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Abstract. We present stationary and travelling wave solutions for equations
describing Bose-Fermi mixtures in an external potentials which are elliptic
functions of modulus k. There are indications that such waves and localized
objects may be observed in experiments with cold quantum degenerate gases.

1. Introduction

Recently, there has been a strong interest on quantum degenerate mixtures of
bosons and fermions [3, 14, 16]. In this paper, we study a system of coupled non-
linear Schrédinger equations modelling a quantum degenerate mixture of bosons
and fermions in optical lattice. Here we extend the results of our recent paper [10]
and obtain new exact solutions in elliptic functions for the case when the boson and
fermion ingredients are trapped by potentials with different strengths Vo ¢ # Vj .

2. Bose-Einstein Mixtures in Optical Lattice: Basic Equations in
Mean Field Approximations

In this section we consider a mixture of BEC consisting of one boson and Ny
fermion ingredients. In the one-dimensional approximation it is described by the
following Ny + 1 coupled equations (see [16] and the references therein)
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where p; = S, |Wf|2 and

2aBB 2aBF h
BB = , gBF = , as = ' 3)
Qg Ay mpw |

app and apr are the scattering lengths for s-wave collisions for boson-boson and
boson-fermion interactions, respectively. An appropriate class of periodic poten-
tials to model the quasi-1D confinement produced by a standing light wave is given

by [4]

VB =WsnB an(a:c, k), Ve =Wr sn2(aaj, k) 4)

where sn(ax, k) denotes the Jacobian elliptic sine function [2] with elliptic modu-
lusO0 <k <1.

Experimental realization of two-component Bose-Einstein condensates have stim-
ulated considerable attention in the quasi-1D regime [7] when the Gross-Pitaevskii
equations for two interacting Bose-Einstein condensates reduce to coupled non-
linear Schrodinger (CNLS) equations with an external potential. In specific cases
the two component CNLS equations [1,9, 13] can be reduced to the Manakov sys-
tem [12] with an external potential. Elliptic solutions for the CNLS and Manakov
system were derived in [6, 8, 15].

In the presence of external elliptic potential explicit stationary solutions for NLS
were derived in [4,5]. These results were generalized to the n-component CNLS
in [7]. For two component CNLS explicit stationary solutions are derived in [11].

3. Type A Travelling Wave Solutions with Non-Trivial Phases

At first we restrict our attention to stationary solutions of these CNLS

\I/b(x, t) _ qo(l') e—in?t—&—iG)o(x)—I—imo 5)
) (2,1) = g;() o7 T O R0 (©)
where j = 1,..., Ny, ko, Ko, are constant phases, g; and O, @j(x) are real-
valued functions connected by the relation
z da’ z da’
© x:C/i, (9‘3;:(1/ — @)
0( ) 0 0 (]3($/) j( ) J 0 qf-(x’)

Co,Cj, 7 = 1,..., Ny being constants of integration. Substituting the Ansatz (5),
(6) in Equation (1) and separating the real and imaginary part we get
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CQ
m%m — 9BFqq; — VFrqj +w;iqj = %E : 9)
We seek solutions for q(Q) and qu-, j=1,..., Ny asaquadratic function of sn(ax, k)
= Agsn®(azx, k) + By, qJZ- = Ajsn*(az, k) + B;. (10)

Equating the coefficients of equal powers of sn(au, k) results in the following
relations among the solution parameters w;, C;, A; and B; and the characteristic
of the optical lattice Vj, o and k

al 242 (1 1
ZAJ,:O‘<_9E3>_<VUB_V0F9BB> (11)
j=1

gBF \MB  MFYBF 9BF JBF
(k2 +1) a2k? By
= — B B;
wo omn + 98B Do + 9BF ZZ:I + — 9mp Aq
(12)
2(k* +1 2k? B; k2 — mpV;
oy = S By OBy ok meVor
2mp 2myp Aj MFYBF
QB QB‘
Ci = =5 (Ao+Bo) (Ao+Bok?), €] = (A4 By)(4;+ Bjk?) (13)
J
where j = 1,..., Ny. Next for convenience we introduce
BOZ_ﬁOA(]a B] :_5]14]7 j:177Nf (14)
then
C2 = a?A360(Bo — 1)(1 — Bok?) (15)
C: = aA3B;(B; — 1)(1 — Bk?). (16)

In order that our results (10) are consistent with the parametrization (5), (6), (7) we
must ensure that both go(x) and O (z) are real-valued, and also ¢;(x) and ©;(x)
are real-valued; this means that C3 > 0 and ¢3(x) > 0 and also C’j2 > 0 and
qJQ(J:) > (. An elementary analysis shows that one of the following conditions

1
a) A4 >0, £ <0 b) A <0, 1<h=4 (17)
for/ = 0,..., Ny must hold. Using the well known transformation x — = — ¢;t,
J =0,..., Nyitis easy to obtain travelling wave solutions with different velocities

¢j
Uh(xz,t) = qo(a — cot) e n 11 m(gejiteon) +iOo (@) o

\I/;c(l‘, t) =g (Q; i Cjt) e—i%t—ihmg(%c?t—i—cj'x)—&—i@j(x)—l—ino,j
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where j = 1,..., Ny, Ko, Ko,j, are constant phases, ¢; and Oy, @j(x) are real-
valued functions connected by the relation

r—cot dx/ T—cjt d.l‘/
) x,t:C/ i @m,t:c-/ i —1..., Ny
0( ) 0 0 qg(m/) _7( ) ] 0 qJQ(x/) J f

We display also mixed type solutions for which the boson part has trivial phase
while the fermions have nontrivial phases and vice versa. These are obtained with
1. generic Cj and By = —Ag, By =0 or By = —Ap/k>
2. Cyp genericand B; = —A;, Bp =0 or B; = —Aj/krz.
Under certain conditions Q;(z, t) become periodic functions of z, see [10, 11]. If
the periods Ty, T} satisfy

@0(:13 + To) — @0($) = 27po, @j(l' + Tj) — @](l’) = 27ij (18)

forj =1,..., Ny then wh, \I/;c will be periodic in z with periods Ty = 2mow/a,
Tj = 2mjw/c. This holds true provided there exist pairs of integers my, po, and
m;, pj, such that

mo mg

o = —7 [avg((w) + wT(]/Oé]_l ) E = —7 [av;((w) + WTj/a]_l

where w (and w’) are the half-periods of the Weierstrass functions (.

When Vo r = Vo B = Vp and inserting (10) in (8) and equating the coefficients of
equal powers of sn(au, k) results in the following relations among the parameters
wj, C;, Aj and B; and the characteristic of the optical lattice Vj, o and k&

Ny 212
>4, =0k (1— I55 )— Yo (1—9‘“3) (19)
j=1

gBF \MB  MFYBF gBF gBF
(k2 +1) a’k? By
= B B;
wo e + gBB D0 + 9BF lz; + 9mp Ao
20
4 a2k2 — mpVe Q2(k2 4+ 1) P, o2k B - (20)
= — w; = ——m=
0 mpgpr ! 2mp IBEBO T o A
o?’B a?B;
Co = =5, (Ao+Bo)(Ao+Bok®),  Cf = == (A;+ B;)(4;+ Bjk?) 1)
J
where j = 1,..., Ny. Next for convenience we introduce

By = —Bo Ao, B; = —BjA;, j=1,...,Ny
then

C2 = a?A3B0(Bo — 1)(1 — Bok?), C: = o A3B;(B; — 1)(1 — B;k?).
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Table 1. Constraints ensuring the existence of type A solutions. Here
W = ggrmpWg/(mpWr).

1B <0 B; <0 Ag>0|A;>0|ger20|gepsS W
2| 6<0 1<p3;<1/k*[Ag>0][A;<0|gpr=0|gpg =W
3[1<By<1/k?|B; <0 Ag<0|A;>0|ggr20|geg 2 W
411<Bo<1/k* |1<B; <1/k* | Ag<0|[A;<0|gpr=0|gss W

In order for our results (10) to be consistent with the parametrization (5)—(7) we
must ensure that both go(x) and ©¢(z) are real-valued, and also ¢;(x) and ©(x)
are real-valued; this means that C2 > 0 and ¢3(x) > 0 and also C’]2 > 0 and
q;(z) > 0 (see Table 1, Wi = (ak* — mpVp), Wr = (&®k* — myp1j)). An
elementary analysis shows that with [ = 0, ..., N one of the following conditions
must hold

a) A, >0, 3<0 b) 4,<0, 1<5< -

4. Type B Nontrivial Phase Solutions

For the first time solutions of this type were derived in [4, 5] for the case of nonlin-
ear Schrodinger equation and in [7] for the n-component CNLSE. For Bose—Fermi
mixtures solutions of this type are possible

e when we have two lattices Vg and V.
e when mp = mp.

We seek the solutions in one of the following forms:
¢ = Agsn(ax, k) + By, q]2- = Ajsn(ax,k)+ Bj, j=1,...,Ny (22)
¢ = Agen(ax, k) + B, q]z = Ajcen(ax, k) + Bj (23)
¢t = Agdn(ax, k) + B, qj2- = Ajdn(ax, k) + B;. (24)

In the first case (22) we have

_ 3ak? Ve — 3a2k?

Ve = 8Smp B Smy
A o?’k*  B; By By
O dmeg A AT Aw
ZAj:_ﬂ@_AOQBB
7 4dmpgpr Ao 9BF
wo = M + gBBBo + gBrB1 — o’k By

8mp 8mp I%
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2(1.2 21.2 B2
a®(k*+1) a’k? B;
- Bn — 7
Wy Smp + 9BF Smp A?
2_0‘2 2 42)(A2 27.2 2 a’ _ A2)(A2 27.2
= g (B0 — (= B). € = T (B} — DT - B},
By
We remark that due to relations % == ﬁ we have that all g; of the fermion

fields are proportional to ¢;.

5. Examples of Elliptic Solutions

Using the general solution equations (11)—(13) we have the following special cases
(these solutions are possible only when we have some restrictions on ggg, ggr, and
Vo, see Table 1):

Example 1. Suppose that By = B; = 0. Therefore we have

qo(x) = VApsn(ax, k), q; =/ Ajsn(ax, k) (25)
2.2 o2k2
Aozak mFVo ZA a’k? (_ 9gBB )_V <1_9BB).
MFYBF 9BF mp mprJgrB gBF 9BF
(26)

For the frequencies wg and w; we have

a?(1+ k?) o (14 k?)

0 = ) J

2mB 2mp

aswellasCop = C; = 0.

Example 2. Let By = —Ag and B; = —A; hold true. Then we have

qo(x) = vV —Apen(ax, k), gj(x) = \/—Ajcn(ox, k). (27)

The coefficients Ag and A; have the same form as (26). The frequencies wy and
wj now look as follows
a?(1 — 2k?)

= - V7 -
wo omn + Vo Wi

a?(1 — 2k?%)

Vo.
g + Vo

The constants Cy and C; are equal to zero again.

Example 3. By = —Ao/k? and B; = —A;/k?. In this case we obtain

/—A iy
qo(x) = ? 0 dn(azx, k), gj(x) = TJ dn(ax, k)
28
Q2K =2 g 2 —2) v,
Wy = ——" + -5 wj = ——l .
2mB k’27 J QmF k2
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As before Cyp = C; = 0.
Example 4. By = 0 and B; = —A;. The result reads

qo(z) = VAgsn(ax, k), gj(x) = \/—Ajcn(ax, k)
a?(1—k? a? (29)
W0:¥+VO+AOQBB7 wj=5—-
2mp 2myp

By analogy with the previous examples the constants Ay, A;, Co and C; are given
by formulae (26) and Cy, C; are all zero.

Example 5. By = 0 and B; = —A;/k?. Thus, one gets

Yy
qo(x) = Vv Apsn(ax, k), gj(x) = k: ! dn(ax, k)
30
oo — a2(/€2 — 1) E AogBB i — 042k2 ( )
0= 2mB k2 k2 ’ 7 ZmF

Example 6. Let By = —Ag and B; = 0. Hence we have

qo(z) = v/ —Apcen(ax, k), gj(x) = \/Ajsn(ax, k)
o? a?(1 — k2
wo = 5— — gBAo, wj = od-k) + V.
2mp 2mp

Example 7. Let By = —A¢ and B; = —A;/k?. We obtain

.
qo(x) = vV —Apen(ax, k), gj(x) = k: ! dn(ax, k)
Vo a? 1— k2 a?k?
-0 % L%y V- .
wo = 13 omp + 2 “09BB; wj 0 e
Example 8. Suppose By = —Ao/k? and B; = 0. Then
VA
qo(z) = : dn(az, k), gj(xz) = \/Ajsn(ax, k)
a2k2 gBBAo ()é2(k‘2 — 1) V()
wo = -5 wj=—pf—+ 5"
2mB k 2mp k
Example 9. Let By = — A /k? and B; = —A;. Thus
Vv—A
ao(x) = ¥ dn(az, k), ¢j(x) = \/—A;j en(az, k)
a?k? k-1 W a?
— Vi — A RS

All these cases when V; = 0 and j = 2 are derived for the first time in [3].
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Table 2. Constraints ensuring the existence of generic type B trivial
phase solutions. Here W = ggrpmpWg/(mpWr).

1| g0 =+Agsn(ax, k) ger 20 | ggB S W | Vo < o?k%/mp
¢; = V/Ajsn(ax, k)

2| g =+v—Apcn(az, k) ger 20 | ggs S W | Vo = k% /mp
g = /—Ajen(ax, k)

31q= H n(az,k)/k | ggr 20| ggg S W | Vo 2 &k /my
qj = /—Ajdn(az, k)/k

4| g0 = VAgsn(ax, k) ger 20 | ggg = W | Vo < o?k%/mp
¢ = \/—Aj en(ax, k)

5| qo = VAosn(az, k) ger 20 | g =2 W | Vo S o?k?/mp
4 = =4 dn(az, k) /K

6| q=+v—Aocen(ax,k) | gr 20 |ggg 2 W | Vo 2 o?k?*/mp
q; = /Ajsn(az, k)

7| g0 = v—Apen(ax, k) ger 20 | ggB S W | Vo = k% /mp
g = V=4, dn(az, k) /k

8| qo=+v—Agdn(az,k)/k | ggr =0 | gsg =W | Vo = a?k?/mp
q; = \/Ajsn(az, k)

9| qo=+v—Agdn(az,k)/k | gsr 20 | ggg S W | Vo = o?k?/mp
q; = /—Ajcn(ax, k)

5.1. Mixed Trivial Phase Solution
Example 10. When
By =0, B, =0, By = —As, Bj=—A;/k* j=3,...,N;.
the solutions obtain the form
qo = VAgsn(az, k), q1 = VA sn(azx, k)
=V —Ayen(ax, k), q; = \/—Ajdn(ax,k)/k.
Using equations (11)—(13) we have

k 1 1
AozﬂZA —ak2< — gBB2>—VO<—ggBB>

q

[\

mpgBr i=1 MmBYBr MFYRp 9BF 9BF
o®(k* —1)  gmr 2 geBAo | Vo
=—+=— (A 1—-k%)A -
wo oy + 12 ( 1+ ( ) 2) =+ 12 + 2
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o?(1+ k?) 1, a?k?
wp = —, w9 = a”, Wy
2mF 2mF

N 2mF’

Example 11. Let By = By = 0 and B; = —A; where j = 2,..., Ny. Therefore,
the solutions read

qo(x) = V/Agsn(ax, k)
q1(z) = VA sn(az, k)

gj(xz) = \/—Ajcn(ax, k).

Then we obtain for frequencies the following results

2 2 2 2 2
a“(1 -k a“(1+k «
a1 K) + Vo + gBBA0 + 9Br41, w1 = ¥> wj = —-

wo = =
0 2mnp 2mp 2mp

Example 12. Suppose By = —Ag, By = 0, By = —Aj and B; = —A;/k* where
J =3,...,Ny. The solutions have the form

QO(x) =+ -4 CH(O&IL‘, k)? Q1(x) = msn(a$a k)
q2(z) = vV —Azen(ax, k), gj(x) = \/—A;dn(az, k) /k.

The frequencies are

%) a? 1— k2 JBF
= — + — A A = A
wo = 15 omn + 12 (98B A0 + gBFA2) + 2
a?(1 — k2 a?(1 — 2k? a’k?
w1:%+¥, wzzvo—i—(i), wj =WV — .
2mp 2mp 2mp

Example 13. Let By = —Ap, B; = —A; and Bj = —Aj/ki2 fOI‘j =2,..., Nf.
Then

— —_— A A

W= gt s (98B A0 + gBF A1)
a?(1 — 2k? a?k?

2mp 2mp
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Example 14. Let By = —Ag/k?, By = —A; and B; = —A;/k* for j =
2,...,Ny. Hence

qo(z) = v/ —Apdn(ax, k)/k
q(z) = vV—Aj en(ax, k)
gj(x) = /—Ajdn(ax, k) /k
?(k2-2) Vo 1-—K?
.2 S A
wo omn Tt e (9BAO + gBFAL)
W a? W a2(k2 —2)
R R o A R

Certainly these examples do not exhaust all possible combinations of solutions and
it is easy to it.

6. Vector Soliton Solutions

6.1. Vector Bright-Bright Soliton Solutions

When k£ — 1, sn(ax, 1) = tanh(ax) and By = —Ay, B; = —A; we obtain that
the solutions read

1 1
-/ —Ag—— R AP —
@ O cosh(az)’ U 7 cosh(aur)

where Ag < 0 as well as A; < 0. Using equations (11)-(13) we have

2_y;
Ay = w, V = Vp tanh?(az)
MmrYgBF

Ny 2
Sa- (L) o () o)
j=1

gBF \MB MrJgBF gBF gBF
1 2 1 2
wy = Vg — —a“, wi=Vy— —a".
0 0 2mp J 0 2mp

As a consequence of the restrictions on Ay and A; one can get the following un-
equalities

2 2
« a‘ — mpVy)mp
ggr >0, Vo= —, gBBS( 3 ) 9BF
mp (a? —mpVo)mp
2 2
« a® —mpVp)my
ger <0, VW< —, gBB2> ( 3 ) JBF -
my (a? —mpVy)me

Vector bright soliton solution when Vjy = 0 is derived for the first time in [3].
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6.2. Vector Dark-Dark Soliton Solutions
When k£ — 1 and By = B; = 0 are satisfied the solutions read

= /A tanh(az), gj(z) = @tanh(a:c).
The natural restrictions Ag > 0 and A; > 0 lead to

(a2 —mpVy)mp

gBF > 0, gBB < 9BF7 Vo < a?/mp

2 Vo)m
a” — MgrVvo)m (31)

2
JBF, Vo > o /mp

AOZOéQ—mFVo ZA (1_ gBB )_%(1_9BB).
MEYBF gBr \mB  MFgFB/  YBF gBF

gBF < 0, 9BB >

For the frequencies wy and w; and the constants Cy and C; we have
wo = —, wj:—, C():Cj:(). (32)

6.3. Vector Bright-Dark Soliton Solutions
When k — 1, By = —Ap and B; = 0, we have

qo(x) = V=4 gj(x) = @tanh(ax)

cosh(az)’
o2
WO =g e gsBAo,  wj=V, CG=(=0.

The parameters Ay and A; are given by (31). In this case we have the following
restrictions

2
a® —mpVp)mp
gsr >0, g > ( 5 ) gBF, Vo > o /mp
(a? — mpVy)mp
2
a® —mpVy)mp
gBr <0,  gBB < ( 5 ) gBF, Vo < a?/mp.
(a? — mpVy)mp

6.4. Vector Dark-Bright Soliton Solutions
When k& — 1 and provided that By = 0 and B; = —A; the result is

—Aj a2
Vg = Vot Aogss wi = ——
cosh(ax) wo = Vot ogBB, W) 2mp

qo(z) = VA tanh(az), ¢;(z) =
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By analogy with the previous examples the constants Ay, A;, Co and C; are given
by formulae (31) and (32), respectively. The restrictions now are

2

(a® — mpVp)mp

> 0, > , Vi < a2
9BF 9BB Z (o = mFVo)mBgBF 0 <o /mp
2
a” —mpVy)mp
gBr <0, gBB = ( 5 ) JBF, Vo > o?/mp.
(a? — mpVy)mp

6.5. Vector Dark-Dark-Bright Soliton Solutions

Let By = By = 0 and B; = —A; where j = 2,..., Ny. Therefore the solutions
read

q(z) = VAptanh(az), q(r) = /Ay tanh(az), g¢;(x) = \/—A;sech(az).

Then we obtain for frequencies the following results

a? o?

wo = Vo + geBA0 + 9BF A1, wp = —, Wj=g—-
mg

These examples are by no means exhaustive.
6.6. Nontrivial Phase, Trigonometric Limit

In this section we consider a trap potential of the form Viap = Vjcos(2ax), as
a model for an optical lattice. Our potential V' is similar and differs only with
additive constant. When k& — 0, sn(ax,0) = sin(ax)

g2 = Agpsin®(azx) + B, qu = A;sin*(ax) + B (33)
1
V = Vpsin®(az) = 5(% — Vo cos(2ax)). (34)

Using equations (11)—(13) again we obtain the following result when (see Table 3)

Ny

P R Y
9BF =1

Table 3. W = gBFmFWB/(mBWF).

1] 6<0[B3;<0|A>0|A;>0|gr20|gBS9gBF | VSO
2160<0[Bj>1|A>0]A;<0|ggr20|gg=gnr|Vs0
3{60>1|8;<0]|A<0|A;>0|gr20|g29gpr| V020
4160>1|B;>1A<0|A;<0|gpr20|gesSgnr| V=20
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N
1 ! 1
wo = 27042 + Boges + g8F »_ Bi, wj = ——a” + gprBo
mp =1 Qmp
Cg = CYQBQ(AO + BO), C]2 = Oé2Bj(Aj + BJ)
where

O¢(x) = arctan ( @ tan(aw))
0

A; + B,
©,(x) = arctan (1 / % tan(am)) .
J

This solution is the most important from the physical point of view [16].

7. Linear Stability, Preliminary Results

To analyze linear stability of our initial system of equations we seek solutions in
the form

Yo(z,t) = (qo(x) + epo(x,t)) exp (—i(;;ot +1i0¢(z) + ifi())
Yi(x,t) = (qi(x) + epj(z,t)) exp (—tht +101(x) + i/<;1>

and obtain the following linearized equations

Ay U; Uy ... Un,

$0 Vi A1 0 ... 0 $°
Tl | Ve 0 Ay 0 !
PN\, 000 L Ay, ) VBV

R R
() ()
¢Oa 7

where

and
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1 C
Ly = ~omn <8§x 0) +V + gBB4G + 9BFG; — wo
m 40
52 s 2 2
Lo, = D 0% — 7 —V —3¢gBBY)H — 9BFYI + wo
mB 40
1 (., C
J
Lj,—:_ﬁ (83390_ (4)L> +V+gBqu_wJ

C2
L; - vV — 2 ,
G+ = 2mF ( o 3) gBFqy + wj

Uo,j = —298F 43 U1, = —29BFq04;-

The analysis of the latter matrix system is a difficult problem and only numerical
simulations are possible. Recently a great progress was achieved for analysis of
linear stability of periodic solutions of type (5), (6) (see, e.g., [4,5,7, 11] and
references therein). Nevertheless the stability analysis is known only for solutions
of type (25)—(30) and solutions with nontrivial phase of type (33) and (34). Linear
analysis of soliton solutions is well developed, but it is out scope of the present

paper.
Finally we discuss three special cases:

Case I. Let By = Bj = Othen for j = 1,..., Ny and qo = /Apsn(ax, k),
¢ = /A;sn(ax, k) we have the following linearized equations

J

1
h¢0R,t = — %83&% + (Vo + gBBA0 + gBF Z Aj) Sn2(aaj, k‘)qb{) — woqb(l)

figp = 782 0 — (VO +3gsAo + gBF »_ A;j ) 2z, k)or
j
+ wodty — 2gprAg sn’(az, k) Z qb?
J
1
hojy = — T@gxqﬁ; + (Vo + gBrdo) sn’(az, k) — w;;
hely = %az ot — (Vo + gerAo) sn’(ax, k) ¢} + w;o

— 2gpry/ AoAj sn*(ax, k) -
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Case II. Let By = —Ao, Bj = —Aj then for ¢qg = /—Ap Cl’l(Oé{L‘,k‘), q
/—A;jen(ax, k) we obtain the following linearized equations

1
hog, = — Y 07,00 + (Vo + g8 A0 + gBF »_ A;j ) sn? (o, k),
j

- <QBBA0 +gr Y_Aj+ wo) o

J

1
héf)%),t = %aﬁqug{ + (39BBA0 + gBF Z A+ wo) o

J

(VO + 39BBAo + gBF Z A ) sn (a:c l{:)gbo
j

+ 2gprAg(1 — sn®(azx, k)) Z gbf‘
J

1
ot = = G004+ (Vo + g o) su? (. K)o} — (gme Ao +4,)d)
hel, = ﬁa:%W? — (Vo + gerAo) sn®(ax, k)¢5 + (98r Ao + wj) 5"

—2gBF,/A0Aj(1—sn2(ax,k))¢§, j=1,...,Ny.
Case IIL Let By = —Ao/k?, B; = —A;/k? therefore the solutions are

q = vV —Aodn(azx, k)/k, q; =+/—Ajdn(az, k)/k

and we obtain the following linearized equations

1
hot, = — %afm% + (Vo + gsAo + gBF »_ A; ) sn?(ax, k)@Y

J

1
- (gBBAD + gBF Z Aj+ k:2uJo> %

J
hop, = L2 oo + | 3gsBA0 + gBF Y Aj + KPwy o0
,t 2mp zx’0 ; J k2

J

(Vo +3gsAo + gBF »_ A;j ) sn’(ax, k) oy
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N 29prAo(1 — k?sn?(a, k))

= Z%

1
hgb]t - = %&%ﬁ% + (Vo + gBFAo) Sn2(o¢x7 k:)g%
gBFAO + kQ(,UJ I
R
! grAo + k*w;
hj, = m&%xfb? — (Vo + grAg) sn’(ax, k)¢ + %(ﬁ?
_ 208r Ao Aj(1 = K sn*(a k))dy —1,....N

2
These cases are by no means exhaustive.

8. Conclusions

In conclusion, we have considered the mean field model for boson-fermion mix-
tures in two optical lattices. Classes of quasi-periodic, periodic, elliptic solutions
have been analyzed. These solutions can be used as initial states which can gener-
ate localized matter waves (solitons) through the modulational instability mecha-
nism. This important problem is under consideration.
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