
class MongoDB::Client

Class to define connections to servers

Table of Contents
1 Synopsis
2 Description
3 Methods
3.1 new
3.1.1 uri
3.2 nbr-servers
3.3 server-status
3.4 client-topology
3.5 select-server
3.6 database
3.7 collection
3.8 cleanup

package MongoDB { class Client { ... } }

Synopsis
my MongoDB::Client $client .= new(:uri<mongodb://>);
if $client.nbr-servers {
 my MongoDB::Database $d1 = $client.database('my_db1');
 my MongoDB::Collection $c1 = $d1.collection('my_cll1');
 my MongoDB::Collection $c2 = $client.collection('my_db2.my_cll2');
}

Description
This class is your most often used class. It maintains the connection to the servers specified in the given uri. In the
background it herds a set of MongoDB::Server objects.

Methods
new

submethod BUILD (Str:D :$uri)

Create a MongoDB::Client object. The servers are reachable in both ipv4 and ipv6 domains. The ipv4 domain is tried first
and after a failure ipv6 is tried. To specify a specific address, the following formats is possible; mongodb://127.0.0.1:27017
for ipv4 or mongodb://[::1]:27017 for ipv6.

Note. It is important to keep the following in mind to prevent memory leakage. The object must be cleaned up by hand
before the variable is reused. This is because the Client object creates some background processes to keep an eye on the
server and to update server object states and topology.

my MongoDB::Client $c .= new(...);
... work with object
$c.cleanup;

Some help is given by the object creation. When it notices that the object (self) is defined along with some internal variables,
it will destroy that object first before continuing. This also means that you must not use another MongoDB::Client object to
create a new one!

my MongoDB::Client $c1, $c2;

first time use, no leakage
$c1 .= new(...);

In this proces $c1 will be destroyed!!
$c2 = $c1.new(...);

This is ok however because we want to overwrite the object anyway
$c2 .= new(...);

And this will result in memory leakage because $c2 was already defined.
With an extra note that in the background servers mentioned in $c2 will
continue to be monitored resulting in loss of performance for the rest
of the program!
$c2 = MongoDB::Client.new(...);

uri

Uri defines the servers and control options. The string is like a normal uri with mongodb as a protocol name. The difference
however lies in the fact that more that one server can be defined. The uri definition states that at least a servername must be
stated in the uri. Here in this package the absence of any name defaults to localhost. See also the MongoDB page to look
for options and definition.

Uri examples
Example uri Explanation

mongodb:// most simple specification, localhost using port 27017
mongodb://:65000 localhost on port 65000
mongodb://:56,:876 two servers localhost on port 56 and 876
mongodb://example.com server example.com on port 27017
mongodb://pete:mypasswd@ server localhost:27017 on which pete must login using mypasswd
mongodb://pete:mypasswd@/mydb same as above but login on database mydb
mongodb:///?replicaSet=myreplset localhost:27017 must belong to a replica set named myreplset
mongodb://u1:pw1@nsa.us:666,my.datacenter.gov/nsa/?
replicaSet=foryoureyesonly

User u1 with password pw1 logging in on database nsa on server
nsa.us:666 and my.datacenter.gov:27017 which must both be
member of a replica set named foryoureyesonly.

Note that the servers named in the uri must have something in common such as a replica set. Servers are refused when
there is some problem between them e.g. both are master servers. In such situations another MongoDB::Client object
should be created for the other server.

The options which can be used in the uri are in the following tables. See also this information for more details.

https://docs.mongodb.org/v3.0/reference/connection-string/
https://docs.mongodb.com/manual/reference/connection-string/#connection-string-options

Section Impl Use
Replica set options
replicaSet done Specifies the name of the replica set, if the mongod is a member of a replica set.
Connection options
ssl 0 or 1. 1 Initiate the connection with TLS/SSL. The default value is false.
connectTimeoutMS The time in milliseconds to attempt a connection before timing out.
socketTimeoutMS The time in milliseconds to attempt a send or receive on a socket before the attempt times

out.
Connect pool options
maxPoolSize The maximum number of connections in the connection pool. The default value is 100.
minPoolSize The minimum number of connections in the connection pool. The default value is 0.
maxIdleTimeMS The maximum number of milliseconds that a connection can remain idle in the pool before

being removed and closed.
waitQueueMultiple A number that the driver multiples the maxPoolSize value to, to provide the maximum

number of threads allowed to wait for a connection to become available from the pool.
waitQueueTimeoutMS The maximum time in milliseconds that a thread can wait for a connection to become

available. For default values, see the MongoDB Drivers and Client Libraries documentation.
Write concern options
w Corresponds to the write concern w Option. The w option requests acknowledgement that

the write operation has propagated to a specified number of mongod instances or to
mongod instances with specified tags. You can specify a number, the string majority, or a
tag set.

wtimeoutMS Corresponds to the write concern wtimeout. wtimeoutMS specifies a time limit, in
milliseconds, for the write concern. When wtimeoutMS is 0, write operations will never time
out.

journal Corresponds to the write concern j Option option. The journal option requests
acknowledgement from MongoDB that the write operation has been written to the journal

Read concern options
readConcernLevel The level of isolation. Accepts either "local" or "majority".
Read preference options
readPreference Specifies the replica set read preference for this connection. The read preference values

are the following: primary, primaryPreferred, secondary, secondaryPreferred, nearest
readPreferenceTags Specifies a tag set as a comma-separated list of colon-separated key-value pairs
Authentication options
authSource part Specify the database name associated with the user credentials, if the users collection do

not exist in the database where the client is connecting. authSource defaults to the
database specified in the connection string.

authMechanism Specify the authentication mechanism that MongoDB will use to authenticate the
connection. Possible values include: SCRAM-SHA-1, MONGODB-CR, MONGODB-X509,
GSSAPI (Kerberos), PLAIN (LDAP SASL)

gssapiServiceName Set the Kerberos service name when connecting to Kerberized MongoDB instances. This
value must match the service name set on MongoDB instances.

Server selection and
discovery options
localThresholdMS done The size (in milliseconds) of the latency window for selecting among multiple suitable

MongoDB instances. Default: 15 milliseconds. All drivers use localThresholdMS. Use the
localThreshold alias when specifying the latency window size to mongos.

serverSelectionTimeoutMS done Specifies how long (in milliseconds) to block for server selection before throwing an
exception. Default: 30,000 milliseconds.

serverSelectionTryOnce x This option is not supported in this driver
heartbeatFrequencyMS done heartbeatFrequencyMS controls when the driver checks the state of the MongoDB

deployment. Specify the interval (in milliseconds) between checks, counted from the end of
the previous check until the beginning of the next one. Default is 10_000. mongos does not
support changing the frequency of the heartbeat checks.

nbr-servers

method nbr-servers (--> Int)

Return number of servers found processing the uri in new(). When called directly after new() it may not have the proper
count yet caused by delays in processing especially when processing replicasets.

server-status

method server-status (Str:D $server-name --> ServerStatus)

Return the status of some server. The defined values are shown in the table and when it applies.

Server state When
SS-Mongos Field 'msg' in returned resuld of ismaster request is 'isdbgrid'.
SS-RSGhost Field 'isreplicaset' is set. Server is in a initialization state.
SS-RSPrimary Replicaset primary server. Field 'setName' is the replicaset name and 'ismaster' is True.
SS-RSSecondary Replicaset secondary server. Field 'setName' is the replicaset name and 'secondary' is True.
SS-RSArbiter Replicaset arbiter. Field 'setName' is the replicaset name and 'arbiterOnly' is True.
SS-RSOther An other type of replicaserver is found. Possibly in transition between states.
SS-Standalone Any other server being master or slave.
SS-Unknown Servers which are down or with errors.
SS-PossiblePrimary not implemeted

client-topology

method client-topology (--> TopologyType) {

Return the topology of the set of servers represents. A table of types is shown next;

Topology type When
TT-Single The first server with no faulty responses will set the topology to single. Any new SS-Standalone

server will flip the topology to TT-Unknown
TT-
ReplicaSetNoPrimary

When there are no primary servers found (yet) in a group of replicaservers, the topology is one of
replicaset without a primary. When only one server is provided in the uri, the topology would first be
TT-Single. Then the Client will gather more data from the server to find the primary and or other
secondary servers. The topology might then change into this topology or the TT-
ReplicaSetWithPrimary described below.

TT-
ReplicaSetWithPrimary

When in a group of replica servers a primary is found, this topology is selected.

TT-Sharded When mongos servers are provided in the uri, this topology applies. When there is only one server,
the type would become TT-Single.

TT-Unknown Any set of servers which are SS-Unknown will set the topology to TT-Unknown. Depending on the
problems of these servers their states can change, and with that, the topology. When there is a set of
servers which are not mixable, the topology becomes also TT-Unknown. Examples are more than
one standalone server, mongos and replica servers, replicaservers from different replica sets etc.

select-server

multi method select-server (Str:D :$servername! --> MongoDB::Server)

multi method select-server (--> MongoDB::Server)

The first method tries to get a specific server while the second is running through a selection mechanism using the server
state and client topology.

Select a server for operations. It returns a Server object. In single server setups it is always the server you want to have.

database

method database (Str:D $name --> MongoDB::Database)

Create a Database object. In mongodb a database and its collections are only created when data is written in a collection.

collection

method collection (Str:D $full-collection-name --> MongoDB::Collection)

A shortcut to define a database and collection at once. The names for the database and collection are given in the string full-
collection-name. This is a string of two names separated by a dot '.'.

cleanup

method cleanup ()

Stop any background work on the Server object as well as the Monitor object. Cleanup structures so the object can be
cleaned further by the GC later.

Generated using Pod::Render, Pod::To::HTML, ©Google prettify

	class MongoDB::Client
	Table of Contents

	Synopsis
	Description
	Methods
	new
	uri

	nbr-servers
	server-status
	client-topology
	select-server
	database
	collection
	cleanup

