
TM

Gnome::Gtk3::Box

A container box

Table of Contents

1 Description
1.1 Css Nodes
1.2 See Also
2 Synopsis
2.1 Declaration
2.2 Example
3 Methods
3.1 new
3.2 gtk_box_new
3.3 [gtk_box_] pack_start
3.4 [gtk_box_] pack_end
3.5 [gtk_box_] set_homogeneous
3.6 [gtk_box_] get_homogeneous
3.7 [gtk_box_] set_spacing
3.8 [gtk_box_] get_spacing
3.9 [gtk_box_] set_baseline_position
3.10 [gtk_box_] get_baseline_position
3.11 [gtk_box_] reorder_child
3.12 [gtk_box_] query_child_packing
3.13 [gtk_box_] set_child_packing
3.14 [gtk_box_] set_center_widget
3.15 [gtk_box_] get_center_widget
4 Properties
4.1 expand
4.2 fill

Description
The Gnome::Gtk3::Box widget organizes child widgets into a rectangular area.

The rectangular area of a Gnome::Gtk3::Box is organized into either a single row
or a single column of child widgets depending upon the orientation. Thus, all
children of a Gnome::Gtk3::Box are allocated one dimension in common, which is

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

the height of a row, or the width of a column.

Gnome::Gtk3::Box uses a notion of packing. Packing refers to adding widgets
with reference to a particular position in a Gnome::Gtk3::Container. For a
Gnome::Gtk3::Box, there are two reference positions: the start and the end of the
box. For a vertical Gnome::Gtk3::Box, the start is defined as the top of the box
and the end is defined as the bottom. For a horizontal Gnome::Gtk3::Box the start
is defined as the left side and the end is defined as the right side.

Use repeated calls to gtk_box_pack_start() to pack widgets into a
Gnome::Gtk3::Box from start to end. Use gtk_box_pack_end() to add widgets
from end to start. You may intersperse these calls and add widgets from both ends
of the same Gnome::Gtk3::Box.

Because Gnome::Gtk3::Box is a Gnome::Gtk3::Container, you may also use
gtk_container_add() to insert widgets into the box, and they will be packed with
the default values for expand and fill child properties. Use gtk_container_remove()
to remove widgets from the Gnome::Gtk3::Box.

Use gtk_box_set_homogeneous() to specify whether or not all children of the
Gnome::Gtk3::Box are forced to get the same amount of space.

Use gtk_box_set_spacing() to determine how much space will be minimally placed
between all children in the Gnome::Gtk3::Box. Note that spacing is added
between the children, while padding added by gtk_box_pack_start() or
gtk_box_pack_end() is added on either side of the widget it belongs to.

Use gtk_box_reorder_child() to move a Gnome::Gtk3::Box child to a different
place in the box.

Use gtk_box_set_child_packing() to reset the expand, fill and padding child
properties. Use gtk_box_query_child_packing() to query these fields.

Note that a single-row or single-column Gnome::Gtk3::Grid provides exactly the
same functionality as Gnome::Gtk3::Box.

Css Nodes
Gnome::Gtk3::Box uses a single CSS node with name box.

In horizontal orientation, the nodes of the children are always arranged from left
to right. So first-child will always select the leftmost child, regardless of text
direction.

See Also
Gnome::Gtk3::Frame, Gnome::Gtk3::Grid, Gnome::Gtk3::Layout

Synopsis

Declaration

unit class Gnome::Gtk3::Box;
also is Gnome::Gtk3::Container;

Example

Methods

new

multi method new (Bool :$empty!)

Create a new empty box.

multi method new (Gnome::GObject::Object :$widget!)

Create an object using a native object from elsewhere. See also
Gnome::GObject::Object.

multi method new (Str :$build-id!)

Create an object using a native object from a builder. See also
Gnome::GObject::Object.

gtk_box_new
Creates a new Gnome::Gtk3::Box.

method gtk_box_new (
GtkOrientation $orientation, Int $spacing
--> N-GObject

)

• GtkOrientation $orientation; the box’s orientation.

• Int $spacing; the number of pixels to place by default between children.

Returns N-GObject;

[gtk_box_] pack_start
Adds child to box, packed with reference to the start of box. The child is packed
after any other child packed with reference to the start of box.

method gtk_box_pack_start (
N-GObject $child, Int $expand, Int $fill, UInt $padding

)

• N-GObject $child; the Gnome::Gtk3::Widget to be added to box

• Int $expand; 1 if the new child is to be given extra space allocated to box.
The extra space will be divided evenly between all children that use this
option

• Int $fill; 1 if space given to child by the expand option is actually allocated
to child, rather than just padding it. This parameter has no effect if expand
is set to 0. A child is always allocated the full height of a horizontal
Gnome::Gtk3::Box and the full width of a vertical Gnome::Gtk3::Box. This
option affects the other dimension

• UInt $padding; extra space in pixels to put between this child and its
neighbors, over and above the global amount specified by reference ends of
box, then padding pixels are also put between

[gtk_box_] pack_end
Adds child to box, packed with reference to the end of box. The child is packed
after (away from end of) any other child packed with reference to the end of box.

method gtk_box_pack_end (
N-GObject $child, Int $expand, Int $fill, UInt $padding

)

• N-GObject $child; the Gnome::Gtk3::Widget to be added to box

• Int $expand; 1 if the new child is to be given extra space allocated to box.
The extra space will be divided evenly between all children of box that use
this option

• Int $fill; 1 if space given to child by the expand option is actually allocated
to child, rather than just padding it. This parameter has no effect if expand
is set to 0. A child is always allocated the full height of a horizontal
Gnome::Gtk3::Box and the full width of a vertical Gnome::Gtk3::Box. This
option affects the other dimension

• UInt $padding; extra space in pixels to put between this child and its

neighbors, over and above the global amount specified by reference ends of
box, then padding pixels are also put between

[gtk_box_] set_homogeneous
Sets the Gnome::Gtk3::Box:homogeneous property of box, controlling whether or
not all children of box are given equal space in the box.

method gtk_box_set_homogeneous (Int $homogeneous)

• Int $homogeneous; a boolean value, 1 to create equal allotments,

[gtk_box_] get_homogeneous
Returns whether the box is homogeneous (all children are the same size). See
gtk_box_set_homogeneous().

method gtk_box_get_homogeneous (--> Int)

Returns Int;

[gtk_box_] set_spacing
Sets the Gnome::Gtk3::Box:spacing property of box, which is the number of
pixels to place between children of box.

method gtk_box_set_spacing (Int $spacing)

• Int $spacing; the number of pixels to put between children

[gtk_box_] get_spacing
Gets the value set by gtk_box_set_spacing().

method gtk_box_get_spacing (--> Int)

Returns Int;

[gtk_box_] set_baseline_position
Sets the baseline position of a box. This affects only horizontal boxes with at least
one baseline aligned child. If there is more vertical space available than
requested, and the baseline is not allocated by the parent then extra space
available.

method gtk_box_set_baseline_position (GtkBaselinePosition $position)

• GtkBaselinePosition $position; a Gnome::Gtk3::BaselinePosition

[gtk_box_] get_baseline_position
Gets the value set by gtk_box_set_baseline_position().

method gtk_box_get_baseline_position (--> GtkBaselinePosition)

Returns GtkBaselinePosition;

[gtk_box_] reorder_child
Moves child to a new position in the list of box children. The list contains widgets
packed GTK_PACK_START as well as widgets packed GTK_PACK_END, in the order
that these widgets were added to box.

method gtk_box_reorder_child (N-GObject $child, Int $position)

• N-GObject $child; the Gnome::Gtk3::Widget to move

• Int $position; the new position for child in the list of children of box,
starting from 0. If negative, indicates the end of the list

[gtk_box_] query_child_packing
Obtains information about how child is packed into box.

method gtk_box_query_child_packing (
N-GObject $child, Int $expand, Int $fill,
UInt $padding, GtkPackType $pack_type

)

• N-GObject $child; the Gnome::Gtk3::Widget of the child to query

• Int $expand; (out): pointer to return location for expand child property

• Int $fill; (out): pointer to return location for fill child property

• UInt $padding; (out): pointer to return location for padding child property

• GtkPackType $pack_type; (out): pointer to return location for pack-type
child property

[gtk_box_] set_child_packing
Sets the way child is packed into box.

method gtk_box_set_child_packing (
N-GObject $child, Int $expand, Int $fill, UInt $padding,
GtkPackType $pack_type

)

• N-GObject $child; the Gnome::Gtk3::Widget of the child to set

• Int $expand; the new value of the expand child property

• Int $fill; the new value of the fill child property

• UInt $padding; the new value of the padding child property

• GtkPackType $pack_type; the new value of the pack-type child property

[gtk_box_] set_center_widget
Sets a center widget; that is a child widget that will be centered with respect to
the full width of the box, even if the children at either side take up different
amounts of space.

method gtk_box_set_center_widget (N-GObject $widget)

• N-GObject $widget; (allow-none): the widget to center

[gtk_box_] get_center_widget
Retrieves the center widget of the box.

method gtk_box_get_center_widget (--> N-GObject)

Returns N-GObject;

Properties
An example of using a string type property of a Gnome::Gtk3::Label object. This
is just showing how to set/read a property, not that it is the best way to do it. This
is because a) The class initialization often provides some options to set some of
the properties and b) the classes provide many methods to modify just those
properties.

my Gnome::Gtk3::Label $label .= new(:empty);
my Gnome::GObject::Value $gv .= new(:init(G_TYPE_STRING));
$label.g-object-get-property('label', $gv);
$gv.g-value-set-string('my text label');

expand
Whether the child should receive extra space when the parent grows.

Note that the default value for this property is 0 for Gnome::Gtk3::Box, but
Gnome::Gtk3::HBox, Gnome::Gtk3::VBox and other subclasses use the old default
of 1.

Note that the Gnome::Gtk3::Widget:halign, Gnome::Gtk3::Widget:valign,
Gnome::Gtk3::Widget:hexpand and Gnome::Gtk3::Widget:vexpand properties
are the preferred way to influence child size allocation in containers.

In contrast to Gnome::Gtk3::Widget:hexpand, the expand child property does not
cause the box to expand itself.

fill
Whether the child should receive extra space when the parent grows.

Note that the Gnome::Gtk3::Widget:halign, Gnome::Gtk3::Widget:valign,
Gnome::Gtk3::Widget:hexpand and Gnome::Gtk3::Widget:vexpand properties
are the preferred way to influence child size allocation in containers.

Generated using Pod::Render, Pod::To::HTML, Camelia™ (butterfly) is © 2009 by Larry Wall

	Table of Contents
	Description
	Css Nodes
	See Also

	Synopsis
	Declaration
	Example

	Methods
	new
	gtk_box_new
	[gtk_box_] pack_start
	[gtk_box_] pack_end
	[gtk_box_] set_homogeneous
	[gtk_box_] get_homogeneous
	[gtk_box_] set_spacing
	[gtk_box_] get_spacing
	[gtk_box_] set_baseline_position
	[gtk_box_] get_baseline_position
	[gtk_box_] reorder_child
	[gtk_box_] query_child_packing
	[gtk_box_] set_child_packing
	[gtk_box_] set_center_widget
	[gtk_box_] get_center_widget

	Properties
	expand
	fill

