
Library Requirements and Design

Abstract
This is a small document describing the requirements which is needed for this project. It also
describes the needed functionality, programs and structures.

• Library Requirements and Design
• Abstract
• Introduction
• Requirements

◦ Environment
▪ Simplified view from user
▪ General specifications of an object
▪ Document objects
▪ URL Website information
▪ Other information

◦ Summary of fields
▪ Generic meta data fields
▪ Document meta data fields derived from files and directories
▪ Web meta information to store.

◦ Implementation
▪ The programming language
▪ The storage method
▪ Storage

◦ Dependencies
▪ Perl6

◦ State of affairs
◦ Priorities

• Design

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Introduction
Purpose of this project is to store meta information of objects. An object can be any type of
document, url, project, contact etc. This information is about the object in question and is meant
to give some extra meaning to it. For example when labels or keywords are used in the meta
data, it is possible to group objects together when a value of the key or label is the same over all
the objects of the same group. This information must be independent of the current location (if
any) of an object.

A short list of possible objects:

• Files are objects with a content. E.g. text, image, xml, scripts, archives and code. For
most of these type objects there are viewers and editors available. Besides its
content like mp3, svg etc, a language can be specified e.g. C, Perl or Markdown.
Also its purpose is important. Most of the time these can be resource files or
configuration files. Examples of these are; rdf, html, vCard, calendar etc.
The files can be found locally or on another server. While the purpose of the project is
not to manage files, it must be possible to download files for offline use or archiving.
The external document might be removed from servers as time passes by, so that is
another reason to download. The content can be retrieved using various protocols
among which http, ssh, ftp, smtp and ldap.

• Directories are containers for files which are grouped together. Meta data could
describe the purpose of the container. It might be the root of a project or a directory
for libraries.

• Servers are objects of which the meta data can describe its services.

Requirements

Environment
First some specifications to define the environment and products needed to
run the programs.

• LIBRARY-CONFIG. Environment variable holding the root directory location on disk

where the library program data is stored. Here the program can store pid info of
background programs and log files. Also the configuration files are stored here. If the
database server is local, its data should come here too. Perhaps a slave server in a
replicaset.

• Configuration file. This file holds information on how to connect to the mongodb
database server and what database and collections to use amongst others.

• Database. The data needed to save for each object can be diverse and varying
depending on its type. Sometimes, there are only a few fields, on other times a lot of
extra fields are added. They might also have different field names. A choice is made,
based on this phenomenon to use a document based NoSQL database MongoDB.
While developing, a standalone server is setup but can later become a replica server
on several machines.

• An important aspect of data are possible relations between objects. Here things like
Rdf and Tupple comes into play. To describe those in a database another NoSQL
typed database should be used also. An example of this is Neo4j which is a network
database.

Simplified view from user
Two diagrams to show how the user interacts with the system. The important points are

• the user changes the configuration by editor or using other components of the
system.

• the system starts the gathering processes.
• the gathering processes use the configuration to know what to search for. Then the

data is examined to set default meta information and sends it to the database. These
processes are also checking for possible changes in the file system like renamed or
moved files.

• the user is able to modify the meta data by adding keys or modify those keys.

User view to the system

user

config
file

gather
services

meta
default

meta
modify

meta
info

MongoDB

db
server

System view to the system

system

config
file

local
file

external
file

lfolder
local
directory

efolder
external
directory

gather
local

gather
external

meta
default MongoDB

external
server

db
server

General specifications of an object
Objects found anywhere are only described by system. Its content will never be changed.
External objects may be copied to the local system. Every object should always have a type.
Some can be automatically assigned e.g. for files and directories. Others need help from the user
of the system. E.g. a project description is not an object found on disk but is mostly a group of
files together with other objects such as a server, websites or devices.

• There are three types of information to be stored
◦ Automatically found data such as ownership, path to document and

volume name in case of documents
◦ Sha1 generated numbers based on the location and content of the

object for searching and comparing. This can help to find e.g. a renamed
file and attach the meta information already in the database. Only the
general info need to be modified. Actions which could take place are

▪ Move a file from one place to another on the file system.
▪ Rename a file
▪ Rename and move in one operation
▪ Modify its contents
▪ Modify ownership or access rights
▪ Remove the file
▪ Modify URI

◦ Explicitly provided information like keywords, name and address of
owner, project name etcetera.

• Store, update or delete meta information in the database. This is
for automatically retrieved or explicitly provided information.

• Search meta information using exact match or regular expressions on
any part of the meta information.

• Displaying output from searches by commandline program or by webpage
in a browser.

• Actions can be started using mimetypes also stored as metadata.
• Mimetypes are an important type of description method to show

what can be done with the document. The list can also be used
to start native applications to process a particular document.
According to their mimetype of the document it mostly has also
a proper suffix such as .txt or .html . See
also [MIMETYPES]. A few examples are:

◦ text/plain: This is simple text format mostly created with simple text
editors.

◦ audio/mpeg3: A type of audio file with document suffix of mp3 .
• General meta information to store. Besides the list below, users must be capable to

add new metadata attributes.

Document objects
• This system will not manage documents. It will manage information

about the documents. Location of the document is stored as part
of this information. It is however nice when it can detect
duplicates when another document is entered by the user. This
duplication can be caused by backups or archives.

• A document can be found on the local disk, externally connected
disk, other computers and network devices such as network attached
storage (NAS), media stores or on web servers.

• As a side effect of locating documents on e.g. external servers,
these documents can be stored on disk for offline use.

URL Website information
A file on a disk is pointed to by a name and path and a alse a drive when
working on windows. There are other ways to get to a document like
using a unified resource locator (URL).

Protocols are used to get to the document before processing it.
E.g. the http protocol is used to get a web page from a
site on the network and file is used often to get a
document from the local file system. See also [MIMETYPES].
The following list is a series of protocols which might be supported.

• file: Protocol to get documents from a filesystem.
• http and https: Protocols to get web page documents from a web server.
• ftp: File transfer protocol.

Also here, as a side effect of locating documents on external servers,
these documents can be stored on disk for offline use.

Other information
Other information besides meta information can be imported such as
agendas and contact information.

• Contact information can be imported from vcard files. This data can
also be linked to other meta items.

• Relations between objects are stored in the database using directions
of Topic Maps ($abbrev[TM]). Import and export are done via

• XML as XTM or encapsulated in RDF.
• Web Ontology Language OWL. Relations defined above with TM can be tested

using a reasoner reading this ontology information. The rules for this language can

be imported and exported as OWL/XML documents or as RDF.

Summary of fields

Generic meta data fields
• name: Name of the object
• description: Description of the object
• author: A set of data like name and surname, address and email etc.
• datetime: Date and time of retrieval, date and time of modification or current date and

time.
• object-type: Type of object such as document, directory or url.
• keys: A list of keywords under which the object can be catagorized.

Document meta data fields derived from files and
directories

• full-name: Complete and absolute path to the document
• file-name: Name of document object
• extension: Extention of the document. This is empty for directory documents.
• accessed: Date and time of last access.
• modified: Date and time of last modification.
• changed: Date and time of last change.
• size: Size of document.
• location: Place where document is downloaded

Web meta information to store.
• uri: Url, uri or iri
• protocol: Name of used protocol
• server: Name of server
• path: Path of document
• arguments: key-value pairs found on the url
• location: Place where document is downloaded

Collections and sub documents. Types are perl6 types

FileMeta
metaType[ObjectType, ¬ ∅]
name[Str, ¬ ∅]
contentType[Str]
path[Str, ¬ ∅]
exists[Bool, ¬ ∅]
contentSha1[Str, ¬ ∅]

WebMeta
metaType[ObjectType, ¬ ∅]
uri[Str, ¬ ∅]
protocol[Str, ¬ ∅]
server[Str, ¬ ∅]
path[Str, ¬ ∅]
arguments[Str, ¬ ∅]
location[Str, ¬ ∅]

{0,1}

1

UserMeta
metaType[ObjectType, ¬ ∅]

anyitem

0..N

1

ProgramMeta
metaType[ObjectType, ¬ ∅]

anyitem

0..N

1

DirMeta
metaType[ObjectType, ¬ ∅]
name[Str, ¬ ∅]
path[Str, ¬ ∅]
exists[Bool, ¬ ∅]

{0,1}

1

{0,1}

1

{0,1}
1

Implementation
This software package should come with several modules and programs to
suit several ways of accessing the data. There is also an issue of
making the software platform independent so everyone can be happy with
it.

The programming language
The first item to think about is the choice of programming
language. A scripting language would be a proper choice because
these languages have a higher level of coding and will access
the underlaying system in a platform independent way. The
language I want to choose is perl6. Yes, the still unfinished
perl version. I am very confident that the language gets its
first release this year(2015) and wanted to learn about the
language by doing this project.

The second approach is to use a browser to do the work. There we can
use html5, css3 and javascript and libraries. There is also a server side scripting which can be
any of perl6, perl 5 or javascript by means of nodejs. There are also a great many javascript
modules which can be used.

The storage method
Because the information items on one object can be different than on
the other a hiërargycal database would be the choice. MongoDB is a
dayabase for which there is support from javascript as well as perl6.

Storage
The name of the database and the names of the collections

Dependencies
The program will be depending on several modules and programs. That
is only logical because we do not want to reinvent the wheel(s) again
do we? We only try not to select those software which will bind it to
some platform as explained above.

Perl6
The followup version of perl 5.*. The program

is not yet completely finished but will be soon (2015-01). This
program is a interpreter/compiler which can compile the script into some
intermediary

State of affairs
A list of programs and web pages created and made available for use. While
the project is still in a pristene state there presumable are several bugs
left behind. Also things in the database and programs might change when
other ideas arrive. Below there is a list of what has been made. For
documentation.

The mongo database is Library with several collections.

• object_metadata: Collection to store meta information of any object found.
• mimetypes: Collection to store mimetype information. This can be connected to the

object-type.

install-mimetypes.pl6 is program to install mimetype information from
http://www.freeformatter.com/mime-types-list.html

store-file-metadata.pl6 is a program to insert or modify metadata of
files and directories in the database.

http://www.freeformatter.com/mime-types-list.html

Priorities

Design
Overview

MongoDBlibrary

MongoDB::Client

MongoDB::Database

MongoDB::Collection

«package»
Library

Library::Configuration

«role»
Library::Database

Library::Metadata::DatabaseLibrary::Metadata::Object

Library::Metadata::Object::File Library::Metadata::Object::Directory

Client
Application

	Library Requirements and Design
	Abstract
	Introduction
	Requirements
	Environment
	Simplified view from user
	General specifications of an object
	Document objects
	URL Website information
	Other information

	Summary of fields
	Generic meta data fields
	Document meta data fields derived from files and directories
	Web meta information to store.

	Implementation
	The programming language
	The storage method
	Storage

	Dependencies
	Perl6

	State of affairs
	Priorities

	Design

