
TM

GTK::V3::Glib::GObject

GObject — The base object type

Table of Contents

1 Synopsis
1.1 [g_object_] set_property
1.2 [g_object_] get_property
1.3 g_object_notify
1.4 [g_object_] freeze_notify
1.5 [g_object_] thaw_notify
1.6 new
1.6.1 multi submethod BUILD (:$widget!)
1.6.2 multi submethod BUILD (Str :$build-id!)
1.7 debug
1.8 register-signal
1.9 start-thread
2 Signals
2.1 Not yet supported signals
2.1.1 notify

Synopsis
Top level class of almost all classes in the GTK, GDK and Glib libraries.

This object is almost never used directly. Most of the classes inherit from this
class. The below example can be made much simpler by setting the label directly
in the init of GtKLabel. The purpose of this example, however, is that there are
other properties which can only be set this way. Also not all types are covered yet
by GValue and GType.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

use GTK::V3::Glib::GObject;
use GTK::V3::Glib::GValue;
use GTK::V3::Glib::GType;
use GTK::V3::Gtk::GtkLabel;

my GTK::V3::Glib::GType $gt .= new;
my GTK::V3::Glib::GValue $gv .= new(:init(G_TYPE_STRING));

my GTK::V3::Gtk::GtkLabel $label1 .= new(:label(''));
$gv.g-value-set-string('label string');
$label1.g-object-set-property('label', $gv);

[g_object_] set_property

method g_object_set_property (
Str $property_name, GTK::V3::Glib::GValue $value

)

Sets a property on an object.

• $property_name; the name of the property to set.

• $value; the value.

[g_object_] get_property

method g_object_get_property (
Str $property_name, GTK::V3::Glib::GValue $value is rw

)

Gets a property of an object. value must have been initialized to the expected type
of the property (or a type to which the expected type can be transformed) using
g_value_init().

In general, a copy is made of the property contents and the caller is responsible
for freeing the memory by calling g_value_unset().

• $property_name; the name of the property to get.

• $value; return location for the property value.

g_object_notify

method g_object_notify (Str $property_name)

Emits a notify signal for the property property_name on object .

When possible, e.g. when signaling a property change from within the class that
registered the property, you should use g_object_notify_by_pspec()(not
supported yet) instead.

Note that emission of the notify signal may be blocked with
g_object_freeze_notify(). In this case, the signal emissions are queued and
will be emitted (in reverse order) when g_object_thaw_notify() is called.

• $property_name; the name of a property installed on the class of object.

[g_object_] freeze_notify

method g_object_freeze_notify ()

Increases the freeze count on object . If the freeze count is non-zero, the emission
of notify signals on object is stopped. The signals are queued until the freeze
count is decreased to zero. Duplicate notifications are squashed so that at most
one notify signal is emitted for each property modified while the object is frozen.

This is necessary for accessors that modify multiple properties to prevent
premature notification while the object is still being modified.

[g_object_] thaw_notify

method g_object_thaw_notify ()

Reverts the effect of a previous call to g_object_freeze_notify(). The freeze
count is decreased on object and when it reaches zero, queued notify signals are
emitted.

Duplicate notifications for each property are squashed so that at most one notify
signal is emitted for each property, in the reverse order in which they have been
queued.

It is an error to call this function when the freeze count is zero.

new

multi submethod BUILD (:$widget!)

Please note that this class is mostly not instantiated directly but is used indirectly
when a child class is instantiated.

Create a Perl6 widget object using a native widget from elsewhere. $widget can
be a N-GOBject or a Perl6 widget like GTK::V3::Gtk::GtkButton.

some set of radio buttons grouped together
my GTK::V3::Gtk::GtkRadioButton $rb1 .= new(:label('Download everything'));
my GTK::V3::Gtk::GtkRadioButton $rb2 .= new(
:group-from($rb1), :label('Download core only')

);

get all radio buttons of group of button $rb2
my GTK::V3::Glib::GSList $rb-list .= new(:gslist($rb2.get-group));
loop (Int $i = 0; $i < $rb-list.g_slist_length; $i++) {
get button from the list
my GTK::V3::Gtk::GtkRadioButton $rb .= new(

:widget($rb-list.nth-data-gobject($i))
);

if $rb.get-active == 1 {
execute task for this radio button

last;
}

}

Another example is a difficult way to get a button.

my GTK::V3::Gtk::GtkButton $start-button .= new(
:widget(GTK::V3::Gtk::GtkButton.gtk_button_new_with_label('Start'))

);

multi submethod BUILD (Str :$build-id!)

Create a Perl6 widg #`{{ if $setup-event-handler { $handler = -> N-GObject $w,
GdkEvent $event, OpaquePointer $d { $handler-object."$handler-name"(
:widget(self), :$event, |%user-options); }

$!g-signal._g_signal_connect_object_event(
$signal-name, $handler, OpaquePointer, $connect-flags

);

}

elsif $setup-nativewidget-handler {
$handler = -> N-GObject $w, OpaquePointer $d1, OpaquePointer $d2 {

$handler-object."$handler-name"(
:widget(self), :nativewidget($d1), |%user-options

);
}

$!g-signal._g_signal_connect_object_nativewidget(
$signal-name, $handler, OpaquePointer, $connect-flags

);
}

else {
$handler = -> N-GObject $w, OpaquePointer $d {

$handler-object."$handler-name"(:widget(self), |%user-options);
}

$!g-signal._g_signal_connect_object_signal(
$signal-name, $handler, OpaquePointer, $connect-flags

);
}

}} et object using a GtkBuilder. The GtkBuilder class will handover its object
address to the GObject and can then be used to search for id's defined in the GUI
glade design.

my GTK::V3::Gtk::GtkBuilder $builder .= new(:filename<my-gui.glade>);
my GTK::V3::Gtk::GtkButton $button .= new(:build-id<my-gui-button>);

debug

method debug (Bool :$on)

There are many situations when exceptions are retrown within code of a callback
method, Perl6 is not able to display the error properly (yet). In those cases you
need another way to display errors and show extra messages leading up to it.

register-signal
Register a handler to process a signal or an event. There are several types of
callbacks which can be handled by this regstration. They can be controlled by
using a named argument with a special name.

method register-signal (
$handler-object, Str:D $handler-name, Str:D $signal-name,
Int :$connect-flags = 0, *%user-options
--> Bool

)

• $handler-object is the object wherein the handler is defined.

• $handler-name is name of the method. Commonly used signatures for those
handlers are

handler (object: :$widget, :$user-option1, ..., :$user-optionN)
handler (object: :$widget, :$event, :$user-option1, ..., :$user-optionN)
handler (object: :$widget, :$nativewidget, :$user-option1, ..., :$user-optionN)

Other forms are explained in the widget documentations when signals are
provided.

• $signal-name is the name of the event to be handled. Each gtk widget has
its own series of signals, please look for it in the documentation of gtk.

• $connect-flags can be one of G_CONNECT_AFTER or G_CONNECT_SWAPPED. See
documentation here.

• %user-options. Any other user data in whatever type. These arguments are
provided to the user handler when an event for the handler is fired. There
will always be one named argument :$widget which holds the class object
on which the signal was registered. The name 'widget' is therefore
reserved. An other reserved named argument is of course :$event.

create a class holding a handler method to process a click event
of a button.
class X {
method click-handler (:widget($button), Array :$user-data) {

say $user-data.join(' ');
}

}

create a button and some data to send with the signal
my GTK::V3::Gtk::GtkButton $button .= new(:label('xyz'));
my Array $data = [<Hello World>];

register button signal
my X $x .= new(:empty);
$button.register-signal($x, 'click-handler', 'clicked', :user-data($data));

https://developer.gnome.org/gobject/stable/gobject-Signals.html#GConnectFlags

start-thread
Start a thread in such a way that the function can modify the user interface in a
save way and that these updates are automatically made visible without explicitly
process events queued and waiting in the main loop.

method start-thread (
$handler-object, Str:D $handler-name, Int $priority = G_PRIORITY_DEFAULT,
Bool :$new-context = False, *%user-options
--> Promise

)

• $handler-object is the object wherein the handler is defined.

• $handler-name is name of the method.

• $priority; The priority to which the handler is started. The default is
G_PRIORITY_DEFAULT. These are constants defined in
GTK::V3::Glib::GMain.

• $new-context; Whether to run the handler in a new context or to run it in
the context of the main loop. Default is to run in the main loop.

• *%user-options; Any name not used above is provided to the handler

Returns a Promise object. If the call fails, the object is undefined.

The handlers signature is at least :$widget of the object on which the call was
made. Furthermore all users named arguments to the call defined in *%user-
options. The handler may return any value which becomes the result of the
Promise returned from start-thread.

Signals
Registering example

class MyHandlers {
method my-click-handler (:$widget, :$my-data) { ... }

}

elsewhere
my MyHandlers $mh .= new;
$button.register-signal($mh, 'click-handler', 'clicked', :$my-data);

See also method register-signal in GTK::V3::Glib::GObject.

Not yet supported signals

notify

The notify signal is emitted on an object when one of its properties has its value
set through g_object_set_property(), g_object_set(), et al.

Note that getting this signal doesn’t itself guarantee that the value of the
property has actually changed. When it is emitted is determined by the derived
GObject class. If the implementor did not create the property with
G_PARAM_EXPLICIT_NOTIFY, then any call to g_object_set_property() results in
notify being emitted, even if the new value is the same as the old. If they did
pass G_PARAM_EXPLICIT_NOTIFY, then this signal is emitted only when they
explicitly call g_object_notify() or g_object_notify_by_pspec(), and common
practice is to do that only when the value has actually changed.

This signal is typically used to obtain change notification for a single property, by
specifying the property name as a detail in the g_signal_connect() call, like this:

Signal notify is not yet supported.

Generated using Pod::Render, Pod::To::HTML, Camelia™ (butterfly) is © 2009 by Larry Wall

	Table of Contents
	Synopsis
	[g_object_] set_property
	[g_object_] get_property
	g_object_notify
	[g_object_] freeze_notify
	[g_object_] thaw_notify
	new
	multi submethod BUILD (:$widget!)
	multi submethod BUILD (Str :$build-id!)

	debug
	register-signal
	start-thread

	Signals
	Not yet supported signals
	notify

