a Cartan subalgebra of the Lie algebra g of G.
For example, if G = U(n), then g consists of all n × n skew-symmetric complex
matrices, and the Lie algebra of Tn is the set {diag(ic1, . . . , icn) ; ci ∈ R}. This is
a Cartan subalgebra of u(n).
The maximal tori are used for the classification of compact and connected Lie
groups, which it is summarized in the following theorem.
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Theorem 4. 1) Let G be a compact, and connected Lie group. Then there exists a
Lie group G̃ which is a finite covering of G and so that G̃ ∼= S×H , where S is
a torus, and H a compact, connected, and simply connected Lie group.

2) Every compact, connected, and simply connected Lie group is isomorphic to a
product of simple, compact, connected, and simply connected Lie groups.

3) The simple, compact, connected, and simply connected Lie groups are the fol-
lowing: SU(n) (n ≥ 2), S̃O(2n+ 1) (≥ 3), S̃O(2n) (n ≥ 4), Sp(n) (n ≥ 2),
G2, F4, E6, E7, E8.

The first four simple groups are the classical groups, and their corresponding Lie
algebras are denoted by An−1, Bn, Cn, and Dn, respectively. The remaining five
are called the exceptional Lie groups, and their definition is more complicated.
The subscript denotes their rank, and their dimensions are 14, 52, 78, 133 and 278,
respectively. The group S̃O(n) is also denoted by Spin(n), and is known as the
spinor group.
The analysis and proof of the classification theorem is a laborious process, and
reduces to the classification of complex semisimple Lie algebras, that was achieved
by E. Cartan. This is a slightly easier process, since it uses elementary, but non
trivial linear algebra. The bottom line, is that the complex semisimple Lie algebras
can be classified by certain combinatorial graphs, called Dynkin diagrams.

3. Homogeneous Spaces

3.1. Group Actions and Examples

Definition 12. Let G be a Lie group, and H a closed subgroup. Then the space
G/H of left cosets is called a homogeneous space.

Proposition 8. The space G/H has a natural manifold structure. The projection
G→ G/H is a submersion, and it is a principal fiber bundle with group H .

The group G acts on G/H by a · gH = agH . This action is transitive. In fact,
every transitive action is represented in this way:

Proposition 9. Let G ×M → M be a transitive action of a Lie group G on a
manifold M , and let H = Gm = {g ∈ G ; g ·m = m} be the isotropy subgroup
of m ∈M . Then

1) H is a closed subgroup of G.
2) The manifold G/H is diffeomorphic to M .
3) The orbit G ·m is diffeomorphic to G/Gm.

In this case we say traditionally, that the Lie group G is “represented” as a group
of diffeomorphisms or “transformations” of M .
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Definition 13. A Riemannian homogeneous space is a Riemannian manifold (M, g)
on which the isometry group I(M) acts transitively.

It is a result of Myers and Steenrod that I(M) is a Lie group.

Examples 7. 1) Spheres. The group O(n+1) acts transitively on Sn ⊂ Rn+1 and
the isotropy subgroup at (1, 0, . . . , 0) can be identified with O(n), therefore
Sn ∼= O(n+ 1)/O(n). By restriction of the action to SO(n+ 1) we also obtain
that Sn ∼= SO(n+ 1)/SO(n).
Similarly, S2n+1 ∼= SU(n+ 1)/SU(n), and S4n+3 ∼= Sp(n+ 1)/Sp(n).

2) Grassmann manifolds. The group SO(n) acts transitively on the set GrkRn =
{E ⊂ Rn ; E a subspace of Rn, dimE = k}. This is called a real Grassmann
manifold. It follows that GrkRn ∼= SO(n)/S(O(k)×O(n− k)).
A special case is the real projective space RPn = Gr1Rn.

3) Flag manifolds. The group O(n) acts on the set of flags Fk1,...,kl
= {x =

(Ek1 , . . . , Ekl
) ; Eki

∈ Grki
Rn, dimEki

= ki and Ek1 ⊂ · · · ⊂ Ekl
⊂ Rn},

by A · x = (AEk1 , . . . , AEkl
).

The isotropy subgroup at the point Eki
= span{e1, . . . , eki

} can be identified
with the block diagonal matrices A = diag(A1, A2, . . . ) ∈ O(n) with Ai an
orthogonal matrix. It follows that Fk1,...,kl

∼= O(n)/O(k1)×O(k2−k1)×· · ·×
O(n−kl). This is called a real flag manifold. More generally, a flag manifold is
a homogeneous space of the form G/C(T ), where G is a semisimple compact
Lie group, and C(T ) the centralizer of a torus T in G. Flag manifolds for a
simple Lie group G can be classified in terms of “painted” Dynkin diagrams.
For more details on flag manifolds we refer to [5] and references therein.

4) Stiefel manifolds. A k-frame in Rn is a set of k linear independent vectors
in Rn. A real Stiefel manifold is the set VkRn of all k frames in Rn. The
groups O(n) and SO(n) act on VkRn and the isotropy subgroups at (e1, . . . , ek)
are identified with O(n − k) and SO(n − k), respectively, therefore VkRn ∼=
O(n)/O(n− k) ∼= SO(n)/SO(n− k). Notice the special cases V1Rn ∼= Sn−1,
VnRn ∼= O(n), and V2Rn ∼= T1Sn−1 (the unit tangent bundle).

5) Symmetric spaces. This an important class of homogeneous spaces, but we
will not enter into any further analysis here. Briefly, a symmetric space is a
Riemannian manifold (M, g) which is defined by the geometrical condition
that its curvature tensor is locally parallel, i.e.,∇R = 0.

In concluding this section, we remark that various non-Euclidean geometries are
realized as examples of coset spaces. Also, if is possible that a manifold M is
represented as a homogeneous space in more than one ways, i.e., M = G/H =
G′/H ′. Finding all such possible presentations is a difficult problem in general.
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3.2. Reductive Homogeneous Spaces

Let G/H be a homogeneous space and π : G → G/H the canonical projection.
Consider the derivative dπe : G→ To(G/H), where o = eH . Then an easy com-
putation shows that ker dπe = h, the Lie algebra of H , hence g/h ∼= To(G/H).
This motivates the following

Definition 14. A homogeneous space is called reductive if there exists a subspace
m of g such that g = h ⊕ m and Ad(h)m ⊂ m for all h ∈ H , that is m is
Ad(H)-invariant.

The last condition implies that [h,m] ⊂ m and the converse is true if H is con-
nected. So, if G/H is reductive, then m ∼= To(G/H). For example, if G is a
compact and semisimple Lie group, we can take m = h⊥ with respect to an Ad-
invariant inner product of g.

Examples 8. 1) Let G/H = SU(3)/S(U(1)×U(1)×U(1).
Then h = {diag{ia, ib, ic} ; a + b + c = 0}, and with respect to the Killing
form B(X,Y ) = 6 trXY of SU(3), we obtain that

m =


 0 a1 + ib1 a2 + ib2
−a1 + ib1 0 a3 + ib3
−a2 + ib2 −a3 + ib3 0

 .
2) Let M = G/H = SO(5)/U(2).

Then h =
{(

ai b+ ic
−b+ ic di

)
; a, b, c, d ∈ R

}
, and we embed it to so(5), first

by using the identification u(2) ∼=
(

0 0
0 u(2)

)
, and then by use of the embedding

X + iY ↪→
(
X −Y
Y X

)
.

Then with respect to the Killing form B(X,Y ) = 3 trXY of SO(5), it follows
that

m =




0 a1 a2 a3 a4

−a1 0 b1 0 b3
−a2 −b1 0 −b3 0
−a3 0 b3 0 −b1
−a4 −b3 0 b1 0

 ; ai, bj ∈ R, i = 1, . . . , 4, j = 1, 3


.

3.3. The Isotropy Representation

For a ∈ G, let τa : G/H → G/H be the left translation defined by τa(gH) =
agH . This is a diffeomorphism.
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Definition 15. The isotropy representation of G/H is the homomorphism χ :
H → GL(To(G/H)) given by χ(h) = (dτh)o.

It is possible to have a more concrete description of χ when G/H is a reductive
homogeneous space. Let g = h⊕m, and consider the restricted adjoint representa-
tion of G, AdG

∣∣∣
H

: H → Aut(g). Then h and m are AdG
∣∣∣
H

-invariant subspaces

of g, therefore we obtain that AdG
∣∣∣
H

= AdH ⊕AdG/H , where the first summand
is the adjoint representation of H , and the second summand is the isotropy repre-
sentation of G/H , χ ≡ AdG/H : H → Aut(m). Its precise relationship to the
adjoint representation of G is given by AdG/H(h)X = AdG(h)X for all h ∈ H ,
X ∈ g.

Definition 16. A homogeneous space is called isotropy irreducible if its isotropy
representation is irreducible.

Examples 9. 1) Let Sn = SO(n + 1)/SO(n). Recall that AdSO(n) = Λ2λn,
where λn is the standard representation of SO(n). Then

AdSO(n+1)
∣∣∣
SO(n)

= Λ2λn+1

∣∣∣
SO(n)

= Λ2(λn ⊕ 1) = Λ2λn ⊕ Λ21⊕ (λn ⊗ 1).

The first summand is the adjoint representation of SO(n), the second is zero,
and the third is identified with λn, which is the isotropy representation of Sn.
This is irreducible.

2) Let M = SO(5)/U(2). It is easier to consider the complexified isotropy repre-
sentation of SO(5). Then

AdSO(5)⊗C
∣∣∣
U(2)

= Λ2(λ5 ⊗ C)
∣∣∣
U(2)

= Λ2(µ2 ⊕ µ̄2 ⊕ 1)

= Λ2µ2 ⊕ Λ2µ̄2 ⊕ (µ2 ⊗ µ̄2)⊕ (µ2 ⊗ 1)⊕ (µ̄2 ⊗ 1).

The third summand is the complexified adjoint representation of U(2). The
rest of the summands contribute to the isotropy representation of SO(5)/U(2),
which consists exactly of two irreducible summands, namely [Λ2µ2 ⊕Λ2µ̄2]⊕
[(µ2⊗ 1)⊕ (µ̄2⊗ 1]. Their dimensions are two and four, respectively. This de-
composition induces an Ad(U(2))-invariant decomposition of the tangent space
m = m1 ⊕m2, into two non-equivalent irreducible submodules.

4. Geometry of Compact Lie Groups and Homogeneous Spaces

4.1. Invariant Metrics

We will develop the geometry of a compact Lie group and a homogeneous space
in a parallel manner. Of course a Lie group G is identified with the homogeneous
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space G/{e}, so its geometry is a special case. However, various formulas for a
compact Lie group have their own value, so we will treat them separately.

Definition 17. A Riemannian metric g on a Lie group G is called left-invariant if
g(u, v)x = g((dLa)xu, (dLa)xv)La(x) for all a, x ∈ G and u, v ∈ TxG.

This means that the diffeomorphism La is an isometry. Similarly, a Riemannian
metric is called right-invariant if the right translation Ra is an isometry. A metric
which is both left-invariant and right-invariant is called bi-invariant.

Proposition 10. There exists an one to one correspondence between left-invariant
metrics on G and scalar products on its Lie algebra.

Proof: Let g be a left-invariant metric on G. Then for any X,Y ∈ g the function
g(X,Y ) : G→ R is constant due to the left-invariance, therefore it defines a scalar
product on g. Conversely, if 〈 , 〉e is a scalar product on g, then the metric given
by g(x, y)a = 〈(dLa−1)ax, (dLa−1)ay〉e (a ∈ G, x, y ∈ TaG) is a left-invariant
metric on G. �

A compact Lie group G possesses a bi-invariant metric. In fact, it can be shown
that G admits a G-invariant integral

∫
G f(g) dg. Then, by fixing a scalar product

〈 , 〉e on g, define a bi-invariant metric onG by 〈u, v〉 =
∫
G〈Ad(g)u,Ad(g)v〉e dg.

Proposition 11. There exists an one to one correspondence between bi-invariant
metrics on G and Ad-invariant scalar products on g.

We now turn to homogeneous spaces M = G/H . Let g = h ⊕ m be a reductive
decomposition.

Definition 18. A metric g on M is called G-invariant if for all a ∈ G the diffeo-
morphism τa : G/H → G/H is an isometry, i.e., g(X,Y ) = g(dτa(X),dτa(Y ))
for all X,Y ∈ To(G/H).

Proposition 12. There exists an one to one correspondence between G-invariant
metrics g on M = G/H and AdG/H -invariant scalar products 〈 , 〉 on m, i.e.,
〈X,Y 〉 = 〈AdG/H(h)X,AdG/H(h)Y 〉 for all X,Y ∈ m, h ∈ H .

This proposition is a special case of a general phenomenon, where G-invariant
objects on a homogeneous spaceG/H (e.g., (p, q)-tensors), correspond to AdG/H -
invariant objects on To(G/H) ∼= m.

4.2. Connections and Curvature

Let G be a compact Lie group with a left-invariant metric g. Then the Riemannian
connection is given by

∇XY =
1
2

([X,Y ]− (adX)∗Y − (adY )∗X)
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where (adX)∗ is the formal adjoint operator of adX . Equivalently,

g(∇XY, Z) =
1
2
{g(Z, [X,Y ]) + g(Y, [Z,X]) + g(X, [Z, Y ])}.

Using a left-invariant metric it is quite complicated to handle other geometrical
objects such as curvature or geodesics. However, if we restrict ourselves to bi-
invariant metrics, formulas simplify.

Proposition 13. Let G be a Lie group with a bi-invariant metric. Then for any
X,Y, Z ∈ g

1) ∇XY = 1
2 [X,Y ].

2) Geodesics starting at e are the one-parameter subgroups exp tX .
3) The curvature tensor is given by R(X,Y )Z = 1

2 [[X,Y ], Z].

4) The sectional curvature is given by K(X,Y ) = 1
4

〈[X,Y ],[X,Y ]〉
〈X,X〉〈Y,Y 〉−〈X,Y 〉2 ·

5) The Ricci curvature is given by Ric(X,Y ) = 1
4

∑
i〈[X,Ei], [Y,Ei]〉, where

{Ei} is an othonormal basis of g.
6) IfG is compact and the bi-invariant metric is the Killing form, then the scalar

curvature is S = 1
4 dimG.

If G is semisimple and compact, then with respect to a bi-invariant metric, the
Ricci curvature is given by Ric(X,Y ) = −1

4B(X,Y ), that is G is an Einstein
manifold.
We now turn to homogeneous spaces. Let g be a G-invariant metric on a homoge-
neous spaceM = G/H with reductive decomposition g = h⊕m, and o = eH . For
any X ∈ g we define the vector field X∗o = d

dt(exp tX) · o
∣∣∣
t=0

. This is a Killing
vector field (i.e., its flows are isometries), and satisfies [X∗, Y ∗] = −[X,Y ]∗. Re-
calling the canonical projection π : G → G/H , we have that dπ(X) = X∗o and
dπ(Xm) = X∗o . Here Xm denotes the component of X in m.

Proposition 14. Let X,Y ∈ m. Then the Riemannian connection of g is given by

m ∼= To(G/H) 3 ∇X∗Y ∗|o = −1
2

[X,Y ]m + U(X,Y )

where U : m×m→ m is determined by the identity

2〈U(X,Y ), Z〉 = 〈[Z,X]m, Y 〉+ 〈X, [Z, Y ]m〉

for all Z ∈ m.

There is a particularly simple class of reductive homogeneous spaces. For a semi-
simple and compact Lie group G, we know that every bi-invariant metric deter-
mines an Ad-invariant scalar product 〈 , 〉 on g. The restriction 〈 , 〉|m induces a
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G-invariant Riemannian metric, called normal. If 〈 , 〉 = −B, this metric is called
standard.
Formulas for the various curvatures for a general reductive homogeneous spaces
are quite complicated (see, e.g., [4, 8, 27]). We only mention the following

Proposition 15. The curvature tensor of a reductive homogeneous space G/H is
determined by the following equation

〈R(X,Y )X,Y 〉 = − 3
4
〈[X,Y ]m, [X,Y ]m〉 −

1
2
〈[X, [X,Y ]m]m, Y 〉

− 1
2
〈[Y, [Y,X]m]m, X〉+ 〈U(X,Y ), U(X,Y )〉

− 〈U(X,X), U(Y, Y )〉+ 〈Y, [[X,Y ]h, X]m〉
for all X,Y ∈ m.

If U ≡ 0 then G/H is called naturally reductive. From geometrical viewpoint,
this condition is equivalent to the fact that all geodesics are the one-parameter
subgroups exp tX · o (X ∈ m). Homogeneous spaces that have this property
are, for example, the symmetric spaces. Such geodesics are called homogeneous
geodesics, and have been studied in various occasions by various people (e.g.,
Kajher, Arnold, Kostant).
The following proposition is due to O. Kowalski, L. Vanhecke and E. Vinberg.

Proposition 16. Let M = G/H be a homogeneous space. Then the orbit γ(t) =
exp(tX) · o is a geodesic in M if and only if 〈[X,Y ]m, Xm〉 = 0 for all Y ∈ m.

Spaces with the property that all geodesics are homogeneous are known as g.o.
spaces, and have been studied by Kowalski and his collaborators. It is an active
area of research. For example D. Alekseevky and the author classified all flag
manifolds, which are g.o. spaces (see [1]). The main theorem is the following:

Theorem 5. The only flag manifolds M = G/K of a simple Lie group G which
admit an invariant metric with homogeneous geodesics, not homothetic to the stan-
dard metric, are the manifolds Com(R2`+2) = SO(2` + 1)/U(`)) of complex
structures in R2`+2 and the complex projective space CP2`−2 = Sp(`)/U(1) ·
Sp(` − 1). These manifolds admit a one-parameter family gλ, λ > 0 of invariant
metrics (up to a scaling). All these metrics have homogeneous geodesics and are
weakly symmetric. The metric g1 is the standard metric. It has the full connected
isometry group SO(2` + 2) (respectively SU(2` − 1)) and is the standard met-
ric of the symmetric space Com(R2`+2) = SO(2` + 2)/U(` + 1) (respectively
CP2`−2 = SU(2` − 1)/U(2` − 2)). All the other metrics gλ, λ 6= 1 have the
full connected isometry group SO(2` + 1) (respectively Sp(`)). In particular, the
corresponding spaces are not naturally reductive as Riemannian manifolds.
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Note that for ` = 2 we obtain Sp(2)/U(1) · Sp(1) ∼= SO(5)/U(2), which is
the 6-dimensional non-naturally reductive g.o. space in the work of Kowalski and
Vanhecke [19], in which they classified homogeneous g.o. spaces of dimension
≤ 6.

5. Homogeneous Einstein Metrics

5.1. Brief Introduction

Which are the “best” metrics on a Riemannian manifold (M, g)? Motivated from
the two-dimensional case, where the good metrics are the ones with constant Gauss
curvature, in higher dimensions we need to look at the various curvatures of a mani-
fold. Constancy of the sectional curvature is a very strong condition, and constancy
of the scalar curvature is a very weak one. Therefore, we are lead to impose con-
stancy of the Ricci curvature, which is equivalent to the equation Ric(g) = cg,
where c is some constant (called Einstein constant). Manifolds that satisfy this
equation are called Einstein manifolds. The terminology, as expected, is related
to general relativity. In the four-dimensional case the equation Ric(g) = cg is
equivalent to the Einstein’s field equations with cosmological constant.
If (M, g) is compact, then g is an Einstein metric if and only if g is a critical point
of the scalar curvature functional T :M1 → R given by T (g) =

∫
M Sg dvolg, on

the set Riemannian metrics of unit volume. This is an old result of D. Hilbert. For
references on Einstein manifolds we refer to the book of Besse [8] and the survey
of Wang [28].
If M = G/H is a homogeneous space, where G,H are compact, then the G-
invariant Einstein metrics on M are precisely the critical points of T restricted to
MG

1 , the set of G-invariant metrics of unit volume. This is a direct consequence of
R. Palais’ principle of “symmetric criticality.”
General problem: Find (if possible all) G-invariant metrics on a homogeneous
space G/H .
The problem is difficult even for a compact semisimple Lie group. It is still an open
problem to find all left-invariant metrics in this case. Is this set finite or infinite?
In 1979 D’Atri and Ziller [13] obtained many Einstein metrics on G, which are
naturally reductive. In 1973 Jensen [16] obtained examples of Einstein metrics by
a fiber bundle construction.
If the Einstein constant is positive, then G/H is compact. Examples of such man-
ifolds are Sn and CPn with the standard metrics, symmetric spaces of compact
type, and isotropy irreducible spaces. These admit a unique (up to scalar) Einstein
metric, and were classified by J. Wolf in 1968. In 1985 M. Wang and W. Ziller
classified all normal homogeneous Einstein manifolds [31].
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Einstein metrics on flag manifolds are not unique. Explicit solutions were obtained
for various examples of flag manifolds by D. Alekseevsky, the author, M. Kimura,
Y. Sakane, and E. Rodionov. A complete description remains open.
There exist compact homogeneous spaces with no G-invariant Einstein metrics, as
it was shown in [29].
If the Einstein constant is zero, then D. Alekseevsky and Kimel’fel’d have shown
that a homogeneous Ricci flat manifold is flat.
Finally, if the Einstein constant is negative, then G/H is not compact. Examples
of such manifolds are RHn with the standard metric, and symmetric spaces of non-
compact type. A result of Dotti and Miatello in 1982 says that if G is a unimodular
solvable Lie group, then any Einstein left-invariant metric on G is flat. There is a
lot of active research in the non-compact case.
General existence results is difficult to obtain. We mention the results of Jensen
[15], Wang and Ziller [29], and more recently a new existence approach by Böhm,
Wang and Ziller [10]. This was used by Böhm and Kerr [9] to show the following

Proposition 17. Every compact simply connected homogeneous space of dimen-
sion ≤ 11 admits at least one invariant Einstein mertic.

In dimension 12 there are examples of non-existence.
The structure of the set of invariant Einstein metrics on a given homogeneous man-
ifold is not well understood in general. The situation is only clear for isotropy
irreducible spaces, partly for flag manifolds, and for some special types of homo-
geneous spaces studied by Nikonorov, Lomshakov and Firsov [21]. A finiteness
conjecture, due to Ziller, says that if the isotropy representation χ of a homoge-
neous space consists of pairwise inequivalent irreducible components, then the set
of Einstein metrics is finite.

5.2. The Variational Approach for Einstein Metrics

There are two direct methods for finding Einstein metrics on a homogeneous space.
The first is the direct computation of the Ricci curvature. This has been successful
in various cases such as flag manifolds (Arvanitoyeorgos, Rodionov). The second
is the variational approach, where Einstein metrics are the critical points of the
scalar curvature functional, as explained in the previous section. For both cases
the Einstein equation reduces to an algebraic system of equations, which in some
cases can be solved explicitly.
We will give applications of the variational method for two cases, namely Einstein
metrics on flag manifolds, and Stiefel manifolds.
Let M = G/H be a homogeneous space of a compact semisimple Lie group, with
reducive decomposition g = h ⊕ m with respect to −B. Recall that G-invariant
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Einstein metrics g on G/H correspond to AdG/H -invariant scalar products 〈 , 〉 on
m.
Let {ea} be an orthonormal basis of m with respect to 〈 , 〉. Then according to [29]
the scalar curvature of g is given by

S(〈 , 〉) = −1
2

∑
a

B(ea, eb)−
1
4

∑
a,b

〈[ea, eb]m, [ea, eb]m〉. (1)

We assume that the isotropy representation of G/H decomposes into a direct sum
χ = χ1 ⊕ · · · ⊕ χs of irreducible subrepresentations, which are pairwise inequiv-
alent. If they are not, then the description of G-invariant metrics is more compli-
cated. Then the tangent space of m decomposes into a direct sum m = m1⊕· · ·⊕ms

of irreducible pairwise inequivalent Ad(H)-submodules.

Then any AdG/H -invariant scalar product on m has the form

〈 , 〉 = x1 (−B)|m1
+ · · ·+ xs (−B)|ms

, xi > 0.

Let dα = dim mα and {ejα} be a −B-orthonormal basis of mα (1 ≤ j ≤ dα).
Define the numbers [αβγ] =

∑
i,j,k B([eiα, e

j
β], ekγ)2, where i, j, k vary from 1 to

dα, dβ and dγ , respectively. These numbers are symmetric, and independent of the
basis, but depend on the decomposition of m. Then the scalar curvature (1) takes
the form

S =
1
2

s∑
i=1

di
xi
− 1

4

∑
α,β,γ

[αβγ]
xγ
xαxβ

·

The volume condition takes the form V =
∏s
i=1 x

di
i − 1 = 0. Therefore, the

solutions of the Einstein equation are the solutions of the Lagrange system ∇S =
λ(∇V ).

Flag Manifolds.
Consider the flag manifold G/H = SU(n)/S(U(n1) × U(n2) × U(n3)) (n =
n1 + n2 + n3). The isotropy representation decomposes into three non-equivalent
irreducible components, inducing the decomposition m = m12⊕m13⊕m23, hence
SU(n)-invariant metrics depend on three positive parameters x12, x13, x23.
The Lagrange system reduces to the following algebraic system of three equations

ni + nj +
1
2

∑
k 6=i,j

nk
xikxjk

(x2
ij − (xik − xjk)2) = xij

which has four solutions listed in Table 2.
It turns out that the first three Einstein metrics are also Kähler. If n1 = n2 = n3

then the fourth metric is the standard metric.
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Table 2

x12 x13 x23

n1 + n2 n1 + 2n2 + n3 n2 + n3

n1 + n2 + 2n3 n1 + n3 n2 + n3

n1 + n2 n1 + n3 2n1 + n2 + n3

n1 + n2 n1 + n3 n2 + n3

Invariant Einstein metrics on the full flag manifold SU(n)/Tn, where the torus
Tn = S(U(1)×· · ·×U(1)) a maximal torus, are not completely classified (except
for n = 3, 4). The only known Einstein metrics are the finite number of n!

2 Kähler-
Einstein metrics, the standard metric, a class of n Einstein metrics found by the
author [3], and a class of n Einstein metrics found by Sakane [26].
For Einstein metrics on other flag manifolds we refer to [3, 20, 26].

Stiefel Manifolds.
Let G/H = SO(n)/SO(n − k) be a real Stiefel manifold. The simplest case
Sn−1 = SO(n)/SO(n − 1) is an irreducible symmetric space, therefore it admits
up to scale a unique invariant Einstein metric. It was Kobayashi [18] who proved
first the existence of an invariant Einstein metric on T1S

n = SO(n)/SO(n − 2).
Later on, Sagle [25] proved that the Stiefel manifolds SO(n)/SO(n − k) admit
at least one homogeneous invariant Einstein metric. For k ≥ 3 Jensen [16] found
a second metric. In the same work he also proved that the quaternionic Stiefel
manifold Sp(n)/Sp(n − k) admits at least two homogeneous invariant Einstein
metrics. Einstein metrics on SO(n)/SO(n−2) are completely classified. If n = 3
the group SO(3) has a unique Einstein metric. If n ≥ 5 it was shown by Back
and Hsiang [7] that SO(n)/SO(n− 2) admits exactly one homogeneous invariant
Einstein metric. The same result was obtained by Kerr [17]. The Stiefel man-
ifold SO(4)/SO(2) admits exactly two invariant Einstein metrics which follows
from the classification of five-dimensional homogeneous Einstein manifolds due
to Alekseevsky, Dotti, and Ferraris [2]. We also refer to [10, pp 727-728] for fur-
ther discussion. For k ≥ 3 there is no obstruction for existence of more than two
homogeneous invariant Einstein metrics on Stiefel manifolds SO(n)/SO(n− k).
In a recent joint work with Dzhepko and Nikonorov [6] we developed a method
of finding invariant Einstein metrics on certain homogeneous spaces of classical
Lie groups, and as a consequence we obtained new Einstein metrics on real and
quaternionic Stiefel manifolds. For specifically, let G be a compact Lie group
and H a closed subgroup so that G acts almost effectively on G/H . We investi-
gate G-invariant metrics on G/H with additional symmetries, and the hope is to
find among them, Einstein metrics coming from with simpler systems of algebraic
equations.
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Let K be a closed subgroup of G with H ⊂ K ⊂ G, and suppose that K =
L′ × H ′, where {eL′} × H ′ = H . It is clear that K ⊂ NG(H), the normalizer
of H in G. If we denote L = L′ × {eH′}, then the group G̃ = G × L acts on
G/H by (a, b) · gH = agb−1H , and it turns out that the isotropy subgroup at eH
is H̃ = {(a, b) ; ab−1 ∈ H}.
The setMG ofG-invariant metrics onG/H is finite dimensional. We consider the
subsetMG,K ofMG corresponding to Ad(K)-invariant inner products on m (and
not only Ad(H)-invariant).
Let ρ ∈MG,K . The action G̃ on (G/H, ρ) is isometric, so any metric formMG,K

can be identified with a metric in MG̃ and vice-versa. Therefore, we may think
ofMG̃ asMG,K , which is a subset ofMG. Since metrics inMG,K correspond
to Ad(K)-invariant inner products on m, we call these metrics Ad(K)-invariant
metrics on G/H .
We apply the above construction for G = SO(n) and Sp(n), and prove existence
of Einstein metrics in the set MG,K for various choices of the subgroup K =
L′ × H ′. Let n ∈ N and k1, k2, . . . , ks, ks+1, . . . , ks+t be natural numbers such
that k1 + · · · + ks = l, ks+1 + · · · + ks+t = m, l + m = n. Let G = SO(n)
and K = L′ × H ′, where L′ = SO(k1) × · · · × SO(ks) and H ′ = SO(ks+1) ×
· · · × SO(kt+s). The embedding of K in G is the standard one. Analogously, we
consider G = Sp(n) and K = L′ ×H ′, where L′ = Sp(k1) × · · · × Sp(ks) and
H ′ = Sp(ks+1)× · · · × Sp(kt+s).
We consider the simple case SO(k1 + k2 + k3)/SO(k3) (s = 2, t = 1) and
investigate SO(k1 +k2 +k3)×SO(k1)×SO(k2)-invariant Einstein metrics. Here
L′ = SO(k1)× SO(k2), and these metrics depend on five parameters x1, x2, x12,
x13, x23. The scalar curvature of such a metric is given by

S =
k1(k1 − 1)(k1 − 2)

8(n− 2)
· 1
x1

+
k2(k2 − 1)(k2 − 2)

8(n− 2)
· 1
x2

+
1
2

(
k1k2

x(1,2)
+
k1k3

x(1,3)
+
k2k3

x(2,3)

)
− 1

8(n− 2)

(
k1k2(k1 − 1)

x1

x2
(1,2)

+ k1k3(k1 − 1)
x1

x2
(1,3)

+ k2k3(k2 − 1)
x2

x2
(2,3)

+ k1k2(k2 − 1)
x2

x2
(1,2)

)

− 1
4(n− 2)

k1k2k3

(
x(1,2)

x(1,3)x(2,3)
+

x(1,3)

x(1,2)x(2,3)
+

x(2,3)

x(1,2)x(1,3)

)
.

The volume condition is

xd11 x
d2
2 x

d(1,2)

(1,2) x
d(1,3)

(1,3) x
d(2,3)

(2,3) = const

where di = 1
2ki(ki − 1) and d(i,j) = kikj .
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By the Lagrange method the problem for finding Ad(K)-invariant Einstein metrics
reduces to the algebraic system

x2x
2
23

(
(k1 − 2)x2

12x
2
13 + k2x

2
1x

2
13 + k3x

2
1x

2
12

)
= x1x

2
13

(
(k2 − 2)x2

12x
2
23 + k3x

2
2x

2
12 + k1x

2
2x

2
23

)
x13

(
(k2 − 2)x2

12x
2
23 + k3x

2
2x

2
12 + k1x

2
2x

2
23

)
= x2x23

(
2(k1 + k2 + k3 − 2)x12x13x23 − (k1 − 1)x1x13x23

− (k2 − 1)x2x13x23 + k3x
3
12 − k3x12x

2
13 − k3x12x

2
23

)
x13

(
2(k1 + k2 + k3 − 2)x12x13x23 − (k1 − 1)x1x13x23 − (k2 − 1)x2x13x23

+ k3x
3
12 − k3x12x

2
13 − k3x12x

2
23

)
= x12

(
2(k1 + k2 + k3 − 2)x12x13x23

− (k1 − 1)x1x12x23 + k2x
3
13 − k2x

2
12x13 − k2x13x

2
23

)
x23

(
2(k1 + k2 + k3 − 2)x12x13x23 − (k1 − 1)x1x12x23

+ k2x
3
13 − k2x

2
12x13 − k2x13x

2
23

)
= x13

(
2(k1 + k2 + k3 − 2)x12x13x23

− (k2 − 1)x2x12x13 + k1x
3
23 − k1x

2
12x23 − k1x

2
13x23

)
.

It turns out ([6]) that a solution to the above system exists only when k1 = k2 = k
(k ≥ 3), and let k3 = l. One of the results we obtain is the following

Proposition 18. If l > k ≥ 3 then the Stiefel manifold SO(2k + l)/SO(l) admits
at least four SO(2k+ l)×SO(k)×SO(k)-invariant Einstein metrics. Two of these
metrics are Jensen’s metrics found in[16], and other two metrics are new.
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