
NETRUN(1) NETRUN(1)

NAME
netrun − run a script over multiple hosts in parallel

SYNOPSIS
netrun [−hqRS]] [−c connect timeout] [−f max forks] [−i interpreter] [−sscript file]  [−escript] [−d data
file] [−l login name] [−L log dir] [−t timeout] hosts ...

DESCRIPTION
Netrun provides a convenient and efficient way to run a single command or a script on a bunch of remote
hosts. Netrun captures the output and error messages from the command or script for reporting and exami-
nation.

Netrun is powered byssh and assumes that you have a setup like the following:

• You have created anSSHpublic/private key pair usingssh−keygen .

• You have copied your public key(s) to $HOME/.ssh/authorized_keys on all of the remote
hosts on which you plan to run commands or scripts withnetrun. If you plan to access remote hosts
with different accounts, you’ll need to make sure that your public key(s) have been added to each
account’s authorized_keys file. Besure to check your local computer security policy and to get per-
mission from the affected users before doing this!

• You have started anssh−agent and loaded your private keys with ssh−add . Note that you can
avoid having to runssh−agent by creating private keys with no passphrase. Please do not do this!
At many sites, this is grounds for disciplinary action (especially if the corresponding public keys are
added to root’s authorized_keys files).

For each hostname,IP address, orCIDR style subnet given on the command−line,netrun performs the fol-
lowing steps:

1. Connectsto port 22 and captures theSSHversion string. This is done to verify that the remote sshd is
up and accessible. Hosts will be skipped if this step takes longer than 15 seconds (or the connection
timeout specified by−c) to complete.

2. Attemptsto establish anSSHconnection and run an interpreter (the default is /bin/sh).

3. Feedsthe script file (specified with−s) or command string (specified with−e) and an optional data file
(specified with−d) to the standard input of the interpreter.

4. Capturesstdout and stderr of the interpreter to log files. By default, these log files are stored in
./netrun.PID , howev er an alternate log directory may be specified via−L . If the user running
netrun does not have both write and search permissions to the log directory, netrun exits with an error
message.

5. Displaysa report that summarizes the status of the attempted actions.A copy of this summary is also
saved in logdir/netrun.summary.

Netrun runs these steps on at most 25 hosts (by default) at a time. The level of parallelism can be adjusted
using−f. The status report that is displayed once all of the parallel jobs have completed includes the fol-
lowing information:

Name/Address
The hostname orIP address used to connect/login to the remote host

Exit
The exit status of the ssh process (if anSSHconnection was made).Usually, this is the exit status of
the interpreter that was run on the remote system; however, the ssh program uses 255 to indicate that
an error occurred while trying to establish the connection.A −1 exit status indicates that the remote
script failed to complete before the timeout specified with−t.

Runtime
The time in seconds required to ssh into the remote host and run the specified script or commands.

1

NETRUN(1) NETRUN(1)

Lines
The number of lines of output produced by the remote script.This does not include lines written to
stderr.

First Line of Output
The first 30 or so bytes of the first line of output from the remote script.

If no script is specified (with−s or −e) on the command−line,netrun skips steps 2 − 4 above and just dis-
plays the status of the connection to theSSHport. Steps2 − 4 are also skipped ifnetrun is unable to con-
nect to theSSHport and retrieve theSSHversion string from the remote host.

While netrun does not actually use theSSHversion string, it retrieves it to verify that anSSHconnection to
the remote host is possible and is not being blocked by hosts.allow, etc. This prevents background pro-
cesses from being tied up on ssh connections that can never succeed.

OPTIONS

−h Display a brief summary of the command-line options.

−q In Quick mode,netrun simply dumps script/command results from remote hosts to standard out.
Each line is prefixed with the hostname orIP address of the host from which the output came.Hosts
that fail to respond or to produce any output are excluded from the output. Also, log files are removed
automatically.

This mode is handy for running a command or script on a bunch of hosts and grep’ing the output.

−R Don’t randomize the hosts list. By default, all hosts andCIDR addresses are expanded and random-
ized. Thisev ens out performance by creating a mix of slow and fast remote hosts.Specify−R if you
neednetrun to preserve the order of the hosts specified on the command−line.

−S Slow start. Bydefault,netrun starts new processes as fast as it can, but when running large numbers
of background processes (see−f), this can quickly overwhelm even a powerful workstation and may
also trigger DoS settings in corporate firewalls. This option adds a 1/4 second sleep between each
process start to pace things out a bit.

−c connect timeout
In order avoid forking off lots ofssh(1) processes that may never come back,netrun tries to connect
to port 22 on each host in the work list. If a host takes longer than a default of 15 seconds to respond,
netrun skips it. This almost always works well, but if theSSHserver is linked with theTCP Wrapper
library and the nameservers are not responding, a timeout of at least two minutes will be necessary.

−f max forks
Specify the maximum number of background processes. The default is 25.

−i interpreter
Run the specified interpreter on the remote hosts.The default is/bin/sh . The interpreter is only
run if a script file or command string is specified via−sor −e respectively.

−sscript file
Provide a local file containing a script to run on the remote hosts.This script is sent to the specified
interpreter’s standard input. The default interpreter is/bin/sh .

−escript
Like −s, but the script source code is provided on the command−line, usually inside of single−quotes.
This is handy for small one-off runs. If both −e and−s are specified, the command string from−e is
sent first, followed by the contents of the file specified with−s.

−d data file
Specify a local file to be appended to the end of the script.When the interpreter isperl , this is actu-
ally a convenient way to pass parameters or data to the remote script. Just make the first line of the
data file contains only_ _DATA_ _ , and have the script read from theDATAfile handle. It’s actually
necessary to do things this way because the script source code is sent as standard input to the remote

2

NETRUN(1) NETRUN(1)

interpreter; therefore there is no way to pass arguments on the command−line.If − is passed as the
argument to−d, netrun reads the data from standard input instead of a file.

−l login name
Specifies the user to log in as on the remote hosts. By default, this is the same as the user running
netrun.

−L log dir
Create log files inlog dir instead of./netrun.PID . Netrun creates two log files for each remote
host: hostname.err andhostname.out

The hostname.err file contains a few special fields written bynetrun (used to create the status sum-
mary) as well as any messages sent to standard error by the script while it was running on the remote
host.

Thehostname.out file simply contains any text that the remote script wrote to standard output.

−t timeout
Kill the remote script after timeout seconds. By default, there is no time limit. The actualSSHprocess
is sent aSIGHUP, which causes it to shutdown the remote shell and kill the interpreter. The exit status
reported bynetrun in the summary report will be−1 in this case.

EXAMPLES
The first few examples illustrate how netrun works in terms of equivalent shell operations. Once you
understand that, you’ll know the limitations ofnetrun and how to best take advantage of its capabilities.

The following two commands do basically the same thing, runuptime on a remote host:

$ echo "uptime"  ssh fred.mydomain.com /bin/sh
$ netrun -qe uptime fred.mydomain.com

Netrun invokes an interpreter (default is /bin/sh) on each remote host and then sends commands,
scripts, and/or data to the remote interpreter’s standard input. It works this way because most of the time
this eliminates the need to maintain a copy of your script on each remote host.For example:

$ c at my_script.pl  ssh fred.mydomain.com perl
$ netrun -qi perl -s my_script.pl fred.mydomain.com

The chief limitation of this approach is that you can’t send command-line arguments to your script. In the
case ofperl scripts; however, you can sendDATA. For example:

$ c at my_script.pl my_data.txt  ssh fred.mydomain.com perl
$ netrun -qi perl -d my_data.txt -s my_script.pl fred.mydomain.com

In this case,my_data.txt probably contains something like this:

__DATA__
@ARGV = split " ", "-a -f /etc/init.d -v";

In my_script.pl , there might be some (slightly dangerous) code like this:

while (<DATA>) { eval $_ }

Here is another somewhat silly example which shows thatnetrun runs the interpreter specified by−i on
each remote host, sending to that interpreter’s standard input the value of−e followed by the contents of the
local file specified by−s followed by the contents of the local file specified by−d:

$ netrun -i perl -e ’print "Hello, ’‘uname -n‘’";’ \
-s my_script.pl \
-d my_data.txt fred.mydomain.com

The above example prepends aperl print statement to themy_script.pl script and tacks the contents of
my_data.txt to the end of it. It sends the resulting concatenation to the standard input of theperl process on
each remote host, where hopefully it will do something useful.

With that introduction, here are some hopefully more useful examples:

3

NETRUN(1) NETRUN(1)

Tell inetd to re-read its configuration file on a bunch of Solaris hosts:

$ t est -n "$SSHS_AGENT_PID" && kill -0 $SSHS_AGENT_PID \
 eval ‘ssh-agent‘

$ s sh-add -l  grep ’no identities’ && ssh-add
$ netrun -l root -e ’pkill -1 inetd’ ‘cat hosts.lst‘
$ s sh-add -d

Create a list of all systems on the localLAN that are running Oracle:

$ netrun -e ’ps -ef’ -L Oracle 192.168.1.0/24
$ grep -li oracle Oracle/*.out  sed ’s/\.out$//’
$ rm - rf Oracle

Same thing but shorter:

$ netrun -q -e ’ps -ef’ 192.168.1.0/24  grep -i oracle  cut -d: -f1

Clone the local/etc/sudoers file out to a bunch of hosts (assumes that you can sudo runtee and
cksum and that you have theNOPASSWDflag set):

$ s udo cat /etc/sudoers  netrun -q -d - -i ’
sudo tee /etc/sudoers > /dev/null
sudo cksum /etc/sudoers’ \

‘cat hosts.lst‘

SEE ALSO
ssh, sh, perl, grep, wfrun

AUTHOR
David C. Snyder <David.Snyder@turner.com>

4

