
class Config::DataLang::Refine
Refine use of some configuration loaded with config loaders such as Config::TOML

Table of Contents
1 Synopsis
2 Description
3 Attributes
3.1 config
4 Methods
4.1 new
4.2 refine
4.3 refine-str

class Config::DataLang::Refine { ... }

Synopsis
The following piece of code

use Config::DataLang::Refine;

my Config::DataLang::Refine $c .= new(:config-name<myConfig.toml>);

my Hash $hp1 = $c.refine(<options plugin1 test>);
my Hash $hp2 = $c.refine( <options plugin1 test>, :filter);
my Array $ap3 = $c.refine-str( <options plugin1 deploy>, :filter);
my Array $ap4 = $c.refine-str( <options plugin2 deploy>, :filter);

With the following config file in myConfig.toml

[options]
  key1 = 'val1'
  key1a = true

[options.plugin1]
  key2 = 'val2'

[options.plugin1.test]
  key1 = false
  key2 = 'val3'

[options.plugin2.deploy]
  key3 = 'val3'
  key4 = [ 1, 2, 3, 4]

Will get you the following as if the variables were set like



# All found values
$hp1 = ${:!key1, :key1a, :key2("val3")};

# False booleans filtered out
$hp2 = ${:key1a, :key2("val3")};

# Note that there is no deploy for plugin1
$ap3 = $["key1=val1", "key1a", "key2=val2"];

# Arrays become comma separated lists by default
$ap4 = $["key1=val1", "key1a", "key3=val3", "key4=1,2,3,4"]

A sample config from the MongoDB project to test several server setups is

[mongod]
  journal = false
  fork = true
  smallfiles = true
  oplogSize = 128
  logappend = true

# Configuration for Server 1
[mongod.s1]
  logpath = './Sandbox/Server1/m.log'
  pidfilepath = './Sandbox/Server1/m.pid'
  dbpath = './Sandbox/Server1/m.data'
  port = 65010

[mongod.s1.replicate1]
  replSet = 'first_replicate'

[mongod.s1.replicate2]
  replSet = 'second_replicate'

[mongod.s1.authenticate]
  auth = true

Now, to get run options to start server 1 one does the following;

my Array $opts = $c.refine-str( <mongod s1 replicate1>, :C-UNIX-OPTS-T2);

# Output
# --nojournal, --fork, --smallfiles, --oplogSize=128, --logappend,
# --logpath='./Sandbox/Server1/m.log', --pidfilepath='./Sandbox/Server1/m.pid',
# --dbpath='./Sandbox/Server1/m.data', --port=65010, --replSet=first_replicate

Easy to run the server now;

my Proc $proc = shell(('/usr/bin/mongod', |@$opts).join(' '));

Description
This class is used for getting configuration data in such a way that several levels are accumulated into a single
level Hash or Array. The top level of the configuration should always be a Hash (at this moment).

Attributes

config

Defined as



has Hash $.config;

Stored configuration. Can be retrieved directly from object.

my $c = Config::DataLang::Refine.new;
$c.config<some-key><other-key>;

Methods

new

Defined as

submethod BUILD (
  Str :$config-name,
  Bool :$merge = False,
  Array :$locations = [],
  Str :$data-module = 'Config::TOML',
  Hash :$other-config = {}
)

Reads configuration text from a file pointed to by :config-name. The file will first be searched for in the current
directory. Then, if not found, tries to read the hidden variant (on unixes) which is the name with a dot ('.') prefixed
to the file. If that fails too it tries yet another file (also hidden) located in the home directory of the user. At last the
method throws an exception if no files are found. If :config-name is not defined the program name is taken where
the extension is substituted by the proper name for the configuration language.

When :locations is defined the array will be used as extra paths to search for the config file. Example paths to add
are /etc on unixes or C:/Program Files/MyApp on windows.

When :config-name is a relative or absolute path to a config file, then the basename is taken and the path to the file
is pushed on the :locations array.

:merge is used to merge all the files together starting with the file in the users first and following paths from
:locations, Then the one from the home directory if found. Then the options from the hidden local file if found and
finishing with the visible local file found. An exception will be thrown when the resulting config has no elements.

The data languages such as Config::TOML might throw exceptions when it fails to parse the configuration text.



Setup                         Search
============================= ==============================================  
Nothing set                   :config-name set to program name. Say p.pl6 so
                              config will be p.toml because :data-module is
                              by default C<Config::TOML>.
                              Search;
                              p.toml, .p.toml, <home-dir>/.p.toml

:data-module = JSON::Fast     Same as above except extension is .json.
                              Search;
                              p.json, .p.json, <home-dir>/.p.json

:config-name = x.cfg          Search;
                              x.cfg, .x.cfg, <home-dir>/.x.cfg

:config-name = ../pqr/x.cfg   While shown in the search still as a relative
                              path, the path will be made absolute.
                              Search;
                              x.cfg, .x.cfg, <home-dir>/.x.cfg, ../pqr/x.cfg

:config-name = x.cfg          Search;
:locations = [/etc, /opt/etc] x.cfg, .x.cfg, <home-dir>/.x.cfg, /etc/x.cfg
                              /opt/etc/x.cfg

When :merge is used the search is started at the end of the list ending at the first file.

For :data-module the modules Config::TOML and JSON::Fast are recognized.

:other-config can be used when the caller has already a config of its own. This will be modified by subsequent
config loads. The :merge is flipped to True. With this, it is possible to repeat the config loads with configs from
previous loads.

refine

Defined as

method refine ( *@key-list, Bool :$filter = False --> Hash )

Processes data in the config using the keys from the @key-list. The method returns a single level Hash.

The process starts with taking the first key from the list and gathers all pairs ignoring pairs of which the value is a
Hash. Then it descends in the config using the second key. This goes on until the last key is used. The process
stops when a key does not exist on some level.

A simple filter is used on the results if :filter is set. All key/value pairs are removed from the result where the value
is a Bool and is False.

type          :!filter        :filter
============= =============== ================
Bool          :k              :k
              :!k             <removed>
Any           :k => v         :k => v

refine-str

Defined as



method refine-str (
  *@key-list,
  Str :$glue = ',',
  Bool :$filter = False
  StrMode :$str-mode = C-URI-OPTS-T1
  --> Array
)

Each string is pushed on the array which is returned. The :glue is the string used to join elements of an array, this
is a ',' by default.

:str-mode = C-URI-OPTS-T1 which is the default
type          :!filter        :filter
============= =============== ================
Bool          k=True          k=True
              k=False         <removed>
Array         k=1,2,3         k=1,2,3
special text  k='v'           k='v'
Any           k=v             k=v

Simple results

:str-mode = C-URI-OPTS-T2
type          :!filter        :filter
============= =============== ================
Bool          k=True          k=True
              k=False         <removed>
Array         k=1,2,3         k=1,2,3
Any           k=v             k=v

The results from C-URI-OPTS-T2 can be used to form uri strings when joined together with a '&' character. All
strings will be encoded for the first 128 characters of the ascii table.

:str-mode = C-UNIX-OPTS-T1
type          :!filter        :filter
============= =============== ================
Bool          --k             --k
              --nok           <removed>
Array         --k=1,2,3       --k=1,2,3
spaced text   --k='v'         --k='v'
Any           --k=v           --k=v

All single letter keys get only one dash on front like -k or -k=v. The mode C-UNIX-OPTS-T2 does the same but
gathers all single character keys without values together prefixed with a dash. E.g. --key, -l, -m, -t=1 becomes --
key, -lm, -t=1

Generated by Pod::Render, Pod::To::HTML, wkhtmltopdf


	class Config::DataLang::Refine
	Table of Contents

	Synopsis
	Description
	Attributes
	config

	Methods
	new
	refine
	refine-str


