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Abstract. Orbits of coadjoint representations of classical compact Lie groups
have a lot of applications. They appear in representation theory, geometrical
quantization, theory of magnetism, quantum optics, etc. As geometric ob-
jects the orbits were the subject of extensive study. However, they remain
hard for calculation and application. We propose a simple solution for the
following problem: an explicit parametrization of the orbit by means of a
generalized stereographic projection, which provide a Kählerian structure on
the orbit, and basis two-forms for the cohomology group of the orbit.

1. Introduction

Orbits of coadjoint representations of semisimple Lie groups are an extremely in-
teresting subject. These homogeneous spaces are flag manifolds. Remarkable, that
the coadjoint orbits of compact groups are Kählerian manifolds. In 1950s Borel,
Bott, Koszul, Hirzebruch et al. investigated the coadjoint orbits as complex homo-
geneous manifolds. It was proven that each coadjoint orbit of a compact connected
Lie group G admits a canonical G-invariant complex structure and the only (within
homotopies) G-invariant Kählerian metrics. Furthermore, the coadjoint orbits can
be considered as fibre bundles whose bases and fibres are coadjoint orbits them-
selves.
Coadjoint orbits appear in many spheres of theoretical physics, for instance in rep-
resentation theory, geometrical quantization, theory of magnetism, quantum op-
tics. They serve as definitional domains in problems connected with nonlinear
integrable equations (so called equations of soliton type). Since these equations
have a wide application, the remarkable properties of coadjoint orbits interest not
only mathematicians but also physicists.
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It should be pointed out that much of our material is, of course, not new, but drawn
from various areas of the mathematical literature. The material was collected for
solving the physical problem based on a classical Heisenberg equation with SU(n)
as a gauge group. The equation describes a behavior of magnetics with spin s ≥ 1.
The paper includes an investigation of geometrical and topological properties of
the coadjoint orbits. We hope it fulfills a certain need. We would like to men-
tion that we have added a number of new results (such as an explicit expression
for a stereographic projection in the case of group SU(3) and improving the way
of its computation, the idea of obtaining the Kählerian potential on an orbit, an
introduction of basis two-forms for the cohomology ring of an orbit).
The paper is organized as follows. In Section 2 we recall the notion of a coadjoint
orbit, propose a classification of the orbits, and describe the orbit as a fibre bundle
over an orbit with an orbit as a fibre. Section 3 is devoted to a generalized stere-
ographic projection from a Lie algebra onto its coadjoint orbit, it gives a suitable
complex parametrization of the orbit. As an example, we compute an explicit ex-
pression for the stereographic projection in the case of group SU(3). In Section 4
we propose a way of obtaining Kählerian structures and Kählerian potentials on
the orbits. Section 5 concerns a structure of the cohomology rings of the orbits and
finding of G-invariant bases for the cohomology groups.

2. Coadjoint Orbits of Semisimple Lie Groups

We start with recalling the notion of a coadjoint orbit. Let G be a compact semisim-
ple classical Lie group, g denote the corresponding Lie algebra, and g∗ denote the
dual space of g. Let T be the maximal torus of G, and h be the maximal commuta-
tive subalgebra (also called a Cartan subalgebra) of g. Accordingly, h∗ denotes the
dual space of h.

Definition 1. The subset Oµ = {Ad∗g µ ; g ∈ G} of g∗ is called a coadjoint orbit
of G through µ ∈ g∗.

In the case of classical Lie groups we can use the standard representations for
adjoint and coadjoint operators

AdgX = gXg−1, X ∈ g, Ad∗g µ = g−1µg, µ ∈ g∗.

Comparing these formulas one can easily see that a coadjoint orbit coincides with
the adjoint.
Define the stability subgroup at a point µ ∈ g∗ as Gµ = {g ∈ G; Ad∗g µ = µ}.
The coadjoint operator induces a bijective correspondence between an orbit Oµ
and a coset space Gµ\G (in the sequel, we deal with right coset spaces).
First of all, we classify the coadjoint orbits of an arbitrary semisimple group G.
Obviously, each orbit is drawn from a unique point, which we call an initial point
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and denote by µ0. The following theorem from [1] allows to restrict the region of
search of an initial point.

Theorem ([1]). Each orbit of the coadjoint action of G intersects h∗ precisely in
an orbit of the Weyl group.

In other words, each orbit is assigned to a finite non-empty subset of h∗. For more
detail recall the notion of the Weyl group. Let N(H) be the normalizer of a subset
H ⊂ G in G, that is N(H) = {g ∈ H; g−1Hg = H}. Let C(H) be the centralizer
of H, that is C(H) = {g ∈ G; g−1hg = h, h ∈ H}. Obviously, C(T) = T,
where T is the maximal torus of G.

Definition 2. The Weyl group of G is the factor-group of N(T) over C(T)

W (G) = N(T)/C(T).

The Weyl group W(G) acts transitively on h∗. The action of W(G) is performed
by the coadjoint operator. It is easy to show that W(G) is isomorphic to the finite
group generated by reflections wα across the hyperplanes orthogonal to simple
roots α

wα(µ) = µ− 2
〈µ, α〉
〈α, α〉

α, µ ∈ h∗

where 〈·, ·〉 denotes a bilinear form on g∗.

Definition 3. The open domain

C = {µ ∈ h∗ ; 〈µ, α〉 > 0, α ∈ ∆+}
is called the positive Weyl chamber. Here ∆+ denotes the set of positive roots.
We call the set Γα = {µ ∈ h∗ ; 〈µ, α〉 = 0} a wall of the Weyl chamber.

If we reflect the closure C of the positive Weyl chamber by elements of the Weyl
group we cover h∗ overall

h∗ =
⋃

w∈W(G)

w · C.

An orbit of the Weyl group W(G) is obtained by the action of W(G) on a point
of C. In the case of group SU(3), two possible types of orbits of the Weyl group
are shown on the root diagram (see Fig. 1). Black points denote intersections
of a coadjoint orbit with h∗ and form an orbit of W(SU(3)). The positive Weyl
chamber is filled with grey color. It has two walls: Γα1 and Γα2 . The respective
reflections across these hyperplanes are denoted by wα1 and wα2 . At the left, one
can see a generic case, when an orbit of W(SU(3)) has six elements. It happens if
an initial point lies in the interior of the positive Weyl chamber. At the right, there
is a degenerate (non-generic) case, when an orbit of W(SU(3)) has three elements.
It happens if an initial point belongs to a wall of the positive Weyl chamber.
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Figure 1. Root diagram for SU(3).

In the both cases the closed positive Weyl chamber contains a unique point of an
orbit of W(G). We obtain the following

Proposition 1. Each orbit O of G is uniquely defined by an initial point µ0 ∈ h∗,
which is located in the closed positive Weyl chamber C. If µ0 lies in the interior of
the positive Weyl chamber: µ0 ∈ C, it gives rise to a generic orbit. If µ0 belongs
to a wall of the positive Weyl chamber: µ0 ∈ Γα, α ∈ ∆+, it gives rise to a
degenerate orbit.

As mentioned above, one can define the orbit Oµ0 through an initial point µ0 ∈ h∗

by Oµ0 = Gµ0\G. Note, that a stability subgroup Gµ as µ ∈ h∗ generically
coincides with the maximal torus T. However, if µ belongs to a degenerate orbit,
then Gµ is a lager subgroup of G containing T. Therefore, we define a generic
orbit by

Oµ0 = T\G
and a degenerate one by

Oµ0 = Gµ0\G
where Gµ0 6= T, Gµ0 ⊃ T.
An important topological property of the coadjoint orbits is the following. Almost
each orbit can be regarded as a fibre bundle over an orbit with an orbit as a fibre,
except for the maximal degenerate orbits. Indeed, if there exists an initial point µ0

such that Gµ0 ⊃ T, one can form a coset space T\Gµ0 . Thus, the orbit Oµ0 =
T\G is a fibre bundle over the base Gµ0\G with the fibre T\Gµ0

Oµ0 = E(Gµ0\G,T\Gµ0 , π)

where π denotes a projection from the orbit onto the base. Moreover, Gµ0\G and
T\Gµ0 are coadjoint orbits themselves. We formulate this as
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Proposition 2. Suppose Oµ0 = Gµ0\G is not the maximal degenerate orbit of G.
Then a subgroup K such that G ⊃ K ⊃ Gµ0 exists, andOµ0 is a fibre bundle over
the base K\G with the fibre Gµ0\K

Oµ0 = E(K\G,Gµ0\K, π).

We will illustrate the proposition by some examples.

Example 1. The group SU(2) has the only type of orbits:

OSU(2) =
SU(2)
U(1)

' CP1 .

The group SU(3) has generic and degenerate orbits

OSU(3) =
SU(3)

U(1)×U(1)
, OSU(3)

d =
SU(3)

SU(2)×U(1)
' CP2 .

Comparing the above coset spaces we see that a generic orbit OSU(3) is a fibre
bundle over a degenerate orbit OSU(3)

d with a fibre OSU(2)

OSU(3) = E
(
OSU(3)
d ,OSU(2), π

)
= E(CP2,CP1, π).

The group SU(4) has several types of degenerate orbits. There is a list of all
possible types of orbits

OSU(4) =
SU(4)

U(1)×U(1)×U(1)
, OSU(4)

d1 =
SU(4)

SU(2)×U(1)×U(1)

OSU(4)
d2 =

SU(4)
S(U(2)×U(2))

, OSU(4)
d3 =

SU(4)
SU(3)×U(1)

' CP3 .

As a result, there exist several representations of a generic orbit OSU(4) as a fibre
bundle. For example,

OSU(4) = E
(
OSU(4)
d3 ,OSU(3), π

)
= E

(
CP3,OSU(3), π

)
OSU(4) = E

(
OSU(4)
d2 ,OSU(2), π

)
= E

(
OSU(4)
d2 ,CP1, π

)
.

Example 2. In this paper we consider compact classical Lie groups. They describe
linear transformations of real, complex, and quaternionic spaces. Respectively,
these groups are SO(n) over the real field, SU(n) over the complex field, and
Sp(n) over the quaternionic ring. Here we list the maximal tori of all these groups,
and their representations as fibre bundles.

The maximal torus of SU(n) is T =

n−1︷ ︸︸ ︷
U(1)×U(1)× · · · ×U(1) and the generic

type of orbits can be represented as

OSU(n) = E
(
CPn−1,OSU(n−1), π

)
.
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The maximal torus of SO(n) as n = 2m and n = 2m+ 1 has the following form
T = SO(2)× SO(2)× · · · × SO(2)︸ ︷︷ ︸

m

and in this case the generic type of orbits can

be represented as

OSO(2m) = E
(
G2n;2,OSO(2m−2), π

)
OSO(2m+1) = E

(
G2n−1;2,OSO(2m−1), π

)
where G2m;2, G2m−1;2 denote real Grassman manifolds.

The maximal torus of Sp(n) is T =

n−1︷ ︸︸ ︷
U(1)×U(1)× · · · ×U(1) while the generic

type of orbits can be represented as

OSp(n) = E
(
HPn−1,OSp(n−1), π

)
where H denotes the quaternionic ring.

3. Complex Parameterization of Coadjoint Orbits

In the theory of Lie groups and Lie algebras different ways of parameterization
of coadjoint orbits are available. As the most prevalent we choose a generalized
stereographic projection [2]. It is named so since in the case of group SU(2) it
gives the well-known stereographic projection onto the complex plane, which is
the only orbit of SU(2). The generalized stereographic projection is a projection
from a dual space onto a coadjoint orbit parameterized by complex coordinates.
Complex coordinates are introduced by the well-known procedure that combines
Iwasawa and Gauss-Bruhat decompositions. These coordinates are often called
Bruhat coordinates [3].
We start with complexifying a group G in the usual way: GC = exp{g + ig}. A
generic orbit of G is defined in GC by Montgomery’s diffeomorphism

O = T\G ' P\GC (1)

where P denotes the minimal parabolic subgroup of GC.
Equation (1) becomes apparent from the Iwasawa decomposition GC = NAK,
where A ' exp{ih} is the real abelian subgroup of GC, N is a nilpotent subgroup
of GC, and K is the maximal compact subgroup of GC. Since we consider only
compact groups G, K coincides with G. Then the Iwasawa decomposition of GC

has the following form
GC = NAG.

It is easy to express A and N in terms of root vectors. Let ∆+ be the set of positive
roots α of GC. By Xα, X−α, α ∈ ∆+, denote positive and negative root vectors,
respectively. By Hα, α ∈ ∆+, denote the corresponding Cartan vectors, which
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form a basis for the Cartan subalgebra h. According to [4], we choose Xα and
X−α so that Xα −X−α, i(Xα +X−α) ∈ g. Then

N ' exp

 ∑
α∈∆+

nαXα

 , nα ∈ C, A ' exp

 ∑
α∈∆+

aαiHα

 , aα ∈ R .

In this notation P = NAT. This makes (1) evident.
In the case of a degenerate orbit, we have the following diffeomorphism

Oµ0 = Gµ0\G ' Pµ0\GC (2)

where Gµ0 is the stability subgroup and Pµ0 is the parabolic subgroup with respect
to Oµ0 . Then Pµ0 = NAGµ0 , that proves (2).
On the other hand, G admits a Gauss decomposition (for the generic type of orbits)

GC = NTCZ

where TC is the maximal torus of GC, and TC = AT in the above notation; N and
Z ' N∗ are nilpotent subgroups of GC normalized by TC. In terms of the root
vectors introduced above

Z = exp

 ∑
α∈∆+

zαX−α

 , zα ∈ C .

After [4] we call aα, nα, zα the canonical coordinates connected with the root
basis {Hα, Xα, X−α ; α ∈ ∆+}. These are coordinates in the group G.
A comparison of the Gauss and Iwasawa decompositions implies that the orbit O
is diffeomorphic to the subgroup manifold Z

O ' NAG
NAT

' NATZ
NAT

' Z. (3)

Diffeomorphism (3) asserts that one can parameterize the orbit O in terms of the
complex coordinates {zα, α ∈ ∆+} that are canonical coordinates in Z.
However, a Gauss decomposition is local. Therefore, we use a Gauss-Bruhat de-
composition instead

GC =
⋂

w∈W(G)

PZw.

It gives a system of local charts on the orbit

O = P\GC =
⋂

w∈W(G)

Zw. (4)

In the case of a degenerate orbit Oµ0 , T is to be replaced by Gµ0 , and P by Pµ0 . It
is sufficient to take the intersection over w ∈W(Gµ0)\W(G) in (4). Furthermore,
in this case, Z has a less number of coordinates.
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Proposition 3. Each orbit O of a compact semisimple Lie group G is locally pa-
rameterized in terms of the canonical coordinates {zα, α ∈ ∆+} in a nilpotent
subgroup Z of GC according to (4).

Now we apply the above scheme to compact classical Lie groups, namely SO(n),
SU(n), Sp(n). The scheme consists of several steps. First we parameterize the
subgroups N, A, and the group G in terms of {zα, α ∈ ∆+}. Secondly, we choose
an initial point µ0 in the positive closed Weyl chamber C and generate an orbit
Oµ0 by the dressing formula

µ = g−1µ0g, g ∈ G.

That gives a parametrization on one of the charts covering the orbit. Finally, we
extend the parametrization to all other charts by the action of elements of the Weyl
group of G. We consider the scheme in detail.
Step 1. Being a finite group, each classical Lie group has a matrix representation.
Let â be the matrix representing an element a. An Iwasawa decomposition of
ẑ ∈ Z has the following form

ẑ = n̂âk̂, n̂ ∈ N, â ∈ A, k̂ ∈ G. (5)

One has to solve (5) in terms of the complex coordinates zα that appear as entries
of the matrix ẑ. The following transformation of (5) makes the computation easier

ẑẑ∗ = n̂âk̂k̂∗â∗n̂∗ = n̂â2n̂∗

where k̂∗ denotes the hermitian conjugate of k̂. Indeed, k̂k̂∗ = e for all of the men-
tioned groups. This is evident, if one considers the conjugation over the complex
field in the case of SU(n), and over the quaternionic ring in the case of Sp(n). If
k̂ ∈ SO(n) one has k̂∗ = k̂T , and the equality k̂k̂∗ = e is obvious. Moreover, it
can easily be checked that ââ∗ = â2. When n̂ and â are parameterized in terms of
{zα}, the matrix k̂(z) is computed by the formula

k̂(z) = â−1(z)n̂−1(z)ẑ.

Here we obtain complex parameterizations of N, A, G for all classical compact
groups of small dimensions.

Example 3. In the case of group SU(n), the corresponding complexified group
is SL(n,C). The subgroup N consists of complex upper triangular matrices with
ones on the diagonal, the subgroup Z consists of complex low triangular matrices
with ones on the diagonal, the subgroup A contains real diagonal matrices â =
diag(r1, r2, . . . , rn) such that

∏n
i=1 ri = 1.
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Decomposition (5) for a generic orbit OSU(3) gets the form 1 0 0
z1 1 0
z3 z2 1

 =

1 n1 n3

0 1 n2

0 0 1




1
r1

0 0
0 r1

r2
0

0 0 r2

 û, û ∈ SU(3)

whence it follows

r2
1 = 1 + |z1|2 + |z3 − z1z2|2, r2

2 = 1 + |z2|2 + |z3|2

n1 =
1
r2

1

(z̄1(1 + |z2|2)− z2z̄3), n2 =
1
r2

2

(z̄2 + z1z̄3), n3 =
z̄3

r2
2

·

The dressing matrix û is

û =


1
r1

− z̄1
r1

− z̄3−z̄1z̄2
r1

z1(1+|z2|2)−z3z̄2
r1r2

1+|z3|2−z1z2z̄3
r1r2

− z̄2+z1z̄3
r1r2

z3
r2

z2
r2

1
r2

 .
The case of a degenerate orbitOSU(3)

d is derived from the above by assigning z1 =
0, or z2 = 0.

Example 4. In the case of group Sp(n), the complexified group is Sp(n,C). The
both groups describe linear transformations of the quaternionic vector space Hn.
Therefore, it is suitable to operate with quaternions instead of complex numbers.
Each quaternion q is determined by two complex numbers z1, z2 as q = z1 + z2j.
The quaternionic conjugate of q is q̄ = z̄1 − jz̄2, where z̄1, z̄2 are the complex
conjugates of z1, z2. Several useful relations are available

jz = z̄j, z + w = z̄ + w̄, z · w = w̄ · z̄

where z, w ∈ C.
The subgroups N, Z have the same representatives as in the case of group SU(n),
but over the quaternionic ring. The subgroup A consists of real diagonal matrices
with the same property as in the case of SU(n).
We start with the simplest group Sp(2). Suppose v, q ∈ H such that v = n1 +n2j,
q = z1 +z2j, where n1, n2, z1, z2 ∈ C. Decomposition (5) for an orbitOSp(2) gets
the following form(

1 0
q 1

)
=
(

1 v
0 1

)(1
r 0
0 r

)
p̂, p̂ ∈ Sp(2)

whence it follows r2 = 1 + |q|2, v = q̄/r2, or in terms of complex coordinates

r2 = |z1|2 + |z2|2, n1 =
z̄1

r2
, n2 = −z2

r2
·
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The dressing matrix p̂ is

p̂ =
1√

|z1|2 + |z2|2

(
1 −z̄1 + jz̄2

z1 + z2j 1

)
.

In the case of group Sp(3), we perform all computations in terms of quaternions.
Suppose q1 = z1 +z2j, q2 = z3 +z4j, q3 = z5 +z6j, v1 = n1 +n2j, v2 = n3 +n4j,
v3 = n5 + n6j. Then, for a generic orbit OSp(3), one obtains 1 0 0

q1 1 0
q3 q2 1

 =

1 v1 v3

0 1 v2

0 0 1




1
r1

0 0
0 r1

r2
0

0 0 r2

 p̂, p̂ ∈ Sp(3)

whence it follows

r2
1 = 1 + |q1|2 + |q3 − q2q1|2, r2

2 = 1 + |q2|2 + |q3|2

v1 =
1
r2

1

(q̄1(1 + |q2|2)− q̄3q2), v2 =
1
r2

2

(q̄2 + q1q̄3), v3 =
q̄3

r2
2

·

The dressing matrix p̂ is

p̂ =


1
r1

− q̄1
r1

− q̄3−q̄1q̄2
r1

q1(1+|q2|2)−q̄2q3
r1r2

1+|q3|2−q1q̄3q2
r1r2

− q̄2+q1q̄3
r1r2

q3
r2

q2
r2

1
r2

 .
The case of Sp(n) in terms of quaternions is very similar to the case of SU(n).
The only warning is that the multiplication of quaternions is not commutative.

Example 5. In the case of group SO(n), the corresponding complexified group is
SO(n,C). Representatives of the subgroups N and Z have not so clear structure
as for groups SU(n) and Sp(n). The real abelian subgroup A consists of block-
diagonal matrices â = diag(A1, A2, . . . , Am) in the case of group SO(2m), and
â = diag(A1, A2, . . . , Am, 1) in the case of group SO(2m+ 1). Here

Ai =
(

cosh ai −i sinh ai
i sinh ai cosh ai

)
.

Consider the group SO(3). The only type of orbits is OSO(3) = SO(2)\SO(3). In
this case the decomposition (5) gets the form

1− z2

2 − iz2

2 −z

− iz2

2 1 + z2

2 −iz

z iz 1

 =


1− n2

2
in2

2 n

in2

2 1 + n2

2 −in

−n in 1


 cosh a −i sinh a 0

i sinh a cosh a 0
0 0 1

 ô
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where ô ∈ SO(3), and a, n, z are canonical coordinates in the group. One easily
computes the following

ea = 1 + |z|2, n =
z̄

1 + |z|2
·

The dressing matrix ô is

ô =


2−z2−z̄2
2(1+|z|2)

i(z̄2−z2)
2(1+|z|2)

− z+z̄
1+|z|2

i(z̄2−z2)
2(1+|z|2)

2+z2+z̄2

2(1+|z|2)
− i(z−zz̄)

1+|z|2

z+zz̄
1+|z|2

i(z−z̄)
1+|z|2

1−|z|2
1+|z|2

 .
We return to the scheme.
Step 2. Suppose we have some parametrization of the dual space g∗ of the group G.
We call these parameters group coordinates. In order to parameterize an orbit of G
we find expressions for the group coordinates in terms of the complex coordinates
{zα, α ∈ ∆+}. Let us continue with the example of group SU(3).
Let λa, a = 1, . . . , 8, be Gell-Mann matrices, then Ya = − i

2λa, a = 1, . . . , 8,
form a basis for g∗. Define a bilinear form on g∗ as 〈A,B〉 = −2 TrAB. Each
basis element Ya is assigned to a group coordinate: µa = 〈µ̂, Ya〉, where

µ̂ = − i
2


µ3 + 1√

3
µ8 µ1 − iµ2 µ4 − iµ5

µ1 + iµ2 −µ3 + 1√
3
µ8 µ6 − iµ7

µ4 + iµ5 µ6 + iµ7 − 2√
3
µ8

 .
A coadjoint orbit is generated by the dressing formula

µ̂ = û∗µ̂0û, µ̂0 ∈ h∗

where µ̂0 is an initial point. As shown in Section 2, each orbit is uniquely defined
by a point of the closed positive Weyl chamber. Let simple roots of su(3) be as
follows: α̂1 = diag(i,−i, 0) and α̂2 = diag(0, i,−i). The closed positive Weyl
chamber is the set of points µ̂0 such that

µ̂0 = − i
3
ξ

2 0 0
0 −1 0
0 0 −1

− i
3
η

1 0 0
0 1 0
0 0 −2

 , ξ, η > 0. (6)

Obviously, walls of the Weyl chamber are obtained by assigning ξ = 0 or η = 0. In
this notation Γα1 = {− i

3η diag(1, 1,−2) ; η > 0}, Γα2 = {− i
3ξ diag(2,−1,−1) ;

ξ > 0}. The chosen representation of an initial point µ̂0 is the most suitable for the
further computation.
According to Proposition 1 we get a generic orbit if η 6= 0 and ξ 6= 0. If ξ or
η vanishes, we get a degenerate one. A generic orbit is parameterized by three



Geometry and Topology of Coadjoint Orbits 157

complex coordinates z1, z2, z3. If ξ vanishes, one has to assign z1 = 0. If η
vanishes, then z2 = 0. We consider the degenerate orbit through the following
point

µ̂0 = − i
3
η

1 0 0
0 1 0
0 0 −2

 .
One can attach some physical meaning to nonzero entries of the initial point µ̂0 be-
cause of its diagonal form. For in quantum mechanics diagonal matrices represent
observable variables. Suppose µ̂0 is the value of µ̂ at the infinity: µ̂0 = µ̂(∞). The
diagonal entries are expressed in terms of the group coordinates µ3 and µ8 and we
fix their values at the infinity as follows: µ3(∞) = m, µ8(∞) = q. Then

η = −1
2

(
m−

√
3q
)
, ξ = m.

Suppose the group SU(3) describes a magnetic with spin one. Then m serves as a
projection of magnetic moment (magnetization) of the magnetic, and q serves as a
projection of quadrupole moment.
The dressing procedure gives the following explicit expression for the generalized
stereographic projection onto a generic orbit of SU(3)

µ1 = − η

r2
2

(z̄2z3 + z2z̄3)− ξ

r2
1

(z1 + z̄1)

µ2 =
iη
r2

2

(z̄2z3 − z2z̄3) +
iξ
r2

1

(z1 − z̄1)

µ3 =
η

r2
2

(|z2|2 − |z3|2) +
ξ

r2
1

(1− |z1|2)

µ4 = − η

r2
2

(z3 + z̄3)− ξ

r2
1

(z3 − z1z2 + z̄3 − z̄1z̄2)

µ5 =
iη
r2

2

(z3 − z̄3) +
iξ
r2

1

(z3 − z1z2 − (z̄3 − z̄1z̄2))

µ6 = − η

r2
2

(z2 + z̄2) +
ξ

r2
1

(z̄1(z3 − z1z2) + z1(z̄3 − z̄1z̄2))

µ7 =
iη
r2

2

(z2 − z̄2)− iξ
r2

1

(z̄1(z3 − z1z2)− z1(z̄3 − z̄1z̄2))

√
3µ8 =

η

r2
2

(2− |z2|2 − |z3|2) +
ξ

r2
1

(1 + |z1|2 − 2|z3 − z1z2|2)

(7)

where
r2

1 = 1 + |z1|2 + |z3 − z1z2|2, r2
2 = 1 + |z2|2 + |z3|2.

Obviously, all expressions can be divided into two parts: with the coefficients η
and ξ. These parts correspond to the basis matrices in (6).
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For the stereographic projection onto a degenerate orbit through µ̂0 chosen above
one has to assign ξ = 0, z1 = 0 in (7).
Step 3. Parametrization (7) is available on the coordinate chart containing the point
(z1 = 0, z2 = 0, z3 = 0). By the action of elements of the Weyl group one obtains
parameterizations on all other charts. The Weyl group is generated by reflections
across the hyperplanes orthogonal to simple roots. In the case of group SU(3),
these reflections are represented by the following matrices

ŵ1 =

0 1 0
1 0 0
0 0 −1

 , ŵ2 =

−1 0 0
0 0 1
0 1 0

 .
The action of ŵ1 transforms the chart with coordinates (7) onto another one by the
following change of coordinates

(z1, z2, z3) 7→ (z′1, z
′
2, z
′
3), z′1 =

1
z1
, z′2 = −z3, z′3 = −z2.

This chart contains the point (z1 = ∞, z2 = 0, z3 = 0). The action of ŵ2

transforms coordinates (7) by the following change of coordinates

(z1, z2, z3) 7→ (z′1, z
′
2, z
′
3), z′1 = −(z3−z1z2), z′2 =

1
z2
, z′3 = −z3

z2
·

The latter chart contains the point (z1 = 0, z2 =∞, z3 = 0).
Evidently, the other elements of W(SU(3)) are ê, ŵ1ŵ2, ŵ2ŵ1, ŵ1ŵ2ŵ1. The
corresponding changes of coordinates are obtained by sequential actions of the
two described above.

4. Kählerian Structure on the Coadjoint Orbits

The perfect property of coadjoint orbits of compact semisimple Lie groups is the
following. Each orbit is simultaneously a Riemannian manifold and a symplectic
one. A Riemanian metrics and the matched symplectic form together are called a
Kählerian structure. Borel [5] proved the following

Proposition 4. Suppose G is a semisimple compact Lie group. Then each orbit of
G admits a complex analytic Kählerian structure invariant under the group G.

It means that each orbit possesses a hermitian Riemannian metrics, the Kählerian
metrics ds2, and the corresponding closed two-form, the Kählerian form ω

ds2 =
∑
α,β

gαβ̄ dzα dz̄β, ω =
∑
α,β

igαβ̄ dzα ∧ dz̄β.

The G-invariance of a Kählerian structure means invariance under the action of
G. Here we consider the action of a group as right multiplication. A Kählerian
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structure is determined by a Kählerian potential Φ according to the formula

gαβ̄ =
∂2Φ

∂zα∂z̄β
, ωαβ̄ = igαβ̄.

The objective of this section is to obtain an expression for a Kählerian structure
on a coadjoint orbit. Evidently, for this purpose it is sufficient to find a Kähle-
rian potential, which simultaneously gives the Kählerian metrics and the Kählerian
form.
On the other hand, one has the following

Proposition 5 (see [6]). If G is a compact semisimple Lie group, the Kirillov-
Kostant-Souriau two-form coincides with a G-invariant Kählerian form.

While we deal with compact semisimple classical Lie groups, we can use a Kirillov-
Kostant-Souriau differential form as a Kählerian form.
Define a bilinear form on g as follows

〈X,Y 〉 = TrXY, X, Y ∈ g.

In the case of classical Lie groups, the bilinear form is proportional to the standard
Killing form on g.
Define a vector field X̃ on a coadjoint orbit O by

X̃f(µ) =
d
dτ

f(Ad∗exp(τX) µ)
∣∣∣
τ=0

, f ∈ C∞(O).

One can introduce an Ad-invariant closed two-form on O by the formula

ω(X̃, Ỹ ) = 〈µ, [X,Y ]〉, X, Y ∈ g, µ ∈ g∗. (8)

This two-form is called a Kirillov-Kostant-Souriau form.
The straightforward way of obtaining a Kählerian form is to solve equations (8).
Unfortunately, it becomes extremely complicate in dimensions greater than three.
This way is developed by Picken [3]. He computes Kählerian forms on flag mani-
folds via G-invariant one-forms in terms of Bruhat coordinates.
We return to the idea of finding a Kählerian potential instead of a Kählerian form.
In general, each G-covariant real function on an orbit serves as a Kählerian poten-
tial. It turns out, that each orbit has a unique G-covariant real function, which we
call a Kählerian potential on the orbit.
The same idea is used by Alekseevsky and Perelomov [7]. In order to find po-
tentials for all closed two-forms on orbits of group GL(n), they consider the real
positive functions built by means of principal minors of ẑẑ∗ ∈ GL(n), and select
the functions that are G-covariant. Here we develop the idea of Alekseevsky and
Perelomov, because this way allows to avoid complicate computations.
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Below we prove that a Kählerian potential is determined by an one-dimensional
irreducible representation of the real abelian subgroup A of GC. We use the group-
theoretical approach in our proof.
Each orbit O = P\GC is a holomorphic manifold, which admits the construction
of a line bundle. Let {Uk} be its atlas. An arbitrary gC ∈ GC has a decomposition

gC = hk(x)sk(x), x ∈ Uk (9)

where sk : Uk → GC is a local section ofO. IfUk∩Uj 6= ∅, then there exists a map
skj = sk ◦ s−1

j , which is skj : Uk ∩Uj → P. A one-dimensional representation of
the parabolic subgroup P of GCgives a G-covariant function on an orbit.
Recall, that P = NAT in the case of a generic orbit. In the case of a degenerate
orbit, one has P = NAGµ0 , where Gµ0 is the stability subgroup at an initial point
µ0 ∈ h∗ giving rise to the orbit. A one-dimensional irreducible representation is
trivial on any nilpotent group. This means that the representation of P coincides
with the representation of the maximal torus TC = AT of GC. Moreover, we are
interested in real representations because a Kählerian potential is a real function.
Consequently, the required representation is determined only by A.
Now we build a one-dimensional irreducible representation of TC. Obviously,
TC is isomorphic to a direct product of l samples of the multiplicative group
C∗ = C \{0}, where l = dim T. Let the following set of complex numbers
(d1, d2, . . . , dl) be an image of d̂ ∈ TC under the isomorphism. It is clear that the
set of real numbers (r1, r2, . . . , rl), where ri = |di|, i = 1, . . . , l, is an image of
â ∈ A under the isomorphism. In terms of complex coordinates z = {zα ; α ∈
∆+}, which are canonical coordinates in Z, an Iwasawa decomposition of any
ẑ ∈ Z gets the form

ẑ = n̂(z)â(z)k̂(z). (10)

Here k̂(z) represents a point of the orbit in terms of the complex coordinates {zα}
while n̂(z) and â(z) denote matrices n̂ and â in terms of {zα}. After the action of
an element g ∈ G on z we perform a Gauss-Bruhat decomposition

ẑĝ = n̂B(zg)d̂(zg)ẑg, n̂B(zg) ∈ N. (11)

From the Iwasawa decomposition of ẑg we have

â(zg) = n̂−1(zg)ẑgk̂−1(zg).

Using (10) and (11) we get

â(zg) = n̂−1(zg)d̂−1(zg)n̂−1
B (zg)n̂(z)â(z)k̂(z)ĝk̂−1(zg). (12)

In order to gather nilpotent elements together we recall that the maximal torus TC

is the normalizer of N, that gives the following equality

d̂−1(zg)n̂−1
B (zg)n̂(z)d̂(zg) = n̂(z, g), n̂(z, g) ∈ N.
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Substituting n̂B(zg)d̂−1(zg) for d̂−1(zg)n̂−1
B (zg)n̂(z) in (12) we obtain

â(zg) = n̂−1(zg)n̂(z, g)d̂−1(zg)â(z)k̂(z)ĝk̂−1(zg).

To cancel the element k̂(z)ĝk̂−1(zg) = ĝ′ ∈ G we take the following product

â2(zg) = â(zg)â∗(zg) = n̂d̂−1(zg)â2(z)d̂∗−1(zg)n̂∗ (13)

where n̂ denotes n̂−1(zg)n̂(z, g) ∈ N.
Now we construct a one-dimensional real representation of (13). Let χξ(â) denote
a representation of âwith real weights ξ = (ξ1, ξ2, . . . , ξl). A one-dimensional real
representation of â ∈ A has the following form χξ(â) = rξ11 r

ξ2
2 · · · r

ξl
l , and a one-

dimensional real representation of d̂ ∈ TC has the form χξ(d̂) = dξ11 d
ξ2
2 · · · d

ξl
l .

Therefore, the representation of â2(zg) gets the form

χ2ξ (â(zg)) = χξ
(
d̂(zg)

)
χξ
(
d̂(zg)

)
χ2ξ (â(z)) .

Whence it is seen that χ2ξ (â(z)) is transformed by a cocycle χξ
(
d̂(zg)

)
defined

on G×O. It means that the function

lnχ2ξ (â(z)) = ξ1 ln r2
1(z) + ξ2 ln r2

2(z) + · · ·+ ξl ln r2
l (z) (14)

is G-covariant, and serves as a Kählerian potential on O. Moreover, each function
ln r2

i (z), i = 1, . . . , l, is a Kählerian potential itself.
Remarkably, that each coadjoint orbit has a unique Kählerian potential of the form
(14), where the weights ξ = (ξ1, ξ2, . . . , ξl) are determined by an initial point of
the orbit. We have proven the following

Proposition 6. Suppose A is the real abelian subgroup of GC, â ∈ A, and χξ(â)
is the one-dimensional representation of â with real weights ξ = (ξ1, ξ2, . . . , ξl).
Then Kählerian potentials on coadjoint orbits of G have the form lnχ2ξ(â), more-
over each orbit has the Kählerian potential with a unique ξ.

Remark 1. In the case of integer weights ξ = (ξ1, ξ2, . . . , ξl), the line bundle over
each coadjoint orbit of G is holomorphic. This idea is derived from the Borel-Weyl
theory based on [8].

Let us consider some examples.

Example 6. In the case of group SU(n), a representative of the real abelian sub-
group A has the form of a diagonal matrix with det â = 1, that is

â = diag(1/r1, r1/r2, . . . , rn−2/rn−1, rn−1)

and dim T = n − 1. Let (r1, r2, . . . , rn−1) be an image of â under an isomor-
phism from TC onto (C∗)n−1. Then χξ(â) = rξ11 r

ξ2
2 · · · r

ξn−1

n−1 , where ξi ∈ R,
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i = 1, . . . , n− 1, whence Kählerian potentials have the following form

Φ = ξ1 ln r2
1 + ξ2 ln r2

2 + · · ·+ ξn−1 ln r2
n−1.

For instance, Kählerian potentials on orbits of SU(3) are

Φ = ξ ln r2
1 + η ln r2

2, r2
1 = 1 + |z1|2 + |z3 − z1z2|2, r2

2 = 1 + |z2|2 + |z3|2.
This expression completely accords with the straightforward solution of (8), which
gives the following

Φ = 〈µ̂0, α̂1〉Φ1 + 〈µ̂0, α̂2〉Φ2

Φ1 = ln(1 + |z1|2 + |z3 − z1z2|2), Φ2 = ln(1 + |z2|2 + |z3|2).

Here µ̂0 is an initial point of an orbit and α̂1, α̂2 are the simple roots of su(3). In
the case of a degenerate orbit, one has to assign z1 = 0 or z2 = 0.

Example 7. In the case of groups SO(n), n = 2m and n = 2m+ 1, a representa-
tive of the subgroup A has the form of a block-diagonal matrix, namely

â = diag(A1, A2, . . . , Am) or â = diag(A1, A2, . . . , Am, 1)

Ai =
(

cosh ai −i sinh ai
i sinh ai cosh ai

)
, i = 1, . . . ,m.

Here {ai} are canonical coordinates in the maximal torus T, and dim T = m. Let
(ea1 , ea2 , . . . , eam) be an image of â under an isomorphism from TC onto (C∗)m.
Then χξ(â) = eξ1a1eξ2a2 · · · eξmam , whence it follows

Φ = 2ξ1a1 + 2ξ2a2 + · · ·+ 2ξmam.

Kählerian potentials on coadjoint orbits of SO(4) computed by (8) have the form

Φ = 〈µ̂0, α̂1〉Φ1 + 〈µ̂0, α̂2〉Φ2

Φ1 = ln(1 + |z1|2)− ln(1 + |z2|2), Φ2 = ln(1 + |z1|2) + ln(1 + |z2|2).

Here the bilinear form on so(4) is defined by 〈A,B〉 = 1
2 TrAB.

Proposition 7. The Kählerian potential on each coadjoint orbit Oµ0 of a compact
classical Lie group G has the following form

Φ =
∑
k

〈µ0, αk〉Φk, Φk = aαk

where αk is a simple root of g, aαk is the canonical coordinate corresponding to
Hαk ∈ h, and 〈·, ·〉 denotes a bilinear form on the dual space of g.

Remark 2. If µ0 satisfies the integer condition

2
〈µ0, αk〉
〈αk, αk〉

∈ Z
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for all simple roots αk of g then the orbit through µ0 can be quantized. In other
words, there exists an irreducible unitary representation of G in the space of holo-
morphic sections on the orbit. Each section serves as a quantum state.

5. Cohomology Rings of Coadjoint Orbits

In the last section we examine the cohomology rings of coadjoint orbits of compact
semisimple Lie groups. In [9] Borel proved that all forms of odd degrees on the
orbit are precise. Therefore, we are interested in the forms of even degrees. In
order to introduce a basis for the cohomology ring it is sufficient to find a basis for
the cohomology group H2.
In the case of a generic coadjoint orbit of a compact semisimple Lie group G, the
following formula is available

b0 + b2 + · · ·+ b2n = ord W(G)

where bk denotes the Betti number of a cohomology group Hk. In the case of a
degenerate orbit, one has to modify the formula as

b0 + b2 + · · ·+ b2m =
ord W(G)

ord W(Gµ0)

where Gµ0 is the stability subgroup at µ0.

Example 8. In the case of group SU(2), we have the only type of orbits OSU(2)

of dimension two. The Weyl group W(SU(2)) also has dimension two. Therefore,
the cohomology ring consists of two cohomology groups, each of dimension one

H∗ = H0 ⊕H2, 1 + 1 = 2.

In the case of group SU(3), we have two types of orbits: a generic one OSU(3) of
dimension six, and a degenerate one OSU(3)

d of dimension four. In the case of a
generic orbit, the Weyl group has dimension six, and the cohomology ring is

H∗ = H0 ⊕H2 ⊕H4 ⊕H6, 1 + 2 + 2 + 1 = 6.

For a degenerate orbit we have ord W(G)
ord W(Gµ0 ) = 3, and the cohomology ring is

H∗ = H0 ⊕H2 ⊕H4, 1 + 1 + 1 = 3.

Recall the well-known Leray-Hirsch theorem.

Theorem (Leray-Hirsch). Suppose E is a fibre bundle over a baseM with a fibre
F , and ω1, ω2, . . .ωr are cohomology classes on E that being restricted to each
fibre give its cohomologies. Then

H ∗ (E) = H∗(M)⊗H ∗ (F).
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Apply the theorem to an orbit O regarded as a fibre bundle over an orbit O1 with
an orbit O2 as a fibre, that is O = E(O1,O2, π). The cohomology ring of O is a
tensor product of the cohomology rings of the base and the fiber

H ∗ (O) = H ∗ (O1)⊗H ∗ (O2).

Conversely, if one finds coherent cohomology classes on O1 and O2, then one
can construct the cohomology ring of O by the latter formula. It means, the co-
homology ring of a generic orbit can be derived from the cohomology rings of a
degenerate orbit and a generic orbit of a group of less dimension.

Example 9. We continue to deal with the group SU(3). It was shown that

OSU(3) = E
(
OSU(3)
d ,OSU(2), π

)
.

Then the cohomology ring ofOSU(3) is the tensor product of the cohomology rings
of the orbits OSU(3)

d and OSU(2)

H∗(OSU(3)) = (H0 ⊕H2 ⊕H4)⊗ (H0 ⊕H2)

= H0 ⊗H0 ⊕H0 ⊗H2 ⊕H2 ⊗H0︸ ︷︷ ︸
H2(OSU(3))

⊕H2 ⊗H2 ⊕H4 ⊗H0︸ ︷︷ ︸
H4(OSU(3))

⊕H4 ⊗H2.

Obviously, the cohomology groups H2 and H4 of OSU(3) both have dimension
two. Moreover, from the previous expression we can see the structure of a basis
for H2

H2
(
OSU(3)

)
= H0(1)⊗H2(2)⊕H2(1)⊗H0(2)

where 1 denotes OSU(3)
d ' CP2, and 2 denotes OSU(2) ' CP1.

At the same time, a suitable basis forH2 can be obtained from Kählerian potentials
on coadjoint orbits of a group. As shown in the previous section, all two-forms on
the orbits of a compact classical Lie group G have the form

ω =
∑
k

ick
∑
α,β

∂2Φk

∂zα∂z̄β
dzα ∧ dz̄β, k = 1, . . . ,dim T

where Φk coincides with the canonical coordinate aαk corresponding to Hαk ∈ h.
Obviously, dimH2 = dim T = l. Consequently, one can find precisely l two-
forms that give a basis for H2.
The standard way to generate a basis for H2 is the following. Let H2 be the
homology group adjoint to H2. By [γ] we denote a class of two-cycles, which can
be represented as spheres. The sphere is an orbit of a subgroup SUα(2)

SUα(2) ' exp{Hα, (Xα −X−α), i(Xα +X−α)}, α ∈ ∆+.
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Suppose we find l independent two-cycles connected with the simple roots of g,
we denote them by γi. The basis for H2 consists of two-forms ωj such that∫

γi

ωj = δij (15)

where δij is the Kronecker symbol.

Example 10. We consider coadjoint orbits of SU(3) as an example. Let the simple
roots of su(3) be as follows: α1 = diag(i,−i, 0) and α2 = diag(0, i,−i). Then
the independent two-cycles are generated by the following dressing matrices

û1 =


1√

1+|z1|2
−z̄1√
1+|z1|2

0
z1√

1+|z1|2
1√

1+|z1|2
0

0 0 1

 , û2 =


1 0 0
0 1√

1+|z2|2
−z̄2√
1+|z2|2

0 z2√
1+|z2|2

1√
1+|z2|2


which are obtained from the dressing matrix û by assigning z2 = z3 = 0 or
z1 = z3 = 0, respectively. The two-forms ωj satisfying (15) are

ωj =
1

2π

∑
α,β

∂2Φj

∂zα∂z̄β
dzα ∧ dz̄β, j = 1, 2

Φ1 = ln(1 + |z1|2 + |z3 − z1z2|2), Φ2 = ln(1 + |z2|2 + |z3|2).

They form a basis for H2(OSU(3)).

6. Conclusion

In this paper we develop a unified approach to solutions of the announced problems
for a coadjoint orbit of a compact semisimple classical Lie group G. The problems
are the following: an explicit parametrization of the orbit, obtaining a Kählerian
structure, introducing basis forms for the cohomology group of the orbit. The
key role belongs to the subgroup A in an Iwasawa decomposition, this is the real
abelian subgroup of a complexification of the group G. The subgroup A determines
a Kählerian potential on each orbit and a suitable basis for the cohomology group
H2 of the orbit.
Our investigation concerns classical (matrix) Lie groups. The same problems in
the general case remain of current importance.
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