
Perl Programmers Reference Guide
Version 5.003
08−Oct−1996

"There’s more than one way to do it."
−− Larry Wall, Author of the Perl Programming Language

Author: Perl5−Porters

blank

perl Perl Programmers Reference Guide perl

educe
NAME
perl − Practical Extraction and Report Language

SYNOPSIS
perl [−sTuU]

[−hv] [−V[:configvar]]
[−cw] [−d[:debugger]] [−D[number/list]]
[−pna] [−Fpattern] [−l[octal]] [−0[octal]]
[−Idir] [−m[−]module] [−M [−]‘module...’]
[−P]
[−S]
[−x[dir]]
[−i[extension]]
[−e ‘command’] [—] [programfile] [argument]...

For ease of access, the Perl manual has been split up into a number of sections:

 perl Perl overview (this section)
 perltoc Perl documentation table of contents

 perldata Perl data structures
 perlsyn Perl syntax
 perlop Perl operators and precedence
 perlre Perl regular expressions
 perlrun Perl execution and options
 perlfunc Perl builtin functions
 perlvar Perl predefined variables
 perlsub Perl subroutines
 perlmod Perl modules
 perlform Perl formats
 perli18n Perl internalization

 perlref Perl references
 perldsc Perl data structures intro
 perllol Perl data structures: lists of lists
 perlobj Perl objects
 perltie Perl objects hidden behind simple variables
 perlbot Perl OO tricks and examples
 perlipc Perl interprocess communication

 perldebug Perl debugging
 perldiag Perl diagnostic messages
 perlsec Perl security
 perltrap Perl traps for the unwary
 perlstyle Perl style guide

 perlpod Perl plain old documentation
 perlbook Perl book information

 perlembed Perl how to embed perl in your C or C++ app
 perlapio Perl internal IO abstraction interface
 perlxs Perl XS application programming interface
 perlxstut Perl XS tutorial
 perlguts Perl internal functions for those doing extensions
 perlcall Perl calling conventions from C

(If you‘re intending to read these straight through for the first time, the suggested order will tend to r
the number of forward references.)
08−Oct−1996 Version 5.003 3

perl Perl Programmers Reference Guide perl

 view
o find

r help,

 those
ystem
her than

ome
to C
u‘ve
. And
Perl uses

timized
arrays.
s many

e for

ions).
e more
 This

s have
old Perl

s this

ble or
s your
Additional documentation for Perl modules is available in the /usr/local/man/ directory. Some of this is
distributed standard with Perl, but you‘ll also find third−party modules there. You should be able to
this with your man(1) program by including the proper directories in the appropriate start−up files. T
out where these are, type:

 perl −V:man.dir

If the directories were /usr/local/man/man1 and /usr/local/man/man3, you would only need to add
/usr/local/man to your MANPATH. If they are different, you‘ll have to add both stems.

If that doesn‘t work for some reason, you can still use the supplied perldoc script to view module
information. You might also look into getting a replacement man program.

If something strange has gone wrong with your program and you‘re not sure where you should look fo
try the −w switch first. It will often point out exactly where the trouble is.

DESCRIPTION
Perl is an interpreted language optimized for scanning arbitrary text files, extracting information from
text files, and printing reports based on that information. It‘s also a good language for many s
management tasks. The language is intended to be practical (easy to use, efficient, complete) rat
beautiful (tiny, elegant, minimal).

Perl combines (in the author‘s opinion, anyway) some of the best features of C, sed, awk, and sh, so people
familiar with those languages should have little difficulty with it. (Language historians will also note s
vestiges of csh, Pascal, and even BASIC−PLUS.) Expression syntax corresponds quite closely
expression syntax. Unlike most Unix utilities, Perl does not arbitrarily limit the size of your data—if yo
got the memory, Perl can slurp in your whole file as a single string. Recursion is of unlimited depth
the hash tables used by associative arrays grow as necessary to prevent degraded performance.
sophisticated pattern matching techniques to scan large amounts of data very quickly. Although op
for scanning text, Perl can also deal with binary data, and can make dbm files look like associative
Setuid Perl scripts are safer than C programs through a dataflow tracing mechanism which prevent
stupid security holes. If you have a problem that would ordinarily use sed or awk or sh, but it exceeds their
capabilities or must run a little faster, and you don‘t want to write the silly thing in C, then Perl may b
you. There are also translators to turn your sed and awk scripts into Perl scripts.

But wait, there‘s more...

Perl version 5 is nearly a complete rewrite, and provides the following additional benefits:

 Many usability enhancements
It is now possible to write much more readable Perl code (even within regular express
Formerly cryptic variable names can be replaced by mnemonic identifiers. Error messages ar
informative, and the optional warnings will catch many of the mistakes a novice might make.
cannot be stressed enough. Whenever you get mysterious behavior, try the −w switch!!! Whenever
you don‘t get mysterious behavior, try using −w anyway.

 Simplified grammar
The new yacc grammar is one half the size of the old one. Many of the arbitrary grammar rule
been regularized. The number of reserved words has been cut by 2/3. Despite this, nearly all
scripts will continue to work unchanged.

 Lexical scoping
Perl variables may now be declared within a lexical scope, like "auto" variables in C. Not only i
more efficient, but it contributes to better privacy for "programming in the large".

 Arbitrarily nested data structures
Any scalar value, including any array element, may now contain a reference to any other varia
subroutine. You can easily create anonymous variables and subroutines. Perl manage
reference counts for you.
4 Version 5.003 08−Oct−1996

perl Perl Programmers Reference Guide perl

arious
rface.

ported
ed as

led by
asy to

tines

piled,
 when

the
w any

fined

ng a
ents for
e with

ing
 is

or the
 Modularity and reusability
The Perl library is now defined in terms of modules which can be easily shared among v
packages. A package may choose to import all or a portion of a module‘s published inte
Pragmas (that is, compiler directives) are defined and used by the same mechanism.

 Object−oriented programming
A package can function as a class. Dynamic multiple inheritance and virtual methods are sup
in a straightforward manner and with very little new syntax. Filehandles may now be treat
objects.

 Embeddable and Extensible
Perl may now be embedded easily in your C or C++ application, and can either call or be cal
your routines through a documented interface. The XS preprocessor is provided to make it e
glue your C or C++ routines into Perl. Dynamic loading of modules is supported.

 POSIX compliant
A major new module is the POSIX module, which provides access to all available POSIX rou
and definitions, via object classes where appropriate.

 Package constructors and destructors
The new BEGIN and END blocks provide means to capture control as a package is being com
and after the program exits. As a degenerate case they work just like awk‘s BEGIN and END
you use the −p or −n switches.

 Multiple simultaneous DBM implementations
A Perl program may now access DBM, NDBM, SDBM, GDBM, and Berkeley DB files from
same script simultaneously. In fact, the old dbmopen interface has been generalized to allo
variable to be tied to an object class which defines its access methods.

 Subroutine definitions may now be autoloaded
In fact, the AUTOLOAD mechanism also allows you to define any arbitrary semantics for unde
subroutine calls. It‘s not just for autoloading.

 Regular expression enhancements
You can now specify non−greedy quantifiers. You can now do grouping without creati
backreference. You can now write regular expressions with embedded whitespace and comm
readability. A consistent extensibility mechanism has been added that is upwardly compatibl
all old regular expressions.

Ok, that‘s definitely enough hype.

ENVIRONMENT

HOME Used if chdir has no argument.

LOGDIR Used if chdir has no argument and HOME is not set.

PATH Used in executing subprocesses, and in finding the script if −S is used.

PERL5LIB A colon−separated list of directories in which to look for Perl library files before look
in the standard library and the current directory. If PERL5LIB is not defined, PERLLIB
used. When running taint checks (because the script was running setuid or setgid,
−T switch was used), neither variable is used. The script should instead say

 use lib "/my/directory";

PERL5DB The command used to get the debugger code. If unset, uses

BEGIN { require ’perl5db.pl’ }
08−Oct−1996 Version 5.003 5

perl Perl Programmers Reference Guide perl

ing
not

nsult the

pt being
llowing

oken

ndency".

l. (This

 still a
nent of
n

e

n be
PERLLIB A colon−separated list of directories in which to look for Perl library files before look
in the standard library and the current directory. If PERL5LIB is defined, PERLLIB is
used.

Perl also has environment variables that control how Perl handles language−specific data. Please co
perli18n section.

Apart from these, Perl uses no other environment variables, except to make them available to the scri
executed, and to child processes. However, scripts running setuid would do well to execute the fo
lines before doing anything else, just to keep people honest:

 $ENV{’PATH’} = ’/bin:/usr/bin’; # or whatever you need
 $ENV{’SHELL’} = ’/bin/sh’ if defined $ENV{’SHELL’};
 $ENV{’IFS’} = ’’ if defined $ENV{’IFS’};

AUTHOR
Larry Wall <larry@wall.org>, with the help of oodles of other folks.

FILES
 "/tmp/perl−e$$" temporary file for −e commands
 "@INC" locations of perl 5 libraries

SEE ALSO
 a2p awk to perl translator

 s2p sed to perl translator

DIAGNOSTICS
The −w switch produces some lovely diagnostics.

See perldiag for explanations of all Perl‘s diagnostics.

Compilation errors will tell you the line number of the error, with an indication of the next token or t
type that was to be examined. (In the case of a script passed to Perl via −e switches, each −e is counted as
one line.)

Setuid scripts have additional constraints that can produce error messages such as "Insecure depe
See perlsec.

Did we mention that you should definitely consider using the −w switch?

BUGS
The −w switch is not mandatory.

Perl is at the mercy of your machine‘s definitions of various operations such as type casting, atof() and
sprintf() . The latter can even trigger a coredump when passed ludicrous input values.

If your stdio requires a seek or eof between reads and writes on a particular stream, so does Per
doesn‘t apply to sysread() and syswrite() .)

While none of the built−in data types have any arbitrary size limits (apart from memory size), there are
few arbitrary limits: a given variable name may not be longer than 255 characters, and no compo
your PATH may be longer than 255 if you use −S. A regular expression may not compile to more tha
32767 bytes internally.

See the perl bugs database at http://perl.com/perl/bugs/. You may mail your bug reports (be sure to includ
full configuration information as output by the myconfig program in the perl source tree, or by perl −V) to
perlbug@perl.com. If you‘ve succeeded in compiling perl, the perlbug script in the utils/ subdirectory ca
used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don‘t tell anyone I said that.
6 Version 5.003 08−Oct−1996

perl Perl Programmers Reference Guide perl

ise to

ook for
NOTES
The Perl motto is "There‘s more than one way to do it." Divining how many more is left as an exerc
the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See the Camel B
why.
08−Oct−1996 Version 5.003 7

perldata Perl Programmers Reference Guide perldata

 "hashes".
 Hash

me tells
hich it
nd
d by
cate the

in more

 collide
ion are

ation

rks

:

 initial

a scalar
ans that

andles,
", for

ords.)
r or
NAME
perldata − Perl data types

DESCRIPTION

Variable names
Perl has three data structures: scalars, arrays of scalars, and associative arrays of scalars, known as
Normal arrays are indexed by number, starting with 0. (Negative subscripts count from the end.)
arrays are indexed by string.

Values are usually referred to by name (or through a named reference). The first character of the na
you to what sort of data structure it refers. The rest of the name tells you the particular value to w
refers. Most often, it consists of a single identifier, that is, a string beginning with a letter or underscore, a
containing letters, underscores, and digits. In some cases, it may be a chain of identifiers, separate::
(or by ’ , but that‘s deprecated); all but the last are interpreted as names of packages, in order to lo
namespace in which to look up the final identifier (see Packages for details). It‘s possible to substitute for a
simple identifier an expression which produces a reference to the value at runtime; this is described
detail below, and in perlref.

There are also special variables whose names don‘t follow these rules, so that they don‘t accidentally
with one of your normal variables. Strings which match parenthesized parts of a regular express
saved under names containing only digits after the $ (see perlop and perlre). In addition, several special
variables which provide windows into the inner working of Perl have names containing punctu
characters (see perlvar).

Scalar values are always named with ‘$‘, even when referring to a scalar that is part of an array. It wo
like the English word "the". Thus we have:

 $days # the simple scalar value "days"
 $days[28] # the 29th element of array @days
 $days{’Feb’} # the ’Feb’ value from hash %days
 $#days # the last index of array @days

but entire arrays or array slices are denoted by ‘@‘, which works much like the word "these" or "those"

 @days # ($days[0], $days[1],... $days[n])
 @days[3,4,5] # same as @days[3..5]
 @days{’a’,’c’} # same as ($days{’a’},$days{’c’})

and entire hashes are denoted by ‘%‘:

 %days # (key1, val1, key2, val2 ...)

In addition, subroutines are named with an initial ‘&‘, though this is optional when it‘s otherwise
unambiguous (just as "do" is often redundant in English). Symbol table entries can be named with an
‘*‘, but you don‘t really care about that yet.

Every variable type has its own namespace. You can, without fear of conflict, use the same name for
variable, an array, or a hash (or, for that matter, a filehandle, a subroutine name, or a label). This me
$foo and @foo are two different variables. It also means that $foo[1] is a part of @foo, not a part of
$foo. This may seem a bit weird, but that‘s okay, because it is weird.

Since variable and array references always start with ‘$‘, ‘@‘, or ‘%‘, the "reserved" words aren‘t in fact
reserved with respect to variable names. (They ARE reserved with respect to labels and fileh
however, which don‘t have an initial special character. You can‘t have a filehandle named "log
instance. Hint: you could say open(LOG,‘logfile’) rather than open(log,‘logfile’) . Using
uppercase filehandles also improves readability and protects you from conflict with future reserved w
Case IS significant—"FOO", "Foo" and "foo" are all different names. Names that start with a lette
underscore may also contain digits and underscores.
8 Version 5.003 08−Oct−1996

perldata Perl Programmers Reference Guide perldata

object of

letter,
 a

 context
turn list
ill be

s based
 "fish"

ts. For

ng one
f that

ilable
s and

 right
nt to an
tes the

ext, but
s. See

 various
 form to
array or
nctions
ng or a

 of type
phic
ings and
ly−typed

 (or its

turned
en you
ed the
It is possible to replace such an alphanumeric name with an expression that returns a reference to an
that type. For a description of this, see perlref.

Names that start with a digit may only contain more digits. Names which do not start with a
underscore, or digit are limited to one character, e.g. $% or $$. (Most of these one character names have
predefined significance to Perl. For instance, $$ is the current process id.)

Context
The interpretation of operations and values in Perl sometimes depends on the requirements of the
around the operation or value. There are two major contexts: scalar and list. Certain operations re
values in contexts wanting a list, and scalar values otherwise. (If this is true of an operation it w
mentioned in the documentation for that operation.) In other words, Perl overloads certain operation
on whether the expected return value is singular or plural. (Some words in English work this way, like
and "sheep".)

In a reciprocal fashion, an operation provides either a scalar or a list context to each of its argumen
example, if you say

 int(<STDIN>)

the integer operation provides a scalar context for the <STDIN> operator, which responds by readi
line from STDIN and passing it back to the integer operation, which will then find the integer value o
line and return that. If, on the other hand, you say

 sort(<STDIN>)

then the sort operation provides a list context for <STDIN>, which will proceed to read every line ava
up to the end of file, and pass that list of lines back to the sort routine, which will then sort those line
return them as a list to whatever the context of the sort was.

Assignment is a little bit special in that it uses its left argument to determine the context for the
argument. Assignment to a scalar evaluates the righthand side in a scalar context, while assignme
array or array slice evaluates the righthand side in a list context. Assignment to a list also evalua
righthand side in a list context.

User defined subroutines may choose to care whether they are being called in a scalar or list cont
most subroutines do not need to care, because scalars are automatically interpolated into list
wantarray.

Scalar values
All data in Perl is a scalar or an array of scalars or a hash of scalars. Scalar variables may contain
kinds of singular data, such as numbers, strings, and references. In general, conversion from one
another is transparent. (A scalar may not contain multiple values, but may contain a reference to an
hash containing multiple values.) Because of the automatic conversion of scalars, operations and fu
that return scalars don‘t need to care (and, in fact, can‘t care) whether the context is looking for a stri
number.

Scalars aren‘t necessarily one thing or another. There‘s no place to declare a scalar variable to be
"string", or of type "number", or type "filehandle", or anything else. Perl is a contextually polymor
language whose scalars can be strings, numbers, or references (which includes objects). While str
numbers are considered pretty much the same thing for nearly all purposes, references are strong
uncastable pointers with built−in reference−counting and destructor invocation.

A scalar value is interpreted as TRUE in the Boolean sense if it is not the null string or the number 0
string equivalent, "0"). The Boolean context is just a special kind of scalar context.

There are actually two varieties of null scalars: defined and undefined. Undefined null scalars are re
when there is no real value for something, such as when there was an error, or at end of file, or wh
refer to an uninitialized variable or element of an array. An undefined null scalar may become defin
first time you use it as if it were defined, but prior to that you can use the defined() operator to determine
whether the value is defined or not.
08−Oct−1996 Version 5.003 9

perldata Perl Programmers Reference Guide perldata

t both
‘t

ic. See

re is
 by

ake sure
ding an
 end of

not true

u

ins any
ber of

useful to
mple,
s only

his isn‘t
To find out whether a given string is a valid non−zero number, it‘s usually enough to test it agains
numeric 0 and also lexical "0" (although this will cause −w noises). That‘s because strings that aren
numbers count as 0, just as they do in awk:

 if ($str == 0 && $str ne "0") {
warn "That doesn’t look like a number";

 }

That‘s usually preferable because otherwise you won‘t treat IEEE notations like NaN or Infinity
properly. At other times you might prefer to use a regular expression to check whether data is numer
perlre for details on regular expressions.

 warn "has nondigits" if /\D/;
 warn "not a whole number" unless /^\d+$/;
 warn "not an integer" unless /^[+−]?\d+$/
 warn "not a decimal number" unless /^[+−]?\d+\.?\d*$/
 warn "not a C float"

unless /^([+−]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+−]?\d+))?$/;

The length of an array is a scalar value. You may find the length of array @days by evaluating $#days, as
in csh. (Actually, it‘s not the length of the array, it‘s the subscript of the last element, since the
(ordinarily) a 0th element.) Assigning to $#days changes the length of the array. Shortening an array
this method destroys intervening values. Lengthening an array that was previously shortened NO LONGER
recovers the values that were in those elements. (It used to in Perl 4, but we had to break this to m
destructors were called when expected.) You can also gain some measure of efficiency by preexten
array that is going to get big. (You can also extend an array by assigning to an element that is off the
the array.) You can truncate an array down to nothing by assigning the null list () to it. The following are
equivalent:

 @whatever = ();
 $#whatever = $[− 1;

If you evaluate a named array in a scalar context, it returns the length of the array. (Note that this is
of lists, which return the last value, like the C comma operator.) The following is always true:

 scalar(@whatever) == $#whatever − $[+ 1;

Version 5 of Perl changed the semantics of $[: files that don‘t set the value of $[no longer need to worry
about whether another file changed its value. (In other words, use of $[is deprecated.) So in general yo
can just assume that

 scalar(@whatever) == $#whatever + 1;

Some programmers choose to use an explicit conversion so nothing‘s left to doubt:

 $element_count = scalar(@whatever);

If you evaluate a hash in a scalar context, it returns a value which is true if and only if the hash conta
key/value pairs. (If there are any key/value pairs, the value returned is a string consisting of the num
used buckets and the number of allocated buckets, separated by a slash. This is pretty much only
find out whether Perl‘s (compiled in) hashing algorithm is performing poorly on your data set. For exa
you stick 10,000 things in a hash, but evaluating %HASH in scalar context reveals "1/16", which mean
one out of sixteen buckets has been touched, and presumably contains all 10,000 of your items. T
supposed to happen.)

Scalar value constructors
Numeric literals are specified in any of the customary floating point or integer formats:

 12345
 12345.67
 .23E−10
10 Version 5.003 08−Oct−1996

perldata Perl Programmers Reference Guide perldata

uotes:
 are not
line,

 begin.
r line
inside

t "The

erics.
hash

ill be

uote is a

me at
ed into
re the
TA

) The

ese are
 letters

 error
his by

ith the
 0xffff # hex
 0377 # octal
 4_294_967_296 # underline for legibility

String literals are usually delimited by either single or double quotes. They work much like shell q
double−quoted string literals are subject to backslash and variable substitution; single−quoted strings
(except for "\’ " and "\\ "). The usual Unix backslash rules apply for making characters such as new
tab, etc., as well as some more exotic forms. See qq for a list.

You can also embed newlines directly in your strings, i.e. they can end on a different line than they
This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds anothe
containing the quote character, which may be much further on in the script. Variable substitution
strings is limited to scalar variables, arrays, and array slices. (In other words, names beginning with $ or @,
followed by an optional bracketed expression as a subscript.) The following code segment prints ou
price is $100."

 $Price = ’$100’; # not interpreted
 print "The price is $Price.\n"; # interpreted

As in some shells, you can put curly brackets around the name to delimit it from following alphanum
In fact, an identifier within such curlies is forced to be a string, as is any single identifier within a
subscript. Our earlier example,

 $days{’Feb’}

can be written as

 $days{Feb}

and the quotes will be assumed automatically. But anything more complicated in the subscript w
interpreted as an expression.

Note that a single−quoted string must be separated from a preceding word by a space, since single q
valid (though deprecated) character in a variable name (see Packages).

Two special literals are __LINE__ and __FILE__, which represent the current line number and filena
that point in your program. They may only be used as separate tokens; they will not be interpolat
strings. In addition, the token __END__ may be used to indicate the logical end of the script befo
actual end of file. Any following text is ignored, but may be read via the DATA filehandle. (The DA
filehandle may read data only from the main script, but not from any required file or evaluated string.
two control characters ^D and ^Z are synonyms for __END__ (or __DATA__ in a module; see SelfLoader
for details on __DATA__).

A word that has no other interpretation in the grammar will be treated as if it were a quoted string. Th
known as "barewords". As with filehandles and labels, a bareword that consists entirely of lowercase
risks conflict with future reserved words, and if you use the −w switch, Perl will warn you about any such
words. Some people may wish to outlaw barewords entirely. If you say

 use strict ’subs’;

then any bareword that would NOT be interpreted as a subroutine call produces a compile−time
instead. The restriction lasts to the end of the enclosing block. An inner block may countermand t
saying no strict ‘subs’ .

Array variables are interpolated into double−quoted strings by joining all the elements of the array w
delimiter specified in the $" variable ($LIST_SEPARATOR in English), space by default. The following
are equivalent:

 $temp = join($",@ARGV);
 system "echo $temp";

 system "echo @ARGV";
08−Oct−1996 Version 5.003 11

perldata Perl Programmers Reference Guide perldata

ty: Is
r
‘t

orrect

g are
xt. If
g. An

) The
inating

‘t know

ntheses

ith the
Within search patterns (which also undergo double−quotish substitution) there is a bad ambigui
/$foo[bar]/ to be interpreted as /${foo}[bar]/ (where [bar] is a character class for the regula
expression) or as /${foo[bar]}/ (where [bar] is the subscript to array @foo)? If @foo doesn
otherwise exist, then it‘s obviously a character class. If @foo exists, Perl takes a good guess about [bar] ,
and is almost always right. If it does guess wrong, or if you‘re just plain paranoid, you can force the c
interpretation with curly brackets as above.

A line−oriented form of quoting is based on the shell "here−doc" syntax. Following a << you specify a string
to terminate the quoted material, and all lines following the current line down to the terminating strin
the value of the item. The terminating string may be either an identifier (a word), or some quoted te
quoted, the type of quotes you use determines the treatment of the text, just as in regular quotin
unquoted identifier works like double quotes. There must be no space between the << and the identifier. (If
you put a space it will be treated as a null identifier, which is valid, and matches the first blank line.
terminating string must appear by itself (unquoted and with no surrounding whitespace) on the term
line.

print <<EOF;
 The price is $Price.
 EOF

print <<"EOF"; # same as above
 The price is $Price.
 EOF

print <<‘EOC‘; # execute commands
 echo hi there
 echo lo there
 EOC

print <<"foo", <<"bar"; # you can stack them
 I said foo.
 foo
 I said bar.
 bar

myfunc(<<"THIS", 23, <<’THAT’);
 Here’s a line
 or two.
 THIS
 and here another.
 THAT

Just don‘t forget that you have to put a semicolon on the end to finish the statement, as Perl doesn
you‘re not going to try to do this:

print <<ABC
 179231
 ABC

+ 20;

List value constructors
List values are denoted by separating individual values by commas (and enclosing the list in pare
where precedence requires it):

 (LIST)

In a context not requiring a list value, the value of the list literal is the value of the final element, as w
C comma operator. For example,

 @foo = (’cc’, ’−E’, $bar);
12 Version 5.003 08−Oct−1996

perldata Perl Programmers Reference Guide perldata

ntext is

 list is
idual

ents
ce that

 at that

 avoid

the right

ctions
assigns the entire list value to array foo, but

 $foo = (’cc’, ’−E’, $bar);

assigns the value of variable bar to variable foo. Note that the value of an actual array in a scalar co
the length of the array; the following assigns to $foo the value 3:

 @foo = (’cc’, ’−E’, $bar);
 $foo = @foo; # $foo gets 3

You may have an optional comma before the closing parenthesis of an list literal, so that you can say:

 @foo = (
1,
2,
3,

);

LISTs do automatic interpolation of sublists. That is, when a LIST is evaluated, each element of the
evaluated in a list context, and the resulting list value is interpolated into LIST just as if each indiv
element were a member of LIST. Thus arrays lose their identity in a LIST—the list

 (@foo,@bar,&SomeSub)

contains all the elements of @foo followed by all the elements of @bar, followed by all the elem
returned by the subroutine named SomeSub when it‘s called in a list context. To make a list referen
does NOT interpolate, see perlref.

The null list is represented by () . Interpolating it in a list has no effect. Thus ((),(),()) is equivalent to
() . Similarly, interpolating an array with no elements is the same as if no array had been interpolated
point.

A list value may also be subscripted like a normal array. You must put the list in parentheses to
ambiguity. Examples:

 # Stat returns list value.
 $time = (stat($file))[8];

 # SYNTAX ERROR HERE.
 $time = stat($file)[8]; # OOPS, FORGOT PARENS

 # Find a hex digit.
 $hexdigit = (’a’,’b’,’c’,’d’,’e’,’f’)[$digit−10];

 # A "reverse comma operator".
 return (pop(@foo),pop(@foo))[0];

Lists may be assigned to if and only if each element of the list is legal to assign to:

 ($a, $b, $c) = (1, 2, 3);

 ($map{’red’}, $map{’blue’}, $map{’green’}) = (0x00f, 0x0f0, 0xf00);

Array assignment in a scalar context returns the number of elements produced by the expression on
side of the assignment:

 $x = (($foo,$bar) = (3,2,1)); # set $x to 3, not 2
 $x = (($foo,$bar) = f()); # set $x to f()’s return count

This is very handy when you want to do a list assignment in a Boolean context, since most list fun
return a null list when finished, which when assigned produces a 0, which is interpreted as FALSE.

The final element may be an array or a hash:

 ($a, $b, @rest) = split;
08−Oct−1996 Version 5.003 13

perldata Perl Programmers Reference Guide perldata

all the

 because
 a hash.
ctions)

to be
izing

See

 a
 hashes

 If you
 local($a, $b, %rest) = @_;

You can actually put an array or hash anywhere in the list, but the first one in the list will soak up
values, and anything after it will get a null value. This may be useful in a local() or my() .

A hash literal contains pairs of values to be interpreted as a key and a value:

 # same as map assignment above
 %map = (’red’,0x00f,’blue’,0x0f0,’green’,0xf00);

While literal lists and named arrays are usually interchangeable, that‘s not the case for hashes. Just
you can subscript a list value like a normal array does not mean that you can subscript a list value as
Likewise, hashes included as parts of other lists (including parameters lists and return lists from fun
always flatten out into key/value pairs. That‘s why it‘s good to use references sometimes.

It is often more readable to use the => operator between key/value pairs. The => operator is mostly just a
more visually distinctive synonym for a comma, but it also arranges for its left−hand operand
interpreted as a string, if it‘s a bareword which would be a legal identifier. This makes it nice for initial
hashes:

 %map = (
 red => 0x00f,
 blue => 0x0f0,
 green => 0xf00,

);

or for initializing hash references to be used as records:

 $rec = {
witch => ’Mable the Merciless’,
cat => ’Fluffy the Ferocious’,
date => ’10/31/1776’,

 };

or for using call−by−named−parameter to complicated functions:

 $field = $query−>radio_group(
 name => ’group_name’,

 values => [’eenie’,’meenie’,’minie’],
 default => ’meenie’,
 linebreak => ’true’,
 labels => \%labels
);

Note that just because a hash is initialized in that order doesn‘t mean that it comes out in that order. sort
for examples of how to arrange for an output ordering.

Typeglobs and FileHandles
Perl uses an internal type called a typeglob to hold an entire symbol table entry. The type prefix of
typeglob is a * , because it represents all types. This used to be the preferred way to pass arrays and
by reference into a function, but now that we have real references, this is seldom needed.

One place where you still use typeglobs (or references thereto) is for passing or storing filehandles.
want to save away a filehandle, do it this way:

 $fh = *STDOUT;

or perhaps as a real reference, like this:

 $fh = *STDOUT;

This is also the way to create a local filehandle. For example:
14 Version 5.003 08−Oct−1996

perldata Perl Programmers Reference Guide perldata
 sub newopen {
my $path = shift;
local *FH; # not my!
open (FH, $path) || return undef;
return *FH;

 }
 $fh = newopen(’/etc/passwd’);

See perlref, perlsub, and Symbols Tables in perlmod for more discussion on typeglobs. See open for other
ways of generating filehandles.
08−Oct−1996 Version 5.003 15

perlsyn Perl Programmers Reference Guide perlsyn

declared
 those
ey are
 use of

ou must
over
ith

s, for
 If you
ing,

primary
e put at
reated
pe as

t point
without

d

aring a
ence of
n−time

tement
icolon

u may

xplicit
NAME
perlsyn − Perl syntax

DESCRIPTION
A Perl script consists of a sequence of declarations and statements. The only things that need to be
in Perl are report formats and subroutines. See the sections below for more information on
declarations. All uninitialized user−created objects are assumed to start with a null or 0 value until th
defined by some explicit operation such as assignment. (Though you can get warnings about the
undefined values if you like.) The sequence of statements is executed just once, unlike in sed and awk
scripts, where the sequence of statements is executed for each input line. While this means that y
explicitly loop over the lines of your input file (or files), it also means you have much more control
which files and which lines you look at. (Actually, I‘m lying—it is possible to do an implicit loop w
either the −n or −p switch. It‘s just not the mandatory default like it is in sed and awk.)

Declarations
Perl is, for the most part, a free−form language. (The only exception to this is format declaration
obvious reasons.) Comments are indicated by the "#" character, and extend to the end of the line.
attempt to use /* */ C−style comments, it will be interpreted either as division or pattern match
depending on the context, and C++ // comments just look like a null regular expression, so don‘t do that.

A declaration can be put anywhere a statement can, but has no effect on the execution of the
sequence of statements—declarations all take effect at compile time. Typically all the declarations ar
the beginning or the end of the script. However, if you‘re using lexically−scoped private variables c
with my() , you‘ll have to make sure your format or subroutine definition is within the same block sco
the my if you expect to to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator from tha
forward in the program. You can declare a subroutine (prototyped to take one scalar parameter)
defining it by saying just:

 sub myname ($);
 $me = myname $0 or die "can’t get myname";

Note that it functions as a list operator though, not as a unary operator, so be careful to use or instead of ||
there.

Subroutines declarations can also be loaded up with the require statement or both loaded and importe
into your namespace with a use statement. See perlmod for details on this.

A statement sequence may contain declarations of lexically−scoped variables, but apart from decl
variable name, the declaration acts like an ordinary statement, and is elaborated within the sequ
statements as if it were an ordinary statement. That means it actually has both compile−time and ru
effects.

Simple statements
The only kind of simple statement is an expression evaluated for its side effects. Every simple sta
must be terminated with a semicolon, unless it is the final statement in a block, in which case the sem
is optional. (A semicolon is still encouraged there if the block takes up more than one line, since yo
eventually add another line.) Note that there are some operators like eval {} and do {} that look like
compound statements, but aren‘t (they‘re just TERMs in an expression), and thus need an e
termination if used as the last item in a statement.

Any simple statement may optionally be followed by a SINGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

 if EXPR
 unless EXPR
 while EXPR
 until EXPR
16 Version 5.003 08−Oct−1996

perlsyn Perl Programmers Reference Guide perlsyn

 The
rst),
which
ike:

ort of

d by the
ock is

tactic

 that the
out

 never

ll string
The

ically
ing if

ated
ven
The if and unless modifiers have the expected semantics, presuming you‘re a speaker of English.
while and until modifiers also have the usual "while loop" semantics (conditional evaluated fi
except when applied to a do−BLOCK (or to the now−deprecated do−SUBROUTINE statement), in
case the block executes once before the conditional is evaluated. This is so that you can write loops l

 do {
$line = <STDIN>;
...

 } until $line eq ".\n";

See do. Note also that the loop control statements described later will NOT work in this construct, since
modifiers don‘t take loop labels. Sorry. You can always wrap another block around it to do that s
thing.

Compound statements
In Perl, a sequence of statements that defines a scope is called a block. Sometimes a block is delimite
file containing it (in the case of a required file, or the program as a whole), and sometimes a bl
delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces. We will call this syn
construct a BLOCK.

The following compound statements may be used to control flow:

 if (EXPR) BLOCK
 if (EXPR) BLOCK else BLOCK
 if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
 LABEL while (EXPR) BLOCK
 LABEL while (EXPR) BLOCK continue BLOCK
 LABEL for (EXPR; EXPR; EXPR) BLOCK
 LABEL foreach VAR (LIST) BLOCK
 LABEL BLOCK continue BLOCK

Note that, unlike C and Pascal, these are defined in terms of BLOCKs, not statements. This means
curly brackets are required—no dangling statements allowed. If you want to write conditionals with
curly brackets there are several other ways to do it. The following all do the same thing:

 if (!open(FOO)) { die "Can’t open $FOO: $!"; }
 die "Can’t open $FOO: $!" unless open(FOO);
 open(FOO) or die "Can’t open $FOO: $!"; # FOO or bust!
 open(FOO) ? ’hi mom’ : die "Can’t open $FOO: $!";

a bit exotic, that last one

The if statement is straightforward. Since BLOCKs are always bounded by curly brackets, there is
any ambiguity about which if an else goes with. If you use unless in place of if , the sense of the test
is reversed.

The while statement executes the block as long as the expression is true (does not evaluate to the nu
or 0 or "0"). The LABEL is optional, and if present, consists of an identifier followed by a colon.
LABEL identifies the loop for the loop control statements next , last , and redo . If the LABEL is
omitted, the loop control statement refers to the innermost enclosing loop. This may include dynam
looking back your call−stack at run time to find the LABEL. Such desperate behavior triggers a warn
you use the −w flag.

If there is a continue BLOCK, it is always executed just before the conditional is about to be evalu
again, just like the third part of a for loop in C. Thus it can be used to increment a loop variable, e
when the loop has been continued via the next statement (which is similar to the C continue statement).
08−Oct−1996 Version 5.003 17

perlsyn Perl Programmers Reference Guide perlsyn

 in

elves

o

Loop Control
The next command is like the continue statement in C; it starts the next iteration of the loop:

 LINE: while (<STDIN>) {
next LINE if /^#/; # discard comments
...

 }

The last command is like the break statement in C (as used in loops); it immediately exits the loop
question. The continue block, if any, is not executed:

 LINE: while (<STDIN>) {
last LINE if /^$/; # exit when done with header
...

 }

The redo command restarts the loop block without evaluating the conditional again. The continue
block, if any, is not executed. This command is normally used by programs that want to lie to thems
about what was just input.

For example, when processing a file like /etc/termcap. If your input lines might end in backslashes t
indicate continuation, you want to skip ahead and get the next record.

 while (<>) {
chomp;
if (s/\\$//) {
 $_ .= <>;
 redo unless eof();
}
now process $_

 }

which is Perl short−hand for the more explicitly written version:

 LINE: while ($line = <ARGV>) {
chomp($line);
if ($line =~ s/\\$//) {
 $line .= <ARGV>;
 redo LINE unless eof(); # not eof(ARGV)!
}
now process $line

 }

Or here‘s a simpleminded Pascal comment stripper (warning: assumes no { or } in strings).

 LINE: while (<STDIN>) {
while (s|({.*}.*){.*}|$1 |) {}
s|{.*}| |;
if (s|{.*| |) {
 $front = $_;
 while (<STDIN>) {

if (/}/) { # end of comment?
 s|^|$front{|;
 redo LINE;
}

 }
}
print;

 }
18 Version 5.003 08−Oct−1996

perlsyn Perl Programmers Reference Guide perlsyn

ines.

l is

l is
ersion

e‘s
 file

he list
If the
till
in that

as
difying
n

Note that if there were a continue block on the above code, it would get executed even on discarded l

If the word while is replaced by the word until , the sense of the test is reversed, but the conditiona
still tested before the first iteration.

In either the if or the while statement, you may replace "(EXPR)" with a BLOCK, and the conditiona
true if the value of the last statement in that block is true. While this "feature" continues to work in v
5, it has been deprecated, so please change any occurrences of "if BLOCK" to "if (do BLOCK)".

For Loops
Perl‘s C−style for loop works exactly like the corresponding while loop; that means that this:

 for ($i = 1; $i < 10; $i++) {
...

 }

is the same as this:

 $i = 1;
 while ($i < 10) {

...
 } continue {

$i++;
 }

Besides the normal array index looping, for can lend itself to many other interesting applications. Her
one that avoids the problem you get into if you explicitly test for end−of−file on an interactive
descriptor causing your program to appear to hang.

 $on_a_tty = −t STDIN && −t STDOUT;
 sub prompt { print "yes? " if $on_a_tty }
 for (prompt(); <STDIN>; prompt()) {

do something
 }

Foreach Loops
The foreach loop iterates over a normal list value and sets the variable VAR to be each element of t
in turn. The variable is implicitly local to the loop and regains its former value upon exiting the loop.
variable was previously declared with my, it uses that variable instead of the global one, but it‘s s
localized to the loop. This can cause problems if you have subroutine or format declarations with
block‘s scope.

The foreach keyword is actually a synonym for the for keyword, so you can use foreach for
readability or for for brevity. If VAR is omitted, $_ is set to each value. If LIST is an actual array (
opposed to an expression returning a list value), you can modify each element of the array by mo
VAR inside the loop. That‘s because the foreach loop index variable is an implicit alias for each item i
the list that you‘re looping over.

Examples:

 for (@ary) { s/foo/bar/ }

 foreach $elem (@elements) {
$elem *= 2;

 }

 for $count (10,9,8,7,6,5,4,3,2,1,’BOOM’) {
print $count, "\n"; sleep(1);

 }
08−Oct−1996 Version 5.003 19

perlsyn Perl Programmers Reference Guide perlsyn

t‘s safer
identally
 it‘s

u can

ivalent.

ithin an
 for (1..15) { print "Merry Christmas\n"; }

 foreach $item (split(/:[\\\n:]*/, $ENV{TERMCAP})) {
print "Item: $item\n";

 }

Here‘s how a C programmer might code up a particular algorithm in Perl:

 for ($i = 0; $i < @ary1; $i++) {
for ($j = 0; $j < @ary2; $j++) {
 if ($ary1[$i] > $ary2[$j]) {

last; # can’t go to outer :−(
 }
 $ary1[$i] += $ary2[$j];
}
this is where that last takes me

 }

Whereas here‘s how a Perl programmer more comfortable with the idiom might do it:

 OUTER: foreach $wid (@ary1) {
 INNER: foreach $jet (@ary2) {

next OUTER if $wid > $jet;
$wid += $jet;

 }
 }

See how much easier this is? It‘s cleaner, safer, and faster. It‘s cleaner because it‘s less noisy. I
because if code gets added between the inner and outer loops later on, the new code won‘t be acc
executed, the next explicitly iterates the other loop rather than merely terminating the inner one. And
faster because Perl executes a foreach statement more rapidly than it would the equivalent for loop.

Basic BLOCKs and Switch Statements
A BLOCK by itself (labeled or not) is semantically equivalent to a loop that executes once. Thus yo
use any of the loop control statements in it to leave or restart the block. (Note that this is NOT true in
eval{} , sub{} , or contrary to popular belief do{} blocks, which do NOT count as loops.) The
continue block is optional.

The BLOCK construct is particularly nice for doing case structures.

 SWITCH: {
if (/^abc/) { $abc = 1; last SWITCH; }
if (/^def/) { $def = 1; last SWITCH; }
if (/^xyz/) { $xyz = 1; last SWITCH; }
$nothing = 1;

 }

There is no official switch statement in Perl, because there are already several ways to write the equ
In addition to the above, you could write

 SWITCH: {
$abc = 1, last SWITCH if /^abc/;
$def = 1, last SWITCH if /^def/;
$xyz = 1, last SWITCH if /^xyz/;
$nothing = 1;

 }

(That‘s actually not as strange as it looks once you realize that you can use loop control "operators" w
expression, That‘s just the normal C comma operator.)
20 Version 5.003 08−Oct−1996

perlsyn Perl Programmers Reference Guide perlsyn

to
or

 SWITCH: {
/^abc/ && do { $abc = 1; last SWITCH; };
/^def/ && do { $def = 1; last SWITCH; };
/^xyz/ && do { $xyz = 1; last SWITCH; };
$nothing = 1;

 }

or formatted so it stands out more as a "proper" switch statement:

 SWITCH: {
/^abc/ && do {

 $abc = 1;
 last SWITCH;

 };

/^def/ && do {
 $def = 1;
 last SWITCH;

 };

/^xyz/ && do {
 $xyz = 1;
 last SWITCH;

 };
$nothing = 1;

 }

or

 SWITCH: {
/^abc/ and $abc = 1, last SWITCH;
/^def/ and $def = 1, last SWITCH;
/^xyz/ and $xyz = 1, last SWITCH;
$nothing = 1;

 }

or even, horrors,

 if (/^abc/)
{ $abc = 1 }

 elsif (/^def/)
{ $def = 1 }

 elsif (/^xyz/)
{ $xyz = 1 }

 else
{ $nothing = 1 }

A common idiom for a switch statement is to use foreach ‘s aliasing to make a temporary assignment
$_ for convenient matching:

 SWITCH: for ($where) {
/In Card Names/ && do { push @flags, ’−e’; last; };
/Anywhere/ && do { push @flags, ’−h’; last; };
/In Rulings/ && do { last; };
die "unknown value for form variable where: ‘$where’";

 }

Another interesting approach to a switch statement is arrange for a do block to return the proper value:
08−Oct−1996 Version 5.003 21

perlsyn Perl Programmers Reference Guide perlsyn

PR,

ot be
o can‘t

ithin the
s last or
atter).

ws for
ility:

ently
en
_ in the

sms of
of

ing of

arsing
agraph.
 $amode = do {
if ($flag & O_RDONLY) { "r" }
elsif ($flag & O_WRONLY) { ($flag & O_APPEND) ? "a" : "w" }
elsif ($flag & O_RDWR) {
 if ($flag & O_CREAT) { "w+" }
 else { ($flag & O_APPEND) ? "a+" : "r+" }
}

 };

Goto
Although not for the faint of heart, Perl does support a goto statement. A loop‘s LABEL is not actually a
valid target for a goto ; it‘s just the name of the loop. There are three forms: goto−LABEL, goto−EX
and goto−&NAME.

The goto−LABEL form finds the statement labeled with LABEL and resumes execution there. It may n
used to go into any construct that requires initialization, such as a subroutine or a foreach loop. It als
be used to go into a construct that is optimized away. It can be used to go almost anywhere else w
dynamic scope, including out of subroutines, but it‘s usually better to use some other construct such a
die. The author of Perl has never felt the need to use this form of goto (in Perl, that is—C is another m

The goto−EXPR form expects a label name, whose scope will be resolved dynamically. This allo
computed gotos per FORTRAN, but isn‘t necessarily recommended if you‘re optimizing for maintainab

 goto ("FOO", "BAR", "GLARCH")[$i];

The goto−&NAME form is highly magical, and substitutes a call to the named subroutine for the curr
running subroutine. This is used by AUTOLOAD() subroutines that wish to load another subroutine and th
pretend that the other subroutine had been called in the first place (except that any modifications to @
current subroutine are propagated to the other subroutine.) After the goto , not even caller() will be
able to tell that this routine was called first.

In almost all cases like this, it‘s usually a far, far better idea to use the structured control flow mechani
next , last , or redo instead of resorting to a goto . For certain applications, the catch and throw pair
eval{} and die() for exception processing can also be a prudent approach.

PODs: Embedded Documentation
Perl has a mechanism for intermixing documentation with source code. While it‘s expecting the beginn
a new statement, if the compiler encounters a line that begins with an equal sign and a word, like this

 =head1 Here There Be Pods!

Then that text and all remaining text up through and including a line beginning with =cut will be ignored.
The format of the intervening text is described in perlpod.

This allows you to intermix your source code and your documentation text freely, as in

 =item snazzle($)

 The snazzle() function will behave in the most spectacular
 form that you can possibly imagine, not even excepting
 cybernetic pyrotechnics.

 =cut back to the compiler, nuff of this pod stuff!

 sub snazzle($) {
my $thingie = shift;
.........

 }

Note that pod translators should only look at paragraphs beginning with a pod directive (it makes p
easier), whereas the compiler actually knows to look for pod escapes even in the middle of a par
This means that the following secret stuff will be ignored by both the compiler and the translators.
22 Version 5.003 08−Oct−1996

perlsyn Perl Programmers Reference Guide perlsyn

re
 $a=3;
 =secret stuff
 warn "Neither POD nor CODE!?"
 =cut back
 print "got $a\n";

You probably shouldn‘t rely upon the warn() being podded out forever. Not all pod translators a
well−behaved in this regard, and perhaps the compiler will become pickier.
08−Oct−1996 Version 5.003 23

perlop Perl Programmers Reference Guide perlop

lowest.
n where
tions,

rs, any
n‘t really
you put

f highest

it. For

valuated
t like a
NAME
perlop − Perl operators and precedence

SYNOPSIS
Perl operators have the following associativity and precedence, listed from highest precedence to
Note that all operators borrowed from C keep the same precedence relationship with each other, eve
C‘s precedence is slightly screwy. (This makes learning Perl easier for C folks.) With very few excep
these all operate on scalar values only, not array values.

 left terms and list operators (leftward)
 left −>
 nonassoc ++ −−
 right **
 right ! ~ \ and unary + and −
 left =~ !~
 left * / % x
 left + − .
 left << >>
 nonassoc named unary operators
 nonassoc < > <= >= lt gt le ge
 nonassoc == != <=> eq ne cmp
 left &
 left | ^
 left &&
 left ||
 nonassoc ..
 right ?:
 right = += −= *= etc.
 left , =>
 nonassoc list operators (rightward)
 right not
 left and
 left or xor

In the following sections, these operators are covered in precedence order.

DESCRIPTION

Terms and List Operators (Leftward)
Any TERM is of highest precedence of Perl. These includes variables, quote and quotelike operato
expression in parentheses, and any function whose arguments are parenthesized. Actually, there are
functions in this sense, just list operators and unary operators behaving as functions because
parentheses around the arguments. These are all documented in perlfunc.

If any list operator (print() , etc.) or any unary operator (chdir() , etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be o
precedence, just like a normal function call.

In the absence of parentheses, the precedence of list operators such as print , sort , or chmod is either
very high or very low depending on whether you look at the left side of operator or the right side of
example, in

 @ary = (1, 3, sort 4, 2);
 print @ary; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas on the left are e
after. In other words, list operators tend to gobble up all the arguments that follow them, and then ac
simple TERM with regard to the preceding expression. Note that you have to be careful with parens:
24 Version 5.003 08−Oct−1996

perlop Perl Programmers Reference Guide perlop

nd

location

 and the
e

riable
value.

meric,
ble has
 pattern
nge,

2**4
les

string
 with a
is that

 name
 # These evaluate exit before doing the print:
 print($foo, exit); # Obviously not what you want.
 print $foo, exit; # Nor is this.

 # These do the print before evaluating exit:
 (print $foo), exit; # This is what you want.
 print($foo), exit; # Or this.
 print ($foo), exit; # Or even this.

Also note that

 print ($foo & 255) + 1, "\n";

probably doesn‘t do what you expect at first glance. See Named Unary Operators for more discussion of
this.

Also parsed as terms are the do {} and eval {} constructs, as well as subroutine and method calls, a
the anonymous constructors [] and {} .

See also Quote and Quotelike Operators toward the end of this section, as well as O Operators".

The Arrow Operator
Just as in C and C++, "−>" is an infix dereference operator. If the right side is either a [...] or {...}
subscript, then the left side must be either a hard or symbolic reference to an array or hash (or a
capable of holding a hard reference, if it‘s an lvalue (assignable)). See perlref.

Otherwise, the right side is a method name or a simple scalar variable containing the method name,
left side must either be an object (a blessed reference) or a class name (that is, a package name). Seperlobj.

Autoincrement and Autodecrement
"++" and "—" work as in C. That is, if placed before a variable, they increment or decrement the va
before returning the value, and if placed after, increment or decrement the variable after returning the

The autoincrement operator has a little extra built−in magic to it. If you increment a variable that is nu
or that has ever been used in a numeric context, you get a normal increment. If, however, the varia
only been used in string contexts since it was set, and has a value that is not null and matches the
/^[a−zA−Z]*[0−9]*$/, the increment is done as a string, preserving each character within its ra
with carry:

 print ++($foo = ’99’); # prints ’100’
 print ++($foo = ’a0’); # prints ’a1’
 print ++($foo = ’Az’); # prints ’Ba’
 print ++($foo = ’zz’); # prints ’aaa’

The autodecrement operator is not magical.

Exponentiation
Binary "**" is the exponentiation operator. Note that it binds even more tightly than unary minus, so −
is −(2**4), not (−2)**4. (This is implemented using C‘s pow(3) function, which actually works on doub
internally.)

Symbolic Unary Operators
Unary "!" performs logical negation, i.e. "not". See also not for a lower precedence version of this.

Unary "−" performs arithmetic negation if the operand is numeric. If the operand is an identifier, a
consisting of a minus sign concatenated with the identifier is returned. Otherwise, if the string starts
plus or minus, a string starting with the opposite sign is returned. One effect of these rules
−bareword is equivalent to "−bareword" .

Unary "~" performs bitwise negation, i.e. 1‘s complement.

Unary "+" has no effect whatsoever, even on strings. It is useful syntactically for separating a function
08−Oct−1996 Version 5.003 25

perlop Perl Programmers Reference Guide perlop

nction

t thing

ring
nt is a
stituted,

ight
 a search
d every

erand
 list in

right

 right

ntheses.

f highest
from a parenthesized expression that would otherwise be interpreted as the complete list of fu
arguments. (See examples above under List Operators.)

Unary "\" creates a reference to whatever follows it. See perlref. Do not confuse this behavior with the
behavior of backslash within a string, although both forms do convey the notion of protecting the nex
from interpretation.

Binding Operators
Binary "=~" binds a scalar expression to a pattern match. Certain operations search or modify the st$_
by default. This operator makes that kind of operation work on some other string. The right argume
search pattern, substitution, or translation. The left argument is what is supposed to be searched, sub
or translated instead of the default $_. The return value indicates the success of the operation. (If the r
argument is an expression rather than a search pattern, substitution, or translation, it is interpreted as
pattern at run time. This is less efficient than an explicit search, since the pattern must be compile
time the expression is evaluated—unless you‘ve used /o .)

Binary "!~" is just like "=~" except the return value is negated in the logical sense.

Multiplicative Operators
Binary "*" multiplies two numbers.

Binary "/" divides two numbers.

Binary "%" computes the modulus of the two numbers.

Binary "x" is the repetition operator. In a scalar context, it returns a string consisting of the left op
repeated the number of times specified by the right operand. In a list context, if the left operand is a
parens, it repeats the list.

 print ’−’ x 80; # print row of dashes

 print "\t" x ($tab/8), ’ ’ x ($tab%8); # tab over

 @ones = (1) x 80; # a list of 80 1’s
 @ones = (5) x @ones; # set all elements to 5

Additive Operators
Binary "+" returns the sum of two numbers.

Binary "−" returns the difference of two numbers.

Binary "." concatenates two strings.

Shift Operators
Binary "<<" returns the value of its left argument shifted left by the number of bits specified by the
argument. Arguments should be integers.

Binary ">>" returns the value of its left argument shifted right by the number of bits specified by the
argument. Arguments should be integers.

Named Unary Operators
The various named unary operators are treated as functions with one argument, with optional pare
These include the filetest operators, like −f , −M, etc. See perlfunc.

If any list operator (print() , etc.) or any unary operator (chdir() , etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be o
precedence, just like a normal function call. Examples:

 chdir $foo || die; # (chdir $foo) || die
 chdir($foo) || die; # (chdir $foo) || die
 chdir ($foo) || die; # (chdir $foo) || die
 chdir +($foo) || die; # (chdir $foo) || die
26 Version 5.003 08−Oct−1996

perlop Perl Programmers Reference Guide perlop

ual to,

l to, or

right
ated.

right
ated.

alue
t be:
but, because * is higher precedence than ||:

 chdir $foo * 20; # chdir ($foo * 20)
 chdir($foo) * 20; # (chdir $foo) * 20
 chdir ($foo) * 20; # (chdir $foo) * 20
 chdir +($foo) * 20; # chdir ($foo * 20)

 rand 10 * 20; # rand (10 * 20)
 rand(10) * 20; # (rand 10) * 20
 rand (10) * 20; # (rand 10) * 20
 rand +(10) * 20; # rand (10 * 20)

See also "List Operators".

Relational Operators
Binary "<" returns true if the left argument is numerically less than the right argument.

Binary ">" returns true if the left argument is numerically greater than the right argument.

Binary "<=" returns true if the left argument is numerically less than or equal to the right argument.

Binary ">=" returns true if the left argument is numerically greater than or equal to the right argument.

Binary "lt" returns true if the left argument is stringwise less than the right argument.

Binary "gt" returns true if the left argument is stringwise greater than the right argument.

Binary "le" returns true if the left argument is stringwise less than or equal to the right argument.

Binary "ge" returns true if the left argument is stringwise greater than or equal to the right argument.

Equality Operators
Binary "==" returns true if the left argument is numerically equal to the right argument.

Binary "!=" returns true if the left argument is numerically not equal to the right argument.

Binary "<=>" returns −1, 0, or 1 depending on whether the left argument is numerically less than, eq
or greater than the right argument.

Binary "eq" returns true if the left argument is stringwise equal to the right argument.

Binary "ne" returns true if the left argument is stringwise not equal to the right argument.

Binary "cmp" returns −1, 0, or 1 depending on whether the left argument is stringwise less than, equa
greater than the right argument.

Bitwise And
Binary "&" returns its operators ANDed together bit by bit.

Bitwise Or and Exclusive Or
Binary "|" returns its operators ORed together bit by bit.

Binary "^" returns its operators XORed together bit by bit.

C−style Logical And
Binary "&&" performs a short−circuit logical AND operation. That is, if the left operand is false, the
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evalu

C−style Logical Or
Binary "||" performs a short−circuit logical OR operation. That is, if the left operand is true, the
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evalu

The || and && operators differ from C‘s in that, rather than returning 0 or 1, they return the last v
evaluated. Thus, a reasonably portable way to find out the home directory (assuming it‘s not "0") migh
08−Oct−1996 Version 5.003 27

perlop Perl Programmers Reference Guide perlop

he
at you

 a list
useful
rrent
 like

tes the
ean
tays true
ome
e on the
ht
not
rator is

ll
or each
 doesn‘t
ou can
rand of

nds are
 $home = $ENV{’HOME’} || $ENV{’LOGDIR’} ||
(getpwuid($<))[7] || die "You’re homeless!\n";

As more readable alternatives to && and || , Perl provides "and" and "or" operators (see below). T
short−circuit behavior is identical. The precedence of "and" and "or" is much lower, however, so th
can safely use them after a list operator without the need for parentheses:

 unlink "alpha", "beta", "gamma"
 or gripe(), next LINE;

With the C−style operators that would have been written like this:

 unlink("alpha", "beta", "gamma")
 || (gripe(), next LINE);

Range Operator
Binary ".." is the range operator, which is really two different operators depending on the context. In
context, it returns an array of values counting (by ones) from the left value to the right value. This is
for writing for (1..10) loops and for doing slice operations on arrays. Be aware that under the cu
implementation, a temporary array is created, so you‘ll burn a lot of memory if you write something
this:

 for (1 .. 1_000_000) {
code

 }

In a scalar context, ".." returns a boolean value. The operator is bistable, like a flip−flop, and emula
line−range (comma) operator of sed, awk, and various editors. Each ".." operator maintains its own bool
state. It is false as long as its left operand is false. Once the left operand is true, the range operator s
until the right operand is true, AFTER which the range operator becomes false again. (It doesn‘t bec
false till the next time the range operator is evaluated. It can test the right operand and become fals
same evaluation it became true (as in awk), but it still returns true once. If you don‘t want it to test the rig
operand till the next evaluation (as in sed), use three dots ("...") instead of two.) The right operand is
evaluated while the operator is in the "false" state, and the left operand is not evaluated while the ope
in the "true" state. The precedence is a little lower than || and &&. The value returned is either the nu
string for false, or a sequence number (beginning with 1) for true. The sequence number is reset f
range encountered. The final sequence number in a range has the string "E0" appended to it, which
affect its numeric value, but gives you something to search for if you want to exclude the endpoint. Y
exclude the beginning point by waiting for the sequence number to be greater than 1. If either ope
scalar ".." is a numeric literal, that operand is implicitly compared to the $. variable, the current line
number. Examples:

As a scalar operator:

 if (101 .. 200) { print; } # print 2nd hundred lines
 next line if (1 .. /^$/); # skip header lines
 s/^/> / if (/^$/ .. eof()); # quote body

As a list operator:

 for (101 .. 200) { print; } # print $_ 100 times
 @foo = @foo[$[.. $#foo]; # an expensive no−op
 @foo = @foo[$#foo−4 .. $#foo]; # slice last 5 items

The range operator (in a list context) makes use of the magical autoincrement algorithm if the opera
strings. You can say

 @alphabet = (’A’ .. ’Z’);

to get all the letters of the alphabet, or
28 Version 5.003 08−Oct−1996

perlop Perl Programmers Reference Guide perlop

rement

ment
ed. For

 you can

 from

lent to
fying a
 $hexdigit = (0 .. 9, ’a’ .. ’f’)[$num & 15];

to get a hexadecimal digit, or

 @z2 = (’01’ .. ’31’); print $z2[$mday];

to get dates with leading zeros. If the final value specified is not in the sequence that the magical inc
would produce, the sequence goes until the next value would be longer than the final value specified.

Conditional Operator
Ternary "?:" is the conditional operator, just as in C. It works much like an if−then−else. If the argu
before the ? is true, the argument before the : is returned, otherwise the argument after the : is return
example:

 printf "I have %d dog%s.\n", $n,
 ($n == 1) ? ’’ : "s";

Scalar or list context propagates downward into the 2nd or 3rd argument, whichever is selected.

 $a = $ok ? $b : $c; # get a scalar
 @a = $ok ? @b : @c; # get an array
 $a = $ok ? @b : @c; # oops, that’s just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are legal lvalues (meaning that
assign to them):

 ($a_or_b ? $a : $b) = $c;

This is not necessarily guaranteed to contribute to the readability of your program.

Assignment Operators
"=" is the ordinary assignment operator.

Assignment operators work as in C. That is,

 $a += 2;

is equivalent to

 $a = $a + 2;

although without duplicating any side effects that dereferencing the lvalue might trigger, such as
tie() . Other assignment operators work similarly. The following are recognized:

 **= += *= &= <<= &&=
 −= /= |= >>= ||=
 .= %= ^=

 x=

Note that while these are grouped by family, they all have the precedence of assignment.

Unlike in C, the assignment operator produces a valid lvalue. Modifying an assignment is equiva
doing the assignment and then modifying the variable that was assigned to. This is useful for modi
copy of something, like this:

 ($tmp = $global) =~ tr [A−Z] [a−z];

Likewise,

 ($a += 2) *= 3;

is equivalent to

 $a += 2;
 $a *= 3;
08−Oct−1996 Version 5.003 29

perlop Perl Programmers Reference Guide perlop

 away,

ments
ring.

arated
r", and

r the

o
aluated

pt for
y if the

urse.

 kinds
 these
lowing
aracter
Comma Operator
Binary "," is the comma operator. In a scalar context it evaluates its left argument, throws that value
then evaluates its right argument and returns that value. This is just like C‘s comma operator.

In a list context, it‘s just the list argument separator, and inserts both its arguments into the list.

The => digraph is mostly just a synonym for the comma operator. It‘s useful for documenting argu
that come in pairs. As of release 5.001, it also forces any word to the left of it to be interpreted as a st

List Operators (Rightward)
On the right side of a list operator, it has very low precedence, such that it controls all comma−sep
expressions found there. The only operators with lower precedence are the logical operators "and", "o
"not", which may be used to evaluate calls to list operators without the need for extra parentheses:

 open HANDLE, "filename"
or die "Can’t open: $!\n";

See also discussion of list operators in List Operators (Leftward).

Logical Not
Unary "not" returns the logical negation of the expression to its right. It‘s the equivalent of "!" except fo
very low precedence.

Logical And
Binary "and" returns the logical conjunction of the two surrounding expressions. It‘s equivalent t&&
except for the very low precedence. This means that it short−circuits: i.e. the right expression is ev
only if the left expression is true.

Logical or and Exclusive Or
Binary "or" returns the logical disjunction of the two surrounding expressions. It‘s equivalent to || exce
the very low precedence. This means that it short−circuits: i.e. the right expression is evaluated onl
left expression is false.

Binary "xor" returns the exclusive−OR of the two surrounding expressions. It cannot short circuit, of co

C Operators Missing From Perl
Here is what C has that Perl doesn‘t:

unary & Address−of operator. (But see the "\" operator for taking a reference.)

unary * Dereference−address operator. (Perl‘s prefix dereferencing operators are typed: $, @, %, and
&.)

(TYPE) Type casting operator.

Quote and Quotelike Operators
While we usually think of quotes as literal values, in Perl they function as operators, providing various
of interpolating and pattern matching capabilities. Perl provides customary quote characters for
behaviors, but also provides a way for you to choose your quote character for any of them. In the fol
table, a {} represents any pair of delimiters you choose. Non−bracketing delimiters use the same ch
fore and aft, but the 4 sorts of brackets (round, angle, square, curly) will all nest.

 Customary Generic Meaning Interpolates
’’ q{} Literal no
"" qq{} Literal yes
‘‘ qx{} Command yes

qw{} Word list no
// m{} Pattern match yes

 s{}{} Substitution yes
tr{}{} Translation no
30 Version 5.003 08−Oct−1996

perlop Perl Programmers Reference Guide perlop

 second
ern from

ations
de

 the
ence

 If no
h
the

ul for
For constructs that do interpolation, variables beginning with "$" or "@" are interpolated, as are the
following sequences:

 \t tab (HT, TAB)
 \n newline (LF, NL)
 \r return (CR)
 \f form feed (FF)
 \b backspace (BS)
 \a alarm (bell) (BEL)
 \e escape (ESC)
 \033 octal char
 \x1b hex char
 \c[control char
 \l lowercase next char
 \u uppercase next char
 \L lowercase till \E
 \U uppercase till \E
 \E end case modification
 \Q quote regexp metacharacters till \E

Patterns are subject to an additional level of interpretation as a regular expression. This is done as a
pass, after variables are interpolated, so that regular expressions may be incorporated into the patt
the variables. If this is not what you want, use \Q to interpolate a variable literally.

Apart from the above, there are no multiple levels of interpolation. In particular, contrary to the expect
of shell programmers, backquotes do NOT interpolate within double quotes, nor do single quotes impe
evaluation of variables when used within double quotes.

Regexp Quotelike Operators
Here are the quotelike operators that apply to pattern matching and related activities.

?PATTERN?
This is just like the /pattern/ search, except that it matches only once between calls to
reset() operator. This is a useful optimization when you only want to see the first occurr
of something in each file of a set of files, for instance. Only ?? patterns local to the current
package are reset.

This usage is vaguely deprecated, and may be removed in some future version of Perl.

m/PATTERN/gimosx
/PATTERN/gimosx

Searches a string for a pattern match, and in a scalar context returns true (1) or false (‘’).
string is specified via the =~ or !~ operator, the $_ string is searched. (The string specified wit
=~ need not be an lvalue—it may be the result of an expression evaluation, but remember =~
binds rather tightly.) See also perlre.

Options are:

 g Match globally, i.e. find all occurrences.
 i Do case−insensitive pattern matching.
 m Treat string as multiple lines.
 o Only compile pattern once.
 s Treat string as single line.
 x Use extended regular expressions.

If "/" is the delimiter then the initial m is optional. With the m you can use any pair of
non−alphanumeric, non−whitespace characters as delimiters. This is particularly usef
matching Unix path names that contain "/", to avoid LTS (leaning toothpick syndrome).
08−Oct−1996 Version 5.003 31

perlop Perl Programmers Reference Guide perlop

very
e
add a
seful
ver,
 you

ion is

of the

 null
f (1) is

gns
e

sible
 of all
re no

und the

and
ft off
tion of
PATTERN may contain variables, which will be interpolated (and the pattern recompiled) e
time the pattern search is evaluated. (Note that $) and $| might not be interpolated becaus
they look like end−of−string tests.) If you want such a pattern to be compiled only once,
/o after the trailing delimiter. This avoids expensive run−time recompilations, and is u
when the value you are interpolating won‘t change over the life of the script. Howe
mentioning /o constitutes a promise that you won‘t change the variables in the pattern. If
change them, Perl won‘t even notice.

If the PATTERN evaluates to a null string, the last successfully executed regular express
used instead.

If used in a context that requires a list value, a pattern match returns a list consisting
subexpressions matched by the parentheses in the pattern, i.e. ($1, $2, $3...). (Note that
here $1 etc. are also set, and that this differs from Perl 4‘s behavior.) If the match fails, a
array is returned. If the match succeeds, but there were no parentheses, a list value o
returned.

Examples:

 open(TTY, ’/dev/tty’);
 <TTY> =~ /^y/i && foo(); # do foo if desired

 if (/Version: *([0−9.]*)/) { $version = $1; }

 next if m#^/usr/spool/uucp#;

 # poor man’s grep
 $arg = shift;
 while (<>) {

print if /$arg/o; # compile only once
 }

 if (($F1, $F2, $Etc) = ($foo =~ /^(\S+)\s+(\S+)\s*(.*)/))

This last example splits $foo into the first two words and the remainder of the line, and assi
those three fields to $F1, $F2 and $Etc. The conditional is true if any variables wer
assigned, i.e. if the pattern matched.

The /g modifier specifies global pattern matching—that is, matching as many times as pos
within the string. How it behaves depends on the context. In a list context, it returns a list
the substrings matched by all the parentheses in the regular expression. If there a
parentheses, it returns a list of all the matched strings, as if there were parentheses aro
whole pattern.

In a scalar context, m//g iterates through the string, returning TRUE each time it matches,
FALSE when it eventually runs out of matches. (In other words, it remembers where it le
last time and restarts the search at that point. You can actually find the current match posi
a string using the pos() function—see perlfunc.) If you modify the string in any way, the match
position is reset to the beginning. Examples:

 # list context
 ($one,$five,$fifteen) = (‘uptime‘ =~ /(\d+\.\d+)/g);

 # scalar context
 $/ = ""; $* = 1; # $* deprecated in Perl 5
 while ($paragraph = <>) {

while ($paragraph =~ /[a−z][’")]*[.!?]+[’")]*\s/g) {
 $sentences++;
}

 }
 print "$sentences\n";
32 Version 5.003 08−Oct−1996

perlop Perl Programmers Reference Guide perlop

er or

andard
ntially

 word

xt and
mpty

.
or an

ERN

e. If
e
ession
q/STRING/
‘STRING’

A single−quoted, literal string. Backslashes are ignored, unless followed by the delimit
another backslash, in which case the delimiter or backslash is interpolated.

 $foo = q!I said, "You said, ’She said it.’"!;
 $bar = q(’This is it.’);

qq/STRING/
"STRING"

A double−quoted, interpolated string.

 $_ .= qq
 (*** The previous line contains the naughty word "$1".\n)

if /(tcl|rexx|python)/; # :−)

qx/STRING/
‘STRING‘ A string which is interpolated and then executed as a system command. The collected st

output of the command is returned. In scalar context, it comes back as a single (pote
multi−line) string. In list context, returns a list of lines (however you‘ve defined lines with $/ or
$INPUT_RECORD_SEPARATOR).

 $today = qx{ date };

See O Operators for more discussion.

qw/STRING/
Returns a list of the words extracted out of STRING, using embedded whitespace as the
delimiters. It is exactly equivalent to

 split(’ ’, q/STRING/);

Some frequently seen examples:

 use POSIX qw(setlocale localeconv)
 @EXPORT = qw(foo bar baz);

s/PATTERN/REPLACEMENT/egimosx
Searches a string for a pattern, and if found, replaces that pattern with the replacement te
returns the number of substitutions made. Otherwise it returns false (specifically, the e
string).

If no string is specified via the =~ or !~ operator, the $_ variable is searched and modified
(The string specified with =~ must be a scalar variable, an array element, a hash element,
assignment to one of those, i.e. an lvalue.)

If the delimiter chosen is single quote, no variable interpolation is done on either the PATT
or the REPLACEMENT. Otherwise, if the PATTERN contains a $ that looks like a variable
rather than an end−of−string test, the variable will be interpolated into the pattern at run−tim
you only want the pattern compiled once the first time the variable is interpolated, use th/o
option. If the pattern evaluates to a null string, the last successfully executed regular expr
is used instead. See perlre for further explanation on these.

Options are:

 e Evaluate the right side as an expression.
 g Replace globally, i.e. all occurrences.
 i Do case−insensitive pattern matching.
 m Treat string as multiple lines.
 o Only compile pattern once.
 s Treat string as single line.
08−Oct−1996 Version 5.003 33

perlop Perl Programmers Reference Guide perlop

es are

 is not
 the
, e.g.
er
x

on

nding
 x Use extended regular expressions.

Any non−alphanumeric, non−whitespace delimiter may replace the slashes. If single quot
used, no interpretation is done on the replacement string (the /e modifier overrides this,
however). Unlike Perl 4, Perl 5 treats backticks as normal delimiters; the replacement text
evaluated as a command. If the PATTERN is delimited by bracketing quotes,
REPLACEMENT has its own pair of quotes, which may or may not be bracketing quotes
s(foo)(bar) or s<foo>/bar/ . A /e will cause the replacement portion to be interpret
as a full−fledged Perl expression and eval() ed right then and there. It is, however, synta
checked at compile−time.

Examples:

 s/\bgreen\b/mauve/g; # don’t change wintergreen

 $path =~ s|/usr/bin|/usr/local/bin|;

 s/Login: $foo/Login: $bar/; # run−time pattern

 ($foo = $bar) =~ s/this/that/;

 $count = ($paragraph =~ s/Mister\b/Mr./g);

 $_ = ’abc123xyz’;
 s/\d+/$&*2/e; # yields ’abc246xyz’
 s/\d+/sprintf("%5d",$&)/e; # yields ’abc 246xyz’
 s/\w/$& x 2/eg; # yields ’aabbcc 224466xxyyzz’

 s/%(.)/$percent{$1}/g; # change percent escapes; no /e
 s/%(.)/$percent{$1} || $&/ge; # expr now, so /e
 s/^=(\w+)/&pod($1)/ge; # use function call

 # /e’s can even nest; this will expand
 # simple embedded variables in $_
 s/(\$\w+)/$1/eeg;

 # Delete C comments.
 $program =~ s {

/* # Match the opening delimiter.
.*? # Match a minimal number of characters.
*/ # Match the closing delimiter.

 } []gsx;

 s/^\s*(.*?)\s*$/$1/; # trim white space

 s/([^]*) *([^]*)/$2 $1/; # reverse 1st two fields

Note the use of $ instead of \ in the last example. Unlike sed, we only use the \<digit> form in
the left hand side. Anywhere else it‘s $<digit >.

Occasionally, you can‘t just use a /g to get all the changes to occur. Here are two comm
cases:

 # put commas in the right places in an integer
 1 while s/(.*\d)(\d\d\d)/$1,$2/g; # perl4
 1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/g; # perl5

 # expand tabs to 8−column spacing
 1 while s/\t+/’ ’ x (length($&)*8 − length($‘)%8)/e;

tr/SEARCHLIST/REPLACEMENTLIST/cds
y/SEARCHLIST/REPLACEMENTLIST/cds

Translates all occurrences of the characters found in the search list with the correspo
34 Version 5.003 08−Oct−1996

perlop Perl Programmers Reference Guide perlop

. If no
h
lvalue.)

 not

r of

ter are

ied.
r is
is
racter

or the
want

ccents)
nd, and
 single
character in the replacement list. It returns the number of characters replaced or deleted
string is specified via the =~ or !~ operator, the $_ string is translated. (The string specified wit
=~ must be a scalar variable, an array element, or an assignment to one of those, i.e. an
For sed devotees, y is provided as a synonym for tr . If the SEARCHLIST is delimited by
bracketing quotes, the REPLACEMENTLIST has its own pair of quotes, which may or may
be bracketing quotes, e.g. tr[A−Z][a−z] or tr(+−*/)/ABCD/ .

Options:

 c Complement the SEARCHLIST.
 d Delete found but unreplaced characters.
 s Squash duplicate replaced characters.

If the /c modifier is specified, the SEARCHLIST character set is complemented. If the/d
modifier is specified, any characters specified by SEARCHLIST not found in
REPLACEMENTLIST are deleted. (Note that this is slightly more flexible than the behavio
some tr programs, which delete anything they find in the SEARCHLIST, period.) If the /s
modifier is specified, sequences of characters that were translated to the same charac
squashed down to a single instance of the character.

If the /d modifier is used, the REPLACEMENTLIST is always interpreted exactly as specif
Otherwise, if the REPLACEMENTLIST is shorter than the SEARCHLIST, the final characte
replicated till it is long enough. If the REPLACEMENTLIST is null, the SEARCHLIST
replicated. This latter is useful for counting characters in a class or for squashing cha
sequences in a class.

Examples:

 $ARGV[1] =~ tr/A−Z/a−z/; # canonicalize to lower case

 $cnt = tr/*/*/; # count the stars in $_

 $cnt = $sky =~ tr/*/*/; # count the stars in $sky

 $cnt = tr/0−9//; # count the digits in $_

 tr/a−zA−Z//s; # bookkeeper −> bokeper

 ($HOST = $host) =~ tr/a−z/A−Z/;

 tr/a−zA−Z/ /cs; # change non−alphas to single space

 tr [\200−\377]
 [\000−\177]; # delete 8th bit

If multiple translations are given for a character, only the first one is used:

 tr/AAA/XYZ/

will translate any A to X.

Note that because the translation table is built at compile time, neither the SEARCHLIST n
REPLACEMENTLIST are subjected to double quote interpolation. That means that if you
to use variables, you must use an eval() :

 eval "tr/$oldlist/$newlist/";
 die $@ if $@;

 eval "tr/$oldlist/$newlist/, 1" or die $@;

I/O Operators
There are several I/O operators you should know about. A string is enclosed by backticks (grave a
first undergoes variable substitution just like a double quoted string. It is then interpreted as a comma
the output of that command is the value of the pseudo−literal, like in a shell. In a scalar context, a
08−Oct−1996 Version 5.003 35

perlop Perl Programmers Reference Guide perlop

 line of
 the

nes.
ion. To
cks is

never
lue to

e
ing to
 are

r than

s is

s: the

s. The

d put

> as

s you
der

 your
string consisting of all the output is returned. In a list context, a list of values is returned, one for each
output. (You can set $/ to use a different line terminator.) The command is executed each time
pseudo−literal is evaluated. The status value of the command is returned in $? (see perlvar for the
interpretation of $?). Unlike in csh, no translation is done on the return data—newlines remain newli
Unlike in any of the shells, single quotes do not hide variable names in the command from interpretat
pass a $ through to the shell you need to hide it with a backslash. The generalized form of backti
qx// . (Because backticks always undergo shell expansion as well, see perlsec for security concerns.)

Evaluating a filehandle in angle brackets yields the next line from that file (newline included, so it‘s
false until end of file, at which time an undefined value is returned). Ordinarily you must assign that va
a variable, but there is one situation where an automatic assignment happens. If and ONLY if the input
symbol is the only thing inside the conditional of a while loop, the value is automatically assigned to th
variable $_. The assigned value is then tested to see if it is defined. (This may seem like an odd th
you, but you‘ll use the construct in almost every Perl script you write.) Anyway, the following lines
equivalent to each other:

 while (defined($_ = <STDIN>)) { print; }
 while (<STDIN>) { print; }
 for (;<STDIN>;) { print; }
 print while defined($_ = <STDIN>);
 print while <STDIN>;

The filehandles STDIN, STDOUT and STDERR are predefined. (The filehandles stdin , stdout and
stderr will also work except in packages, where they would be interpreted as local identifiers rathe
global.) Additional filehandles may be created with the open() function. See open() for details on this.

If a <FILEHANDLE> is used in a context that is looking for a list, a list consisting of all the input line
returned, one line per list element. It‘s easy to make a LARGE data space this way, so use with care.

The null filehandle <> is special and can be used to emulate the behavior of sed and awk. Input from <>
comes either from standard input, or from each file listed on the command line. Here‘s how it work
first time <> is evaluated, the @ARGV array is checked, and if it is null, $ARGV[0] is set to "−", which
when opened gives you standard input. The @ARGV array is then processed as a list of filename
loop

 while (<>) {
... # code for each line

 }

is equivalent to the following Perl−like pseudo code:

 unshift(@ARGV, ’−’) if $#ARGV < $[;
 while ($ARGV = shift) {

open(ARGV, $ARGV);
while (<ARGV>) {
 ... # code for each line
}

 }

except that it isn‘t so cumbersome to say, and will actually work. It really does shift array @ARGV an
the current filename into variable $ARGV. It also uses filehandle ARGV internally—<> is just a synonym
for <ARGV>, which is magical. (The pseudo code above doesn‘t work because it treats <ARGV
non−magical.)

You can modify @ARGV before the first <> as long as the array ends up containing the list of filename
really want. Line numbers ($.) continue as if the input were one big happy file. (But see example un
eof() for how to reset line numbers on each file.)

If you want to set @ARGV to your own list of files, go right ahead. If you want to pass switches into
script, you can use one of the Getopts modules or put a loop on the front like this:
36 Version 5.003 08−Oct−1996

perlop Perl Programmers Reference Guide perlop

ssing

me or
the next

 older
 glob:

s in

 before
 In a
 you‘ve
, it is
 while ($_ = $ARGV[0], /^−/) {
shift;

 last if /^−−$/;
if (/^−D(.*)/) { $debug = $1 }
if (/^−v/) { $verbose++ }
... # other switches

 }
 while (<>) {

... # code for each line
 }

The <> symbol will return FALSE only once. If you call it again after this it will assume you are proce
another @ARGV list, and if you haven‘t set @ARGV, will input from STDIN.

If the string inside the angle brackets is a reference to a scalar variable (e.g. <$foo>), then that variable
contains the name of the filehandle to input from, or a reference to the same. For example:

 $fh = *STDIN;
 $line = <$fh>;

If the string inside angle brackets is not a filehandle or a scalar variable containing a filehandle na
reference, then it is interpreted as a filename pattern to be globbed, and either a list of filenames or
filename in the list is returned, depending on context. One level of $ interpretation is done first, but you
can‘t say <$foo> because that‘s an indirect filehandle as explained in the previous paragraph. (In
versions of Perl, programmers would insert curly brackets to force interpretation as a filename
<${foo}>. These days, it‘s considered cleaner to call the internal function directly as glob($foo),
which is probably the right way to have done it in the first place.) Example:

 while (<*.c>) {
chmod 0644, $_;

 }

is equivalent to

 open(FOO, "echo *.c | tr −s ’ \t\r\f’ ’\\012\\012\\012\\012’|");
 while (<FOO>) {

chop;
chmod 0644, $_;

 }

In fact, it‘s currently implemented that way. (Which means it will not work on filenames with space
them unless you have csh(1) on your machine.) Of course, the shortest way to do the above is:

 chmod 0644, <*.c>;

Because globbing invokes a shell, it‘s often faster to call readdir() yourself and just do your own
grep() on the filenames. Furthermore, due to its current implementation of using a shell, the glob()
routine may get "Arg list too long" errors (unless you‘ve installed tcsh(1L) as /bin/csh).

A glob only evaluates its (embedded) argument when it is starting a new list. All values must be read
it will start over. In a list context this isn‘t important, because you automatically get them all anyway.
scalar context, however, the operator returns the next value each time it is called, or a FALSE value if
just run out. Again, FALSE is returned only once. So if you‘re expecting a single value from a glob
much better to say

 ($file) = <blurch*>;

than

 $file = <blurch*>;
08−Oct−1996 Version 5.003 37

perlop Perl Programmers Reference Guide perlop

 that all
enation
n also

e to.

losing
because the latter will alternate between returning a filename and returning FALSE.

It you‘re trying to do variable interpolation, it‘s definitely better to use the glob() function, because the
older notation can cause people to become confused with the indirect filehandle notation.

 @files = glob("$dir/*.[ch]");
 @files = glob($files[$i]);

Constant Folding
Like C, Perl does a certain amount of expression evaluation at compile time, whenever it determines
of the arguments to an operator are static and have no side effects. In particular, string concat
happens at compile time between literals that don‘t do variable substitution. Backslash interpretatio
happens at compile time. You can say

 ’Now is the time for all’ . "\n" .
’good men to come to.’

and this all reduces to one string internally. Likewise, if you say

 foreach $file (@filenames) {
if (−s $file > 5 + 100 * 2**16) { ... }

 }

the compiler will pre−compute the number that expression represents so that the interpreter won‘t hav

Integer arithmetic
By default Perl assumes that it must do most of its arithmetic in floating point. But by saying

 use integer;

you may tell the compiler that it‘s okay to use integer operations from here to the end of the enc
BLOCK. An inner BLOCK may countermand this by saying

 no integer;

which lasts until the end of that BLOCK.
38 Version 5.003 08−Oct−1996

perlre Perl Programmers Reference Guide perlre

lly

regular

e a
ing the

nore
 regular
ing
ing Perl

 8 regexp
table

mption

ithin
is by

he

odule.
NAME
perlre − Perl regular expressions

DESCRIPTION
This page describes the syntax of regular expressions in Perl. For a description of how to actuause
regular expressions in matching operations, plus various examples of the same, see m// and s/// in perlop.

The matching operations can have various modifiers, some of which relate to the interpretation of the
expression inside. These are:

 i Do case−insensitive pattern matching.
 m Treat string as multiple lines.
 s Treat string as single line.
 x Extend your pattern’s legibility with whitespace and comments.

These are usually written as "the /x modifier", even though the delimiter in question might not actually b
slash. In fact, any of these modifiers may also be embedded within the regular expression itself us
new (?...) construct. See below.

The /x modifier itself needs a little more explanation. It tells the regular expression parser to ig
whitespace that is not backslashed or within a character class. You can use this to break up your
expression into (slightly) more readable parts. The # character is also treated as a metacharacter introduc
a comment, just as in ordinary Perl code. Taken together, these features go a long way towards mak
5 a readable language. See the C comment deletion code in perlop.

Regular Expressions
The patterns used in pattern matching are regular expressions such as those supplied in the Version
routines. (In fact, the routines are derived (distantly) from Henry Spencer‘s freely redistribu
reimplementation of the V8 routines.) See Version 8 Regular Expressions for details.

In particular the following metacharacters have their standard egrep−ish meanings:

 \ Quote the next metacharacter
 ^ Match the beginning of the line
 . Match any character (except newline)
 $ Match the end of the line (or before newline at the end)
 | Alternation
 () Grouping
 [] Character class

By default, the "^" character is guaranteed to match only at the beginning of the string, the "$" character
only at the end (or before the newline at the end) and Perl does certain optimizations with the assu
that the string contains only one line. Embedded newlines will not be matched by "^" or "$". You may,
however, wish to treat a string as a multi−line buffer, such that the "^" will match after any newline w
the string, and "$" will match before any newline. At the cost of a little more overhead, you can do th
using the /m modifier on the pattern match operator. (Older programs did this by setting $*, but this
practice is deprecated in Perl 5.)

To facilitate multi−line substitutions, the "." character never matches a newline unless you use t/s
modifier, which tells Perl to pretend the string is a single line—even if it isn‘t. The /s modifier also
overrides the setting of $*, in case you have some (badly behaved) older code that sets it in another m

The following standard quantifiers are recognized:

 * Match 0 or more times
 + Match 1 or more times
 ? Match 1 or 0 times
08−Oct−1996 Version 5.003 39

perlre Perl Programmers Reference Guide perlre

fier is

ithout
atch as

 If you
hem.

eed to
f a
 {n} Match exactly n times
 {n,} Match at least n times
 {n,m} Match at least n but not more than m times

(If a curly bracket occurs in any other context, it is treated as a regular character.) The "*" modi
equivalent to {0,} , the "+" modifier to {1,} , and the "?" modifier to {0,1} . n and m are limited to
integral values less than 65536.

By default, a quantified subpattern is "greedy", that is, it will match as many times as possible w
causing the rest of the pattern not to match. The standard quantifiers are all "greedy", in that they m
many occurrences as possible (given a particular starting location) without causing the pattern to fail.
want it to match the minimum number of times possible, follow the quantifier with a "?" after any of t
Note that the meanings don‘t change, just the "gravity":

 *? Match 0 or more times
 +? Match 1 or more times
 ?? Match 0 or 1 time
 {n}? Match exactly n times
 {n,}? Match at least n times
 {n,m}? Match at least n but not more than m times

Since patterns are processed as double quoted strings, the following also work:

 \t tab (HT, TAB)
 \n newline (LF, NL)
 \r return (CR)
 \f form feed (FF)
 \a alarm (bell) (BEL)
 \e escape (think troff) (ESC)
 \033 octal char (think of a PDP−11)
 \x1B hex char
 \c[control char
 \l lowercase next char (think vi)
 \u uppercase next char (think vi)
 \L lowercase till \E (think vi)
 \U uppercase till \E (think vi)
 \E end case modification (think vi)
 \Q quote regexp metacharacters till \E

In addition, Perl defines the following:

 \w Match a "word" character (alphanumeric plus "_")
 \W Match a non−word character
 \s Match a whitespace character
 \S Match a non−whitespace character
 \d Match a digit character
 \D Match a non−digit character

Note that \w matches a single alphanumeric character, not a whole word. To match a word you‘d n
say \w+ . You may use \w , \W, \s , \S , \d and \D within character classes (though not as either end o
range).

Perl defines the following zero−width assertions:

 \b Match a word boundary
 \B Match a non−(word boundary)
 \A Match only at beginning of string
 \Z Match only at end of string (or before newline at the end)
 \G Match only where previous m//g left off
40 Version 5.003 08−Oct−1996

perlre Perl Programmers Reference Guide perlre

 of the
ry.)

ring,

he
ion
ope of
ext

ern (e.g.

s
ings if
ckward
 through

eric. So
ot a
you are

te

s with a
fter the

, a
A word boundary (\b) is defined as a spot between two characters that has a \w on one side of it and and a
\W on the other side of it (in either order), counting the imaginary characters off the beginning and end
string as matching a \W. (Within character classes \b represents backspace rather than a word bounda
The \A and \Z are just like "^" and "$" except that they won‘t match multiple times when the /m modifier
is used, while "^" and "$" will match at every internal line boundary. To match the actual end of the st
not ignoring newline, you can use \Z(?!\n) .

When the bracketing construct (...) is used, \<digit> matches the digit‘th substring. Outside of t
pattern, always use "$" instead of "\" in front of the digit. (While the \<digit> notation can on rare occas
work outside the current pattern, this should not be relied upon. See the WARNING below.) The sc
$<digit> (and $‘, $&, and $’) extends to the end of the enclosing BLOCK or eval string, or to the n
successful pattern match, whichever comes first. If you want to use parentheses to delimit a subpatt
a set of alternatives) without saving it as a subpattern, follow the (with a ?:.

You may have as many parentheses as you wish. If you have more than 9 substrings, the variable$10,
$11, ... refer to the corresponding substring. Within the pattern, \10, \11, etc. refer back to substr
there have been at least that many left parens before the backreference. Otherwise (for ba
compatibility) \10 is the same as \010, a backspace, and \11 the same as \011, a tab. And so on. (\1
\9 are always backreferences.)

$+ returns whatever the last bracket match matched. $& returns the entire matched string. ($0 used to
return the same thing, but not any more.) $‘ returns everything before the matched string. $’ returns
everything after the matched string. Examples:

 s/^([^]*) *([^]*)/$2 $1/; # swap first two words

 if (/Time: (..):(..):(..)/) {
$hours = $1;
$minutes = $2;
$seconds = $3;

 }

You will note that all backslashed metacharacters in Perl are alphanumeric, such as \b , \w , \n . Unlike
some other regular expression languages, there are no backslashed symbols that aren‘t alphanum
anything that looks like \\, \(, \), \<, \>, \{, or \} is always interpreted as a literal character, n
metacharacter. This makes it simple to quote a string that you want to use for a pattern but that
afraid might contain metacharacters. Simply quote all the non−alphanumeric characters:

 $pattern =~ s/(\W)/\\$1/g;

You can also use the built−in quotemeta() function to do this. An even easier way to quo
metacharacters right in the match operator is to say

 /$unquoted\Q$quoted\E$unquoted/

Perl 5 defines a consistent extension syntax for regular expressions. The syntax is a pair of paren
question mark as the first thing within the parens (this was a syntax error in Perl 4). The character a
question mark gives the function of the extension. Several extensions are already supported:

(?#text) A comment. The text is ignored. If the /x switch is used to enable whitespace formatting
simple # will suffice.

(?:regexp) This groups things like "() " but doesn‘t make backreferences like "() " does. So

 split(/\b(?:a|b|c)\b/)

is like

 split(/\b(a|b|c)\b/)

but doesn‘t spit out extra fields.
08−Oct−1996 Version 5.003 41

perlre Perl Programmers Reference Guide perlre

and

at‘s
 a

acters

s that
ome of

use 1)
stop and

he
 to fail,

.

ood

that
r

he next
utput of

" and
(?=regexp) A zero−width positive lookahead assertion. For example, /\w+(?=\t)/ matches a word
followed by a tab, without including the tab in $&.

(?!regexp) A zero−width negative lookahead assertion. For example /foo(?!bar)/ matches any
occurrence of "foo" that isn‘t followed by "bar". Note however that lookahead
lookbehind are NOT the same thing. You cannot use this for lookbehind: /(?!foo)bar/
will not find an occurrence of "bar" that is preceded by something which is not "foo". Th
because the (?!foo) is just saying that the next thing cannot be "foo"—and it‘s not, it‘s
"bar", so "foobar" will match. You would have to do something like /(?!foo)...bar/
for that. We say "like" because there‘s the case of your "bar" not having three char
before it. You could cover that this way: /(?:(?!foo)...|^..?)bar/ . Sometimes it‘s
still easier just to say:

 if (/foo/ && $‘ =~ /bar$/)

(?imsx) One or more embedded pattern−match modifiers. This is particularly useful for pattern
are specified in a table somewhere, some of which want to be case sensitive, and s
which don‘t. The case insensitive ones merely need to include (?i) at the front of the
pattern. For example:

 $pattern = "foobar";
 if (/$pattern/i)

 # more flexible:

 $pattern = "(?i)foobar";
 if (/$pattern/)

The specific choice of question mark for this and the new minimal matching construct was beca
question mark is pretty rare in older regular expressions, and 2) whenever you see one, you should
"question" exactly what is going on. That‘s psychology...

Backtracking
A fundamental feature of regular expression matching involves the notion called backtracking. which is
used (when needed) by all regular expression quantifiers, namely * , *? , +, +?, {n,m} , and {n,m}? .

For a regular expression to match, the entire regular expression must match, not just part of it. So if t
beginning of a pattern containing a quantifier succeeds in a way that causes later parts in the pattern
the matching engine backs up and recalculates the beginning part—that‘s why it‘s called backtracking

Here is an example of backtracking: Let‘s say you want to find the word following "foo" in the string "F
is on the foo table.":

 $_ = "Food is on the foo table.";
 if (/\b(foo)\s+(\w+)/i) {

print "$2 follows $1.\n";
 }

When the match runs, the first part of the regular expression (\b(foo)) finds a possible match right at the
beginning of the string, and loads up $1 with "Foo". However, as soon as the matching engine sees
there‘s no whitespace following the "Foo" that it had saved in $1, it realizes its mistake and starts ove
again one character after where it had had the tentative match. This time it goes all the way until t
occurrence of "foo". The complete regular expression matches this time, and you get the expected o
"table follows foo."

Sometimes minimal matching can help a lot. Imagine you‘d like to match everything between "foo
"bar". Initially, you write something like this:

 $_ = "The food is under the bar in the barn.";
 if (/foo(.*)bar/) {

print "got <$1>\n";
42 Version 5.003 08−Oct−1996

perlre Perl Programmers Reference Guide perlre

t "bar"

want to

 set of
 }

Which perhaps unexpectedly yields:

 got <d is under the bar in the >

That‘s because .* was greedy, so you get everything between the first "foo" and the last "bar". In this case,
it‘s more effective to use minimal matching to make sure you get the text between a "foo" and the firs
thereafter.

 if (/foo(.*?)bar/) { print "got <$1>\n" }
 got <d is under the >

Here‘s another example: let‘s say you‘d like to match a number at the end of a string, and you also
keep the preceding part the match. So you write this:

 $_ = "I have 2 numbers: 53147";
 if (/(.*)(\d*)/) { # Wrong!

print "Beginning is <$1>, number is <$2>.\n";
 }

That won‘t work at all, because .* was greedy and gobbled up the whole string. As \d* can match on an
empty string the complete regular expression matched successfully.

 Beginning is <I have 2 numbers: 53147>, number is <>.

Here are some variants, most of which don‘t work:

 $_ = "I have 2 numbers: 53147";
 @pats = qw{

(.*)(\d*)
(.*)(\d+)
(.*?)(\d*)
(.*?)(\d+)
(.*)(\d+)$
(.*?)(\d+)$
(.*)\b(\d+)$
(.*\D)(\d+)$

 };

 for $pat (@pats) {
printf "%−12s ", $pat;
if (/$pat/) {
 print "<$1> <$2>\n";
} else {
 print "FAIL\n";
}

 }

That will print out:

 (.*)(\d*) <I have 2 numbers: 53147> <>
 (.*)(\d+) <I have 2 numbers: 5314> <7>
 (.*?)(\d*) <> <>
 (.*?)(\d+) <I have > <2>
 (.*)(\d+)$ <I have 2 numbers: 5314> <7>
 (.*?)(\d+)$ <I have 2 numbers: > <53147>
 (.*)\b(\d+)$ <I have 2 numbers: > <53147>
 (.*\D)(\d+)$ <I have 2 numbers: > <53147>

As you see, this can be a bit tricky. It‘s important to realize that a regular expression is merely a
08−Oct−1996 Version 5.003 43

perlre Perl Programmers Reference Guide perlre

efinition
eed to

 find a

string.

t 1. The
,

er
 match

y and
3".

at the
match.

just as
of
lways

s not a

 to the
 a very
assertions that gives a definition of success. There may be 0, 1, or several different ways that the d
might succeed against a particular string. And if there are multiple ways it might succeed, you n
understand backtracking in order to know which variety of success you will achieve.

When using lookahead assertions and negations, this can all get even tricker. Imagine you‘d like to
sequence of nondigits not followed by "123". You might try to write that as

$_ = "ABC123";
if (/^\D*(?!123)/) { # Wrong!
 print "Yup, no 123 in $_\n";
}

But that isn‘t going to match; at least, not the way you‘re hoping. It claims that there is no 123 in the
Here‘s a clearer picture of why it that pattern matches, contrary to popular expectations:

 $x = ’ABC123’ ;
 $y = ’ABC445’ ;

 print "1: got $1\n" if $x =~ /^(ABC)(?!123)/ ;
 print "2: got $1\n" if $y =~ /^(ABC)(?!123)/ ;

 print "3: got $1\n" if $x =~ /^(\D*)(?!123)/ ;
 print "4: got $1\n" if $y =~ /^(\D*)(?!123)/ ;

This prints

 2: got ABC
 3: got AB
 4: got ABC

You might have expected test 3 to fail because it just seems to a more general purpose version of tes
important difference between them is that test 3 contains a quantifier (\D*) and so can use backtracking
whereas test 1 will not. What‘s happening is that you‘ve asked "Is it true that at the start of $x, following 0
or more nondigits, you have something that‘s not 123?" If the pattern matcher had let \D* expand to
"ABC", this would have caused the whole pattern to fail. The search engine will initially match \D* with
"ABC". Then it will try to match (?!123 with "123" which, of course, fails. But because a quantifi
(\D*) has been used in the regular expression, the search engine can backtrack and retry the
differently in the hope of matching the complete regular expression.

Well now, the pattern really, really wants to succeed, so it uses the standard regexp backoff−and−retr
lets \D* expand to just "AB" this time. Now there‘s indeed something following "AB" that is not "12
It‘s in fact "C123", which suffices.

We can deal with this by using both an assertion and a negation. We‘ll say that the first part in $1 must be
followed by a digit, and in fact, it must also be followed by something that‘s not "123". Remember th
lookaheads are zero−width expressions—they only look, but don‘t consume any of the string in their
So rewriting this way produces what you‘d expect; that is, case 5 will fail, but case 6 succeeds:

 print "5: got $1\n" if $x =~ /^(\D*)(?=\d)(?!123)/ ;
 print "6: got $1\n" if $y =~ /^(\D*)(?=\d)(?!123)/ ;

 6: got ABC

In other words, the two zero−width assertions next to each other work like they‘re ANDed together,
you‘d use any builtin assertions: /^$/ matches only if you‘re at the beginning of the line AND the end
the line simultaneously. The deeper underlying truth is that juxtaposition in regular expressions a
means AND, except when you write an explicit OR using the vertical bar. /ab/ means match "a" AND
(then) match "b", although the attempted matches are made at different positions because "a" i
zero−width assertion, but a one−width assertion.

One warning: particularly complicated regular expressions can take exponential time to solve due
immense number of possible ways they can use backtracking to try match. For example this will take
44 Version 5.003 08−Oct−1996

perlre Perl Programmers Reference Guide perlre

or

 rules

r
rally by
acters

he list.
n

newline,

t "|",
on, it‘s
art and

es, and

matches
pattern.
n 1
d

n
long time to run

 /((a{0,5}){0,5}){0,5}/

And if you used * ‘s instead of limiting it to 0 through 5 matches, then it would take literally forever—
until you ran out of stack space.

Version 8 Regular Expressions
In case you‘re not familiar with the "regular" Version 8 regexp routines, here are the pattern−matching
not described above.

Any single character matches itself, unless it is a metacharacter with a special meaning described here o
above. You can cause characters which normally function as metacharacters to be interpreted lite
prefixing them with a "\" (e.g. "\." matches a ".", not any character; "\\" matches a "\"). A series of char
matches that series of characters in the target string, so the pattern blurfl would match "blurfl" in the
target string.

You can specify a character class, by enclosing a list of characters in [] , which will match any one of the
characters in the list. If the first character after the "[" is "^", the class matches any character not in t
Within a list, the "−" character is used to specify a range, so that a−z represents all the characters betwee
"a" and "z", inclusive.

Characters may be specified using a metacharacter syntax much like that used in C: "\n" matches a
"\t" a tab, "\r" a carriage return, "\f" a form feed, etc. More generally, \nnn, where nnn is a string of octal
digits, matches the character whose ASCII value is nnn. Similarly, \xnn, where nn are hexadecimal digits,
matches the character whose ASCII value is nn. The expression \cx matches the ASCII character control−x.
Finally, the "." metacharacter matches any character except "\n" (unless you use /s).

You can specify a series of alternatives for a pattern using "|" to separate them, so that fee|fie|foe will
match any of "fee", "fie", or "foe" in the target string (as would f(e|i|o)e). Note that the first alternative
includes everything from the last pattern delimiter ("(", "[", or the beginning of the pattern) up to the firs
and the last alternative contains everything from the last "|" to the next pattern delimiter. For this reas
common practice to include alternatives in parentheses, to minimize confusion about where they st
end. Note however that "|" is interpreted as a literal with square brackets, so if you write [fee|fie|foe]
you‘re really only matching [feio|] .

Within a pattern, you may designate subpatterns for later reference by enclosing them in parenthes
you may refer back to the nth subpattern later in the pattern using the metacharacter \n. Subpatterns are
numbered based on the left to right order of their opening parenthesis. Note that a backreference
whatever actually matched the subpattern in the string being examined, not the rules for that sub
Therefore, (0|0x)\d*\s\1\d* will match "0x1234 0x4321",but not "0x1234 01234", since subpatter
actually matched "0x", even though the rule 0|0x could potentially match the leading 0 in the secon
number.

WARNING on \1 vs $1
Some people get too used to writing things like

 $pattern =~ s/(\W)/\\\1/g;

This is grandfathered for the RHS of a substitute to avoid shocking the sed addicts, but it‘s a dirty habit to
get into. That‘s because in PerlThink, the right−hand side of a s/// is a double−quoted string. \1 in the
usual double−quoted string means a control−A. The customary Unix meaning of \1 is kludged in for s/// .
 However, if you get into the habit of doing that, you get yourself into trouble if you then add a/e
modifier.

 s/(\d+)/ \1 + 1 /eg;

Or if you try to do

 s/(\d+)/\1000/;
08−Oct−1996 Version 5.003 45

perlre Perl Programmers Reference Guide perlre

rtainly

You can‘t disambiguate that by saying \{1}000 , whereas you can fix it with ${1}000. Basically, the
operation of interpolation should not be confused with the operation of matching a backreference. Ce
they mean two different things on the left side of the s/// .
46 Version 5.003 08−Oct−1996

perlrun Perl Programmers Reference Guide perlrun

tems

 pass

 a
 there
indicate

e on a
e, you

acters,
 without
re or

tly, but
of your

− " are

he Perl
n tell a
preter

lation
t run
NAME
perlrun − how to execute the Perl interpreter

SYNOPSIS
perl [−sTuU]

[−hv] [−V[:configvar]]
[−cw] [−d[:debugger]] [−D[number/list]]
[−pna] [−Fpattern] [−l[octal]] [−0[octal]]
[−Idir] [−m[−]module] [−M [−]‘module...’]
[−P]
[−S]
[−x[dir]]
[−i[extension]]
[−e ‘command’] [—] [programfile] [argument]...

DESCRIPTION
Upon startup, Perl looks for your script in one of the following places:

1. Specified line by line via −e switches on the command line.

2. Contained in the file specified by the first filename on the command line. (Note that sys
supporting the #! notation invoke interpreters this way.)

3. Passed in implicitly via standard input. This only works if there are no filename arguments—to
arguments to a STDIN script you must explicitly specify a "−" for the script name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless you‘ve specified−x
switch, in which case it scans for the first line starting with #! and containing the word "perl", and starts
instead. This is useful for running a script embedded in a larger message. (In this case you would
the end of the script using the __END__ token.)

As of Perl 5, the #! line is always examined for switches as the line is being parsed. Thus, if you‘r
machine that only allows one argument with the #! line, or worse, doesn‘t even recognize the #! lin
still can get consistent switch behavior regardless of how Perl was invoked, even if −x was used to find the
beginning of the script.

Because many operating systems silently chop off kernel interpretation of the #! line after 32 char
some switches may be passed in on the command line, and some may not; you could even get a "−"
its letter, if you‘re not careful. You probably want to make sure that all your switches fall either befo
after that 32 character boundary. Most switches don‘t actually care if they‘re processed redundan
getting a − instead of a complete switch could cause Perl to try to execute standard input instead
script. And a partial −I switch could also cause odd results.

Parsing of the #! switches starts wherever "perl" is mentioned in the line. The sequences "−*" and "
specifically ignored so that you could, if you were so inclined, say

 #!/bin/sh −− # −*− perl −*− −p
 eval ’exec perl $0 −S ${1+"$@"}’

if 0;

to let Perl see the −p switch.

If the #! line does not contain the word "perl", the program named after the #! is executed instead of t
interpreter. This is slightly bizarre, but it helps people on machines that don‘t do #!, because they ca
program that their SHELL is /usr/bin/perl, and Perl will then dispatch the program to the correct inter
for them.

After locating your script, Perl compiles the entire script to an internal form. If there are any compi
errors, execution of the script is not attempted. (This is unlike the typical shell script, which migh
partway through before finding a syntax error.)
08−Oct−1996 Version 5.003 47

perlrun Perl Programmers Reference Guide perlrun

 the
ion of

e Perl

t
ution

 E.g.,

t of
If the script is syntactically correct, it is executed. If the script runs off the end without hitting an exit()
or die() operator, an implicit exit(0) is provided to indicate successful completion.

Switches
A single−character switch may be combined with the following switch, if any.

 #!/usr/bin/perl −spi.bak # same as −s −p −i.bak

Switches include:

−0[digits]
specifies the record separator ($/) as an octal number. If there are no digits, the null character is
separator. Other switches may precede or follow the digits. For example, if you have a vers
find which can print filenames terminated by the null character, you can say this:

 find . −name ’*.bak’ −print0 | perl −n0e unlink

The special value 00 will cause Perl to slurp files in paragraph mode. The value 0777 will caus
to slurp files whole since there is no legal character with that value.

−a turns on autosplit mode when used with a −n or −p. An implicit split command to the @F array is
done as the first thing inside the implicit while loop produced by the −n or −p.

 perl −ane ’print pop(@F), "\n";’

is equivalent to

 while (<>) {
@F = split(’ ’);
print pop(@F), "\n";

 }

An alternate delimiter may be specified using −F.

−c causes Perl to check the syntax of the script and then exit without executing it. Actually, iwill
execute BEGIN, END, and use blocks, since these are considered as occurring outside the exec
of your program.

−d runs the script under the Perl debugger. See perldebug.

−d: foo
runs the script under the control of a debugging or tracing module installed as Devel::foo.
−d:DProf executes the script using the Devel::DProf profiler. See perldebug.

−Dnumber
−Dlist

sets debugging flags. To watch how it executes your script, use −D14. (This only works if
debugging is compiled into your Perl.) Another nice value is −D1024, which lists your compiled
syntax tree. And −D512 displays compiled regular expressions. As an alternative specify a lis
letters instead of numbers (e.g. −D14 is equivalent to −Dtls):

 1 p Tokenizing and Parsing
 2 s Stack Snapshots
 4 l Label Stack Processing
 8 t Trace Execution
 16 o Operator Node Construction
 32 c String/Numeric Conversions
 64 P Print Preprocessor Command for −P
 128 m Memory Allocation
 256 f Format Processing
 512 r Regular Expression Parsing
 1024 x Syntax Tree Dump
48 Version 5.003 08−Oct−1996

perlrun Perl Programmers Reference Guide perlrun

 to

ing
efault
ake a

UT is

pend
 2048 u Tainting Checks
 4096 L Memory Leaks (not supported anymore)
 8192 H Hash Dump −− usurps values()
 16384 X Scratchpad Allocation
 32768 D Cleaning Up

−e commandline
may be used to enter one line of script. If −e is given, Perl will not look for a script filename in the
argument list. Multiple −e commands may be given to build up a multi−line script. Make sure
use semicolons where you would in a normal program.

−Fpattern
specifies the pattern to split on if −a is also in effect. The pattern may be surrounded by // , "" or
‘’ , otherwise it will be put in single quotes.

−h prints a summary of the options.

−i[extension]
specifies that files processed by the <> construct are to be edited in−place. It does this by renam
the input file, opening the output file by the original name, and selecting that output file as the d
for print() statements. The extension, if supplied, is added to the name of the old file to m
backup copy. If no extension is supplied, no backup is made. From the shell, saying

 $ perl −p −i.bak −e "s/foo/bar/; ... "

is the same as using the script:

 #!/usr/bin/perl −pi.bak
 s/foo/bar/;

which is equivalent to

 #!/usr/bin/perl
 while (<>) {

if ($ARGV ne $oldargv) {
 rename($ARGV, $ARGV . ’.bak’);
 open(ARGVOUT, ">$ARGV");
 select(ARGVOUT);
 $oldargv = $ARGV;
}
s/foo/bar/;

 }
 continue {

print; # this prints to original filename
 }
 select(STDOUT);

except that the −i form doesn‘t need to compare $ARGV to $oldargv to know when the filename
has changed. It does, however, use ARGVOUT for the selected filehandle. Note that STDO
restored as the default output filehandle after the loop.

You can use eof without parenthesis to locate the end of each input file, in case you want to ap
to each file, or reset line numbering (see example in eof).

−Idirectory
Directories specified by −I are prepended to the search path for modules (@INC), and also tells the C
preprocessor where to search for include files. The C preprocessor is invoked with −P; by default it
searches /usr/include and /usr/lib/perl.
08−Oct−1996 Version 5.003 49

perlrun Perl Programmers Reference Guide perlrun

e line

ord

xtra

name

y

ery

s in

name
−l[octnum]
enables automatic line−ending processing. It has two effects: first, it automatically chomps th
terminator when used with −n or −p, and second, it assigns "$\" to have the value of octnum so that
any print statements will have that line terminator added back on. If octnum is omitted, sets "$\" to
the current value of "$/". For instance, to trim lines to 80 columns:

 perl −lpe ’substr($_, 80) = ""’

Note that the assignment $\ = $/ is done when the switch is processed, so the input rec
separator can be different than the output record separator if the −l switch is followed by a −0 switch:

 gnufind / −print0 | perl −ln0e ’print "found $_" if −p’

This sets $\ to newline and then sets $/ to the null character.

−m[−]module
−M[−]module
−M[−]‘module ...’
−[mM] [−]module=arg[,arg]...

−mmodule executes use module (); before executing your script.

−Mmodule executes use module ; before executing your script. You can use quotes to add e
code after the module name, e.g., −M‘module qw(foo bar)’ .

If the first character after the −M or −m is a dash (−) then the ‘use’ is replaced with ‘no’.

A little built−in syntactic sugar means you can also say −mmodule=foo,bar or
−Mmodule=foo,bar as a shortcut for −M‘module qw(foo bar)’ . This avoids the need to
use quotes when importing symbols. The actual code generated by −Mmodule=foo,bar is use
module split(/,/,q{foo,bar}) . Note that the = form removes the distinction between −m
and −M.

−n causes Perl to assume the following loop around your script, which makes it iterate over file
arguments somewhat like sed −n or awk:

 while (<>) {
... # your script goes here

 }

Note that the lines are not printed by default. See −p to have lines printed. Here is an efficient wa
to delete all files older than a week:

 find . −mtime +7 −print | perl −nle ’unlink;’

This is faster than using the −exec switch of find because you don‘t have to start a process on ev
filename found.

BEGIN and END blocks may be used to capture control before or after the implicit loop, just a
awk.

−p causes Perl to assume the following loop around your script, which makes it iterate over file
arguments somewhat like sed:

 while (<>) {
... # your script goes here

 } continue {
print;

 }

Note that the lines are printed automatically. To suppress printing use the −n switch. A −p overrides
a −n switch.
50 Version 5.003 08−Oct−1996

perlrun Perl Programmers Reference Guide perlrun

s in

e both
ts with

me but

nly if

e script
t #!, in

ute the
nd thus
e

es and

the
r than
ill be

ct that

e only
n on

 turn it
he
"hello
ion of

ng of
turned
BEGIN and END blocks may be used to capture control before or after the implicit loop, just a
awk.

−P causes your script to be run through the C preprocessor before compilation by Perl. (Sinc
comments and cpp directives begin with the # character, you should avoid starting commen
any words recognized by the C preprocessor such as "if", "else" or "define".)

−s enables some rudimentary switch parsing for switches on the command line after the script na
before any filename arguments (or before a —). Any switch found there is removed from @ARGV
and sets the corresponding variable in the Perl script. The following script prints "true" if and o
the script is invoked with a −xyz switch.

 #!/usr/bin/perl −s
 if ($xyz) { print "true\n"; }

−S makes Perl use the PATH environment variable to search for the script (unless the name of th
starts with a slash). Typically this is used to emulate #! startup on machines that don‘t suppor
the following manner:

 #!/usr/bin/perl
 eval "exec /usr/bin/perl −S $0 $*"

 if $running_under_some_shell;

The system ignores the first line and feeds the script to /bin/sh, which proceeds to try to exec
Perl script as a shell script. The shell executes the second line as a normal shell command, a
starts up the Perl interpreter. On some systems $0 doesn‘t always contain the full pathname, so th
−S tells Perl to search for the script if necessary. After Perl locates the script, it parses the lin
ignores them because the variable $running_under_some_shell is never true. A better
construct than $* would be ${1+"$@"}, which handles embedded spaces and such in
filenames, but doesn‘t work if the script is being interpreted by csh. In order to start up sh rathe
csh, some systems may have to replace the #! line with a line containing just a colon, which w
politely ignored by Perl. Other systems can‘t control that, and need a totally devious constru
will work under any of csh, sh or Perl, such as the following:

eval ’(exit $?0)’ && eval ’exec /usr/bin/perl −S $0 ${1+"$@"}’
& eval ’exec /usr/bin/perl −S $0 $argv:q’

if 0;

−T forces "taint" checks to be turned on so you can test them. Ordinarily these checks are don
when running setuid or setgid. It‘s a good idea to turn them on explicitly for programs ru
another‘s behalf, such as CGI programs. See perlsec.

−u causes Perl to dump core after compiling your script. You can then take this core dump and
into an executable file by using the undump program (not supplied). This speeds startup at t
expense of some disk space (which you can minimize by stripping the executable). (Still, a
world" executable comes out to about 200K on my machine.) If you want to execute a port
your script before dumping, use the dump() operator instead. Note: availability of undump is
platform specific and may not be available for a specific port of Perl.

−U allows Perl to do unsafe operations. Currently the only "unsafe" operations are the unlinki
directories while running as superuser, and running setuid programs with fatal taint checks
into warnings.

−v prints the version and patchlevel of your Perl executable.

−V prints summary of the major perl configuration values and the current value of @INC.

−V:name
Prints to STDOUT the value of the named configuration variable.
08−Oct−1996 Version 5.003 51

perlrun Perl Programmers Reference Guide perlrun

re used
dles or

ues as
outines

he first
ll be
e is

ATA
−w prints warnings about variable names that are mentioned only once, and scalar variables that a
before being set. Also warns about redefined subroutines, and references to undefined filehan
filehandles opened readonly that you are attempting to write on. Also warns you if you use val
a number that doesn‘t look like numbers, using an array as though it were a scalar, if your subr
recurse more than 100 deep, and innumerable other things. See perldiag and perltrap.

−x directory
tells Perl that the script is embedded in a message. Leading garbage will be discarded until t
line that starts with #! and contains the string "perl". Any meaningful switches on that line wi
applied (but only one group of switches, as with normal #! processing). If a directory nam
specified, Perl will switch to that directory before running the script. The −x switch only controls the
the disposal of leading garbage. The script must be terminated with __END__ if there is trailing
garbage to be ignored (the script can process any or all of the trailing garbage via the D
filehandle if desired).
52 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

ies: list
omma.
 can
t merely
t to its

s both,
ne list

r the
tion of
t were
LIST

. (The
 rule is
 list
and left

s:

ated in

 scalar
 Some
erators
cy.

amed

G/,
NAME
perlfunc − Perl builtin functions

DESCRIPTION
The functions in this section can serve as terms in an expression. They fall into two major categor
operators and named unary operators. These differ in their precedence relationship with a following c
 (See the precedence table in perlop.) List operators take more than one argument, while unary operators
never take more than one argument. Thus, a comma terminates the argument of a unary operator, bu
separates the arguments of a list operator. A unary operator generally provides a scalar contex
argument, while a list operator may provide either scalar and list contexts for its arguments. If it doe
the scalar arguments will be first, and the list argument will follow. (Note that there can only ever be o
argument.) For instance, splice() has three scalar arguments followed by a list.

In the syntax descriptions that follow, list operators that expect a list (and provide list context fo
elements of the list) are shown with LIST as an argument. Such a list may consist of any combina
scalar arguments or list values; the list values will be included in the list as if each individual elemen
interpolated at that point in the list, forming a longer single−dimensional list value. Elements of the
should be separated by commas.

Any function in the list below may be used either with or without parentheses around its arguments
syntax descriptions omit the parens.) If you use the parens, the simple (but occasionally surprising)
this: It LOOKS like a function, therefore it IS a function, and precedence doesn‘t matter. Otherwise it‘s a
operator or unary operator, and precedence does matter. And whitespace between the function
parenthesis doesn‘t count—so you need to be careful sometimes:

 print 1+2+3; # Prints 6.
 print(1+2) + 3; # Prints 3.
 print (1+2)+3; # Also prints 3!
 print +(1+2)+3; # Prints 6.
 print ((1+2)+3); # Prints 6.

If you run Perl with the −w switch it can warn you about this. For example, the third line above produce

 print (...) interpreted as function at − line 1.
 Useless use of integer addition in void context at − line 1.

For functions that can be used in either a scalar or list context, non−abortive failure is generally indic
a scalar context by returning the undefined value, and in a list context by returning the null list.

Remember the following rule:

 THERE IS NO GENERAL RULE FOR CONVERTING A LIST INTO A SCALAR!

Each operator and function decides which sort of value it would be most appropriate to return in a
context. Some operators return the length of the list that would have been returned in a list context.
operators return the first value in the list. Some operators return the last value in the list. Some op
return a count of successful operations. In general, they do what you want, unless you want consisten

Perl Functions by Category
Here are Perl‘s functions (including things that look like functions, like some of the keywords and n
operators) arranged by category. Some functions appear in more than one place.

Functions for SCALARs or strings
chomp, chop, chr, crypt, hex, index, lc, lcfirst, length, oct, ord, pack, q/STRING/, qq/STRIN
reverse, rindex, sprintf, substr, tr///, uc, ucfirst, y///

Regular expressions and pattern matching
m//, pos, quotemeta, s///, split, study
08−Oct−1996 Version 5.003 53

perlfunc Perl Programmers Reference Guide perlfunc

read,
ite

me,

eep,

hutdown,

byname,
servent,
Numeric functions
abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Functions for real @ARRAYs
pop, push, shift, splice, unshift

Functions for list data
grep, join, map, qw/STRING/, reverse, sort, unpack

Functions for real %HASHes
delete, each, exists, keys, values

Input and output functions
binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock, format, getc, print, printf,
readdir, rewinddir, seek, seekdir, select, syscall, sysread, syswrite, tell, telldir, truncate, warn, wr

Functions for fixed length data or records
pack, read, syscall, sysread, syswrite, unpack, vec

Functions for filehandles, files, or directories
−X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, lstat, mkdir, open, opendir, readlink, rena
rmdir, stat, symlink, umask, unlink, utime

Keywords related to the control flow of your perl program
caller, continue, die, do, dump, eval, exit, goto, last, next, redo, return, sub, wantarray

Keywords related to scoping
caller, import, local, my, package, use

Miscellaneous functions
defined, dump, eval, formline, local, my, reset, scalar, undef, wantarray

Functions for processes and process groups
alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, qx/STRING/, setpgrp, setpriority, sl
system, times, wait, waitpid

Keywords related to perl modules
do, import, no, package, require, use

Keywords related to classes and object−orientedness
bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use

Low−level socket functions
accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv, send, setsockopt, s
socket, socketpair

System V interprocess communication functions
msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, shmread, shmwrite

Fetching user and group info
endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam, getlogin, getpwent,
getpwnam, getpwuid, setgrent, setpwent

Fetching network info
endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent, getnetbyaddr, getnet
getnetent, getprotobyname, getprotobynumber, getprotoent, getservbyname, getservbyport, get
sethostent, setnetent, setprotoent, setservent
54 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

, qw,

ment,
bout it.

‘t
tor, and
y of:

u can‘t
Time−related functions
gmtime, localtime, time, times

Functions new in perl5
abs, bless, chomp, chr, exists, formline, glob, import, lc, lcfirst, map, my, no, prototype, qx
readline, readpipe, ref, sub*, sysopen, tie, tied, uc, ucfirst, untie, use

* − sub was a keyword in perl4, but in perl5 it is an operator which can be used in expressions.

Functions obsoleted in perl5
dbmclose, dbmopen

Alphabetical Listing of Perl Functions

−X FILEHANDLE
−X EXPR
−X A file test, where X is one of the letters listed below. This unary operator takes one argu

either a filename or a filehandle, and tests the associated file to see if something is true a
If the argument is omitted, tests $_, except for −t , which tests STDIN. Unless otherwise
documented, it returns 1 for TRUE and ‘’ for FALSE, or the undefined value if the file doesn
exist. Despite the funny names, precedence is the same as any other named unary opera
the argument may be parenthesized like any other unary operator. The operator may be an

 −r File is readable by effective uid/gid.
 −w File is writable by effective uid/gid.
 −x File is executable by effective uid/gid.
 −o File is owned by effective uid.

 −R File is readable by real uid/gid.
 −W File is writable by real uid/gid.
 −X File is executable by real uid/gid.
 −O File is owned by real uid.

 −e File exists.
 −z File has zero size.
 −s File has non−zero size (returns size).

 −f File is a plain file.
 −d File is a directory.
 −l File is a symbolic link.
 −p File is a named pipe (FIFO).
 −S File is a socket.
 −b File is a block special file.
 −c File is a character special file.
 −t Filehandle is opened to a tty.

 −u File has setuid bit set.
 −g File has setgid bit set.
 −k File has sticky bit set.

 −T File is a text file.
 −B File is a binary file (opposite of −T).

 −M Age of file in days when script started.
 −A Same for access time.
 −C Same for inode change time.

The interpretation of the file permission operators −r , −R, −w, −W, −x and −X is based solely on
the mode of the file and the uids and gids of the user. There may be other reasons yo
actually read, write or execute the file. Also note that, for the superuser, −r , −R, −w and −W
08−Oct−1996 Version 5.003 55

perlfunc Perl Programmers Reference Guide perlfunc

the
or

dd
ny odd

t

l
r stat

r
eal

 packed

conds
ond less
ting at
cel the
ining
always return 1, and −x and −X return 1 if any execute bit is set in the mode. Scripts run by
superuser may thus need to do a stat() in order to determine the actual mode of the file,
temporarily set the uid to something else.

Example:

 while (<>) {
chop;
next unless −f $_; # ignore specials
...

 }

Note that −s/a/b/ does not do a negated substitution. Saying −exp($foo) still works as
expected, however—only single letters following a minus are interpreted as file tests.

The −T and −B switches work as follows. The first block or so of the file is examined for o
characters such as strange control codes or characters with the high bit set. If too ma
characters (>30%) are found, it‘s a −B file, otherwise it‘s a −T file. Also, any file containing
null in the first block is considered a binary file. If −T or −B is used on a filehandle, the curren
stdio buffer is examined rather than the first block. Both −T and −B return TRUE on a null file,
or a file at EOF when testing a filehandle. Because you have to read a file to do the −T test, on
most occasions you want to use a −f against the file first, as in next unless −f $file
&& −T $file.

If any of the file tests (or either the stat() or lstat() operators) are given the specia
filehandle consisting of a solitary underline, then the stat structure of the previous file test (o
operator) is used, saving a system call. (This doesn‘t work with −t , and you need to remembe
that lstat() and −l will leave values in the stat structure for the symbolic link, not the r
file.) Example:

 print "Can do.\n" if −r $a || −w _ || −x _;

 stat($filename);
 print "Readable\n" if −r _;
 print "Writable\n" if −w _;
 print "Executable\n" if −x _;
 print "Setuid\n" if −u _;
 print "Setgid\n" if −g _;
 print "Sticky\n" if −k _;
 print "Text\n" if −T _;
 print "Binary\n" if −B _;

abs VALUE
Returns the absolute value of its argument.

accept NEWSOCKET,GENERICSOCKET
Accepts an incoming socket connect, just as the accept(2) system call does. Returns the
address if it succeeded, FALSE otherwise. See example in
Sockets: Client/Server Communication in perlipc.

alarm SECONDS
Arranges to have a SIGALRM delivered to this process after the specified number of se
have elapsed. (On some machines, unfortunately, the elapsed time may be up to one sec
than you specified because of how seconds are counted.) Only one timer may be coun
once. Each call disables the previous timer, and an argument of 0 may be supplied to can
previous timer without starting a new one. The returned value is the amount of time rema
on the previous timer.

For delays of finer granularity than one second, you may use Perl‘s syscall() interface to
56 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

E if it
 for the

uish
nslated
ix; in
ed C
 those
ngle

n the
ften

ht be
.

re is a

. The

tion:
ed.

ome

erical
sfully
access setitimer(2) if your system supports it, or else see /select() below. It is not advised
to intermix alarm() and sleep() calls.

atan2 Y,X
Returns the arctangent of Y/X in the range −PI to PI.

bind SOCKET,NAME
Binds a network address to a socket, just as the bind system call does. Returns TRU
succeeded, FALSE otherwise. NAME should be a packed address of the appropriate type
socket. See the examples in Sockets: Client/Server Communication in perlipc.

binmode FILEHANDLE
Arranges for the file to be read or written in "binary" mode in operating systems that disting
between binary and text files. Files that are not in binary mode have CR LF sequences tra
to LF on input and LF translated to CR LF on output. Binmode has no effect under Un
DOS and similarly archaic systems, it may be imperative—otherwise your DOS−damag
library may mangle your file. The key distinction between systems that need binmode and
that don‘t is their text file formats. Systems like Unix and Plan9 that delimit lines with a si
character, and that encode that character in C as ‘\n‘, do not need binmode . The rest need it. If
FILEHANDLE is an expression, the value is taken as the name of the filehandle.

bless REF,CLASSNAME
bless REF

This function tells the referenced object (passed as REF) that it is now an object i
CLASSNAME package—or the current package if no CLASSNAME is specified, which is o
the case. It returns the reference for convenience, since a bless() is often the last thing in a
constructor. Always use the two−argument version if the function doing the blessing mig
inherited by a derived class. See perlobj for more about the blessing (and blessings) of objects

caller EXPR
caller Returns the context of the current subroutine call. In a scalar context, returns TRUE if the

caller, that is, if we‘re in a subroutine or eval() or require() , and FALSE otherwise. In a
list context, returns

 ($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to print a stack trace
value of EXPR indicates how many call frames to go back before the current one.

 ($package, $filename, $line,
 $subroutine, $hasargs, $wantargs) = caller($i);

Furthermore, when called from within the DB package, caller returns more detailed informa
it sets the list variable @DB::args to be the arguments with which that subroutine was invok

chdir EXPR
Changes the working directory to EXPR, if possible. If EXPR is omitted, changes to h
directory. Returns TRUE upon success, FALSE otherwise. See example under die() .

chmod LIST
Changes the permissions of a list of files. The first element of the list must be the num
mode, which should probably be an octal number. Returns the number of files succes
changed.

 $cnt = chmod 0755, ’foo’, ’bar’;
 chmod 0755, @executables;

chomp VARIABLE
08−Oct−1996 Version 5.003 57

perlfunc Perl Programmers Reference Guide perlfunc

ponds

wline
g its
.

ved is

rily to

, use

e the
chomp LIST
chomp This is a slightly safer version of chop (see below). It removes any line ending that corres

to the current value of $/ (also known as $INPUT_RECORD_SEPARATOR in the English
module). It returns the number of characters removed. It‘s often used to remove the ne
from the end of an input record when you‘re worried that the final record may be missin
newline. When in paragraph mode ($/ = ""), it removes all trailing newlines from the string
If VARIABLE is omitted, it chomps $_. Example:

 while (<>) {
chomp; # avoid \n on last field
@array = split(/:/);
...

 }

You can actually chomp anything that‘s an lvalue, including an assignment:

 chomp($cwd = ‘pwd‘);
 chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characters remo
returned.

chop VARIABLE
chop LIST
chop Chops off the last character of a string and returns the character chopped. It‘s used prima

remove the newline from the end of an input record, but is much more efficient than s/\n//
because it neither scans nor copies the string. If VARIABLE is omitted, chops $_. Example:

 while (<>) {
chop; # avoid \n on last field
@array = split(/:/);
...

 }

You can actually chop anything that‘s an lvalue, including an assignment:

 chop($cwd = ‘pwd‘);
 chop($answer = <STDIN>);

If you chop a list, each element is chopped. Only the value of the last chop is returned.

Note that chop returns the last character. To return all but the last character
substr($string, 0, −1) .

chown LIST
Changes the owner (and group) of a list of files. The first two elements of the list must b
NUMERICAL uid and gid, in that order. Returns the number of files successfully changed.

 $cnt = chown $uid, $gid, ’foo’, ’bar’;
 chown $uid, $gid, @filenames;

Here‘s an example that looks up non−numeric uids in the passwd file:

 print "User: ";
 chop($user = <STDIN>);
 print "Files: "
 chop($pattern = <STDIN>);

 ($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

 @ary = <${pattern}>; # expand filenames
58 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

re the
ps. On

e new
f its
sons,

sfully
LE if

s
ards.

UE if it
 for the

e

ally
 useful
guys

ord:
 chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless you‘
superuser, although you should be able to change the group to any of your secondary grou
insecure systems, these restrictions may be relaxed, but this is not a portable assumption.

chr NUMBER
Returns the character represented by that NUMBER in the character set. For example, chr(65)
is "A" in ASCII.

chroot FILENAME
This function works as the system call by the same name: it makes the named directory th
root directory for all further pathnames that begin with a "/" by your process and all o
children. (It doesn‘t change your current working directory is unaffected.) For security rea
this call is restricted to the superuser. If FILENAME is omitted, does chroot to $_.

close FILEHANDLE
Closes the file or pipe associated with the file handle, returning TRUE only if stdio succes
flushes buffers and closes the system file descriptor. You don‘t have to close FILEHAND
you are immediately going to do another open() on it, since open() will close it for you.
(See open() .) However, an explicit close on an input file resets the line counter ($.), while
the implicit close done by open() does not. Also, closing a pipe will wait for the proces
executing on the pipe to complete, in case you want to look at the output of the pipe afterw
Closing a pipe explicitly also puts the status value of the command into $?. Example:

 open(OUTPUT, ’|sort >foo’); # pipe to sort
 ... # print stuff to output
 close OUTPUT; # wait for sort to finish
 open(INPUT, ’foo’); # get sort’s results

FILEHANDLE may be an expression whose value gives the real filehandle name.

closedir DIRHANDLE
Closes a directory opened by opendir() .

connect SOCKET,NAME
Attempts to connect to a remote socket, just as the connect system call does. Returns TR
succeeded, FALSE otherwise. NAME should be a packed address of the appropriate type
socket. See the examples in Sockets: Client/Server Communication in perlipc.

continue BLOCK
Actually a flow control statement rather than a function. If there is a continue BLOCK
attached to a BLOCK (typically in a while or foreach), it is always executed just before th
conditional is about to be evaluated again, just like the third part of a for loop in C. Thus it can
be used to increment a loop variable, even when the loop has been continued via thenext
statement (which is similar to the C continue statement).

cos EXPR
Returns the cosine of EXPR (expressed in radians). If EXPR is omitted takes cosine of $_.

crypt PLAINTEXT,SALT
Encrypts a string exactly like the crypt(3) function in the C library (assuming that you actu
have a version there that has not been extirpated as a potential munition). This can prove
for checking the password file for lousy passwords, amongst other things. Only the
wearing white hats should do this.

Here‘s an example that makes sure that whoever runs this program knows their own passw

 $pwd = (getpwuid($<))[1];
08−Oct−1996 Version 5.003 59

perlfunc Perl Programmers Reference Guide perlfunc

.

t the
tion

r

s, not
mmy

d

dbm

 return
iable,
scalar
ncing
efined

the key
 $salt = substr($pwd, 0, 2);

 system "stty −echo";
 print "Password: ";
 chop($word = <STDIN>);
 print "\n";
 system "stty echo";

 if (crypt($word, $salt) ne $pwd) {
die "Sorry...\n";

 } else {
print "ok\n";

 }

Of course, typing in your own password to whoever asks you for it is unwise.

dbmclose ASSOC_ARRAY
[This function has been superseded by the untie() function.]

Breaks the binding between a DBM file and an associative array.

dbmopen ASSOC,DBNAME,MODE
[This function has been superseded by the tie() function.]

This binds a dbm(3), ndbm(3), sdbm(3), gdbm() , or Berkeley DB file to an associative array
ASSOC is the name of the associative array. (Unlike normal open, the first argument is NOT a
filehandle, even though it looks like one). DBNAME is the name of the database (withou
.dir or .pag extension if any). If the database does not exist, it is created with protec
specified by MODE (as modified by the umask()). If your system only supports the olde
DBM functions, you may perform only one dbmopen() in your program. In older versions of
Perl, if your system had neither DBM nor ndbm, calling dbmopen() produced a fatal error; it
now falls back to sdbm(3).

If you don‘t have write access to the DBM file, you can only read associative array variable
set them. If you want to test whether you can write, either use file tests or try setting a du
array entry inside an eval() , which will trap the error.

Note that functions such as keys() and values() may return huge array values when use
on large DBM files. You may prefer to use the each() function to iterate over large DBM
files. Example:

 # print out history file offsets
 dbmopen(%HIST,’/usr/lib/news/history’,0666);
 while (($key,$val) = each %HIST) {

print $key, ’ = ’, unpack(’L’,$val), "\n";
 }
 dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and cons of the various
approaches, as well as DB_File for a particularly rich implementation.

defined EXPR
Returns a boolean value saying whether EXPR has a real value or not. Many operations
the undefined value under exceptional conditions, such as end of file, uninitialized var
system error and such. This function allows you to distinguish between an undefined null
and a defined null scalar with operations that might return a real null string, such as refere
elements of an array. You may also check to see if arrays or subroutines exist. Use of d
on predefined variables is not guaranteed to produce intuitive results.

When used on a hash array element, it tells you whether the value is defined, not whether
60 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

e

 it
 long.

it‘s an

ple

d value

ly

t line
ing ",
23" is
exists in the hash. Use exists() for that.

Examples:

 print if defined $switch{’D’};
 print "$val\n" while defined($val = pop(@ary));
 die "Can’t readlink $sym: $!"

unless defined($value = readlink $sym);
 eval ’@foo = ()’ if defined(@foo);
 die "No XYZ package defined" unless defined %_XYZ;
 sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }

See also undef() .

Note: many folks tend to overuse defined() , and then are surprised to discover that th
number 0 and the null string are, in fact, defined concepts. For example, if you say

 "ab" =~ /a(.*)b/;

the pattern match succeeds, and $1 is defined, despite the fact that it matched "nothing". But
didn‘t really match nothing—rather, it matched something that happened to be 0 characters
This is all very above−board and honest. When a function returns an undefined value,
admission that it couldn‘t give you an honest answer. So you should only use defined()
when you‘re questioning the integrity of what you‘re trying to do. At other times, a sim
comparison to 0 or "" is what you want.

delete EXPR
Deletes the specified value from its hash array. Returns the deleted value, or the undefine
if nothing was deleted. Deleting from $ENV{} modifies the environment. Deleting from an
array tied to a DBM file deletes the entry from the DBM file. (But deleting from a tie() d hash
doesn‘t necessarily return anything.)

The following deletes all the values of an associative array:

 foreach $key (keys %ARRAY) {
delete $ARRAY{$key};

 }

(But it would be faster to use the undef() command.) Note that the EXPR can be arbitrari
complicated as long as the final operation is a hash key lookup:

 delete $ref−>[$x][$y]{$key};

die LIST Outside of an eval() , prints the value of LIST to STDERR and exits with the current value of
$! (errno). If $! is 0, exits with the value of ($? >> 8) (backtick ‘command‘ status). If ($?
>> 8) is 0, exits with 255. Inside an eval() , the error message is stuffed into $@, and the
eval() is terminated with the undefined value; this makes die() the way to raise an
exception.

Equivalent examples:

 die "Can’t cd to spool: $!\n" unless chdir ’/usr/spool/news’;
 chdir ’/usr/spool/news’ or die "Can’t cd to spool: $!\n"

If the value of EXPR does not end in a newline, the current script line number and inpu
number (if any) are also printed, and a newline is supplied. Hint: sometimes append
stopped" to your message will cause it to make better sense when the string "at foo line 1
appended. Suppose you are running script "canasta".

 die "/etc/games is no good";
 die "/etc/games is no good, stopped";
08−Oct−1996 Version 5.003 61

perlfunc Perl Programmers Reference Guide perlfunc

ands
fore

ipt. Its

error
e
ery

t the

g
top.
 the
produce, respectively

 /etc/games is no good at canasta line 123.
 /etc/games is no good, stopped at canasta line 123.

See also exit() and warn() .

do BLOCK
Not really a function. Returns the value of the last command in the sequence of comm
indicated by BLOCK. When modified by a loop modifier, executes the BLOCK once be
testing the loop condition. (On other statements the loop modifiers test the conditional first.)

do SUBROUTINE(LIST)
A deprecated form of subroutine call. See perlsub.

do EXPR Uses the value of EXPR as a filename and executes the contents of the file as a Perl scr
primary use is to include subroutines from a Perl subroutine library.

 do ’stat.pl’;

is just like

 eval ‘cat stat.pl‘;

except that it‘s more efficient, more concise, keeps track of the current filename for
messages, and searches all the −I libraries if the file isn‘t in the current directory (see also th
@INC array in Predefined Names). It‘s the same, however, in that it does reparse the file ev
time you call it, so you probably don‘t want to do this inside a loop.

Note that inclusion of library modules is better done with the use() and require()
operators, which also do error checking and raise an exception if there‘s a problem.

dump LABEL
This causes an immediate core dump. Primarily this is so that you can use the undump program
to turn your core dump into an executable binary after having initialized all your variables a
beginning of the program. When the new binary is executed it will begin by executing a goto
LABEL (with all the restrictions that goto suffers). Think of it as a goto with an intervenin
core dump and reincarnation. If LABEL is omitted, restarts the program from the
WARNING: any files opened at the time of the dump will NOT be open any more when
program is reincarnated, with possible resulting confusion on the part of Perl. See also −u option
in perlrun.

Example:

 #!/usr/bin/perl
 require ’getopt.pl’;
 require ’stat.pl’;
 %days = (

’Sun’ => 1,
’Mon’ => 2,
’Tue’ => 3,
’Wed’ => 4,
’Thu’ => 5,
’Fri’ => 6,
’Sat’ => 7,

);

 dump QUICKSTART if $ARGV[0] eq ’−d’;

 QUICKSTART:
 Getopt(’f’);
62 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

or the
scalar
ned in
in list

set
 while
y all
r

t
(Note

f you

 Use

ef

text of
main
tement
each ASSOC_ARRAY
When called in a list context, returns a 2−element array consisting of the key and value f
next element of an associative array, so that you can iterate over it. When called in a
context, returns the key only for the next element in the associative array. Entries are retur
an apparently random order. When the array is entirely read, a null array is returned
context (which when assigned produces a FALSE (0) value), and undef is returned in a scalar
context. The next call to each() after that will start iterating again. The iterator can be re
only by reading all the elements from the array. You should not add elements to an array
you‘re iterating over it. There is a single iterator for each associative array, shared b
each() , keys() and values() function calls in the program. The following prints out you
environment like the printenv(1) program, only in a different order:

 while (($key,$value) = each %ENV) {
print "$key=$value\n";

 }

See also keys() and values() .

eof FILEHANDLE
eof ()
eof Returns 1 if the next read on FILEHANDLE will return end of file, or if FILEHANDLE is no

open. FILEHANDLE may be an expression whose value gives the real filehandle name.
that this function actually reads a character and then ungetc() s it, so it is not very useful in an
interactive context.) Do not read from a terminal file (or call eof(FILEHANDLE) on it) after
end−of−file is reached. Filetypes such as terminals may lose the end−of−file condition i
do.

An eof without an argument uses the last file read as argument. Empty parentheses () may be
used to indicate the pseudofile formed of the files listed on the command line, i.e. eof() is
reasonable to use inside a while (<>) loop to detect the end of only the last file.
eof(ARGV) or eof without the parentheses to test EACH file in a while (<>) loop. Examples:

 # reset line numbering on each input file
 while (<>) {

print "$.\t$_";
close(ARGV) if (eof); # Not eof().

 }

 # insert dashes just before last line of last file
 while (<>) {

if (eof()) {
 print "−−−−−−−−−−−−−−\n";
 close(ARGV); # close or break; is needed if we

are reading from the terminal
}
print;

 }

Practical hint: you almost never need to use eof in Perl, because the input operators return und
when they run out of data.

eval EXPR
eval BLOCK

EXPR is parsed and executed as if it were a little Perl program. It is executed in the con
the current Perl program, so that any variable settings, subroutine or format definitions re
afterwards. The value returned is the value of the last expression evaluated, or a return sta
may be used, just as with subroutines.
08−Oct−1996 Version 5.003 63

perlfunc Perl Programmers Reference Guide perlfunc

e

r a

time
rned

n:

ight be
 code

5 is a
lar

 calls
ent is

tly to

 are
as an
 of
If there is a syntax error or runtime error, or a die() statement is executed, an undefined valu
is returned by eval() , and $@ is set to the error message. If there was no error, $@ is
guaranteed to be a null string. If EXPR is omitted, evaluates $_. The final semicolon, if any,
may be omitted from the expression.

Note that, since eval() traps otherwise−fatal errors, it is useful for determining whethe
particular feature (such as socket() or symlink()) is implemented. It is also Perl‘s
exception trapping mechanism, where the die operator is used to raise exceptions.

If the code to be executed doesn‘t vary, you may use the eval−BLOCK form to trap run−
errors without incurring the penalty of recompiling each time. The error, if any, is still retu
in $@. Examples:

 # make divide−by−zero non−fatal
 eval { $answer = $a / $b; }; warn $@ if $@;

 # same thing, but less efficient
 eval ’$answer = $a / $b’; warn $@ if $@;

 # a compile−time error
 eval { $answer = };

 # a run−time error
 eval ’$answer =’; # sets $@

With an eval() , you should be especially careful to remember what‘s being looked at whe

 eval $x; # CASE 1
 eval "$x"; # CASE 2

 eval ’$x’; # CASE 3
 eval { $x }; # CASE 4

 eval "\$$x++" # CASE 5
 $$x++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in the variable$x.
(Although case 2 has misleading double quotes making the reader wonder what else m
happening (nothing is).) Cases 3 and 4 likewise behave in the same way: they run the
<$x>, which does nothing at all. (Case 4 is preferred for purely visual reasons.) Case
place where normally you WOULD like to use double quotes, except that in that particu
situation, you can just use symbolic references instead, as in case 6.

exec LIST
The exec() function executes a system command AND NEVER RETURNS. Use the
system() function if you want it to return.

If there is more than one argument in LIST, or if LIST is an array with more than one value,
execvp(3) with the arguments in LIST. If there is only one scalar argument, the argum
checked for shell metacharacters. If there are any, the entire argument is passed to /bin/sh
−c for parsing. If there are none, the argument is split into words and passed direc
execvp() , which is more efficient. Note: exec() and system() do not flush your output
buffer, so you may need to set $| to avoid lost output. Examples:

 exec ’/bin/echo’, ’Your arguments are: ’, @ARGV;
 exec "sort $outfile | uniq";

If you don‘t really want to execute the first argument, but want to lie to the program you
executing about its own name, you can specify the program you actually want to run
"indirect object" (without a comma) in front of the LIST. (This always forces interpretation
the LIST as a multi−valued list, even if there is only a single scalar in the list.) Example:
64 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

 value

esn‘t

h key

that

ves

t like
at

 for
dle.

esn‘t
 if
 $shell = ’/bin/csh’;
 exec $shell ’−sh’; # pretend it’s a login shell

or, more directly,

 exec {’/bin/csh’} ’−sh’; # pretend it’s a login shell

exists EXPR
Returns TRUE if the specified hash key exists in its hash array, even if the corresponding
is undefined.

 print "Exists\n" if exists $array{$key};
 print "Defined\n" if defined $array{$key};
 print "True\n" if $array{$key};

A hash element can only be TRUE if it‘s defined, and defined if it exists, but the reverse do
necessarily hold true.

Note that the EXPR can be arbitrarily complicated as long as the final operation is a has
lookup:

 if (exists $ref−>[$x][$y]{$key}) { ... }

exit EXPR
Evaluates EXPR and exits immediately with that value. (Actually, it calls any defined END
routines first, but the END routines may not abort the exit. Likewise any object destructors
need to be called are called before exit.) Example:

 $ans = <STDIN>;
 exit 0 if $ans =~ /^[Xx]/;

See also die() . If EXPR is omitted, exits with 0 status.

exp EXPR
Returns e (the natural logarithm base) to the power of EXPR. If EXPR is omitted, gi
exp($_).

fcntl FILEHANDLE,FUNCTION,SCALAR
Implements the fcntl(2) function. You‘ll probably have to say

 use Fcntl;

first to get the correct function definitions. Argument processing and value return works jus
ioctl() below. Note that fcntl() will produce a fatal error if used on a machine th
doesn‘t implement fcntl(2). For example:

 use Fcntl;
 fcntl($filehandle, F_GETLK, $packed_return_buffer);

fileno FILEHANDLE
Returns the file descriptor for a filehandle. This is useful for constructing bitmaps
select() . If FILEHANDLE is an expression, the value is taken as the name of the filehan

flock FILEHANDLE,OPERATION
Calls flock(2) on FILEHANDLE. See flock(2) for definition of OPERATION. Returns TRUE
for success, FALSE on failure. Will produce a fatal error if used on a machine that do
implement either flock(2) or fcntl(2). The fcntl(2) system call will be automatically used
flock(2) is missing from your system. This makes flock() the portable file locking strategy,
although it will only lock entire files, not records. Note also that some versions of flock()
cannot lock things over the network; you would need to use the more system−specific fcntl()
for that.
08−Oct−1996 Version 5.003 65

perlfunc Perl Programmers Reference Guide perlfunc

rocess,
oth
Here‘s a mailbox appender for BSD systems.

 $LOCK_SH = 1;
 $LOCK_EX = 2;
 $LOCK_NB = 4;
 $LOCK_UN = 8;

 sub lock {
flock(MBOX,$LOCK_EX);
and, in case someone appended
while we were waiting...
seek(MBOX, 0, 2);

 }

 sub unlock {
flock(MBOX,$LOCK_UN);

 }

 open(MBOX, ">>/usr/spool/mail/$ENV{’USER’}")
 or die "Can’t open mailbox: $!";

 lock();
 print MBOX $msg,"\n\n";
 unlock();

See also DB_File for other flock() examples.

fork Does a fork(2) system call. Returns the child pid to the parent process and 0 to the child p
or undef if the fork is unsuccessful. Note: unflushed buffers remain unflushed in b
processes, which means you may need to set $| ($AUTOFLUSH in English) or call the
autoflush() FileHandle method to avoid duplicate output.

If you fork() without ever waiting on your children, you will accumulate zombies:

 $SIG{CHLD} = sub { wait };

There‘s also the double−fork trick (error checking on fork() returns omitted);

 unless ($pid = fork) {
unless (fork) {
 exec "what you really wanna do";
 die "no exec";
 # ... or ...
 ## (some_perl_code_here)
 exit 0;
}
exit 0;

 }
 waitpid($pid,0);

See also perlipc for more examples of forking and reaping moribund children.

format Declare a picture format with use by the write() function. For example:

 format Something =
Test: @<<<<<<<< @||||| @>>>>>
 $str, $%, ’$’ . int($num)

 .

 $str = "widget";
 $num = $cost/$quantity;
 $~ = ’Something’;
66 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

e
 the

ad

re

ecord

 end
It
 like:

e

be
 write;

See perlform for many details and examples.

formline PICTURE, LIST
This is an internal function used by format s, though you may call it too. It formats (se
perlform) a list of values according to the contents of PICTURE, placing the output into
format output accumulator, $^A (or $ACCUMULATOR in English). Eventually, when a
write() is done, the contents of $^A are written to some filehandle, but you could also re
$^A yourself and then set $^A back to "". Note that a format typically does one formline()
per line of form, but the formline() function itself doesn‘t care how many newlines a
embedded in the PICTURE. This means that the ~ and ~~ tokens will treat the entire PICTURE
as a single line. You may therefore need to use multiple formlines to implement a single r
format, just like the format compiler.

Be careful if you put double quotes around the picture, since an "@" character may be taken to
mean the beginning of an array name. formline() always returns TRUE. See perlform for
other examples.

getc FILEHANDLE
getc Returns the next character from the input file attached to FILEHANDLE, or a null string at

of file. If FILEHANDLE is omitted, reads from STDIN. This is not particularly efficient.
cannot be used to get unbuffered single−characters, however. For that, try something more

 if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";

 }
 else {

system "stty", ’−icanon’, ’eol’, "\001";
 }

 $key = getc(STDIN);

 if ($BSD_STYLE) {
system "stty −cbreak </dev/tty >/dev/tty 2>&1";

 }
 else {

system "stty", ’icanon’, ’eol’, ’^@’; # ascii null
 }
 print "\n";

Determination of whether to whether $BSD_STYLE should be set is left as an exercise to th
reader.

See also the Term::ReadKey module from your nearest CPAN site; details on CPAN can
found on CPAN

getlogin Returns the current login from /etc/utmp, if any. If null, use getpwuid() .

 $login = getlogin || (getpwuid($<))[0] || "Kilroy";

Do not consider getlogin() for authentication: it is not as secure as getpwuid() .

getpeername SOCKET
Returns the packed sockaddr address of other end of the SOCKET connection.

 use Socket;
 $hersockaddr = getpeername(SOCK);
 ($port, $iaddr) = unpack_sockaddr_in($hersockaddr);
 $herhostname = gethostbyaddr($iaddr, AF_INET);
 $herstraddr = inet_ntoa($iaddr);
08−Oct−1996 Version 5.003 67

perlfunc Perl Programmers Reference Guide perlfunc

urrent
oesn‘t
at the
ly

ithin a
getpgrp PID
Returns the current process group for the specified PID. Use a PID of 0 to get the c
process group for the current process. Will raise an exception if used on a machine that d
implement getpgrp(2). If PID is omitted, returns process group of current process. Note th
POSIX version of getpgrp() does not accept a PID argument, so only PID==0 is tru
portable.

getppid Returns the process id of the parent process.

getpriority WHICH,WHO
Returns the current priority for a process, a process group, or a user. (See getpriority(2).) Will
raise a fatal exception if used on a machine that doesn‘t implement getpriority(2).

getpwnam NAME
getgrnam NAME
gethostbyname NAME
getnetbyname NAME
getprotobyname NAME
getpwuid UID
getgrgid GID
getservbyname NAME,PROTO
gethostbyaddr ADDR,ADDRTYPE
getnetbyaddr ADDR,ADDRTYPE
getprotobynumber NUMBER
getservbyport PORT,PROTO
getpwent
getgrent
gethostent
getnetent
getprotoent
getservent
setpwent
setgrent
sethostent STAYOPEN
setnetent STAYOPEN
setprotoent STAYOPEN
setservent STAYOPEN
endpwent
endgrent
endhostent
endnetent
endprotoent
endservent

These routines perform the same functions as their counterparts in the system library. W
list context, the return values from the various get routines are as follows:

 ($name,$passwd,$uid,$gid,
 $quota,$comment,$gcos,$dir,$shell) = getpw*
 ($name,$passwd,$gid,$members) = getgr*
 ($name,$aliases,$addrtype,$length,@addrs) = gethost*
 ($name,$aliases,$addrtype,$net) = getnet*
 ($name,$aliases,$proto) = getproto*
 ($name,$aliases,$port,$proto) = getserv*

(If the entry doesn‘t exist you get a null list.)
68 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

which
fined

the

st of
n, each

is the

ed for

s that
s

e. It
e or a
 used
t it‘s
ver felt

 This
u‘re
Within a scalar context, you get the name, unless the function was a lookup by name, in
case you get the other thing, whatever it is. (If the entry doesn‘t exist you get the unde
value.) For example:

 $uid = getpwnam
 $name = getpwuid
 $name = getpwent
 $gid = getgrnam
 $name = getgrgid
 $name = getgrent
 etc.

The $members value returned by getgr*() is a space separated list of the login names of
members of the group.

For the gethost*() functions, if the h_errno variable is supported in C, it will be returned
to you via $? if the function call fails. The @addrs value returned by a successful call is a li
the raw addresses returned by the corresponding system library call. In the Internet domai
address is four bytes long and you can unpack it by saying something like:

 ($a,$b,$c,$d) = unpack(’C4’,$addr[0]);

getsockname SOCKET
Returns the packed sockaddr address of this end of the SOCKET connection.

 use Socket;
 $mysockaddr = getsockname(SOCK);
 ($port, $myaddr) = unpack_sockaddr_in($mysockaddr);

getsockopt SOCKET,LEVEL,OPTNAME
Returns the socket option requested, or undefined if there is an error.

glob EXPR
Returns the value of EXPR with filename expansions such as a shell would do. This
internal function implementing the <*.*> operator, except it‘s easier to use.

gmtime EXPR
Converts a time as returned by the time function to a 9−element array with the time localiz
the standard Greenwich timezone. Typically used as follows:

 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
 gmtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this mean
$mon has the range 0..11 and $wday has the range 0..6. If EXPR is omitted, doe
gmtime(time()) .

goto LABEL
goto EXPR
goto &NAME

The goto−LABEL form finds the statement labeled with LABEL and resumes execution ther
may not be used to go into any construct that requires initialization, such as a subroutin
foreach loop. It also can‘t be used to go into a construct that is optimized away. It can be
to go almost anywhere else within the dynamic scope, including out of subroutines, bu
usually better to use some other construct such as last or die. The author of Perl has ne
the need to use this form of goto (in Perl, that is—C is another matter).

The goto−EXPR form expects a label name, whose scope will be resolved dynamically.
allows for computed gotos per FORTRAN, but isn‘t necessarily recommended if yo
optimizing for maintainability:
08−Oct−1996 Version 5.003 69

perlfunc Perl Programmers Reference Guide perlfunc

 the
oad
t place

 other

ted to

f the
amed

strings

ed

. If
ue is
t

t

ut
ter
l. (If
er than
ing it.)
es
 goto ("FOO", "BAR", "GLARCH")[$i];

The goto−&NAME form is highly magical, and substitutes a call to the named subroutine for
currently running subroutine. This is used by AUTOLOAD subroutines that wish to l
another subroutine and then pretend that the other subroutine had been called in the firs
(except that any modifications to @_ in the current subroutine are propagated to the
subroutine.) After the goto, not even caller() will be able to tell that this routine was called
first.

grep BLOCK LIST
grep EXPR,LIST

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element)
and returns the list value consisting of those elements for which the expression evalua
TRUE. In a scalar context, returns the number of times the expression was TRUE.

 @foo = grep(!/^#/, @bar); # weed out comments

or equivalently,

 @foo = grep {!/^#/} @bar; # weed out comments

Note that, since $_ is a reference into the list value, it can be used to modify the elements o
array. While this is useful and supported, it can cause bizarre results if the LIST is not a n
array.

hex EXPR
Interprets EXPR as a hex string and returns the corresponding decimal value. (To convert
that might start with 0 or 0x see oct() .) If EXPR is omitted, uses $_.

import There is no built−in import() function. It is merely an ordinary method (subroutine) defin
(or inherited) by modules that wish to export names to another module. The use() function
calls the import() method for the package used. See also /use, perlmod, and Exporter.

index STR,SUBSTR,POSITION
index STR,SUBSTR

Returns the position of the first occurrence of SUBSTR in STR at or after POSITION
POSITION is omitted, starts searching from the beginning of the string. The return val
based at 0 (or whatever you‘ve set the $[variable to—but don‘t do that). If the substring is no
found, returns one less than the base, ordinarily −1.

int EXPR Returns the integer portion of EXPR. If EXPR is omitted, uses $_.

ioctl FILEHANDLE,FUNCTION,SCALAR
Implements the ioctl(2) function. You‘ll probably have to say

 require "ioctl.ph"; # probably in /usr/local/lib/perl/ioctl.ph

first to get the correct function definitions. If ioctl.ph doesn‘t exist or doesn‘t have the correc
definitions you‘ll have to roll your own, based on your C header files such as <sys/ioctl.h>.
(There is a Perl script called h2ph that comes with the Perl kit which may help you in this, b
it‘s non−trivial.) SCALAR will be read and/or written depending on the FUNCTION—a poin
to the string value of SCALAR will be passed as the third argument of the actual ioctl cal
SCALAR has no string value but does have a numeric value, that value will be passed rath
a pointer to the string value. To guarantee this to be TRUE, add a 0 to the scalar before us
 The pack() and unpack() functions are useful for manipulating the values of structur
used by ioctl() . The following example sets the erase character to DEL.

 require ’ioctl.ph’;
 $getp = &TIOCGETP;
 die "NO TIOCGETP" if $@ || !$getp;
 $sgttyb_t = "ccccs"; # 4 chars and a short
70 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

ne the

y the

scalar
r, but it

t:

c

 send.

es.
t

 if (ioctl(STDIN,$getp,$sgttyb)) {
@ary = unpack($sgttyb_t,$sgttyb);
$ary[2] = 127;
$sgttyb = pack($sgttyb_t,@ary);
ioctl(STDIN,&TIOCSETP,$sgttyb)
 || die "Can’t ioctl: $!";

 }

The return value of ioctl (and fcntl) is as follows:

if OS returns: then Perl returns:
 −1 undefined value
 0 string "0 but true"
anything else that number

Thus Perl returns TRUE on success and FALSE on failure, yet you can still easily determi
actual value returned by the operating system:

 ($retval = ioctl(...)) || ($retval = −1);
 printf "System returned %d\n", $retval;

join EXPR,LIST
Joins the separate strings of LIST or ARRAY into a single string with fields separated b
value of EXPR, and returns the string. Example:

 $_ = join(’:’, $login,$passwd,$uid,$gid,$gcos,$home,$shell);

See split.

keys ASSOC_ARRAY
Returns a normal array consisting of all the keys of the named associative array. (In a
context, returns the number of keys.) The keys are returned in an apparently random orde
is the same order as either the values() or each() function produces (given that the
associative array has not been modified). Here is yet another way to print your environmen

 @keys = keys %ENV;
 @values = values %ENV;
 while ($#keys >= 0) {

print pop(@keys), ’=’, pop(@values), "\n";
 }

or how about sorted by key:

 foreach $key (sort(keys %ENV)) {
print $key, ’=’, $ENV{$key}, "\n";

 }

To sort an array by value, you‘ll need to use a sort{} function. Here‘s a descending numeri
sort of a hash by its values:

 foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash)) {
printf "%4d %s\n", $hash{$key}, $key;

 }

kill LIST Sends a signal to a list of processes. The first element of the list must be the signal to
Returns the number of processes successfully signaled.

 $cnt = kill 1, $child1, $child2;
 kill 9, @goners;

Unlike in the shell, in Perl if the SIGNAL is negative, it kills process groups instead of process
 (On System V, a negative PROCESS number will also kill process groups, but that‘s no
08−Oct−1996 Version 5.003 71

perlfunc Perl Programmers Reference Guide perlfunc

 use a

its
sing

e \L

ction

th of

ALSE

ed for

s that
s

portable.) That means you usually want to use positive not negative signals. You may also
signal name in quotes. See Signals in perlipc for details.

last LABEL
last The last command is like the break statement in C (as used in loops); it immediately ex

the loop in question. If the LABEL is omitted, the command refers to the innermost enclo
loop. The continue block, if any, is not executed:

 LINE: while (<STDIN>) {
last LINE if /^$/; # exit when done with header
...

 }

lc EXPR Returns an lowercased version of EXPR. This is the internal function implementing th
escape in double−quoted strings. Should respect any POSIX setlocale() settings.

lcfirst EXPR
Returns the value of EXPR with the first character lowercased. This is the internal fun
implementing the \l escape in double−quoted strings. Should respect any POSIX
setlocale() settings.

length EXPR
Returns the length in characters of the value of EXPR. If EXPR is omitted, returns leng
$_.

link OLDFILE,NEWFILE
Creates a new filename linked to the old filename. Returns 1 for success, 0 otherwise.

listen SOCKET,QUEUESIZE
Does the same thing that the listen system call does. Returns TRUE if it succeeded, F
otherwise. See example in Sockets: Client/Server Communication in perlipc.

local EXPR
A local modifies the listed variables to be local to the enclosing block, subroutine, eval{} or
do . If more than one value is listed, the list must be placed in parens. See
"Temporary Values via local() " for details.

But you really probably want to be using my() instead, because local() isn‘t what most
people think of as "local"). See "Private Variables via my() " for details.

localtime EXPR
Converts a time as returned by the time function to a 9−element array with the time analyz
the local timezone. Typically used as follows:

 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
localtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this mean
$mon has the range 0..11 and $wday has the range 0..6. If EXPR is omitted, doe
localtime(time).

In a scalar context, prints out the ctime(3) value:

 $now_string = localtime; # e.g. "Thu Oct 13 04:54:34 1994"

Also see the timelocal.pl library, and the strftime(3) function available via the POSIX module.

log EXPR
Returns logarithm (base e) of EXPR. If EXPR is omitted, returns log of $_.
72 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

e

CK or
 in the

(as

alue

efined

eue ID.

D into
d, the
 the

tine,
 in
lstat FILEHANDLE
lstat EXPR

Does the same thing as the stat() function, but stats a symbolic link instead of the file th
symbolic link points to. If symbolic links are unimplemented on your system, a normal stat()
is done.

m// The match operator. See perlop.

map BLOCK LIST
map EXPR,LIST

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element)
and returns the list value composed of the results of each such evaluation. Evaluates BLO
EXPR in a list context, so each element of LIST may produce zero, one, or more elements
returned value.

 @chars = map(chr, @nums);

translates a list of numbers to the corresponding characters. And

 %hash = map { getkey($_) => $_ } @array;

is just a funny way to write

 %hash = ();
 foreach $_ (@array) {

$hash{getkey($_)} = $_;
 }

mkdir FILENAME,MODE
Creates the directory specified by FILENAME, with permissions specified by MODE
modified by umask). If it succeeds it returns 1, otherwise it returns 0 and sets $! (errno).

msgctl ID,CMD,ARG
Calls the System V IPC function msgctl(2). If CMD is &IPC_STAT, then ARG must be a
variable which will hold the returned msqid_ds structure. Returns like ioctl: the undefined v
for error, "0 but true" for zero, or the actual return value otherwise.

msgget KEY,FLAGS
Calls the System V IPC function msgget(2). Returns the message queue id, or the und
value if there is an error.

msgsnd ID,MSG,FLAGS
Calls the System V IPC function msgsnd to send the message MSG to the message qu
MSG must begin with the long integer message type, which may be created with pack("l",
$type). Returns TRUE if successful, or FALSE if there is an error.

msgrcv ID,VAR,SIZE,TYPE,FLAGS
Calls the System V IPC function msgrcv to receive a message from message queue I
variable VAR with a maximum message size of SIZE. Note that if a message is receive
message type will be the first thing in VAR, and the maximum length of VAR is SIZE plus
size of the message type. Returns TRUE if successful, or FALSE if there is an error.

my EXPR
A "my" declares the listed variables to be local (lexically) to the enclosing block, subrou
eval , or do/require/use ‘d file. If more than one value is listed, the list must be placed
parens. See "Private Variables via my() " for details.
08−Oct−1996 Version 5.003 73

perlfunc Perl Programmers Reference Guide perlfunc

p:

on
op.

XPR
ndle

. If
d. If

s the
me
ned
ad
ode
‘,

 to be

a raw

pon
pens to

t files

e that
gle
next LABEL
next The next command is like the continue statement in C; it starts the next iteration of the loo

 LINE: while (<STDIN>) {
next LINE if /^#/; # discard comments
...

 }

Note that if there were a continue block on the above, it would get executed even
discarded lines. If the LABEL is omitted, the command refers to the innermost enclosing lo

no Module LIST
See the "use" function, which "no" is the opposite of.

oct EXPR
Interprets EXPR as an octal string and returns the corresponding decimal value. (If E
happens to start off with 0x, interprets it as a hex string instead.) The following will ha
decimal, octal, and hex in the standard Perl or C notation:

 $val = oct($val) if $val =~ /^0/;

If EXPR is omitted, uses $_.

open FILEHANDLE,EXPR
open FILEHANDLE

Opens the file whose filename is given by EXPR, and associates it with FILEHANDLE
FILEHANDLE is an expression, its value is used as the name of the real filehandle wante
EXPR is omitted, the scalar variable of the same name as the FILEHANDLE contain
filename. If the filename begins with "<" or nothing, the file is opened for input. If the filena
begins with ">", the file is opened for output. If the filename begins with ">>", the file is ope
for appending. You can put a ‘+’ in front of the ‘>’ or ‘<’ to indicate that you want both re
and write access to the file; thus ‘+<’ is usually preferred for read/write updates—the ‘+>’ m
would clobber the file first. These correspond to the fopen(3) modes of ‘r‘, ‘r+‘, ‘w‘, ‘w+‘, ‘a
and ‘a+’.

If the filename begins with "|", the filename is interpreted as a command to which output is
piped, and if the filename ends with a "|", the filename is interpreted See "Using open() for
IPC" for more examples of this. as command which pipes input to us. (You may not have
open() to a command that pipes both in and out, but see open2, open3, and
Bidirectional Communication in perlipc for alternatives.)

Opening ‘−’ opens STDIN and opening ‘>−’ opens STDOUT. Open returns non−zero u
success, the undefined value otherwise. If the open involved a pipe, the return value hap
be the pid of the subprocess.

If you‘re unfortunate enough to be running Perl on a system that distinguishes between tex
and binary files (modern operating systems don‘t care), then you should check out /binmode for
tips for dealing with this. The key distinction between systems that need binmode and thos
don‘t is their text file formats. Systems like Unix and Plan9 that delimit lines with a sin
character, and that encode that character in C as ‘\n‘, do not need binmode . The rest need it.

Examples:

 $ARTICLE = 100;
 open ARTICLE or die "Can’t find article $ARTICLE: $!\n";
 while (<ARTICLE>) {...

 open(LOG, ’>>/usr/spool/news/twitlog’); # (log is reserved)
74 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

meric)
u
e into
estores
 open(DBASE, ’+<dbase.mine’); # open for update

 open(ARTICLE, "caesar <$article |"); # decrypt article

 open(EXTRACT, "|sort >/tmp/Tmp$$"); # $$ is our process id

 # process argument list of files along with any includes

 foreach $file (@ARGV) {
process($file, ’fh00’);

 }

 sub process {
local($filename, $input) = @_;
$input++; # this is a string increment
unless (open($input, $filename)) {
 print STDERR "Can’t open $filename: $!\n";
 return;
}

while (<$input>) { # note use of indirection
 if (/^#include "(.*)"/) {

process($1, $input);
next;

 }
 ... # whatever
}

 }

You may also, in the Bourne shell tradition, specify an EXPR beginning with ">&", in which
case the rest of the string is interpreted as the name of a filehandle (or file descriptor, if nu
which is to be duped and opened. You may use & after >, >>, <, +>, +>> and +<. The mode yo
specify should match the mode of the original filehandle. (Duping a filehandle does not tak
account any existing contents of stdio buffers.) Here is a script that saves, redirects, and r
STDOUT and STDERR:

 #!/usr/bin/perl
 open(SAVEOUT, ">&STDOUT");
 open(SAVEERR, ">&STDERR");

 open(STDOUT, ">foo.out") || die "Can’t redirect stdout";
 open(STDERR, ">&STDOUT") || die "Can’t dup stdout";

 select(STDERR); $| = 1; # make unbuffered
 select(STDOUT); $| = 1; # make unbuffered

 print STDOUT "stdout 1\n"; # this works for
 print STDERR "stderr 1\n"; # subprocesses too

 close(STDOUT);
 close(STDERR);

 open(STDOUT, ">&SAVEOUT");
 open(STDERR, ">&SAVEERR");

 print STDOUT "stdout 2\n";
 print STDERR "stderr 2\n";

If you specify "<&=N", where N is a number, then Perl will do an equivalent of C‘s fdopen()
of that file descriptor; this is more parsimonious of file descriptors. For example:

 open(FILEHANDLE, "<&=$fd")
08−Oct−1996 Version 5.003 75

perlfunc Perl Programmers Reference Guide perlfunc

fork
within
he
 the

i/o
pen
uch as

racters.

nish,
d

ymous
, and

rder to
ailing

e
For
If you open a pipe on the command "−", i.e. either "|−" or "−|", then there is an implicit
done, and the return value of open is the pid of the child within the parent process, and 0
the child process. (Use defined($pid) to determine whether the open was successful.) T
filehandle behaves normally for the parent, but i/o to that filehandle is piped from/to
STDOUT/STDIN of the child process. In the child process the filehandle isn‘t opened—
happens from/to the new STDOUT or STDIN. Typically this is used like the normal piped o
when you want to exercise more control over just how the pipe command gets executed, s
when you are running setuid, and don‘t want to have to scan shell commands for metacha
 The following pairs are more or less equivalent:

 open(FOO, "|tr ’[a−z]’ ’[A−Z]’");
 open(FOO, "|−") || exec ’tr’, ’[a−z]’, ’[A−Z]’;

 open(FOO, "cat −n ’$file’|");
 open(FOO, "−|") || exec ’cat’, ’−n’, $file;

See Safe Pipe Opens in perlipc for more examples of this.

Explicitly closing any piped filehandle causes the parent process to wait for the child to fi
and returns the status value in $?. Note: on any operation which may do a fork, unflushe
buffers remain unflushed in both processes, which means you may need to set $| to avoid
duplicate output.

Using the FileHandle constructor from the FileHandle package, you can generate anon
filehandles which have the scope of whatever variables hold references to them
automatically close whenever and however you leave that scope:

 use FileHandle;
 ...
 sub read_myfile_munged {

my $ALL = shift;
my $handle = new FileHandle;
open($handle, "myfile") or die "myfile: $!";
$first = <$handle>
 or return (); # Automatically closed here.
mung $first or die "mung failed"; # Or here.
return $first, <$handle> if $ALL; # Or here.
$first; # Or here.

 }

The filename that is passed to open will have leading and trailing whitespace deleted. In o
open a file with arbitrary weird characters in it, it‘s necessary to protect any leading and tr
whitespace thusly:

 $file =~ s#^(\s)#./$1#;
 open(FOO, "< $file\0");

If you want a "real" C open() (see open(2) on your system), then you should use th
sysopen() function. This is another way to protect your filenames from interpretation.
example:

 use FileHandle;
 sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL, 0700)

or die "sysopen $path: $!";
 HANDLE−>autoflush(1);
 HANDLE−>print("stuff $$\n");
 seek(HANDLE, 0, 0);
 print "File contains: ", <HANDLE>;
76 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

ir

tring
r and

types
ny
. The
 with
" does
lds
icated

due to
tion,
ten on
metic
See /seek() for some details about mixing reading and writing.

opendir DIRHANDLE,EXPR
Opens a directory named EXPR for processing by readdir() , telldir() , seekdir() ,
rewinddir() and closedir() . Returns TRUE if successful. DIRHANDLEs have the
own namespace separate from FILEHANDLEs.

ord EXPR
Returns the numeric ascii value of the first character of EXPR. If EXPR is omitted, uses $_.

pack TEMPLATE,LIST
Takes an array or list of values and packs it into a binary structure, returning the s
containing the structure. The TEMPLATE is a sequence of characters that give the orde
type of values, as follows:

 A An ascii string, will be space padded.
 a An ascii string, will be null padded.
 b A bit string (ascending bit order, like vec()).
 B A bit string (descending bit order).
 h A hex string (low nybble first).
 H A hex string (high nybble first).

 c A signed char value.
 C An unsigned char value.
 s A signed short value.
 S An unsigned short value.
 i A signed integer value.
 I An unsigned integer value.
 l A signed long value.
 L An unsigned long value.

 n A short in "network" order.
 N A long in "network" order.
 v A short in "VAX" (little−endian) order.
 V A long in "VAX" (little−endian) order.

 f A single−precision float in the native format.
 d A double−precision float in the native format.

 p A pointer to a null−terminated string.
 P A pointer to a structure (fixed−length string).

 u A uuencoded string.

 x A null byte.
 X Back up a byte.
 @ Null fill to absolute position.

Each letter may optionally be followed by a number which gives a repeat count. With all
except "a", "A", "b", "B", "h" and "H", and "P" the pack function will gobble up that ma
values from the LIST. A * for the repeat count means to use however many items are left
"a" and "A" types gobble just one value, but pack it as a string of length count, padding
nulls or spaces as necessary. (When unpacking, "A" strips trailing spaces and nulls, but "a
not.) Likewise, the "b" and "B" fields pack a string that many bits long. The "h" and "H" fie
pack a string that many nybbles long. The "P" packs a pointer to a structure of the size ind
by the length. Real numbers (floats and doubles) are in the native machine format only;
the multiplicity of floating formats around, and the lack of a standard "network" representa
no facility for interchange has been made. This means that packed floating point data writ
one machine may not be readable on another − even if both use IEEE floating point arith
08−Oct−1996 Version 5.003 77

perlfunc Perl Programmers Reference Guide perlfunc

at Perl
 and

ckage
scope
s
e used

mpiler
s by

See

 a loop
t Perl‘s
(as the endian−ness of the memory representation is not part of the IEEE spec). Note th
uses doubles internally for all numeric calculation, and converting from double into float
thence back to double again will lose precision (i.e. unpack("f", pack("f", $foo))
will not in general equal $foo).

Examples:

 $foo = pack("cccc",65,66,67,68);
 # foo eq "ABCD"
 $foo = pack("c4",65,66,67,68);
 # same thing

 $foo = pack("ccxxcc",65,66,67,68);
 # foo eq "AB\0\0CD"

 $foo = pack("s2",1,2);
 # "\1\0\2\0" on little−endian
 # "\0\1\0\2" on big−endian

 $foo = pack("a4","abcd","x","y","z");
 # "abcd"

 $foo = pack("aaaa","abcd","x","y","z");
 # "axyz"

 $foo = pack("a14","abcdefg");
 # "abcdefg\0\0\0\0\0\0\0"

 $foo = pack("i9pl", gmtime);
 # a real struct tm (on my system anyway)

 sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, −32)));

 }

The same template may generally also be used in the unpack function.

package NAMESPACE
Declares the compilation unit as being in the given namespace. The scope of the pa
declaration is from the declaration itself through the end of the enclosing block (the same
as the local() operator). All further unqualified dynamic identifiers will be in thi
namespace. A package statement only affects dynamic variables—including those you‘v
local() on—but not lexical variables created with my() . Typically it would be the first
declaration in a file to be included by the require or use operator. You can switch into a
package in more than one place; it merely influences which symbol table is used by the co
for the rest of that block. You can refer to variables and filehandles in other package
prefixing the identifier with the package name and a double colon: $Package::Variable.
If the package name is null, the main package as assumed. That is, $::sail is equivalent to
$main::sail.

See Packages in perlmod for more information about packages, modules, and classes.
perlsub for other scoping issues.

pipe READHANDLE,WRITEHANDLE
Opens a pair of connected pipes like the corresponding system call. Note that if you set up
of piped processes, deadlock can occur unless you are very careful. In addition, note tha
pipes use stdio buffering, so you may need to set $| to flush your WRITEHANDLE after each
command, depending on the application.

See open2, open3, and Bidirectional Communication in perlipc for examples of such things.
78 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

 to

s the

e

ssful.
me of
: If
erator
itted,

han
IST is
f its
ith a
uments

use

e

ength
pop ARRAY
Pops and returns the last value of the array, shortening the array by 1. Has a similar effect

 $tmp = $ARRAY[$#ARRAY−−];

If there are no elements in the array, returns the undefined value. If ARRAY is omitted, pop
@ARGV array in the main program, and the @_ array in subroutines, just like shift() .

pos SCALAR
Returns the offset of where the last m//g search left off for the variable in question. May b
modified to change that offset.

print FILEHANDLE LIST
print LIST
print Prints a string or a comma−separated list of strings. Returns TRUE if succe

FILEHANDLE may be a scalar variable name, in which case the variable contains the na
or a reference to the filehandle, thus introducing one level of indirection. (NOTE
FILEHANDLE is a variable and the next token is a term, it may be misinterpreted as an op
unless you interpose a + or put parens around the arguments.) If FILEHANDLE is om
prints by default to standard output (or to the last selected output channel—see /select). If LIST
is also omitted, prints $_ to STDOUT. To set the default output channel to something other t
STDOUT use the select operation. Note that, because print takes a LIST, anything in the L
evaluated in a list context, and any subroutine that you call will have one or more o
expressions evaluated in a list context. Also be careful not to follow the print keyword w
left parenthesis unless you want the corresponding right parenthesis to terminate the arg
to the print—interpose a + or put parens around all the arguments.

Note that if you‘re storing FILEHANDLES in an array or other expression, you will have to
a block returning its value instead:

 print { $files[$i] } "stuff\n";
 print { $OK ? STDOUT : STDERR } "stuff\n";

printf FILEHANDLE LIST
printf LIST

Equivalent to a "print FILEHANDLE sprintf(LIST)". The first argument of the list will b
interpreted as the printf format.

prototype FUNCTION
Returns the prototype of a function as a string (or undef if the function has no prototype).
FUNCTION is a reference to the the function whose prototype you want to retrieve.

push ARRAY,LIST
Treats ARRAY as a stack, and pushes the values of LIST onto the end of ARRAY. The l
of ARRAY increases by the length of LIST. Has the same effect as

 for $value (LIST) {
$ARRAY[++$#ARRAY] = $value;

 }

but is more efficient. Returns the new number of elements in the array.

q/STRING/
qq/STRING/
qx/STRING/
qw/STRING/

Generalized quotes. See perlop.
08−Oct−1996 Version 5.003 79

perlfunc Perl Programmers Reference Guide perlfunc

This is

ld be
uces

 then
s a
 you

ied
rror.
d to
ctually

ns an

e

fatal

riable

ALAR
call of

The
 the
lie to
quotemeta EXPR
Returns the value of EXPR with with all regular expression metacharacters backslashed.
the internal function implementing the \Q escape in double−quoted strings.

rand EXPR
rand Returns a random fractional number between 0 and the value of EXPR. (EXPR shou

positive.) If EXPR is omitted, returns a value between 0 and 1. This function prod
repeatable sequences unless srand() is invoked. See also srand() .

(Note: if your rand function consistently returns numbers that are too large or too small,
your version of Perl was probably compiled with the wrong number of RANDBITS. A
workaround, you can usually multiply EXPR by the correct power of 2 to get the range
want. This will make your script unportable, however. It‘s better to recompile if you can.)

read FILEHANDLE,SCALAR,LENGTH,OFFSET
read FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the specif
FILEHANDLE. Returns the number of bytes actually read, or undef if there was an e
SCALAR will be grown or shrunk to the length actually read. An OFFSET may be specifie
place the read data at some other place than the beginning of the string. This call is a
implemented in terms of stdio‘s fread call. To get a true read system call, see sysread() .

readdir DIRHANDLE
Returns the next directory entry for a directory opened by opendir() . If used in a list context,
returns all the rest of the entries in the directory. If there are no more entries, retur
undefined value in a scalar context or a null list in a list context.

If you‘re planning to filetest the return values out of a readdir() , you‘d better prepend the
directory in question. Otherwise, since we didn‘t chdir() there, it would have been testing th
wrong file.

 opendir(DIR, $some_dir) || die "can’t opendir $some_dir: $!";
 @dots = grep { /^\./ && −f "$some_dir/$_" } readdir(DIR);
 closedir DIR;

readlink EXPR
Returns the value of a symbolic link, if symbolic links are implemented. If not, gives a
error. If there is some system error, returns the undefined value and sets $! (errno). If EXPR is
omitted, uses $_.

recv SOCKET,SCALAR,LEN,FLAGS
Receives a message on a socket. Attempts to receive LENGTH bytes of data into va
SCALAR from the specified SOCKET filehandle. Actually does a C recvfrom() , so that it
can returns the address of the sender. Returns the undefined value if there‘s an error. SC
will be grown or shrunk to the length actually read. Takes the same flags as the system
the same name. See UDP: Message Passing in perlipc for examples.

redo LABEL
redo The redo command restarts the loop block without evaluating the conditional again.

continue block, if any, is not executed. If the LABEL is omitted, the command refers to
innermost enclosing loop. This command is normally used by programs that want to
themselves about what was just input:

 # a simpleminded Pascal comment stripper
 # (warning: assumes no { or } in strings)
 LINE: while (<STDIN>) {

while (s|({.*}.*){.*}|$1 |) {}
s|{.*}| |;
80 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

pends

returned

ystem

file is
if (s|{.*| |) {
 $front = $_;
 while (<STDIN>) {

if (/}/) { # end of comment?
 s|^|$front{|;
 redo LINE;
}

 }
}
print;

 }

ref EXPR Returns a TRUE value if EXPR is a reference, FALSE otherwise. The value returned de
on the type of thing the reference is a reference to. Builtin types include:

 REF
 SCALAR
 ARRAY
 HASH
 CODE
 GLOB

If the referenced object has been blessed into a package, then that package name is
instead. You can think of ref() as a typeof() operator.

 if (ref($r) eq "HASH") {
print "r is a reference to an associative array.\n";

 }
 if (!ref ($r) {

print "r is not a reference at all.\n";
 }

See also perlref.

rename OLDNAME,NEWNAME
Changes the name of a file. Returns 1 for success, 0 otherwise. Will not work across files
boundaries.

require EXPR
require Demands some semantics specified by EXPR, or by $_ if EXPR is not supplied. If EXPR is

numeric, demands that the current version of Perl ($] or $PERL_VERSION) be equal or
greater than EXPR.

Otherwise, demands that a library file be included if it hasn‘t already been included. The
included via the do−FILE mechanism, which is essentially just a variety of eval() . Has
semantics similar to the following subroutine:

 sub require {
local($filename) = @_;
return 1 if $INC{$filename};
local($realfilename,$result);
ITER: {
 foreach $prefix (@INC) {

$realfilename = "$prefix/$filename";
if (−f $realfilename) {
 $result = do $realfilename;
 last ITER;
}

 }
08−Oct−1996 Version 5.003 81

perlfunc Perl Programmers Reference Guide perlfunc

eturn
o it‘s
 it‘s

dules

ches
phens

o their
 match
les:

nly
n scope

 return

. In a
n the

R in

 1,
 die "Can’t find $filename in \@INC";
}
die $@ if $@;
die "$filename did not return true value" unless $result;
$INC{$filename} = $realfilename;
$result;

 }

Note that the file will not be included twice under the same specified name. The file must r
TRUE as the last statement to indicate successful execution of any initialization code, s
customary to end such a file with "1;" unless you‘re sure it‘ll return TRUE otherwise. But
better just to put the "1; ", in case you add more statements.

If EXPR is a bare word, the require assumes a ".pm" extension and replaces ":: " with "/" in the
filename for you, to make it easy to load standard modules. This form of loading of mo
does not risk altering your namespace.

For a yet−more−powerful import facility, see /use and perlmod.

reset EXPR
reset Generally used in a continue block at the end of a loop to clear variables and reset ?? sear

so that they work again. The expression is interpreted as a list of single characters (hy
allowed for ranges). All variables and arrays beginning with one of those letters are reset t
pristine state. If the expression is omitted, one−match searches (?pattern?) are reset to
again. Only resets variables or searches in the current package. Always returns 1. Examp

 reset ’X’; # reset all X variables
 reset ’a−z’; # reset lower case variables
 reset; # just reset ?? searches

Resetting "A−Z" is not recommended since you‘ll wipe out your ARGV and ENV arrays. O
resets package variables—lexical variables are unaffected, but they clean themselves up o
exit anyway, so you‘ll probably want to use them instead. See /my.

return LIST
Returns from a subroutine or eval with the value specified. (Note that in the absence of a
a subroutine or eval() will automatically return the value of the last expression evaluated.)

reverse LIST
In a list context, returns a list value consisting of the elements of LIST in the opposite order
scalar context, returns a string value consisting of the bytes of the first element of LIST i
opposite order.

 print reverse <>; # line tac

 undef $/;
 print scalar reverse scalar <>; # byte tac

rewinddir DIRHANDLE
Sets the current position to the beginning of the directory for the readdir() routine on
DIRHANDLE.

rindex STR,SUBSTR,POSITION
rindex STR,SUBSTR

Works just like index except that it returns the position of the LAST occurrence of SUBST
STR. If POSITION is specified, returns the last occurrence at or before that position.

rmdir FILENAME
Deletes the directory specified by FILENAME if it is empty. If it succeeds it returns
otherwise it returns 0 and sets $! (errno). If FILENAME is omitted, uses $_.
82 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

ecause
e the

alues
lus
ET,

s, 0

riting.
of 1

d

it

ething

e
s the

ut, if

tput
ore
s/// The substitution operator. See perlop.

scalar EXPR
Forces EXPR to be interpreted in a scalar context and returns the value of EXPR.

 @counts = (scalar @a, scalar @b, scalar @c);

There is no equivalent operator to force an expression to be interpolated in a list context b
it‘s in practice never needed. If you really wanted to do so, however, you could us
construction @{[(some expression)]} , but usually a simple (some expression)
suffices.

seek FILEHANDLE,POSITION,WHENCE
Randomly positions the file pointer for FILEHANDLE, just like the fseek() call of stdio.
FILEHANDLE may be an expression whose value gives the name of the filehandle. The v
for WHENCE are 0 to set the file pointer to POSITION, 1 to set the it to current p
POSITION, and 2 to set it to EOF plus offset. You may use the values SEEK_S
SEEK_CUR, and SEEK_END for this from POSIX module. Returns 1 upon succes
otherwise.

On some systems you have to do a seek whenever you switch between reading and w
Amongst other things, this may have the effect of calling stdio‘s clearerr(3). A "whence"
(SEEK_CUR) is useful for not moving the file pointer:

 seek(TEST,0,1);

This is also useful for applications emulating tail −f . Once you hit EOF on your read, an
then sleep for a while, you might have to stick in a seek() to reset things. First the simple trick
listed above to clear the filepointer. The seek() doesn‘t change the current position, but
does clear the end−of−file condition on the handle, so that the next <FILE> makes Perl try
again to read something. Hopefully.

If that doesn‘t work (some stdios are particularly cantankerous), then you may need som
more like this:

 for (;;) {
for ($curpos = tell(FILE); $_ = <FILE>; $curpos = tell(FILE)) {
 # search for some stuff and put it into files
}
sleep($for_a_while);
seek(FILE, $curpos, 0);

 }

seekdir DIRHANDLE,POS
Sets the current position for the readdir() routine on DIRHANDLE. POS must be a valu
returned by telldir() . Has the same caveats about possible directory compaction a
corresponding system library routine.

select FILEHANDLE
select Returns the currently selected filehandle. Sets the current default filehandle for outp

FILEHANDLE is supplied. This has two effects: first, a write or a print without a
filehandle will default to this FILEHANDLE. Second, references to variables related to ou
will refer to this output channel. For example, if you have to set the top of form format for m
than one output channel, you might do the following:

 select(REPORT1);
 $^ = ’report1_top’;
 select(REPORT2);
 $^ = ’report2_top’;
08−Oct−1996 Version 5.003 83

perlfunc Perl Programmers Reference Guide perlfunc

ndle.

ng to

 using

ay be

array.
alue
FILEHANDLE may be an expression whose value gives the name of the actual fileha
Thus:

 $oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferri
write the last example as:

 use FileHandle;
 STDERR−>autoflush(1);

select RBITS,WBITS,EBITS,TIMEOUT
This calls the select(2) system call with the bitmasks specified, which can be constructed
fileno() and vec() , along these lines:

 $rin = $win = $ein = ’’;
 vec($rin,fileno(STDIN),1) = 1;
 vec($win,fileno(STDOUT),1) = 1;
 $ein = $rin | $win;

If you want to select on many filehandles you might wish to write a subroutine:

 sub fhbits {
local(@fhlist) = split(’ ’,$_[0]);
local($bits);
for (@fhlist) {
 vec($bits,fileno($_),1) = 1;
}
$bits;

 }
 $rin = fhbits(’STDIN TTY SOCK’);

The usual idiom is:

 ($nfound,$timeleft) =
 select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready just do this

 $nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);

Most systems do not both to return anything useful in $timeleft, so calling select() in a
scalar context just returns $nfound.

Any of the bitmasks can also be undef. The timeout, if specified, is in seconds, which m
fractional. Note: not all implementations are capable of returning the $timeleft. If not, they
always return $timeleft equal to the supplied $timeout.

You can effect a 250−millisecond sleep this way:

 select(undef, undef, undef, 0.25);

WARNING : Do not attempt to mix buffered I/O (like read() or <FH>) with select() .
You have to use sysread() instead.

semctl ID,SEMNUM,CMD,ARG
Calls the System V IPC function semctl. If CMD is &IPC_STAT or &GETALL, then ARG
must be a variable which will hold the returned semid_ds structure or semaphore value
Returns like ioctl: the undefined value for error, "0 but true" for zero, or the actual return v
otherwise.
84 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

alue if

ng and
 can be

ful, or

ame. On
s a C
error.

uce a
s are

 Will

ay be

ving
RAY

 (This

rror,

or the
semget KEY,NSEMS,FLAGS
Calls the System V IPC function semget. Returns the semaphore id, or the undefined v
there is an error.

semop KEY,OPSTRING
Calls the System V IPC function semop to perform semaphore operations such as signali
waiting. OPSTRING must be a packed array of semop structures. Each semop structure
generated with pack("sss", $semnum, $semop, $semflag). The number of
semaphore operations is implied by the length of OPSTRING. Returns TRUE if success
FALSE if there is an error. As an example, the following code waits on semaphore $semnum of
semaphore id $semid:

 $semop = pack("sss", $semnum, −1, 0);
 die "Semaphore trouble: $!\n" unless semop($semid, $semop);

To signal the semaphore, replace "−1" with "1".

send SOCKET,MSG,FLAGS,TO
send SOCKET,MSG,FLAGS

Sends a message on a socket. Takes the same flags as the system call of the same n
unconnected sockets you must specify a destination to send TO, in which case it doe
sendto() . Returns the number of characters sent, or the undefined value if there is an
See UDP: Message Passing in perlipc for examples.

setpgrp PID,PGRP
Sets the current process group for the specified PID, 0 for the current process. Will prod
fatal error if used on a machine that doesn‘t implement setpgrp(2). If the argument
ommitted, it defaults to 0,0. Note that the POSIX version of setpgrp() does not accept any
arguments, so only setpgrp 0,0 is portable.

setpriority WHICH,WHO,PRIORITY
Sets the current priority for a process, a process group, or a user. (See setpriority(2).)
produce a fatal error if used on a machine that doesn‘t implement setpriority(2).

setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requested. Returns undefined if there is an error. OPTVAL m
specified as undef if you don‘t want to pass an argument.

shift ARRAY
shift Shifts the first value of the array off and returns it, shortening the array by 1 and mo

everything down. If there are no elements in the array, returns the undefined value. If AR
is omitted, shifts the @ARGV array in the main program, and the @_ array in subroutines.
is determined lexically.) See also unshift() , push() , and pop() . Shift() and
unshift() do the same thing to the left end of an array that push() and pop() do to the
right end.

shmctl ID,CMD,ARG
Calls the System V IPC function shmctl. If CMD is &IPC_STAT, then ARG must be a variable
which will hold the returned shmid_ds structure. Returns like ioctl: the undefined value for e
"0 but true" for zero, or the actual return value otherwise.

shmget KEY,SIZE,FLAGS
Calls the System V IPC function shmget. Returns the shared memory segment id,
undefined value if there is an error.

shmread ID,VAR,POS,SIZE
08−Oct−1996 Version 5.003 85

perlfunc Perl Programmers Reference Guide perlfunc

 SIZE
iable
sed;
, or

same

ed by
bably

pending

YPE
should

AIN,
e. If

out. If
 is
greater
d cmp
me, in
, you

 the
 to be
shmwrite ID,STRING,POS,SIZE
Reads or writes the System V shared memory segment ID starting at position POS for size
by attaching to it, copying in/out, and detaching from it. When reading, VAR must be a var
which will hold the data read. When writing, if STRING is too long, only SIZE bytes are u
if STRING is too short, nulls are written to fill out SIZE bytes. Return TRUE if successful
FALSE if there is an error.

shutdown SOCKET,HOW
Shuts down a socket connection in the manner indicated by HOW, which has the
interpretation as in the system call of the same name.

sin EXPR Returns the sine of EXPR (expressed in radians). If EXPR is omitted, returns sine of $_.

sleep EXPR
sleep Causes the script to sleep for EXPR seconds, or forever if no EXPR. May be interrupt

sending the process a SIGALRM. Returns the number of seconds actually slept. You pro
cannot mix alarm() and sleep() calls, since sleep() is often implemented using
alarm() .

On some older systems, it may sleep up to a full second less than what you requested, de
on how it counts seconds. Most modern systems always sleep the full amount.

For delays of finer granularity than one second, you may use Perl‘s syscall() interface to
access setitimer(2) if your system supports it, or else see /select() below.

socket SOCKET,DOMAIN,TYPE,PROTOCOL
Opens a socket of the specified kind and attaches it to filehandle SOCKET. DOMAIN, T
and PROTOCOL are specified the same as for the system call of the same name. You
"use Socket;" first to get the proper definitions imported. See the example in
Sockets: Client/Server Communication in perlipc.

socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
Creates an unnamed pair of sockets in the specified domain, of the specified type. DOM
TYPE and PROTOCOL are specified the same as for the system call of the same nam
unimplemented, yields a fatal error. Returns TRUE if successful.

sort SUBNAME LIST
sort BLOCK LIST
sort LIST Sorts the LIST and returns the sorted list value. Nonexistent values of arrays are stripped

SUBNAME or BLOCK is omitted, sorts in standard string comparison order. If SUBNAME
specified, it gives the name of a subroutine that returns an integer less than, equal to, or
than 0, depending on how the elements of the array are to be ordered. (The <=> an
operators are extremely useful in such routines.) SUBNAME may be a scalar variable na
which case the value provides the name of the subroutine to use. In place of a SUBNAME
can provide a BLOCK as an anonymous, in−line sort subroutine.

In the interests of efficiency the normal calling code for subroutines is bypassed, with
following effects: the subroutine may not be a recursive subroutine, and the two elements
compared are passed into the subroutine not via @_ but as the package global variables $a and
$b (see example below). They are passed by reference, so don‘t modify $a and $b. And don‘t
try to declare them as lexicals either.

Examples:

 # sort lexically
 @articles = sort @files;

 # same thing, but with explicit sort routine
 @articles = sort {$a cmp $b} @files;
86 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc
 # now case−insensitively
 @articles = sort { uc($a) cmp uc($b)} @files;

 # same thing in reversed order
 @articles = sort {$b cmp $a} @files;

 # sort numerically ascending
 @articles = sort {$a <=> $b} @files;

 # sort numerically descending
 @articles = sort {$b <=> $a} @files;

 # sort using explicit subroutine name
 sub byage {

$age{$a} <=> $age{$b}; # presuming integers
 }
 @sortedclass = sort byage @class;

 # this sorts the %age associative arrays by value
 # instead of key using an inline function
 @eldest = sort { $age{$b} <=> $age{$a} } keys %age;

 sub backwards { $b cmp $a; }
 @harry = (’dog’,’cat’,’x’,’Cain’,’Abel’);
 @george = (’gone’,’chased’,’yz’,’Punished’,’Axed’);
 print sort @harry;

 # prints AbelCaincatdogx
 print sort backwards @harry;

 # prints xdogcatCainAbel
 print sort @george, ’to’, @harry;

 # prints AbelAxedCainPunishedcatchaseddoggonetoxyz

 # inefficiently sort by descending numeric compare using
 # the first integer after the first = sign, or the
 # whole record case−insensitively otherwise

 @new = sort {
($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]

 ||
 uc($a) cmp uc($b)

 } @old;

 # same thing, but much more efficiently;
 # we’ll build auxiliary indices instead
 # for speed
 @nums = @caps = ();
 for (@old) {

push @nums, /=(\d+)/;
push @caps, uc($_);

 }

 @new = @old[sort {
$nums[$b] <=> $nums[$a]

 ||
$caps[$a] cmp $caps[$b]

 } 0..$#old
];

 # same thing using a Schwartzian Transform (no temps)
 @new = map { $_−>[0] }
08−Oct−1996 Version 5.003 87

perlfunc Perl Programmers Reference Guide perlfunc

s.

s them
array
SET

a list
s

er
iter

IT is
t into

IT
 sort { $b−>[1] <=> $a−>[1]
 ||
 $a−>[2] cmp $b−>[2]
 } map { [$_, /=(\d+)/, uc($_)] } @old;

If you‘re using strict, you MUST NOT declare $a and $b as lexicals. They are package global
That means if you‘re in the main package, it‘s

 @articles = sort {$main::b <=> $main::a} @files;

or just

 @articles = sort {$::b <=> $::a} @files;

but if you‘re in the FooPack package, it‘s

 @articles = sort {$FooPack::b <=> $FooPack::a} @files;

splice ARRAY,OFFSET,LENGTH,LIST
splice ARRAY,OFFSET,LENGTH
splice ARRAY,OFFSET

Removes the elements designated by OFFSET and LENGTH from an array, and replace
with the elements of LIST, if any. Returns the elements removed from the array. The
grows or shrinks as necessary. If LENGTH is omitted, removes everything from OFF
onward. The following equivalencies hold (assuming $[== 0):

 push(@a,$x,$y) splice(@a,$#a+1,0,$x,$y)
 pop(@a) splice(@a,−1)
 shift(@a) splice(@a,0,1)
 unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
 $a[$x] = $y splice(@a,$x,1,$y);

Example, assuming array lengths are passed before arrays:

 sub aeq { # compare two list values
local(@a) = splice(@_,0,shift);
local(@b) = splice(@_,0,shift);
return 0 unless @a == @b; # same len?
while (@a) {
 return 0 if pop(@a) ne pop(@b);
}
return 1;

 }
 if (&aeq($len,@foo[1..$len],0+@bar,@bar)) { ... }

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/
split Splits a string into an array of strings, and returns it.

If not in a list context, returns the number of fields found and splits into the @_ array. (In
context, you can force the split into @_ by using ?? as the pattern delimiters, but it still return
the array value.) The use of implicit split to @_ is deprecated, however.

If EXPR is omitted, splits the $_ string. If PATTERN is also omitted, splits on whitespace (aft
skipping any leading whitespace). Anything matching PATTERN is taken to be a delim
separating the fields. (Note that the delimiter may be longer than one character.) If LIM
specified and is not negative, splits into no more than that many fields (though it may spli
fewer). If LIMIT is unspecified, trailing null fields are stripped (which potential users of pop()
would do well to remember). If LIMIT is negative, it is treated as if an arbitrarily large LIM
had been specified.
88 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

arate

ber
en 4
you

tching

y at

 on
with

 not
ome C
A pattern matching the null string (not to be confused with a null pattern // , which is just one
member of the set of patterns matching a null string) will split the value of EXPR into sep
characters at each point it matches that way. For example:

 print join(’:’, split(/ */, ’hi there’));

produces the output ‘h:i:t:h:e:r:e’.

The LIMIT parameter can be used to partially split a line

 ($login, $passwd, $remainder) = split(/:/, $_, 3);

When assigning to a list, if LIMIT is omitted, Perl supplies a LIMIT one larger than the num
of variables in the list, to avoid unnecessary work. For the list above LIMIT would have be
by default. In time critical applications it behooves you not to split into more fields than
really need.

If the PATTERN contains parentheses, additional array elements are created from each ma
substring in the delimiter.

 split(/([,−])/, "1−10,20", 3);

produces the list value

 (1, ’−’, 10, ’,’, 20)

If you had the entire header of a normal Unix email message in $header, you could split it up
into fields and their values this way:

 $header =~ s/\n\s+/ /g; # fix continuation lines
 %hdrs = (UNIX_FROM => split /^(.*?):\s*/m, $header);

The pattern /PATTERN/ may be replaced with an expression to specify patterns that var
runtime. (To do runtime compilation only once, use /$variable/o.)

As a special case, specifying a PATTERN of space (’ ’) will split on white space just as split
with no arguments does. Thus, split(’ ’) can be used to emulate awk‘s default behavior, whereas
split(/ /) will give you as many null initial fields as there are leading spaces. A split
/\s+/ is like a split(’ ’) except that any leading whitespace produces a null first field. A split
no arguments really does a split(’ ‘, $_) internally.

Example:

 open(passwd, ’/etc/passwd’);
 while (<passwd>) {

($login, $passwd, $uid, $gid, $gcos,
 $home, $shell) = split(/:/);
...

 }

(Note that $shell above will still have a newline on it. See /chop, /chomp, and /join.)

sprintf FORMAT,LIST
Returns a string formatted by the usual printf conventions of the C language. See sprintf(3) or
printf(3) on your system for details. (The * character for an indirectly specified length is
supported, but you can get the same effect by interpolating a variable into the pattern.) S
libraries’ implementations of sprintf() can dump core when fed ludicrous arguments.

sqrt EXPR
Return the square root of EXPR. If EXPR is omitted, returns square root of $_.
08−Oct−1996 Version 5.003 89

perlfunc Perl Programmers Reference Guide perlfunc

m
 need
ss the

 status
y.unix

 via
 as

current

n
ng on
aracter
h and
trings
 only
way
so we
aracter

s and
srand EXPR
Sets the random number seed for the rand operator. If EXPR is omitted, uses a semirando
value based on the current time and process ID, among other things. Of course, you‘d
something much more random than that for cryptographic purposes, since it‘s easy to gue
current time. Checksumming the compressed output of rapidly changing operating system
programs is the usual method. Examples are posted regularly to the comp.securit
newsgroup.

stat FILEHANDLE
stat EXPR

Returns a 13−element array giving the status info for a file, either the file opened
FILEHANDLE, or named by EXPR. Returns a null list if the stat fails. Typically used
follows:

 ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
 $atime,$mtime,$ctime,$blksize,$blocks)
 = stat($filename);

Not all fields are supported on all filesystem types. Here are the meaning of the fields:

 dev device number of filesystem
 ino inode number
 mode file mode (type and permissions)
 nlink number of (hard) links to the file
 uid numeric user ID of file’s owner
 gid numer group ID of file’s owner
 rdev the device identifier (special files only)
 size total size of file, in bytes
 atime last access time since the epoch
 mtime last modify time since the epoch
 ctime inode change time (NOT creation type!) since the epoch
 blksize preferred blocksize for file system I/O
 blocks actual number of blocks allocated

(The epoch was at 00:00 January 1, 1970 GMT.)

If stat is passed the special filehandle consisting of an underline, no stat is done, but the
contents of the stat structure from the last stat or filetest are returned. Example:

 if (−x $file && (($d) = stat(_)) && $d < 0) {
print "$file is executable NFS file\n";

 }

(This only works on machines for which the device number is negative under NFS.)

study SCALAR
study Takes extra time to study SCALAR ($_ if unspecified) in anticipation of doing many patter

matches on the string before it is next modified. This may or may not save time, dependi
the nature and number of patterns you are searching on, and on the distribution of ch
frequencies in the string to be searched—you probably want to compare runtimes wit
without it to see which runs faster. Those loops which scan for many short constant s
(including the constant parts of more complex patterns) will benefit most. You may have
one study active at a time—if you study a different scalar the first is "unstudied". (The
study works is this: a linked list of every character in the string to be searched is made,
know, for example, where all the ‘k’ characters are. From each search string, the rarest ch
is selected, based on some static frequency tables constructed from some C program
English text. Only those places that contain this "rarest" character are examined.)
90 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

ing a

stion

tire
 with
than

tion
d. See

ou‘ve
ted,
rs off

 If
thing
h you

ss, 0
e. To
For example, here is a loop which inserts index producing entries before any line contain
certain pattern:

 while (<>) {
study;
print ".IX foo\n" if /\bfoo\b/;
print ".IX bar\n" if /\bbar\b/;
print ".IX blurfl\n" if /\bblurfl\b/;
...
print;

 }

In searching for /\bfoo\b/, only those locations in $_ that contain "f" will be looked at, because
"f" is rarer than "o". In general, this is a big win except in pathological cases. The only que
is whether it saves you more time than it took to build the linked list in the first place.

Note that if you have to look for strings that you don‘t know till runtime, you can build an en
loop as a string and eval that to avoid recompiling all your patterns all the time. Together
undefining $/ to input entire files as one record, this can be very fast, often faster
specialized programs like fgrep(1). The following scans a list of files (@files) for a list of
words (@words), and prints out the names of those files that contain a match:

 $search = ’while (<>) { study;’;
 foreach $word (@words) {

$search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
 }
 $search .= "}";
 @ARGV = @files;
 undef $/;
 eval $search; # this screams
 $/ = "\n"; # put back to normal input delim
 foreach $file (sort keys(%seen)) {

print $file, "\n";
 }

sub BLOCK
sub NAME
sub NAME BLOCK

This is subroutine definition, not a real function per se. With just a NAME (and possibly
prototypes), it‘s just a forward declaration. Without a NAME, it‘s an anonymous func
declaration, and does actually return a value: the CODE ref of the closure you just create
perlsub and perlref for details.

substr EXPR,OFFSET,LEN
substr EXPR,OFFSET

Extracts a substring out of EXPR and returns it. First character is at offset 0, or whatever y
set $[to. If OFFSET is negative, starts that far from the end of the string. If LEN is omit
returns everything to the end of the string. If LEN is negative, leaves that many characte
the end of the string.

You can use the substr() function as an lvalue, in which case EXPR must be an lvalue.
you assign something shorter than LEN, the string will shrink, and if you assign some
longer than LEN, the string will grow to accommodate it. To keep the string the same lengt
may need to pad or chop your value using sprintf() .

symlink OLDFILE,NEWFILE
Creates a new filename symbolically linked to the old filename. Returns 1 for succe
otherwise. On systems that don‘t support symbolic links, produces a fatal error at run tim
08−Oct−1996 Version 5.003 91

perlfunc Perl Programmers Reference Guide perlfunc

nts as
ts are
If not,
ing is
your

ou may

actice

LE.
nted.

ey are
re

f the
write

ied
inds
re was
y be

arent
ending
 by the

ks, as

ay
 error.
ing of
check for that, use eval:

 $symlink_exists = (eval ’symlink("","");’, $@ eq ’’);

syscall LIST
Calls the system call specified as the first element of the list, passing the remaining eleme
arguments to the system call. If unimplemented, produces a fatal error. The argumen
interpreted as follows: if a given argument is numeric, the argument is passed as an int.
the pointer to the string value is passed. You are responsible to make sure a str
pre−extended long enough to receive any result that might be written into a string. If
integer arguments are not literals and have never been interpreted in a numeric context, y
need to add 0 to them to force them to look like numbers.

 require ’syscall.ph’; # may need to run h2ph
 syscall(&SYS_write, fileno(STDOUT), "hi there\n", 9);

Note that Perl only supports passing of up to 14 arguments to your system call, which in pr
should usually suffice.

sysopen FILEHANDLE,FILENAME,MODE
sysopen FILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename is given by FILENAME, and associates it with FILEHAND
If FILEHANDLE is an expression, its value is used as the name of the real filehandle wa
This function calls the underlying operating system‘s open function with the parameters
FILENAME, MODE, PERMS.

The possible values and flag bits of the MODE parameter are system−dependent; th
available via the standard module Fcntl . However, for historical reasons, some values a
universal: zero means read−only, one means write−only, and two means read/write.

If the file named by FILENAME does not exist and the open call creates it (typically because
MODE includes the O_CREAT flag), then the value of PERMS specifies the permissions o
newly created file. If PERMS is omitted, the default value is 0666, which allows read and
for all. This default is reasonable: see umask.

sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
sysread FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the specif
FILEHANDLE, using the system call read(2). It bypasses stdio, so mixing this with other k
of reads may cause confusion. Returns the number of bytes actually read, or undef if the
an error. SCALAR will be grown or shrunk to the length actually read. An OFFSET ma
specified to place the read data at some other place than the beginning of the string.

system LIST
Does exactly the same thing as "exec LIST" except that a fork is done first, and the p
process waits for the child process to complete. Note that argument processing varies dep
on the number of arguments. The return value is the exit status of the program as returned
wait() call. To get the actual exit value divide by 256. See also /exec. This is NOT what you
want to use to capture the output from a command, for that you should merely use backtic
described in ‘STRING‘ in perlop.

syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
syswrite FILEHANDLE,SCALAR,LENGTH

Attempts to write LENGTH bytes of data from variable SCALAR to the specified
FILEHANDLE, using the system call write(2). It bypasses stdio, so mixing this with prints m
cause confusion. Returns the number of bytes actually written, or undef if there was an
An OFFSET may be specified to get the write data from some other place than the beginn
the string.
92 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

on
s the

about

r the
ame
to the
se

d

to
tell FILEHANDLE
tell Returns the current file position for FILEHANDLE. FILEHANDLE may be an expressi

whose value gives the name of the actual filehandle. If FILEHANDLE is omitted, assume
file last read.

telldir DIRHANDLE
Returns the current position of the readdir() routines on DIRHANDLE. Value may be given
to seekdir() to access a particular location in a directory. Has the same caveats
possible directory compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST
This function binds a variable to a package class that will provide the implementation fo
variable. VARIABLE is the name of the variable to be enchanted. CLASSNAME is the n
of a class implementing objects of correct type. Any additional arguments are passed
"new" method of the class (meaning TIESCALAR, TIEARRAY, or TIEHASH). Typically the
are arguments such as might be passed to the dbm_open() function of C. The object returned
by the "new" method is also returned by the tie() function, which would be useful if you want
to access other methods in CLASSNAME.

Note that functions such as keys() and values() may return huge array values when use
on large objects, like DBM files. You may prefer to use the each() function to iterate over
such. Example:

 # print out history file offsets
 use NDBM_File;
 tie(%HIST, ’NDBM_File’, ’/usr/lib/news/history’, 1, 0);
 while (($key,$val) = each %HIST) {

print $key, ’ = ’, unpack(’L’,$val), "\n";
 }
 untie(%HIST);

A class implementing an associative array should have the following methods:

 TIEHASH classname, LIST
 DESTROY this
 FETCH this, key
 STORE this, key, value
 DELETE this, key
 EXISTS this, key
 FIRSTKEY this
 NEXTKEY this, lastkey

A class implementing an ordinary array should have the following methods:

 TIEARRAY classname, LIST
 DESTROY this
 FETCH this, key
 STORE this, key, value
 [others TBD]

A class implementing a scalar should have the following methods:

 TIESCALAR classname, LIST
 DESTROY this
 FETCH this,
 STORE this, value

Unlike dbmopen() , the tie() function will not use or require a module for you—you need
do that explicitly yourself. See DB_File or the Config module for interesting tie()
08−Oct−1996 Version 5.003 93

perlfunc Perl Programmers Reference Guide perlfunc

nally
alue

 be the
70 for

ss and

gth.

e \U

ction

eturns

entire

s the
ll get

mage
implementations.

tied VARIABLE
Returns a reference to the object underlying VARIABLE (the same value that was origi
returned by the tie() call which bound the variable to a package.) Returns the undefined v
if VARIABLE isn‘t tied to a package.

time Returns the number of non−leap seconds since whatever time the system considers to
epoch (that‘s 00:00:00, January 1, 1904 for MacOS, and 00:00:00 UTC, January 1, 19
most other systems). Suitable for feeding to gmtime() and localtime() .

times Returns a four−element array giving the user and system times, in seconds, for this proce
the children of this process.

 ($user,$system,$cuser,$csystem) = times;

tr/// The translation operator. See perlop.

truncate FILEHANDLE,LENGTH
truncate EXPR,LENGTH

Truncates the file opened on FILEHANDLE, or named by EXPR, to the specified len
Produces a fatal error if truncate isn‘t implemented on your system.

uc EXPR Returns an uppercased version of EXPR. This is the internal function implementing th
escape in double−quoted strings. Should respect any POSIX setlocale() settings.

ucfirst EXPR
Returns the value of EXPR with the first character uppercased. This is the internal fun
implementing the \u escape in double−quoted strings. Should respect any POSIX
setlocale() settings.

umask EXPR
umask Sets the umask for the process and returns the old one. If EXPR is omitted, merely r

current umask.

undef EXPR
undef Undefines the value of EXPR, which must be an lvalue. Use only on a scalar value, an

array, or a subroutine name (using "&"). (Using undef() will probably not do what you
expect on most predefined variables or DBM list values, so don‘t do that.) Always return
undefined value. You can omit the EXPR, in which case nothing is undefined, but you sti
an undefined value that you could, for instance, return from a subroutine. Examples:

 undef $foo;
 undef $bar{’blurfl’};
 undef @ary;
 undef %assoc;
 undef &mysub;
 return (wantarray ? () : undef) if $they_blew_it;

unlink LIST
Deletes a list of files. Returns the number of files successfully deleted.

 $cnt = unlink ’a’, ’b’, ’c’;
 unlink @goners;
 unlink <*.bak>;

Note: unlink will not delete directories unless you are superuser and the −U flag is supplied to
Perl. Even if these conditions are met, be warned that unlinking a directory can inflict da
on your filesystem. Use rmdir instead.
94 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

out into
value
outine

−bit
. For

 stay in

liasing

dule
age is
t Perl
der

re the
t an
t of

 way it
unpack TEMPLATE,EXPR
Unpack does the reverse of pack: it takes a string representing a structure and expands it
a list value, returning the array value. (In a scalar context, it merely returns the first
produced.) The TEMPLATE has the same format as in the pack function. Here‘s a subr
that does substring:

 sub substr {
local($what,$where,$howmuch) = @_;
unpack("x$where a$howmuch", $what);

 }

and then there‘s

 sub ordinal { unpack("c",$_[0]); } # same as ord()

In addition, you may prefix a field with a %<number> to indicate that you want a <number>
checksum of the items instead of the items themselves. Default is a 16−bit checksum
example, the following computes the same number as the System V sum program:

 while (<>) {
$checksum += unpack("%16C*", $_);

 }
 $checksum %= 65536;

The following efficiently counts the number of set bits in a bit vector:

 $setbits = unpack("%32b*", $selectmask);

untie VARIABLE
Breaks the binding between a variable and a package. (See tie() .)

unshift ARRAY,LIST
Does the opposite of a shift . Or the opposite of a push , depending on how you look at it.
Prepends list to the front of the array, and returns the new number of elements in the array.

 unshift(ARGV, ’−e’) unless $ARGV[0] =~ /^−/;

Note the LIST is prepended whole, not one element at a time, so the prepended elements
the same order. Use reverse to do the reverse.

use Module LIST
use Module
use Module VERSION LIST
use VERSION

Imports some semantics into the current package from the named module, generally by a
certain subroutine or variable names into your package. It is exactly equivalent to

 BEGIN { require Module; import Module LIST; }

except that Module must be a bare word.

If the first argument to use is a number, it is treated as a version number instead of a mo
name. If the version of the Perl interpreter is less than VERSION, then an error mess
printed and Perl exits immediately. This is often useful if you need to check the curren
version before use ing library modules which have changed in incompatible ways from ol
versions of Perl. (We try not to do this more than we have to.)

The BEGIN forces the require and import to happen at compile time. The require makes su
module is loaded into memory if it hasn‘t been yet. The import is not a builtin—it‘s jus
ordinary static method call into the "Module" package to tell the module to import the lis
features back into the current package. The module can implement its import method any
08−Oct−1996 Version 5.003 95

perlfunc Perl Programmers Reference Guide perlfunc

 the

ed this

dules,
ile).

t calls

ments
s the
o the

 scalar
 order,

itfield
 in the
likes, though most modules just choose to derive their import method via inheritance from
Exporter class that is defined in the Exporter module. See Exporter.

If you don‘t want your namespace altered, explicitly supply an empty list:

 use Module ();

That is exactly equivalent to

 BEGIN { require Module; }

If the VERSION argument is present between Module and LIST, then the use will fail if the
$VERSION variable in package Module is less than VERSION.

Because this is a wide−open interface, pragmas (compiler directives) are also implement
way. Currently implemented pragmas are:

 use integer;
 use diagnostics;
 use sigtrap qw(SEGV BUS);
 use strict qw(subs vars refs);
 use subs qw(afunc blurfl);

These pseudomodules import semantics into the current block scope, unlike ordinary mo
which import symbols into the current package (which are effective through the end of the f

There‘s a corresponding "no" command that unimports meanings imported by use, i.e. i
unimport Module LIST instead of import .

 no integer;
 no strict ’refs’;

See perlmod for a list of standard modules and pragmas.

utime LIST
Changes the access and modification times on each file of a list of files. The first two ele
of the list must be the NUMERICAL access and modification times, in that order. Return
number of files successfully changed. The inode modification time of each file is set t
current time. Example of a "touch" command:

 #!/usr/bin/perl
 $now = time;
 utime $now, $now, @ARGV;

values ASSOC_ARRAY
Returns a normal array consisting of all the values of the named associative array. (In a
context, returns the number of values.) The values are returned in an apparently random
but it is the same order as either the keys() or each() function would produce on the same
array. See also keys() , each() , and sort() .

vec EXPR,OFFSET,BITS
Treats the string in EXPR as a vector of unsigned integers, and returns the value of the b
specified by OFFSET. BITS specifies the number of bits that are reserved for each entry
bit vector. This must be a power of two from 1 to 32. vec() may also be assigned to, in which
case parens are needed to give the expression the correct precedence as in

 vec($image, $max_x * $x + $y, 8) = 3;

Vectors created with vec() can also be manipulated with the logical operators |, & and ^, which
will assume a bit vector operation is desired when both operands are strings.

To transform a bit vector into a string or array of 0‘s and 1‘s, use these:
96 Version 5.003 08−Oct−1996

perlfunc Perl Programmers Reference Guide perlfunc

if there

ess, or

le on
or a
ll by

d by the

lue.

iated
ndle,

rrent
pecial
en. By
 may

e

tarts

e of the
 $bits = unpack("b*", $vector);
 @bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the *.

wait Waits for a child process to terminate and returns the pid of the deceased process, or −1
are no child processes. The status is returned in $?.

waitpid PID,FLAGS
Waits for a particular child process to terminate and returns the pid of the deceased proc
−1 if there is no such child process. The status is returned in $?. If you say

 use POSIX ":wait_h";
 ...
 waitpid(−1,&WNOHANG);

then you can do a non−blocking wait for any process. Non−blocking wait is only availab
machines supporting either the waitpid(2) or wait4(2) system calls. However, waiting f
particular pid with FLAGS of 0 is implemented everywhere. (Perl emulates the system ca
remembering the status values of processes that have exited but have not been harveste
Perl script yet.)

wantarray
Returns TRUE if the context of the currently executing subroutine is looking for a list va
Returns FALSE if the context is looking for a scalar.

 return wantarray ? () : undef;

warn LIST
Produces a message on STDERR just like die() , but doesn‘t exit or on an exception.

write FILEHANDLE
write EXPR
write Writes a formatted record (possibly multi−line) to the specified file, using the format assoc

with that file. By default the format for a file is the one having the same name is the fileha
but the format for the current output channel (see the select() function) may be set explicitly
by assigning the name of the format to the $~ variable.

Top of form processing is handled automatically: if there is insufficient room on the cu
page for the formatted record, the page is advanced by writing a form feed, a s
top−of−page format is used to format the new page header, and then the record is writt
default the top−of−page format is the name of the filehandle with "_TOP" appended, but it
be dynamically set to the format of your choice by assigning the name to the $^ variable while
the filehandle is selected. The number of lines remaining on the current page is in variabl$−,
which can be set to 0 to force a new page.

If FILEHANDLE is unspecified, output goes to the current default output channel, which s
out as STDOUT but may be changed by the select operator. If the FILEHANDLE is an
EXPR, then the expression is evaluated and the resulting string is used to look up the nam
FILEHANDLE at run time. For more on formats, see perlform.

Note that write is NOT the opposite of read. Unfortunately.

y/// The translation operator. See perlop.
08−Oct−1996 Version 5.003 97

perlvar Perl Programmers Reference Guide perlvar

onable
es, you

ckage.

e set by
word

optional
plied,

riable,
NAME
perlvar − Perl predefined variables

DESCRIPTION

Predefined Names
The following names have special meaning to Perl. Most of the punctuational names have reas
mnemonics, or analogues in one of the shells. Nevertheless, if you wish to use the long variable nam
just need to say

 use English;

at the top of your program. This will alias all the short names to the long names in the current pa
Some of them even have medium names, generally borrowed from awk.

To go a step further, those variables that depend on the currently selected filehandle may instead b
calling an object method on the FileHandle object. (Summary lines below for this contain the
HANDLE.) First you must say

 use FileHandle;

after which you may use either

 method HANDLE EXPR

or

 HANDLE−>method(EXPR)

Each of the methods returns the old value of the FileHandle attribute. The methods each take an
EXPR, which if supplied specifies the new value for the FileHandle attribute in question. If not sup
most of the methods do nothing to the current value, except for autoflush() , which will assume a 1 for
you, just to be different.

A few of these variables are considered "read−only". This means that if you try to assign to this va
either directly or indirectly through a reference, you‘ll raise a run−time exception.

$ARG
$_ The default input and pattern−searching space. The following pairs are equivalent:

 while (<>) {...} # only equivalent in while!
 while ($_ = <>) {...}

 /^Subject:/
 $_ =~ /^Subject:/

 tr/a−z/A−Z/
 $_ =~ tr/a−z/A−Z/

 chop
 chop($_)

Here are the places where Perl will assume $_ even if you don‘t use it:

 Various unary functions, including functions like ord() and int() , as well as the all file
tests (−f , −d) except for −t , which defaults to STDIN.

 Various list functions like print() and unlink() .

 The pattern matching operations m// , s/// , and tr/// when used without an =~
operator.
98 Version 5.003 08−Oct−1996

perlvar Perl Programmers Reference Guide perlvar

s

atched,
ic: like

 within

unting
ic:

nting

h of a

rings
strings

ation

le".
 The default iterator variable in a foreach loop if no other variable is supplied.

 The implicit iterator variable in the grep() and map() functions.

 The default place to put an input record when a <FH> operation‘s result is tested by itself a
the sole criterion of a while test. Note that outside of a while test, this will not happen.

(Mnemonic: underline is understood in certain operations.)

$<digit >
Contains the subpattern from the corresponding set of parentheses in the last pattern m
not counting patterns matched in nested blocks that have been exited already. (Mnemon
\digit.) These variables are all read−only.

$MATCH
$& The string matched by the last successful pattern match (not counting any matches hidden

a BLOCK or eval() enclosed by the current BLOCK). (Mnemonic: like & in some editors.)
This variable is read−only.

$PREMATCH
$‘ The string preceding whatever was matched by the last successful pattern match (not co

any matches hidden within a BLOCK or eval enclosed by the current BLOCK). (Mnemon‘
often precedes a quoted string.) This variable is read−only.

$POSTMATCH
$’ The string following whatever was matched by the last successful pattern match (not cou

any matches hidden within a BLOCK or eval() enclosed by the current BLOCK).
(Mnemonic: ’ often follows a quoted string.) Example:

 $_ = ’abcdefghi’;
 /def/;
 print "$‘:$&:$’\n"; # prints abc:def:ghi

This variable is read−only.

$LAST_PAREN_MATCH
$+ The last bracket matched by the last search pattern. This is useful if you don‘t know whic

set of alternative patterns matched. For example:

 /Version: (.*)|Revision: (.*)/ && ($rev = $+);

(Mnemonic: be positive and forward looking.) This variable is read−only.

$MULTILINE_MATCHING
$* Set to 1 to do multiline matching within a string, 0 to tell Perl that it can assume that st

contain a single line, for the purpose of optimizing pattern matches. Pattern matches on
containing multiple newlines can produce confusing results when "$*" is 0. Default is 0.
(Mnemonic: * matches multiple things.) Note that this variable only influences the interpret
of "^ " and "$". A literal newline can be searched for even when $* == 0 .

Use of "$*" is deprecated in Perl 5.

input_line_number HANDLE EXPR
$INPUT_LINE_NUMBER
$NR
$. The current input line number for the last file handle from which you read (or performed a seek

or tell on). An explicit close on a filehandle resets the line number. Since "<>" never does an
explicit close, line numbers increase across ARGV files (but see examples under eof()).
Localizing $. has the effect of also localizing Perl‘s notion of "the last read filehand
(Mnemonic: many programs use "." to mean the current line number.)
08−Oct−1996 Version 5.003 99

perlvar Perl Programmers Reference Guide perlvar

 any
imiter.

s
r
 line

annel.
t;

that
ise.
u are
 effect

 out

ic:

s out
ed. In

tring

nt as
input_record_separator HANDLE EXPR
$INPUT_RECORD_SEPARATOR
$RS
$/ The input record separator, newline by default. Works like awk‘s RS variable, including treating

empty lines as delimiters if set to the null string. (Note: An empty line cannot contain
spaces or tabs.) You may set it to a multicharacter string to match a multi−character del
Note that setting it to "\n\n" means something slightly different than setting it to "" , if the file
contains consecutive empty lines. Setting it to "" will treat two or more consecutive empty line
as a single empty line. Setting it to "\n\n" will blindly assume that the next input characte
belongs to the next paragraph, even if it‘s a newline. (Mnemonic: / is used to delimit
boundaries when quoting poetry.)

 undef $/;
 $_ = <FH>; # whole file now here
 s/\n[\t]+/ /g;

autoflush HANDLE EXPR
$OUTPUT_AUTOFLUSH
$| If set to nonzero, forces a flush after every write or print on the currently selected output ch

 Default is 0 (regardless of whether the channel is actually buffered by the system or no$|
only tells you whether you‘ve asked Perl to explicitly flush after each write). Note
STDOUT will typically be line buffered if output is to the terminal and block buffered otherw
 Setting this variable is useful primarily when you are outputting to a pipe, such as when yo
running a Perl script under rsh and want to see the output as it‘s happening. This has no
on input buffering. (Mnemonic: when you want your pipes to be piping hot.)

output_field_separator HANDLE EXPR
$OUTPUT_FIELD_SEPARATOR
$OFS
$, The output field separator for the print operator. Ordinarily the print operator simply prints

the comma separated fields you specify. In order to get behavior more like awk, set this variable
as you would set awk‘s OFS variable to specify what is printed between fields. (Mnemon
what is printed when there is a , in your print statement.)

output_record_separator HANDLE EXPR
$OUTPUT_RECORD_SEPARATOR
$ORS
$\ The output record separator for the print operator. Ordinarily the print operator simply print

the comma separated fields you specify, with no trailing newline or record separator assum
order to get behavior more like awk, set this variable as you would set awk‘s ORS variable to
specify what is printed at the end of the print. (Mnemonic: you set "$\" instead of adding \n at
the end of the print. Also, it‘s just like $/, but it‘s what you get "back" from Perl.)

$LIST_SEPARATOR
$" This is like "$," except that it applies to array values interpolated into a double−quoted s

(or similar interpreted string). Default is a space. (Mnemonic: obvious, I think.)

$SUBSCRIPT_SEPARATOR
$SUBSEP
$; The subscript separator for multi−dimensional array emulation. If you refer to a hash eleme

 $foo{$a,$b,$c}

it really means

 $foo{join($;, $a, $b, $c)}

But don‘t put
100 Version 5.003 08−Oct−1996

perlvar Perl Programmers Reference Guide perlvar

e
 is

d

 page

 is 60.

onic:

 name

ault is

ields
onic:
 @foo{$a,$b,$c} # a slice−−note the @

which means

 ($foo{$a},$foo{$b},$foo{$c})

Default is "\034", the same as SUBSEP in awk. Note that if your keys contain binary data ther
might not be any safe value for "$;". (Mnemonic: comma (the syntactic subscript separator)
a semi−semicolon. Yeah, I know, it‘s pretty lame, but "$," is already taken for something more
important.)

Consider using "real" multi−dimensional arrays in Perl 5.

$OFMT
$# The output format for printed numbers. This variable is a half−hearted attempt to emulate awk‘s

OFMT variable. There are times, however, when awk and Perl have differing notions of what is
in fact numeric. The initial value is %.ng, where n is the value of the macro DBL_DIG from
your system‘s float.h. This is different from awk‘s default OFMT setting of %.6g, so you nee
to set "$#" explicitly to get awk‘s value. (Mnemonic: # is the number sign.)

Use of "$#" is deprecated in Perl 5.

format_page_number HANDLE EXPR
$FORMAT_PAGE_NUMBER
$% The current page number of the currently selected output channel. (Mnemonic: % is

number in nroff .)

format_lines_per_page HANDLE EXPR
$FORMAT_LINES_PER_PAGE
$= The current page length (printable lines) of the currently selected output channel. Default

(Mnemonic: = has horizontal lines.)

format_lines_left HANDLE EXPR
$FORMAT_LINES_LEFT
$− The number of lines left on the page of the currently selected output channel. (Mnem

lines_on_page − lines_printed.)

format_name HANDLE EXPR
$FORMAT_NAME
$~ The name of the current report format for the currently selected output channel. Default is

of the filehandle. (Mnemonic: brother to "$^".)

format_top_name HANDLE EXPR
$FORMAT_TOP_NAME
$^ The name of the current top−of−page format for the currently selected output channel. Def

name of the filehandle with _TOP appended. (Mnemonic: points to top of page.)

format_line_break_characters HANDLE EXPR
$FORMAT_LINE_BREAK_CHARACTERS
$: The current set of characters after which a string may be broken to fill continuation f

(starting with ^) in a format. Default is " \n−", to break on whitespace or hyphens. (Mnem
a "colon" in poetry is a part of a line.)

format_formfeed HANDLE EXPR
$FORMAT_FORMFEED
$^L What formats output to perform a formfeed. Default is \f.

$ACCUMULATOR
$^A The current value of the write() accumulator for format() lines. A format contains

formline() commands that put their result into $^A. After calling its format, write()
prints out the contents of $^A and empties. So you never actually see the contents of $^A unless
08−Oct−1996 Version 5.003 101

perlvar Perl Programmers Reference Guide perlvar

 (This

s the

 of

ormal

routine

ultiple
r is the
you call formline() yourself and then look at it. See perlform and formline() .

$CHILD_ERROR
$? The status returned by the last pipe close, backtick (‘‘) command, or system() operator.

Note that this is the status word returned by the wait() system call, so the exit value of the
subprocess is actually ($? >> 8). Thus on many systems, $? & 255 gives which signal, if
any, the process died from, and whether there was a core dump. (Mnemonic: similar to sh and
ksh.)

Inside an END subroutine $? contains the value that is going to be given to exit() . You can
modify $? in an END subroutine to change the exit status of the script.

$OS_ERROR
$ERRNO
$! If used in a numeric context, yields the current value of errno, with all the usual caveats.

means that you shouldn‘t depend on the value of "$!" to be anything in particular unless you‘ve
gotten a specific error return indicating a system error.) If used in a string context, yield
corresponding system error string. You can assign to "$!" in order to set errno if, for instance,
you want "$!" to return the string for error n, or you want to set the exit value for the die()
operator. (Mnemonic: What just went bang?)

$EXTENDED_OS_ERROR
$^E More specific information about the last system error than that provided by $!, if available. (If

not, it‘s just $! again.) At the moment, this differs from $! only under VMS, where it provides
the VMS status value from the last system error. The caveats mentioned in the description$!
apply here, too. (Mnemonic: Extra error explanation.)

$EVAL_ERROR
$@ The Perl syntax error message from the last eval() command. If null, the last eval() parsed

and executed correctly (although the operations you invoked may have failed in the n
fashion). (Mnemonic: Where was the syntax error "at"?)

Note that warning messages are not collected in this variable. You can, however, set up a
to process warnings by setting $SIG{__WARN__} below.

$PROCESS_ID
$PID
$$ The process number of the Perl running this script. (Mnemonic: same as shells.)

$REAL_USER_ID
$UID
$< The real uid of this process. (Mnemonic: it‘s the uid you came FROM, if you‘re running setuid.)

$EFFECTIVE_USER_ID
$EUID
$ The effective uid of this process. Example:

 $< = $>; # set real to effective uid
 ($<,$>) = ($>,$<); # swap real and effective uid

(Mnemonic: it‘s the uid you went TO, if you‘re running setuid.) Note: "$<" and "$>" can only
be swapped on machines supporting setreuid() .

$REAL_GROUP_ID
$GID
$(The real gid of this process. If you are on a machine that supports membership in m

groups simultaneously, gives a space separated list of groups you are in. The first numbe
one returned by getgid() , and the subsequent ones by getgroups() , one of which may be
the same as the first number. (Mnemonic: parentheses are used to GROUP things. The real gid
102 Version 5.003 08−Oct−1996

perlvar Perl Programmers Reference Guide perlvar

ultiple
r is the

ing
ng

"
ay of

onic:

t is 0,

the

in the
1000.

d to

ll be
is the group you LEFT, if you‘re running setgid.)

$EFFECTIVE_GROUP_ID
$EGID
$) The effective gid of this process. If you are on a machine that supports membership in m

groups simultaneously, gives a space separated list of groups you are in. The first numbe
one returned by getegid() , and the subsequent ones by getgroups() , one of which may
be the same as the first number. (Mnemonic: parentheses are used to GROUP things. The
effective gid is the group that‘s RIGHT for you, if you‘re running setgid.)

Note: "$<", "$>", "$(" and "$)" can only be set on machines that support the correspond
set[re][ug]id() routine. "$(" and "$)" can only be swapped on machines supporti
setregid() . Because Perl doesn‘t currently use initgroups() , you can‘t set your group
vector to multiple groups.

$PROGRAM_NAME
$0 Contains the name of the file containing the Perl script being executed. Assigning to $0"

modifies the argument area that the ps(1) program sees. This is more useful as a w
indicating the current program state than it is for hiding the program you‘re running. (Mnem
same as sh and ksh.)

$[The index of the first element in an array, and of the first character in a substring. Defaul
but you could set it to 1 to make Perl behave more like awk (or Fortran) when subscripting and
when evaluating the index() and substr() functions. (Mnemonic: [begins subscripts.)

As of Perl 5, assignment to "$[" is treated as a compiler directive, and cannot influence
behavior of any other file. Its use is discouraged.

$PERL_VERSION
$] The string printed out when you say perl −v . (This is currently BROKEN). It can be used to

determine at the beginning of a script whether the perl interpreter executing the script is
right range of versions. If used in a numeric context, returns the version + patchlevel /
Example:

 # see if getc is available
 ($version,$patchlevel) =

 $] =~ /(\d+\.\d+).*\nPatch level: (\d+)/;
 print STDERR "(No filename completion available.)\n"

 if $version * 1000 + $patchlevel < 2016;

or, used numerically,

 warn "No checksumming!\n" if $] < 3.019;

(Mnemonic: Is this version of perl in the right bracket?)

$DEBUGGING
$^D The current value of the debugging flags. (Mnemonic: value of −D switch.)

$SYSTEM_FD_MAX
$^F The maximum system file descriptor, ordinarily 2. System file descriptors are passe

exec() ed processes, while higher file descriptors are not. Also, during an open() , system
file descriptors are preserved even if the open() fails. (Ordinary file descriptors are closed
before the open() is attempted.) Note that the close−on−exec status of a file descriptor wi
decided according to the value of $^F at the time of the open, not the time of the exec.

$^H The current set of syntax checks enabled by use strict . See the documentation of strict
for more details.
08−Oct−1996 Version 5.003 103

perlvar Perl Programmers Reference Guide perlvar

during

ivably

). The

 that

. The
uded.
$INPLACE_EDIT
$^I The current value of the inplace−edit extension. Use undef to disable inplace editing.

(Mnemonic: value of −i switch.)

$OSNAME
$^O The name of the operating system under which this copy of Perl was built, as determined

the configuration process. The value is identical to $Config{‘osname‘}.

$PERLDB
$^P The internal flag that the debugger clears so that it doesn‘t debug itself. You could conce

disable debugging yourself by clearing it.

$BASETIME
$^T The time at which the script began running, in seconds since the epoch (beginning of 1970

values returned by the −M , −A and −C filetests are based on this value.

$WARNING
$^W The current value of the warning switch, either TRUE or FALSE. (Mnemonic: related to the−w

switch.)

$EXECUTABLE_NAME
$^X The name that the Perl binary itself was executed as, from C‘s argv[0] .

$ARGV contains the name of the current file when reading from <>.

@ARGV The array @ARGV contains the command line arguments intended for the script. Note
$#ARGV is the generally number of arguments minus one, since $ARGV[0] is the first
argument, NOT the command name. See "$0" for the command name.

@INC The array @INC contains the list of places to look for Perl scripts to be evaluated by thedo
EXPR, require , or use constructs. It initially consists of the arguments to any −I command
line switches, followed by the default Perl library, probably /usr/local/lib/perl, followed by ".",
to represent the current directory. If you need to modify this at runtime, you should use theuse
lib pragma in order to also get the machine−dependent library properly loaded:

 use lib ’/mypath/libdir/’;
 use SomeMod;

%INC The hash %INC contains entries for each filename that has been included via do or require .
The key is the filename you specified, and the value is the location of the file actually found
require command uses this array to determine whether a given file has already been incl

$ENV{expr}
The hash %ENV contains your current environment. Setting a value in ENV changes the
environment for child processes.

$SIG{expr}
The hash %SIG is used to set signal handlers for various signals. Example:

 sub handler { # 1st argument is signal name
local($sig) = @_;
print "Caught a SIG$sig−−shutting down\n";
close(LOG);
exit(0);

 }

 $SIG{’INT’} = ’handler’;
 $SIG{’QUIT’} = ’handler’;
 ...
 $SIG{’INT’} = ’DEFAULT’; # restore default action
 $SIG{’QUIT’} = ’IGNORE’; # ignore SIGQUIT
104 Version 5.003 08−Oct−1996

perlvar Perl Programmers Reference Guide perlvar

re are

 it‘s a
 then
. See

d by
ning
ses the
rnings

e
routine
 unless

 for
The %SIG array only contains values for the signals actually set within the Perl script. He
some other examples:

 $SIG{PIPE} = Plumber; # SCARY!!
 $SIG{"PIPE"} = "Plumber"; # just fine, assumes main::Plumber
 $SIG{"PIPE"} = \&Plumber; # just fine; assume current Plumber
 $SIG{"PIPE"} = Plumber(); # oops, what did Plumber() return??

The one marked scary is problematic because it‘s a bareword, which means sometimes
string representing the function, and sometimes it‘s going to call the subroutine call right
and there! Best to be sure and quote it or take a reference to it. *Plumber works too
perlsub.

Certain internal hooks can be also set using the %SIG hash. The routine indicate
$SIG{__WARN__} is called when a warning message is about to be printed. The war
message is passed as the first argument. The presence of a __WARN__ hook cau
ordinary printing of warnings to STDERR to be suppressed. You can use this to save wa
in a variable, or turn warnings into fatal errors, like this:

 local $SIG{__WARN__} = sub { die $_[0] };
 eval $proggie;

The routine indicated by $SIG{__DIE__} is called when a fatal exception is about to b
thrown. The error message is passed as the first argument. When a __DIE__ hook
returns, the exception processing continues as it would have in the absence of the hook,
the hook routine itself exits via a goto , a loop exit, or a die() . The __DIE__ handler is
explicitly disabled during the call, so that you can die from a __DIE__ handler. Similarly
__WARN__.
08−Oct−1996 Version 5.003 105

perlsub Perl Programmers Reference Guide perlsub

e in the
e
ing a

e single
ys or

s use
 scalar
e, but

th two
re
ne is
cify the
lattened

ails on

 file), see
NAME
perlsub − Perl subroutines

SYNOPSIS
To declare subroutines:

 sub NAME; # A "forward" declaration.
 sub NAME(PROTO); # ditto, but with prototypes

 sub NAME BLOCK # A declaration and a definition.
 sub NAME(PROTO) BLOCK # ditto, but with prototypes

To define an anonymous subroutine at runtime:

 $subref = sub BLOCK;

To import subroutines:

 use PACKAGE qw(NAME1 NAME2 NAME3);

To call subroutines:

 NAME(LIST); # & is optional with parens.
 NAME LIST; # Parens optional if predeclared/imported.
 &NAME; # Passes current @_ to subroutine.

DESCRIPTION
Like many languages, Perl provides for user−defined subroutines. These may be located anywher
main program, loaded in from other files via the do , require , or use keywords, or even generated on th
fly using eval or anonymous subroutines (closures). You can even call a function indirectly us
variable containing its name or a CODE reference to it, as in $var = \&function.

The Perl model for function call and return values is simple: all functions are passed as parameters on
flat list of scalars, and all functions likewise return to their caller one single flat list of scalars. Any arra
hashes in these call and return lists will collapse, losing their identities—but you may alway
pass−by−reference instead to avoid this. Both call and return lists may contain as many or as few
elements as you‘d like. (Often a function without an explicit return statement is called a subroutin
there‘s really no difference from the language‘s perspective.)

Any arguments passed to the routine come in as the array @_. Thus if you called a function wi
arguments, those would be stored in $_[0] and $_[1]. The array @_ is a local array, but its values a
implicit references (predating perlref) to the actual scalar parameters. The return value of the subrouti
the value of the last expression evaluated. Alternatively, a return statement may be used to spe
returned value and exit the subroutine. If you return one or more arrays and/or hashes, these will be f
together into one large indistinguishable list.

Perl does not have named formal parameters, but in practice all you do is assign to a my() list of these. Any
variables you use in the function that aren‘t declared private are global variables. For the gory det
creating private variables, see "Private Variables via my() " and "Temporary Values via local() ". To
create protected environments for a set of functions in a separate package (and probably a separate
Packages in perlmod.

Example:

 sub max {
my $max = shift(@_);
foreach $foo (@_) {
 $max = $foo if $max < $foo;
}
return $max;

 }
106 Version 5.003 08−Oct−1996

perlsub Perl Programmers Reference Guide perlsub

ies the

d you

rs

erl will
simple
 $bestday = max($mon,$tue,$wed,$thu,$fri);

Example:

 # get a line, combining continuation lines
 # that start with whitespace

 sub get_line {
$thisline = $lookahead; # GLOBAL VARIABLES!!
LINE: while ($lookahead = <STDIN>) {
 if ($lookahead =~ /^[\t]/) {

$thisline .= $lookahead;
 }
 else {

last LINE;
 }
}
$thisline;

 }

 $lookahead = <STDIN>; # get first line
 while ($_ = get_line()) {

...
 }

Use array assignment to a local list to name your formal arguments:

 sub maybeset {
my($key, $value) = @_;
$Foo{$key} = $value unless $Foo{$key};

 }

This also has the effect of turning call−by−reference into call−by−value, since the assignment cop
values. Otherwise a function is free to do in−place modifications of @_ and change its caller‘s values.

 upcase_in($v1, $v2); # this changes $v1 and $v2
 sub upcase_in {

for (@_) { tr/a−z/A−Z/ }
 }

You aren‘t allowed to modify constants in this way, of course. If an argument were actually literal an
tried to change it, you‘d take a (presumably fatal) exception. For example, this won‘t work:

 upcase_in("frederick");

It would be much safer if the upcase_in() function were written to return a copy of its paramete
instead of changing them in place:

 ($v3, $v4) = upcase($v1, $v2); # this doesn’t
 sub upcase {

my @parms = @_;
for (@parms) { tr/a−z/A−Z/ }
wantarray checks if we were called in list context

 return wantarray ? @parms : $parms[0];
 }

Notice how this (unprototyped) function doesn‘t care whether it was passed real scalars or arrays. P
see everything as one big long flat @_ parameter list. This is one of the ways where Perl‘s
argument−passing style shines. The upcase() function would work perfectly well without changing the
upcase() definition even if we fed it things like this:
08−Oct−1996 Version 5.003 107

perlsub Perl Programmers Reference Guide perlsub

 here is

he

call is

g on
way to

ted
uiltins

otally
d from

as the

 (If
 used
 @newlist = upcase(@list1, @list2);
 @newlist = upcase(split /:/, $var);

Do not, however, be tempted to do this:

 (@a, @b) = upcase(@list1, @list2);

Because like its flat incoming parameter list, the return list is also flat. So all you have managed to do
stored everything in @a and made @b an empty list. See for alternatives.

A subroutine may be called using the "&" prefix. The "&" is optional in Perl 5, and so are the parens if t
subroutine has been predeclared. (Note, however, that the "&" is NOT optional when you‘re just naming the
subroutine, such as when it‘s used as an argument to defined() or undef() . Nor is it optional when
you want to do an indirect subroutine call with a subroutine name or reference using the &$subref() or
&{$subref}() constructs. See perlref for more on that.)

Subroutines may be called recursively. If a subroutine is called using the "&" form, the argument list is
optional, and if omitted, no @_ array is set up for the subroutine: the @_ array at the time of the
visible to subroutine instead. This is an efficiency mechanism that new users may wish to avoid.

 &foo(1,2,3); # pass three arguments
 foo(1,2,3); # the same

 foo(); # pass a null list
 &foo(); # the same

 &foo; # foo() get current args, like foo(@_) !!
 foo; # like foo() IFF sub foo pre−declared, else "foo"

Not only does the "&" form make the argument list optional, but it also disables any prototype checkin
the arguments you do provide. This is partly for historical reasons, and partly for having a convenient
cheat if you know what you‘re doing. See the section on Prototypes below.

Private Variables via my()
Synopsis:

 my $foo; # declare $foo lexically local
 my (@wid, %get); # declare list of variables local
 my $foo = "flurp"; # declare $foo lexical, and init it
 my @oof = @bar; # declare @oof lexical, and init it

A "my" declares the listed variables to be confined (lexically) to the enclosing block, subroutine, eval , or
do/require/use ‘d file. If more than one value is listed, the list must be placed in parens. All lis
elements must be legal lvalues. Only alphanumeric identifiers may be lexically scoped—magical b
like $/ must currently be localized with "local" instead.

Unlike dynamic variables created by the "local" statement, lexical variables declared with "my" are t
hidden from the outside world, including any called subroutines (even if it‘s the same subroutine calle
itself or elsewhere—every call gets its own copy).

(An eval() , however, can see the lexical variables of the scope it is being evaluated in so long
names aren‘t hidden by declarations within the eval() itself. See perlref.)

The parameter list to my() may be assigned to if desired, which allows you to initialize your variables.
no initializer is given for a particular variable, it is created with the undefined value.) Commonly this is
to name the parameters to a subroutine. Examples:

 $arg = "fred"; # "global" variable
 $n = cube_root(27);
 print "$arg thinks the root is $n\n";
 fred thinks the root is 3
108 Version 5.003 08−Oct−1996

perlsub Perl Programmers Reference Guide perlsub

bles in
o

implicit

lexical
 inner

it; the

th the
ical:

e fully

m the
uires
 sub cube_root {
my $arg = shift; # name doesn’t matter
$arg **= 1/3;
return $arg;

 }

The "my" is simply a modifier on something you might assign to. So when you do assign to the varia
its argument list, the "my" doesn‘t change whether those variables is viewed as a scalar or an array. S

 my ($foo) = <STDIN>;
 my @FOO = <STDIN>;

both supply a list context to the righthand side, while

 my $foo = <STDIN>;

supplies a scalar context. But the following only declares one variable:

 my $foo, $bar = 1;

That has the same effect as

 my $foo;
 $bar = 1;

The declared variable is not introduced (is not visible) until after the current statement. Thus,

 my $x = $x;

can be used to initialize the new $x with the value of the old $x, and the expression

 my $x = 123 and $x == 123

is false unless the old $x happened to have the value 123.

Some users may wish to encourage the use of lexically scoped variables. As an aid to catching
references to package variables, if you say

 use strict ’vars’;

then any variable reference from there to the end of the enclosing block must either refer to a
variable, or must be fully qualified with the package name. A compilation error results otherwise. An
block may countermand this with "no strict ‘vars‘".

A my() has both a compile−time and a run−time effect. At compile time, the compiler takes notice of
principle usefulness of this is to quiet use strict ‘vars’ . The actual initialization doesn‘t happen
until run time, so gets executed every time through a loop.

Variables declared with "my" are not part of any package and are therefore never fully qualified wi
package name. In particular, you‘re not allowed to try to make a package variable (or other global) lex

 my $pack::var; # ERROR! Illegal syntax
 my $_; # also illegal (currently)

In fact, a dynamic variable (also known as package or global variables) are still accessible using th
qualified :: notation even while a lexical of the same name is also visible:

 package main;
 local $x = 10;
 my $x = 20;
 print "$x and $::x\n";

That will print out 20 and 10.

You may declare "my" variables at the outer most scope of a file to totally hide any such identifiers fro
outside world. This is similar to C‘s static variables at the file level. To do this with a subroutine req
08−Oct−1996 Version 5.003 109

perlsub Perl Programmers Reference Guide perlsub

ariable

 see the

f some

ithin a
ing a
ething
utside

e
sure it

ons to
e Perl
t value
the use of a closure (anonymous function). If a block (such as an eval() , function, or package) wants to
create a private subroutine that cannot be called from outside that block, it can declare a lexical v
containing an anonymous sub reference:

 my $secret_version = ’1.001−beta’;
 my $secret_sub = sub { print $secret_version };
 &$secret_sub();

As long as the reference is never returned by any function within the module, no outside module can
subroutine, since its name is not in any package‘s symbol table. Remember that it‘s not REALLY called
$some_pack::secret_version or anything; it‘s just $secret_version, unqualified and
unqualifiable.

This does not work with object methods, however; all object methods have to be in the symbol table o
package to be found.

Just because the lexical variable is lexically (also called statically) scoped doesn‘t mean that w
function it works like a C static. It normally works more like a C auto. But here‘s a mechanism for giv
function private variables with both lexical scoping and a static lifetime. If you do want to create som
like C‘s static variables, just enclose the whole function in an extra block, and put the static variable o
the function but in the block.

 {
my $secret_val = 0;
sub gimme_another {
 return ++$secret_val;
}

 }
 # $secret_val now becomes unreachable by the outside
 # world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate file via require or use , then this is probably just fine.
If it‘s all in the main program, you‘ll need to arrange for the my() to be executed early, either by putting th
whole block above your pain program, or more likely, merely placing a BEGIN sub around it to make
gets executed before your program starts to run:

 sub BEGIN {
my $secret_val = 0;
sub gimme_another {
 return ++$secret_val;
}

 }

See perlrun about the BEGIN function.

Temporary Values via local()
NOTE: In general, you should be using "my" instead of "local", because it‘s faster and safer. Excepti
this include the global punctuation variables, filehandles and formats, and direct manipulation of th
symbol table itself. Format variables often use "local" though, as do other variables whose curren
must be visible to called subroutines.

Synopsis:

 local $foo; # declare $foo dynamically local
 local (@wid, %get); # declare list of variables local
 local $foo = "flurp"; # declare $foo dynamic, and init it
 local @oof = @bar; # declare @oof dynamic, and init it

 local *FH; # localize $FH, @FH, %FH, &FH ...
 local *merlyn = *randal; # now $merlyn is really $randal, plus
110 Version 5.003 08−Oct−1996

perlsub Perl Programmers Reference Guide perlsub

e)
 like

 be
st on a
called
ssigned

ular
rs to a

f Perl
ims the

 local

erence
sm is

 that the
 to all
,
ers on

ncluding
hatever
 # @merlyn is really @randal, etc
 local *merlyn = ’randal’; # SAME THING: promote ’randal’ to *randal
 local *merlyn = \$randal; # just alias $merlyn, not @merlyn etc

A local() modifies its listed variables to be local to the enclosing block, (or subroutine, eval{} or do)
and any called from within that block. A local() just gives temporary values to global (meaning packag
variables. This is known as dynamic scoping. Lexical scoping is done with "my", which works more
C‘s auto declarations.

If more than one variable is given to local() , they must be placed in parens. All listed elements must
legal lvalues. This operator works by saving the current values of those variables in its argument li
hidden stack and restoring them upon exiting the block, subroutine or eval. This means that
subroutines can also reference the local variable, but not the global one. The argument list may be a
to if desired, which allows you to initialize your local variables. (If no initializer is given for a partic
variable, it is created with an undefined value.) Commonly this is used to name the paramete
subroutine. Examples:

 for $i (0 .. 9) {
$digits{$i} = $i;

 }
 # assume this function uses global %digits hash
 parse_num();

 # now temporarily add to %digits hash
 if ($base12) {

(NOTE: not claiming this is efficient!)
local %digits = (%digits, ’t’ => 10, ’e’ => 11);
parse_num(); # parse_num gets this new %digits!

 }
 # old %digits restored here

Because local() is a run−time command, it gets executed every time through a loop. In releases o
previous to 5.0, this used more stack storage each time until the loop was exited. Perl now recla
space each time through, but it‘s still more efficient to declare your variables outside the loop.

A local is simply a modifier on an lvalue expression. When you assign to a localized variable, the
doesn‘t change whether its list is viewed as a scalar or an array. So

 local($foo) = <STDIN>;
 local @FOO = <STDIN>;

both supply a list context to the righthand side, while

 local $foo = <STDIN>;

supplies a scalar context.

Passing Symbol Table Entries (typeglobs)
[Note: The mechanism described in this section was originally the only way to simulate pass−by−ref
in older versions of Perl. While it still works fine in modern versions, the new reference mechani
generally easier to work with. See below.]

Sometimes you don‘t want to pass the value of an array to a subroutine but rather the name of it, so
subroutine can modify the global copy of it rather than working with a local copy. In perl you can refer
objects of a particular name by prefixing the name with a star: *foo . This is often known as a "type glob"
since the star on the front can be thought of as a wildcard match for all the funny prefix charact
variables and subroutines and such.

When evaluated, the type glob produces a scalar value that represents all the objects of that name, i
any filehandle, format or subroutine. When assigned to, it causes the name mentioned to refer to w
"*" value was assigned to it. Example:
08−Oct−1996 Version 5.003 111

perlsub Perl Programmers Reference Guide perlsub

sing this
 all
nism) to

single
ut the

 them
o that,
ou

of then,

t:

a hash?
lling
 sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {
 $elem *= 2;
}

 }
 doubleary(*foo);
 doubleary(*bar);

Note that scalars are already passed by reference, so you can modify scalar arguments without u
mechanism by referring explicitly to $_[0] etc. You can modify all the elements of an array by passing
the elements as scalars, but you have to use the * mechanism (or the equivalent reference mecha
push, pop or change the size of an array. It will certainly be faster to pass the typeglob (or reference).

Even if you don‘t want to modify an array, this mechanism is useful for passing multiple arrays in a
LIST, since normally the LIST mechanism will merge all the array values so that you can‘t extract o
individual arrays. For more on typeglobs, see Typeglobs in perldata.

Pass by Reference
If you want to pass more than one array or hash into a function—or return them from it—and have
maintain their integrity, then you‘re going to have to use an explicit pass−by−reference. Before you d
you need to understand references as detailed in perlref. This section may not make much sense to y
otherwise.

Here are a few simple examples. First, let‘s pass in several arrays to a function and have it pop all
return a new list of all their former last elements:

 @tailings = popmany (\@a, \@b, \@c, \@d);

 sub popmany {
my $aref;
my @retlist = ();
foreach $aref (@_) {
 push @retlist, pop @$aref;
}
return @retlist;

 }

Here‘s how you might write a function that returns a list of keys occurring in all the hashes passed to i

 @common = inter(\%foo, \%bar, \%joe);
 sub inter {

my ($k, $href, %seen); # locals
foreach $href (@_) {
 while ($k = each %$href) {

$seen{$k}++;
 }
}
return grep { $seen{$_} == @_ } keys %seen;

 }

So far, we‘re just using the normal list return mechanism. What happens if you want to pass or return
 Well, if you‘re only using one of them, or you don‘t mind them concatenating, then the normal ca
convention is ok, although a little expensive.

Where people get into trouble is here:

 (@a, @b) = func(@c, @d);
or
 (%a, %b) = func(%c, %d);
112 Version 5.003 08−Oct−1996

perlsub Perl Programmers Reference Guide perlsub

n‘t get

 nice to
ents in

ork if

, but
That syntax simply won‘t work. It just sets @a or %a and clears the @b or %b. Plus the function did
passed into two separate arrays or hashes: it got one long list in @_, as always.

If you can arrange for everyone to deal with this through references, it‘s cleaner code, although not so
look at. Here‘s a function that takes two array references as arguments, returning the two array elem
order of how many elements they have in them:

 ($aref, $bref) = func(\@c, \@d);
 print "@$aref has more than @$bref\n";
 sub func {

my ($cref, $dref) = @_;
if (@$cref > @$dref) {
 return ($cref, $dref);
} else {
 return ($dref, $cref);
}

 }

It turns out that you can actually do this also:

 (*a, *b) = func(\@c, \@d);
 print "@a has more than @b\n";
 sub func {

local (*c, *d) = @_;
if (@c > @d) {
 return (\@c, \@d);
} else {
 return (\@d, \@c);
}

 }

Here we‘re using the typeglobs to do symbol table aliasing. It‘s a tad subtle, though, and also won‘t w
you‘re using my() variables, since only globals (well, and local() s) are in the symbol table.

If you‘re passing around filehandles, you could usually just use the bare typeglob, like *STDOUT
typeglobs references would be better because they‘ll still work properly under use strict ‘refs’ .
For example:

 splutter(*STDOUT);
 sub splutter {

my $fh = shift;
print $fh "her um well a hmmm\n";

 }

 $rec = get_rec(*STDIN);
 sub get_rec {

my $fh = shift;
return scalar <$fh>;

 }

If you‘re planning on generating new filehandles, you could do this:

 sub openit {
my $name = shift;
local *FH;
return open (FH, $path) ? *FH : undef;

 }

Although that will actually produce a small memory leak. See the bottom of open() for a somewhat
cleaner way using the FileHandle functions supplied with the POSIX package.
08−Oct−1996 Version 5.003 113

perlsub Perl Programmers Reference Guide perlsub

d
o the

en it
ve no

inate at

e the

ith that
n

e rest of

rd or a
ol table

.)
Prototypes
As of the 5.002 release of perl, if you declare

 sub mypush (\@@)

then mypush() takes arguments exactly like push() does. The declaration of the function to be calle
must be visible at compile time. The prototype only affects the interpretation of new−style calls t
function, where new−style is defined as not using the & character. In other words, if you call it like a builtin
function, then it behaves like a builtin function. If you call it like an old−fashioned subroutine, th
behaves like an old−fashioned subroutine. It naturally falls out from this rule that prototypes ha
influence on subroutine references like \&foo or on indirect subroutine calls like &{$subref}.

Method calls are not influenced by prototypes either, because the function to be called is indeterm
compile time, since it depends on inheritance.

Since the intent is primarily to let you define subroutines that work like builtin commands, here ar
prototypes for some other functions that parse almost exactly like the corresponding builtins.

 Declared as Called as

 sub mylink ($$) mylink $old, $new
 sub myvec ($$$) myvec $var, $offset, 1
 sub myindex ($$;$) myindex &getstring, "substr"
 sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) − $off, $off
 sub myreverse (@) myreverse $a,$b,$c
 sub myjoin ($@) myjoin ":",$a,$b,$c
 sub mypop (\@) mypop @array
 sub mysplice (\@$$@) mysplice @array,@array,0,@pushme
 sub mykeys (\%) mykeys %{$hashref}
 sub myopen (*;$) myopen HANDLE, $name
 sub mypipe (**) mypipe READHANDLE, WRITEHANDLE
 sub mygrep (&@) mygrep { /foo/ } $a,$b,$c
 sub myrand ($) myrand 42
 sub mytime () mytime

Any backslashed prototype character represents an actual argument that absolutely must start w
character. The value passed to the subroutine (as part of @_) will be a reference to the actual argument give
in the subroutine call, obtained by applying \ to that argument.

Unbackslashed prototype characters have special meanings. Any unbackslashed @ or % eats all th
the arguments, and forces list context. An argument represented by $ forces scalar context. An & requires
an anonymous subroutine, which, if passed as the first argument, does not require the "sub" keywo
subsequent comma. A * does whatever it has to do to turn the argument into a reference to a symb
entry.

A semicolon separates mandatory arguments from optional arguments. (It is redundant before @ or %

Note how the last three examples above are treated specially by the parser. mygrep() is parsed as a true list
operator, myrand() is parsed as a true unary operator with unary precedence the same as rand() , and
mytime() is truly argumentless, just like time() . That is, if you say

 mytime +2;

you‘ll get mytime() + 2, not mytime(2), which is how it would be parsed without the prototype.

The interesting thing about & is that you can generate new syntax with it:

 sub try (&@) {
my($try,$catch) = @_;
eval { &$try };
if ($@) {
114 Version 5.003 08−Oct−1996

perlsub Perl Programmers Reference Guide perlsub

. I‘m
ymous

ut of
 current
els the
t of the
asy to

e you
ple, if

it

t

 place.

good
y on a
 local $_ = $@;
 &$catch;
}

 }
 sub catch (&) { @_ }

 try {
die "phooey";

 } catch {
/phooey/ and print "unphooey\n";

 };

That prints "unphooey". (Yes, there are still unresolved issues having to do with the visibility of @_
ignoring that question for the moment. (But note that if we make @_ lexically scoped, those anon
subroutines can act like closures... (Gee, is this sounding a little Lispish? (Nevermind.))))

And here‘s a reimplementation of grep:

 sub mygrep (&@) {
my $code = shift;
my @result;
foreach $_ (@_) {
 push(@result, $_) if &$code;
}
@result;

 }

Some folks would prefer full alphanumeric prototypes. Alphanumerics have been intentionally left o
prototypes for the express purpose of someday in the future adding named, formal parameters. The
mechanism‘s main goal is to let module writers provide better diagnostics for module users. Larry fe
notation quite understandable to Perl programmers, and that it will not intrude greatly upon the mea
module, nor make it harder to read. The line noise is visually encapsulated into a small pill that‘s e
swallow.

It‘s probably best to prototype new functions, not retrofit prototyping into older ones. That‘s becaus
must be especially careful about silent impositions of differing list versus scalar contexts. For exam
you decide that a function should take just one parameter, like this:

 sub func ($) {
my $n = shift;
print "you gave me $n\n";

 }

and someone has been calling it with an array or expression returning a list:

 func(@foo);
 func(split /:/);

Then you‘ve just supplied an automatic scalar() in front of their argument, which can be more than a b
surprising. The old @foo which used to hold one thing doesn‘t get passed in. Instead, the func() now
gets passed in 1, that is, the number of elments in @foo. And the split() gets called in a scalar contex
and starts scribbling on your @_ parameter list.

This is all very powerful, of course, and should only be used in moderation to make the world a better

Overriding Builtin Functions
Many builtin functions may be overridden, though this should only be tried occasionally and for
reason. Typically this might be done by a package attempting to emulate missing builtin functionalit
non−Unix system.
08−Oct−1996 Version 5.003 115

perlsub Perl Programmers Reference Guide perlsub

good
port

fault
emantics
 a user

g that
doesn‘t

 name
e
e, that‘s

cute

 should

calls as

ee the
n

Overriding may only be done by importing the name from a module—ordinary predeclaration isn‘t
enough. However, the subs pragma (compiler directive) lets you, in effect, predeclare subs via the im
syntax, and these names may then override the builtin ones:

 use subs ’chdir’, ’chroot’, ’chmod’, ’chown’;
 chdir $somewhere;
 sub chdir { ... }

Library modules should not in general export builtin names like "open" or "chdir" as part of their de
@EXPORT list, since these may sneak into someone else‘s namespace and change the s
unexpectedly. Instead, if the module adds the name to the @EXPORT_OK list, then it‘s possible for
to import the name explicitly, but not implicitly. That is, they could say

 use Module ’open’;

and it would import the open override, but if they said

 use Module;

they would get the default imports without the overrides.

Autoloading
If you call a subroutine that is undefined, you would ordinarily get an immediate fatal error complainin
the subroutine doesn‘t exist. (Likewise for subroutines being used as methods, when the method
exist in any of the base classes of the class package.) If, however, there is an AUTOLOAD subroutine defined
in the package or packages that were searched for the original subroutine, then that AUTOLOAD subroutine is
called with the arguments that would have been passed to the original subroutine. The fully qualified
of the original subroutine magically appears in the $AUTOLOAD variable in the same package as th
AUTOLOAD routine. The name is not passed as an ordinary argument because, er, well, just becaus
why...

Most AUTOLOAD routines will load in a definition for the subroutine in question using eval, and then exe
that subroutine using a special form of "goto" that erases the stack frame of the AUTOLOAD routine without a
trace. (See the standard AutoLoader module, for example.) But an AUTOLOAD routine can also just
emulate the routine and never define it. For example, let‘s pretend that a function that wasn‘t defined
just call system() with those arguments. All you‘d do is this:

 sub AUTOLOAD {
my $program = $AUTOLOAD;
$program =~ s/.*:://;
system($program, @_);

 }
 date();
 who(’am’, ’i’);
 ls(’−l’);

In fact, if you preclare the functions you want to call that way, you don‘t even need the parentheses:

 use subs qw(date who ls);
 date;
 who "am", "i";
 ls −l;

A more complete example of this is the standard Shell module, which can treat undefined subroutine
calls to Unix programs.

Mechanisms are available for modules writers to help split the modules up into autoloadable files. S
standard AutoLoader module described in AutoLoader and in AutoSplit, the standard SelfLoader modules i
SelfLoader, and the document on adding C functions to perl code in perlxs.
116 Version 5.003 08−Oct−1996

perlsub Perl Programmers Reference Guide perlsub

l.
SEE ALSO
See perlref for more on references. See perlxs if you‘d like to learn about calling C subroutines from per
See perlmod to learn about bundling up your functions in separate files.
08−Oct−1996 Version 5.003 117

perlmod Perl Programmers Reference Guide perlmod

 other‘s
able in
scope of
e scope
 A

he
nces
s and
colon:

n part

e fully

other

 in
ave a
ted

s more
method

r

 the

).

 with two

use it
NAME
perlmod − Perl modules (packages)

DESCRIPTION

Packages
Perl provides a mechanism for alternative namespaces to protect packages from stomping on each
variables. In fact, apart from certain magical variables, there‘s really no such thing as a global vari
Perl. The package statement declares the compilation unit as being in the given namespace. The
the package declaration is from the declaration itself through the end of the enclosing block (the sam
as the local() operator). All further unqualified dynamic identifiers will be in this namespace.
package statement only affects dynamic variables—including those you‘ve used local() on—but not
lexical variables created with my() . Typically it would be the first declaration in a file to be included by t
require or use operator. You can switch into a package in more than one place; it merely influe
which symbol table is used by the compiler for the rest of that block. You can refer to variable
filehandles in other packages by prefixing the identifier with the package name and a double
$Package::Variable. If the package name is null, the main package is assumed. That is, $::sail
is equivalent to $main::sail.

(The old package delimiter was a single quote, but double colon is now the preferred delimiter, i
because it‘s more readable to humans, and in part because it‘s more readable to emacs macros. It also makes
C++ programmers feel like they know what‘s going on.)

Packages may be nested inside other packages: $OUTER::INNER::var. This implies nothing about the
order of name lookups, however. All symbols are either local to the current package, or must b
qualified from the outer package name down. For instance, there is nowhere within package OUTER that
$INNER::var refers to $OUTER::INNER::var. It would treat package INNER as a totally separate
global package.

Only identifiers starting with letters (or underscore) are stored in a package‘s symbol table. All
symbols are kept in package main , including all of the punctuation variables like $_. In addition, the
identifiers STDIN, STDOUT, STDERR, ARGV, ARGVOUT, ENV, INC and SIG are forced to be
package main , even when used for other purposes than their built−in one. Note also that, if you h
package called m, s or y , then you can‘t use the qualified form of an identifier because it will be interpre
instead as a pattern match, a substitution, or a translation.

(Variables beginning with underscore used to be forced into package main, but we decided it wa
useful for package writers to be able to use leading underscore to indicate private variables and
names. $_ is still global though.)

Eval() ed strings are compiled in the package in which the eval() was compiled. (Assignments to
$SIG{}, however, assume the signal handler specified is in the main package. Qualify the signal handle
name if you wish to have a signal handler in a package.) For an example, examine perldb.pl in the Perl
library. It initially switches to the DB package so that the debugger doesn‘t interfere with variables in
script you are trying to debug. At various points, however, it temporarily switches back to the main
package to evaluate various expressions in the context of the main package (or wherever you came from
See perldebug.

See perlsub for other scoping issues related to my() and local() , or perlref regarding closures.

Symbol Tables
The symbol table for a package happens to be stored in the associative array of that name appended
colons. The main symbol table‘s name is thus %main:: , or %:: for short. Likewise symbol table for the
nested package mentioned earlier is named %OUTER::INNER:: .

The value in each entry of the associative array is what you are referring to when you use the *name
typeglob notation. In fact, the following have the same effect, though the first is more efficient beca
does the symbol table lookups at compile time:
118 Version 5.003 08−Oct−1996

perlmod Perl Programmers Reference Guide perlmod

rence

rrays.

n‘t want
 local(*main::foo) = *main::bar; local($main::{’foo’}) =
 $main::{’bar’};

You can use this to print out all the variables in a package, for instance. Here is dumpvar.pl from the Perl
library:

 package dumpvar;
 sub main::dumpvar {
 ($package) = @_;
 local(*stab) = eval("*${package}::");
 while (($key,$val) = each(%stab)) {

 local(*entry) = $val;
 if (defined $entry) {
 print "\$$key = ’$entry’\n";
 }

 if (defined @entry) {
 print "\@$key = (\n";
 foreach $num ($[.. $#entry) {

 print " $num\t’",$entry[$num],"’\n";
 }
 print ")\n";
 }

 if ($key ne "${package}::" && defined %entry) {
 print "\%$key = (\n";
 foreach $key (sort keys(%entry)) {

 print " $key\t’",$entry{$key},"’\n";
 }
 print ")\n";
 }

 }
 }

Note that even though the subroutine is compiled in package dumpvar , the name of the subroutine is
qualified so that its name is inserted into package main .

Assignment to a typeglob performs an aliasing operation, i.e.,

 *dick = *richard;

causes variables, subroutines and file handles accessible via the identifier richard to also be accessible via
the identifier dick . If you only want to alias a particular variable or subroutine, you can assign a refe
instead:

 *dick = \$richard;

makes $richard and $dick the same variable, but leaves @richard and @dick as separate a
Tricky, eh?

This mechanism may be used to pass and return cheap references into or from subroutines if you wo
to copy the whole thing.

 %some_hash = ();
 *some_hash = fn(\%another_hash);
 sub fn {

local *hashsym = shift;
now use %hashsym normally, and you
will affect the caller’s %another_hash
my %nhash = (); # do what you want
08−Oct−1996 Version 5.003 119

perlmod Perl Programmers Reference Guide perlmod

_hash
o have

hese are

, even

s

 if it is
u

a

nes that
kage by

usable.
f any
rough
ittle of

t of it:
return \%nhash;
 }

On return, the reference wil overwrite the hash slot in the symbol table specified by the *some
typeglob. This is a somewhat tricky way of passing around references cheaply when you won‘t want t
to remember to dereference variables explicitly.

Another use of symbol tables is for making "constant" scalars.

 *PI = \3.14159265358979;

Now you cannot alter $PI, which is probably a good thing all in all.

Package Constructors and Destructors
There are two special subroutine definitions that function as package constructors and destructors. T
the BEGIN and END routines. The sub is optional for these routines.

A BEGIN subroutine is executed as soon as possible, that is, the moment it is completely defined
before the rest of the containing file is parsed. You may have multiple BEGIN blocks within a file—they
will execute in order of definition. Because a BEGIN block executes immediately, it can pull in definition
of subroutines and such from other files in time to be visible to the rest of the file.

An END subroutine is executed as late as possible, that is, when the interpreter is being exited, even
exiting as a result of a die() function. (But not if it‘s is being blown out of the water by a signal—yo
have to trap that yourself (if you can).) You may have multiple END blocks within a file—they will execute
in reverse order of definition; that is: last in, first out (LIFO).

Inside an END subroutine $? contains the value that the script is going to pass to exit() . You can modify
$? to change the exit value of the script. Beware of changing $? by accident (eg, by running something vi
system).

Note that when you use the −n and −p switches to Perl, BEGIN and END work just as they do in awk, as a
degenerate case.

Perl Classes
There is no special class syntax in Perl, but a package may function as a class if it provides subrouti
function as methods. Such a package may also derive some of its methods from another class pac
listing the other package name in its @ISA array.

For more on this, see perlobj.

Perl Modules
A module is just a package that is defined in a library file of the same name, and is designed to be re
It may do this by providing a mechanism for exporting some of its symbols into the symbol table o
package using it. Or it may function as a class definition and make its semantics available implicitly th
method calls on the class and its objects, without explicit exportation of any symbols. Or it can do a l
both.

For example, to start a normal module called Fred, create a file called Fred.pm and put this at the star

 package Fred;
 use Exporter ();
 @ISA = qw(Exporter);
 @EXPORT = qw(func1 func2);
 @EXPORT_OK = qw($sally @listabob %harry func3);

Then go on to declare and use your variables in functions without any qualifications. See Exporter and the
Perl Modules File for details on mechanics and style issues in module creation.

Perl modules are included into your program by saying

 use Module;
120 Version 5.003 08−Oct−1996

perlmod Perl Programmers Reference Guide perlmod

ut

mpiler

 the
 as a
 as list

aining
ssible

ded
r of the
y.
y

n other
ould

.

. Part
 written
n you
or

 use Module LIST;

This is exactly equivalent to

 BEGIN { require "Module.pm"; import Module; }

or

 BEGIN { require "Module.pm"; import Module LIST; }

As a special case

 use Module ();

is exactly equivalent to

 BEGIN { require "Module.pm"; }

All Perl module files have the extension .pm. use assumes this so that you don‘t have to spell o
"Module.pm" in quotes. This also helps to differentiate new modules from old .pl and .ph files. Module
names are also capitalized unless they‘re functioning as pragmas, "Pragmas" are in effect co
directives, and are sometimes called "pragmatic modules" (or even "pragmata" if you‘re a classicist).

Because the use statement implies a BEGIN block, the importation of semantics happens at the moment
use statement is compiled, before the rest of the file is compiled. This is how it is able to function
pragma mechanism, and also how modules are able to declare subroutines that are then visible
operators for the rest of the current file. This will not work if you use require instead of use . With
require you can get into this problem:

 require Cwd; # make Cwd:: accessible
 $here = Cwd::getcwd();

 use Cwd; # import names from Cwd::
 $here = getcwd();

 require Cwd; # make Cwd:: accessible
 $here = getcwd(); # oops! no main::getcwd()

In general use Module (); is recommended over require Module; .

Perl packages may be nested inside other package names, so we can have package names cont:: .
But if we used that package name directly as a filename it would makes for unwieldy or impo
filenames on some systems. Therefore, if a module‘s name is, say, Text::Soundex , then its definition is
actually found in the library file Text/Soundex.pm.

Perl modules always have a .pm file, but there may also be dynamically linked executables or autoloa
subroutine definitions associated with the module. If so, these will be entirely transparent to the use
module. It is the responsibility of the .pm file to load (or arrange to autoload) any additional functionalit
The POSIX module happens to do both dynamic loading and autoloading, but the user can just sause
POSIX to get it all.

For more information on writing extension modules, see perlxs and perlguts.

NOTE
Perl does not enforce private and public parts of its modules as you may have been used to i
languages like C++, Ada, or Modula−17. Perl doesn‘t have an infatuation with enforced privacy. It w
prefer that you stayed out of its living room because you weren‘t invited, not because it has a shotgun

The module and its user have a contract, part of which is common law, and part of which is "written"
of the common law contract is that a module doesn‘t pollute any namespace it wasn‘t asked to. The
contract for the module (AKA documentation) may make other provisions. But then you know whe
use RedefineTheWorld that you‘re redefining the world and willing to take the consequences.
08−Oct−1996 Version 5.003 121

perlmod Perl Programmers Reference Guide perlmod

 in

s will
ay

espace
THE PERL MODULE LIBRARY
A number of modules are included the the Perl distribution. These are described below, and all end.pm.
You may also discover files in the library directory that end in either .pl or .ph. These are old libraries
supplied so that old programs that use them still run. The .pl files will all eventually be converted into
standard modules, and the .ph files made by h2ph will probably end up as extension modules made by h2xs.
(Some .ph values may already be available through the POSIX module.) The pl2pm file in the distribution
may help in your conversion, but it‘s just a mechanical process, so is far from bulletproof.

Pragmatic Modules
They work somewhat like pragmas in that they tend to affect the compilation of your program, and thu
usually only work well when used within a use , or no . These are locally scoped, so an inner BLOCK m
countermand any of these by saying

 no integer;
 no strict ’refs’;

which lasts until the end of that BLOCK.

The following programs are defined (and have their own documentation).

diagnostics Pragma to produce enhanced diagnostics

integer Pragma to compute arithmetic in integer instead of double

less Pragma to request less of something from the compiler

ops Pragma to restrict use of unsafe opcodes

overload Pragma for overloading operators

sigtrap Pragma to enable stack backtrace on unexpected signals

strict Pragma to restrict unsafe constructs

subs Pragma to predeclare sub names

vars Pragma to predeclare global symbols

Standard Modules
Standard, bundled modules are all expected to behave in a well−defined manner with respect to nam
pollution because they use the Exporter module. See their own documentation for details.

AnyDBM_File provide framework for multiple DBMs

AutoLoader load functions only on demand

AutoSplit split a package for autoloading

Benchmark benchmark running times of code

Carp warn of errors (from perspective of caller)

Config access Perl configuration option

Cwd get pathname of current working directory

DB_File Perl access to Berkeley DB

Devel::SelfStubber
generate stubs for a SelfLoading module

DynaLoader Dynamically load C libraries into Perl code

English use nice English (or awk) names for ugly punctuation variables
122 Version 5.003 08−Oct−1996

perlmod Perl Programmers Reference Guide perlmod

e the

and. If
Env perl module that imports environment variables

Exporter provide import/export controls for Perl modules

ExtUtils::Liblist determine libraries to use and how to use them

ExtUtils::MakeMaker
create an extension Makefile

ExtUtils::Manifest
utilities to write and check a MANIFEST file

ExtUtils::Mkbootstrap
make a bootstrap file for use by DynaLoader

ExtUtils::Miniperl
!!!GOOD QUESTION!!!

Fcntl load the C Fcntl.h defines

File::Basename
parse file specifications

File::CheckTree
run many filetest checks on a tree

File::Find traverse a file tree

FileHandle supply object methods for filehandles

File::Path create or remove a series of directories

Getopt::Long extended getopt processing

Getopt::Std Process single−character switches with switch clustering

I18N::Collate compare 8−bit scalar data according to the current locale

IPC::Open2 a process for both reading and writing

IPC::Open3 open a process for reading, writing, and error handling

Net::Ping check a host for upness

POSIX Perl interface to IEEE Std 1003.1

SelfLoader load functions only on demand

Safe Creation controlled compartments in which perl code can be evaluated.

Socket load the C socket.h defines and structure manipulators

Test::Harness run perl standard test scripts with statistics

Text::Abbrev create an abbreviation table from a list

To find out all the modules installed on your system, including those without documentation or outsid
standard release, do this:

 find ‘perl −e ’print "@INC"’‘ −name ’*.pm’ −print

They should all have their own documentation installed and accessible via your system man(1) comm
that fails, try the perldoc program.
08−Oct−1996 Version 5.003 123

perlmod Perl Programmers Reference Guide perlmod

if and

r size,
s on
Q or

resent

of all
odules:

se to
Extension Modules
Extension modules are written in C (or a mix of Perl and C) and get dynamically loaded into Perl
when you need them. Supported extension modules include the Socket, Fcntl, and POSIX modules.

Many popular C extension modules do not come bundled (at least, not completely) due to thei
volatility, or simply lack of time for adequate testing and configuration across the multitude of platform
which Perl was beta−tested. You are encouraged to look for them in archie(1L), the Perl FA
Meta−FAQ, the WWW page, and even with their authors before randomly posting asking for their p
condition and disposition.

CPAN
CPAN stands for the Comprehensive Perl Archive Network. This is a globally replicated collection
known Perl materials, including hundreds of unbundled modules. Here are the major categories of m

 Language Extensions and Documentation Tools

 Development Support

 Operating System Interfaces

 Networking, Device Control (modems) and InterProcess Communication

 Data Types and Data Type Utilities

 Database Interfaces

 User Interfaces

 Interfaces to / Emulations of Other Programming Languages

 File Names, File Systems and File Locking (see also File Handles)

 String Processing, Language Text Processing, Parsing and Searching

 Option, Argument, Parameter and Configuration File Processing

 Internationalization and Locale

 Authentication, Security and Encryption

 World Wide Web, HTML, HTTP, CGI, MIME

 Server and Daemon Utilities

 Archiving and Compression

 Images, Pixmap and Bitmap Manipulation, Drawing and Graphing

 Mail and Usenet News

 Control Flow Utilities (callbacks and exceptions etc)

 File Handle and Input/Output Stream Utilities

 Miscellaneous Modules

The registered CPAN sites as of this writing include the following. You should try to choose one clo
you:

 ftp://ftp.sterling.com/programming/languages/perl/

 ftp://ftp.sedl.org/pub/mirrors/CPAN/

 ftp://ftp.uoknor.edu/mirrors/CPAN/
124 Version 5.003 08−Oct−1996

perlmod Perl Programmers Reference Guide perlmod

PAN

nce of a
e used as
age (for

 import
e of its

 of the
s on

 a new
ng or
ges in

ith the
cheme
 ftp://ftp.delphi.com/pub/mirrors/packages/perl/CPAN/

 ftp://uiarchive.cso.uiuc.edu/pub/lang/perl/CPAN/

 ftp://ftp.cis.ufl.edu/pub/perl/CPAN/

 ftp://ftp.switch.ch/mirror/CPAN/

 ftp://ftp.sunet.se/pub/lang/perl/CPAN/

 ftp://ftp.ci.uminho.pt/pub/lang/perl/

 ftp://ftp.cs.ruu.nl/pub/PERL/CPAN/

 ftp://ftp.demon.co.uk/pub/mirrors/perl/CPAN/

 ftp://ftp.rz.ruhr−uni−bochum.de/pub/programming/languages/perl/CPAN/

 ftp://ftp.leo.org/pub/comp/programming/languages/perl/CPAN/

 ftp://ftp.pasteur.fr/pub/computing/unix/perl/CPAN/

 ftp://ftp.ibp.fr/pub/perl/CPAN/

 ftp://ftp.funet.fi/pub/languages/perl/CPAN/

 ftp://ftp.tekotago.ac.nz/pub/perl/CPAN/

 ftp://ftp.mame.mu.oz.au/pub/perl/CPAN/

 ftp://coombs.anu.edu.au/pub/perl/

 ftp://dongpo.math.ncu.edu.tw/perl/CPAN/

 ftp://ftp.lab.kdd.co.jp/lang/perl/CPAN/

 ftp://ftp.is.co.za/programming/perl/CPAN/

For an up−to−date listing of CPAN sites, see http://www.perl.com/perl/CPAN or ftp://ftp.perl.com/perl/.

Modules: Creation, Use and Abuse
(The following section is borrowed directly from Tim Bunce‘s modules file, available at your nearest C
site.)

Perl 5 implements a class using a package, but the presence of a package doesn‘t imply the prese
class. A package is just a namespace. A class is a package that provides subroutines that can b
methods. A method is just a subroutine that expects, as its first argument, either the name of a pack
"static" methods), or a reference to something (for "virtual" methods).

A module is a file that (by convention) provides a class of the same name (sans the .pm), plus an
method in that class that can be called to fetch exported symbols. This module may implement som
methods by loading dynamic C or C++ objects, but that should be totally transparent to the user
module. Likewise, the module might set up an AUTOLOAD function to slurp in subroutine definition
demand, but this is also transparent. Only the .pm file is required to exist.

Guidelines for Module Creation

Do similar modules already exist in some form?
If so, please try to reuse the existing modules either in whole or by inheriting useful features into
class. If this is not practical try to get together with the module authors to work on extendi
enhancing the functionality of the existing modules. A perfect example is the plethora of packa
perl4 for dealing with command line options.

If you are writing a module to expand an already existing set of modules, please coordinate w
author of the package. It helps if you follow the same naming scheme and module interaction s
as the original author.
08−Oct−1996 Version 5.003 125

perlmod Perl Programmers Reference Guide perlmod

n as the

functions
thods

lly,

‘t use

y as

ages

as they
at seem

that

 names
 and

le:
Try to design the new module to be easy to extend and reuse.
Use blessed references. Use the two argument form of bless to bless into the class name give
first parameter of the constructor, e.g.:

 sub new {
my $class = shift;
return bless {}, $class;

 }

or even this if you‘d like it to be used as either a static or a virtual method.

 sub new {
my $self = shift;
my $class = ref($self) || $self;
return bless {}, $class;

 }

Pass arrays as references so more parameters can be added later (it‘s also faster). Convert
into methods where appropriate. Split large methods into smaller more flexible ones. Inherit me
from other modules if appropriate.

Avoid class name tests like: die "Invalid" unless ref $ref eq ‘FOO’ . Generally you
can delete the "eq ‘FOO’ " part with no harm at all. Let the objects look after themselves! Genera
avoid hardwired class names as far as possible.

Avoid $r−>Class::func() where using @ISA=qw(... Class ...) and $r−>func()
would work (see perlbot for more details).

Use autosplit so little used or newly added functions won‘t be a burden to programs which don
them. Add test functions to the module after __END__ either using AutoSplit or by saying:

 eval join(’’,<main::DATA>) || die $@ unless caller();

Does your module pass the ‘empty sub−class’ test? If you say "@SUBCLASS::ISA =
qw(YOURCLASS);" your applications should be able to use SUBCLASS in exactly the same wa
YOURCLASS. For example, does your application still work if you change: $obj = new
YOURCLASS; into: $obj = new SUBCLASS; ?

Avoid keeping any state information in your packages. It makes it difficult for multiple other pack
to use yours. Keep state information in objects.

Always use −w. Try to use strict; (or use strict qw(...);). Remember that you can add
no strict qw(...); to individual blocks of code which need less strictness. Always use −w.
Always use −w! Follow the guidelines in the perlstyle(1) manual.

Some simple style guidelines
The perlstyle manual supplied with perl has many helpful points.

Coding style is a matter of personal taste. Many people evolve their style over several years
learn what helps them write and maintain good code. Here‘s one set of assorted suggestions th
to be widely used by experienced developers:

Use underscores to separate words. It is generally easier to read $var_names_like_this than
$VarNamesLikeThis, especially for non−native speakers of English. It‘s also a simple rule
works consistently with VAR_NAMES_LIKE_THIS.

Package/Module names are an exception to this rule. Perl informally reserves lowercase module
for ‘pragma’ modules like integer and strict. Other modules normally begin with a capital letter
use mixed case with no underscores (need to be short and portable).

You may find it helpful to use letter case to indicate the scope or nature of a variable. For examp
126 Version 5.003 08−Oct−1996

perlmod Perl Programmers Reference Guide perlmod

side the

OK in
.

a

 name

st a

biguity.
 about
ly group
 Module

alled
side

s with a
iew,

d the

ght be
ke this

at will
?

knows.
lace to

es on
ed by
 $ALL_CAPS_HERE constants only (beware clashes with perl vars)
 $Some_Caps_Here package−wide global/static
 $no_caps_here function scope my() or local() variables

Function and method names seem to work best as all lowercase. E.g., $obj−>as_string() .

You can use a leading underscore to indicate that a variable or function should not be used out
package that defined it.

Select what to export.
Do NOT export method names!

Do NOT export anything else by default without a good reason!

Exports pollute the namespace of the module user. If you must export try to use @EXPORT_
preference to @EXPORT and avoid short or common names to reduce the risk of name clashes

Generally anything not exported is still accessible from outside the module using the
ModuleName::item_name (or $blessed_ref−>method) syntax. By convention you can use
leading underscore on names to informally indicate that they are ‘internal’ and not for public use.

(It is actually possible to get private functions by saying: my $subref = sub { ... };
&$subref;. But there‘s no way to call that directly as a method, since a method must have a
in the symbol table.)

As a general rule, if the module is trying to be object oriented then export nothing. If it‘s ju
collection of functions then @EXPORT_OK anything but use @EXPORT with caution.

Select a name for the module.
This name should be as descriptive, accurate and complete as possible. Avoid any risk of am
Always try to use two or more whole words. Generally the name should reflect what is special
what the module does rather than how it does it. Please use nested module names to informal
or categorise a module. A module should have a very good reason not to have a nested name.
names should begin with a capital letter.

Having 57 modules all called Sort will not make life easy for anyone (though having 23 c
Sort::Quick is only marginally better :−). Imagine someone trying to install your module along
many others. If in any doubt ask for suggestions in comp.lang.perl.misc.

If you are developing a suite of related modules/classes it‘s good practice to use nested classe
common prefix as this will avoid namespace clashes. For example: Xyz::Control, Xyz::V
Xyz::Model etc. Use the modules in this list as a naming guide.

If adding a new module to a set, follow the original author‘s standards for naming modules an
interface to methods in those modules.

To be portable each component of a module name should be limited to 11 characters. If it mi
used on DOS then try to ensure each is unique in the first 8 characters. Nested modules ma
easier.

Have you got it right?
How do you know that you‘ve made the right decisions? Have you picked an interface design th
cause problems later? Have you picked the most appropriate name? Do you have any questions

The best way to know for sure, and pick up many helpful suggestions, is to ask someone who
Comp.lang.perl.misc is read by just about all the people who develop modules and it‘s the best p
ask.

All you need to do is post a short summary of the module, its purpose and interfaces. A few lin
each of the main methods is probably enough. (If you post the whole module it might be ignor
busy people − generally the very people you want to read it!)
08−Oct−1996 Version 5.003 127

perlmod Perl Programmers Reference Guide perlmod

sage.

ver,
 full

s into

 assert

ense
 the

 is to

t in a
 the

your

e.g,
 or

er in
.tar.Z).

elf if
 wide

f it‘s
Don‘t worry about posting if you can‘t say when the module will be ready − just say so in the mes
It might be worth inviting others to help you, they may be able to complete it for you!

README and other Additional Files.
It‘s well known that software developers usually fully document the software they write. If, howe
the world is in urgent need of your software and there is not enough time to write the
documentation please at least provide a README file containing:

 A description of the module/package/extension etc.

 A copyright notice − see below.

 Prerequisites − what else you may need to have.

 How to build it − possible changes to Makefile.PL etc.

 How to install it.

 Recent changes in this release, especially incompatibilities

 Changes / enhancements you plan to make in the future.

If the README file seems to be getting too large you may wish to split out some of the section
separate files: INSTALL, Copying, ToDo etc.

Adding a Copyright Notice.
How you choose to license your work is a personal decision. The general mechanism is to
your Copyright and then make a declaration of how others may copy/use/modify your work.

Perl, for example, is supplied with two types of license: The GNU GPL and The Artistic Lic
(see the files README, Copying and Artistic). Larry has good reasons for NOT just using
GNU GPL.

My personal recommendation, out of respect for Larry, Perl and the perl community at large
simply state something like:

 Copyright (c) 1995 Your Name. All rights reserved.
 This program is free software; you can redistribute it and/or
 modify it under the same terms as Perl itself.

This statement should at least appear in the README file. You may also wish to include i
Copying file and your source files. Remember to include the other words in addition to
Copyright.

Give the module a version/issue/release number.
To be fully compatible with the Exporter and MakeMaker modules you should store
module‘s version number in a non−my package variable called $VERSION. This should be a
valid floating point number with at least two digits after the decimal (ie hundredths,
$VERSION = "0.01"). Don‘t use a "1.3.2" style version. See Exporter.pm in Perl5.001m
later for details.

It may be handy to add a function or method to retrieve the number. Use the numb
announcements and archive file names when releasing the module (ModuleName−1.02
See perldoc ExtUtils::MakeMaker.pm for details.

How to release and distribute a module.
It‘s good idea to post an announcement of the availability of your module (or the module its
small) to the comp.lang.perl.announce Usenet newsgroup. This will at least ensure very
once−off distribution.

If possible you should place the module into a major ftp archive and include details o
location in your announcement.
128 Version 5.003 08−Oct−1996

perlmod Perl Programmers Reference Guide perlmod

es the
 able
oon as
le to

your

rwise
atible

ay
there is

ipt is

erface.

pm

cking,
Some notes about ftp archives: Please use a long descriptive file name which includ
version number. Most incoming directories will not be readable/listable, i.e., you won‘t be
to see your file after uploading it. Remember to send your email notification message as s
possible after uploading else your file may get deleted automatically. Allow time for the fi
be processed and/or check the file has been processed before announcing its location.

FTP Archives for Perl Modules:

Follow the instructions and links on

 http://franz.ww.tu−berlin.de/modulelist

or upload to one of these sites:

 ftp://franz.ww.tu−berlin.de/incoming
 ftp://ftp.cis.ufl.edu/incoming

and notify upload@franz.ww.tu−berlin.de.

By using the WWW interface you can ask the Upload Server to mirror your modules from
ftp or WWW site into your own directory on CPAN!

Please remember to send me an updated entry for the Module list!

Take care when changing a released module.
Always strive to remain compatible with previous released versions (see 2.2 above) Othe
try to add a mechanism to revert to the old behaviour if people rely on it. Document incomp
changes.

Guidelines for Converting Perl 4 Library Scripts into Modules

There is no requirement to convert anything.
If it ain‘t broke, don‘t fix it! Perl 4 library scripts should continue to work with no problems. You m
need to make some minor changes (like escaping non−array @‘s in double quoted strings) but
no need to convert a .pl file into a Module for just that.

Consider the implications.
All the perl applications which make use of the script will need to be changed (slightly) if the scr
converted into a module. Is it worth it unless you plan to make other changes at the same time?

Make the most of the opportunity.
If you are going to convert the script to a module you can use the opportunity to redesign the int
The ‘Guidelines for Module Creation’ above include many of the issues you should consider.

The pl2pm utility will get you started.
This utility will read *.pl files (given as parameters) and write corresponding *.pm files. The pl2
utilities does the following:

 Adds the standard Module prologue lines

 Converts package specifiers from ’ to ::

 Converts die(...) to croak(...)

 Several other minor changes

Being a mechanical process pl2pm is not bullet proof. The converted code will need careful che
especially any package statements. Don‘t delete the original .pl file till the new .pm one works!

Guidelines for Reusing Application Code

Complete applications rarely belong in the Perl Module Library.
08−Oct−1996 Version 5.003 129

perlmod Perl Programmers Reference Guide perlmod

ed as:
Many applications contain some perl code which could be reused.
Help save the world! Share your code in a form that makes it easy to reuse.

Break−out the reusable code into one or more separate module files.
Take the opportunity to reconsider and redesign the interfaces.
In some cases the ‘application’ can then be reduced to a small

fragment of code built on top of the reusable modules. In these cases the application could invok

 perl −e ’use Module::Name; method(@ARGV)’ ...
or
 perl −mModule::Name ... (in perl5.002)
130 Version 5.003 08−Oct−1996

perlform Perl Programmers Reference Guide perlform

ou code
any

d from

an‘s

y point in
e apart
 same
 given
name

They

which

e line.
ind of
 field;
eld is
 left
ated.

cify a
ains a
nting

ssions
 context
ressions
the first

 out if
bitrary
as much
ble is
during
in a
will
NAME
perlform − Perl formats

DESCRIPTION
Perl has a mechanism to help you generate simple reports and charts. To facilitate this, Perl helps y
up your output page close to how it will look when it‘s printed. It can keep track of things like how m
lines on a page, what page you‘re on, when to print page headers, etc. Keywords are borrowe
FORTRAN: format() to declare and write() to execute; see their entries in perlfunc. Fortunately, the
layout is much more legible, more like BASIC‘s PRINT USING statement. Think of it as a poor m
nroff(1).

Formats, like packages and subroutines, are declared rather than executed, so they may occur at an
your program. (Usually it‘s best to keep them all together though.) They have their own namespac
from all the other "types" in Perl. This means that if you have a function named "Foo", it is not the
thing as having a format named "Foo". However, the default name for the format associated with a
filehandle is the same as the name of the filehandle. Thus, the default format for STDOUT is
"STDOUT", and the default format for filehandle TEMP is name "TEMP". They just look the same.
aren‘t.

Output record formats are declared as follows:

 format NAME =
 FORMLIST
 .

If name is omitted, format "STDOUT" is defined. FORMLIST consists of a sequence of lines, each of
may be of one of three types:

1. A comment, indicated by putting a ‘#’ in the first column.

2. A "picture" line giving the format for one output line.

3. An argument line supplying values to plug into the previous picture line.

Picture lines are printed exactly as they look, except for certain fields that substitute values into th
Each field in a picture line starts with either "@" (at) or "^" (caret). These lines do not undergo any k
variable interpolation. The at field (not to be confused with the array marker @) is the normal kind of
the other kind, caret fields, are used to do rudimentary multi−line text block filling. The length of the fi
supplied by padding out the field with multiple "<", ">", or "|" characters to specify, respectively,
justification, right justification, or centering. If the variable would exceed the width specified, it is trunc

As an alternate form of right justification, you may also use "#" characters (with an optional ".") to spe
numeric field. This way you can line up the decimal points. If any value supplied for these fields cont
newline, only the text up to the newline is printed. Finally, the special field "@*" can be used for pri
multi−line, non−truncated values; it should appear by itself on a line.

The values are specified on the following line in the same order as the picture fields. The expre
providing the values should be separated by commas. The expressions are all evaluated in a list
before the line is processed, so a single list expression could produce multiple list elements. The exp
may be spread out to more than one line if enclosed in braces. If so, the opening brace must be
token on the first line.

Picture fields that begin with ^ rather than @ are treated specially. With a # field, the field is blanked
the value is undefined. For other field types, the caret enables a kind of fill mode. Instead of an ar
expression, the value supplied must be a scalar variable name that contains a text string. Perl puts
text as it can into the field, and then chops off the front of the string so that the next time the varia
referenced, more of the text can be printed. (Yes, this means that the variable itself is altered
execution of the write() call, and is not returned.) Normally you would use a sequence of fields
vertical stack to print out a block of text. You might wish to end the final field with the text "...", which
08−Oct−1996 Version 5.003 131

perlform Perl Programmers Reference Guide perlform

ters are

uppress
space
ds on
give the

handle

dle
appear in the output if the text was too long to appear in its entirety. You can change which charac
legal to break on by changing the variable $: (that‘s $FORMAT_LINE_BREAK_CHARACTERS if you‘re
using the English module) to a list of the desired characters.

Using caret fields can produce variable length records. If the text to be formatted is short, you can s
blank lines by putting a "~" (tilde) character anywhere in the line. The tilde will be translated to a
upon output. If you put a second tilde contiguous to the first, the line will be repeated until all the fiel
the line are exhausted. (If you use a field of the at variety, the expression you supply had better not
same value every time forever!)

Top−of−form processing is by default handled by a format with the same name as the current file
with "_TOP" concatenated to it. It‘s triggered at the top of each page. See write.

Examples:

 # a report on the /etc/passwd file
 format STDOUT_TOP =
 Passwd File
 Name Login Office Uid Gid Home
 −−
 .
 format STDOUT =
 @<<<<<<<<<<<<<<<<<< @||||||| @<<<<<<@>>>> @>>>> @<<<<<<<<<<<<<<<<<
 $name, $login, $office,$uid,$gid, $home
 .

 # a report from a bug report form
 format STDOUT_TOP =
 Bug Reports
 @<<<<<<<<<<<<<<<<<<<<<<< @||| @>>>>>>>>>>>>>>>>>>>>>>>
 $system, $%, $date
 −−
 .
 format STDOUT =
 Subject: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $subject
 Index: @<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $index, $description
 Priority: @<<<<<<<<<< Date: @<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $priority, $date, $description
 From: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $from, $description
 Assigned to: @<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $programmer, $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
 ~ ^<<<<<<<<<<<<<<<<<<<<<<<...
 $description
 .

It is possible to intermix print() s with write() s on the same output channel, but you‘ll have to han
132 Version 5.003 08−Oct−1996

perlform Perl Programmers Reference Guide perlform

t least
because
p the

hese

rm out
$− ($FORMAT_LINES_LEFT) yourself.

Format Variables
The current format name is stored in the variable $~ ($FORMAT_NAME), and the current top of form
format name is in $^ ($FORMAT_TOP_NAME). The current output page number is stored in $%
($FORMAT_PAGE_NUMBER), and the number of lines on the page is in $=
($FORMAT_LINES_PER_PAGE). Whether to autoflush output on this handle is stored in $|
($OUTPUT_AUTOFLUSH). The string output before each top of page (except the first) is stored in $^L
($FORMAT_FORMFEED). These variables are set on a per−filehandle basis, so you‘ll need to select()
into a different one to affect them:

 select((select(OUTF),
 $~ = "My_Other_Format",
 $^ = "My_Top_Format"
)[0]);

Pretty ugly, eh? It‘s a common idiom though, so don‘t be too surprised when you see it. You can a
use a temporary variable to hold the previous filehandle: (this is a much better approach in general,
not only does legibility improve, you now have intermediary stage in the expression to single−ste
debugger through):

 $ofh = select(OUTF);
 $~ = "My_Other_Format";
 $^ = "My_Top_Format";
 select($ofh);

If you use the English module, you can even read the variable names:

 use English;
 $ofh = select(OUTF);
 $FORMAT_NAME = "My_Other_Format";
 $FORMAT_TOP_NAME = "My_Top_Format";
 select($ofh);

But you still have those funny select() s. So just use the FileHandle module. Now, you can access t
special variables using lower−case method names instead:

 use FileHandle;
 format_name OUTF "My_Other_Format";
 format_top_name OUTF "My_Top_Format";

Much better!

NOTES
Since the values line may contain arbitrary expressions (for at fields, not caret fields), you can fa
more sophisticated processing to other functions, like sprintf() or one of your own. For example:

 format Ident =
@<<<<<<<<<<<<<<<
&commify($n)

 .

To get a real at or caret into the field, do this:

 format Ident =
 I have an @ here.

 "@"
 .

To center a whole line of text, do something like this:
08−Oct−1996 Version 5.003 133

perlform Perl Programmers Reference Guide perlform

ave to
 current

ding
 to be

ange
 format Ident =
 @|||

 "Some text line"
 .

There is no builtin way to say "float this to the right hand side of the page, however wide it is." You h
specify where it goes. The truly desperate can generate their own format on the fly, based on the
number of columns, and then eval() it:

 $format = "format STDOUT = \n";
 . ’^’ . ’<’ x $cols . "\n";
 . ’$entry’ . "\n";
 . "\t^" . "<" x ($cols−8) . "~~\n";
 . ’$entry’ . "\n";
 . ".\n";
 print $format if $Debugging;
 eval $format;
 die $@ if $@;

Which would generate a format looking something like this:

 format STDOUT =
 ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $entry
 ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~
 $entry
 .

Here‘s a little program that‘s somewhat like fmt(1):

 format =
 ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~~
 $_

 .

 $/ = ’’;
 while (<>) {
 s/\s*\n\s*/ /g;
 write;
 }

Footers
While $FORMAT_TOP_NAME contains the name of the current header format, there is no correspon
mechanism to automatically do the same thing for a footer. Not knowing how big a format is going
until you evaluate it is one of the major problems. It‘s on the TODO list.

Here‘s one strategy: If you have a fixed−size footer, you can get footers by checking
$FORMAT_LINES_LEFT before each write() and print the footer yourself if necessary.

Here‘s another strategy; open a pipe to yourself, using open(MESELF, "|−") (see open()) and always
write() to MESELF instead of STDOUT. Have your child process massage its STDIN to rearr
headers and footers however you like. Not very convenient, but doable.

Accessing Formatting Internals
For low−level access to the formatting mechanism. you may use formline() and access $^A (the
$ACCUMULATOR variable) directly.

For example:

 $str = formline <<’END’, 1,2,3;
134 Version 5.003 08−Oct−1996

perlform Perl Programmers Reference Guide perlform

ithin
exical
 @<<< @||| @>>>
 END

 print "Wow, I just stored ‘$^A’ in the accumulator!\n";

Or to make an swrite() subroutine which is to write() what sprintf() is to printf() , do this:

 use Carp;
 sub swrite {

croak "usage: swrite PICTURE ARGS" unless @_;
my $format = shift;
$^A = "";
formline($format,@_);
return $^A;

 }

 $string = swrite(<<’END’, 1, 2, 3);
 Check me out
 @<<< @||| @>>>
 END
 print $string;

WARNING
Lexical variables (declared with "my") are not visible within a format unless the format is declared w
the scope of the lexical variable. (They weren‘t visible at all before version 5.001.) Furthermore, l
aliases will not be compiled correctly: see my for other issues.
08−Oct−1996 Version 5.003 135

perli18n Perl Programmers Reference Guide perli18n

 These
uld be

d called
s.

ou have
rstand

The
 tells in
lt your

ntrols
regular
NAME
perl18n − Perl i18n (internalization)

DESCRIPTION
Perl supports the language−specific notions of data like "is this a letter" and "which letter comes first".
are very important issues especially for languages other than English — but also for English: it wo
very naive indeed to think that A−Za−z defines all the letters.

Perl understands the language−specific data via the standardized (ISO C, XPG4, POSIX 1.c) metho
"the locale system". The locale system is controlled per application using several environment variable

USING LOCALES
If your operating system supports the locale system and you have installed the locale system and y
set your locale environment variables correctly (please see below) before running Perl, Perl will unde
your data correctly.

In runtime you can switch locales using the POSIX::setlocale() .

use POSIX qw(setlocale LC_CTYPE);

query and save the old locale.
$old_locale = setlocale(LC_CTYPE);

setlocale(LC_CTYPE, "fr_CA.ISO8859−1");
for LC_CTYPE now in locale "French, Canada, codeset ISO 8859−1"

setlocale(LC_CTYPE, "");
for LC_CTYPE now in locale what the LC_ALL / LC_CTYPE / LANG define.
see below for documentation about the LC_ALL / LC_CTYPE / LANG.

restore the old locale
setlocale(LC_CTYPE, $old_locale);

The first argument of setlocale() is called the category and the second argument the locale.
category tells in what area of data processing we want to apply language−specific rules, the locale
what language−country/territory−codeset. For further information about the categories, please consu
setlocale(3) manual. For the locales available in your system, also consult the setlocale(3) manual and see
whether it leads you to the list of the available locales (search for the SEE ALSO section). If that fails, try
out in command line the following commands:

locale −a
nlsinfo
ls /usr/lib/nls/loc
ls /usr/lib/locale
ls /usr/lib/nls

and see whether they list something resembling these

en_US.ISO8859−1 de_DE.ISO8859−1 ru_RU.ISO8859−5
en_US de_DE ru_RU
english german russian
english.iso88591 german.iso88591 russian.iso88595

Sadly enough even if the calling interface has been standardized the names of the locales are not.

CHARACTER TYPES
Starting from Perl version 5.002 perl has obeyed the LC_CTYPE environment variable which co
application‘s notions on which characters are alphabetic characters. This affects in Perl the
expression metanotation

\w
136 Version 5.003 08−Oct−1996

perli18n Perl Programmers Reference Guide perli18n

on your

hich

, in the

o juggle

cific
ing is
ain.
em in

O C,

the

last
which stands for alphanumeric characters, that is, alphabetic and numeric characters. Depending
locale settings, characters like F, I , _, x , can be understood as \w characters.

COLLATION
Starting from Perl version 5.003_06 perl has obeyed the LC_COLLATE environment variable w
controls application‘s notions on the ordering (collation) of the characters. B does in most Latin alphabets
follow the A but where do the A and D belong?

Here is a code snippet that will tell you what are the alphanumeric characters in the current locale
locale order:

perl −le ’print sort grep /\w/, map { chr() } 0..255’

As noted above, this will work only for Perl versions 5.003_06 and up.

NOTE: in the pre−5.003_06 Perl releases the per−locale collation was possible using the I18N::Collate
library module. This is now mildly obsolete and to be avoided. The LC_COLLATE functionality is integrated
into the Perl core language and one can use scalar data completely normally — there is no need t
with the scalar references of I18N::Collate .

ENVIRONMENT

PERL_BADLANG
A string that controls whether Perl warns in its startup about failed language−spe
"locale" settings. This can happen if the locale support in the operating system is lack
some way. If this string has an integer value differing from zero, Perl will not compl
NOTE: this is just hiding the warning message: the message tells about some probl
your system‘s locale support and you should investigate what the problem is.

The following environment variables are not specific to Perl: they are part of the standardized (IS
XPG4, POSIX 1.c) setlocale method to control an application‘s opinion on data.

LC_ALL LC_ALL is the "override−all" locale environment variable. If it is set, it overrides all
rest of the locale environment variables.

LC_CTYPE LC_ALL controls the classification of characters, see above.

If this is unset and the LC_ALL is set, the LC_ALL is used as the LC_CTYPE. If both this
and the LC_ALL are unset but the LANG is set, the LANG is used as the LC_CTYPE. If
none of these three is set, the default locale "C" is used as the LC_CTYPE.

LC_COLLATE LC_ALL controls the collation of characters, see above.

If this is unset and the LC_ALL is set, the LC_ALL is used as the LC_CTYPE. If both this
and the LC_ALL are unset but the LANG is set, the LANG is used as the LC_COLLATE. If
none of these three is set, the default locale "C" is used as the LC_COLLATE.

LANG LC_ALL is the "catch−all" locale environment variable. If it is set, it is used as the
resort if neither of the LC_ALL and the category−specific LC_... are set.

There are further locale−controlling environment variables (LC_MESSAGES, LC_MONETARY,
LC_NUMERIC, LC_TIME) but Perl does not currently obey them.
08−Oct−1996 Version 5.003 137

perlref Perl Programmers Reference Guide perlref

ad to be
l table

 "hard"
 contain
ashes of

 thing
erential

ect,
, but
 class

erely
ore
tive of

mplicit
t doesn‘t

the

erence
 some

ment is
scribed

tead it‘s
NAME
perlref − Perl references and nested data structures

DESCRIPTION
Before release 5 of Perl it was difficult to represent complex data structures, because all references h
symbolic, and even that was difficult to do when you wanted to refer to a variable rather than a symbo
entry. Perl 5 not only makes it easier to use symbolic references to variables, but lets you have
references to any piece of data. Any scalar may hold a hard reference. Since arrays and hashes
scalars, you can now easily build arrays of arrays, arrays of hashes, hashes of arrays, arrays of h
functions, and so on.

Hard references are smart—they keep track of reference counts for you, automatically freeing the
referred to when its reference count goes to zero. (Note: The reference counts for values in self−ref
or cyclic data structures may not go to zero without a little help; see
Two−Phased Garbage Collection in perlobj for a detailed explanation. If that thing happens to be an obj
the object is destructed. See perlobj for more about objects. (In a sense, everything in Perl is an object
we usually reserve the word for references to objects that have been officially "blessed" into a
package.)

A symbolic reference contains the name of a variable, just as a symbolic link in the filesystem m
contains the name of a file. The *glob notation is a kind of symbolic reference. Hard references are m
like hard links in the file system: merely another way at getting at the same underlying object, irrespec
its name.

"Hard" references are easy to use in Perl. There is just one overriding principle: Perl does no i
referencing or dereferencing. When a scalar is holding a reference, it always behaves as a scalar. I
magically start being an array or a hash unless you tell it so explicitly by dereferencing it.

References can be constructed several ways.

1. By using the backslash operator on a variable, subroutine, or value. (This works much like &
(address−of) operator works in C.) Note that this typically creates ANOTHER reference to a variable,
since there‘s already a reference to the variable in the symbol table. But the symbol table ref
might go away, and you‘ll still have the reference that the backslash returned. Here are
examples:

 $scalarref = \$foo;
 $arrayref = \@ARGV;
 $hashref = \%ENV;
 $coderef = \&handler;
 $globref = *STDOUT;

2. A reference to an anonymous array can be constructed using square brackets:

 $arrayref = [1, 2, [’a’, ’b’, ’c’]];

Here we‘ve constructed a reference to an anonymous array of three elements whose final ele
itself reference to another anonymous array of three elements. (The multidimensional syntax de
later can be used to access this. For example, after the above, $arrayref−>[2][1] would have
the value "b".)

Note that taking a reference to an enumerated list is not the same as using square brackets—ins
the same as creating a list of references!

 @list = (\$a, \@b, \%c);
 @list = \($a, @b, %c); # same thing!

As a special case, \(@foo) returns a list of references to the contents of @foo, not a reference to
@foo itself. Likewise for %foo .
138 Version 5.003 08−Oct−1996

perlref Perl Programmers Reference Guide perlref

tructure
ve are

 in Perl

 may

monic

e these

cuted

e an
n it‘s

ell as
 can

 that

ct, in
use
3. A reference to an anonymous hash can be constructed using curly brackets:

 $hashref = {
’Adam’ => ’Eve’,
’Clyde’ => ’Bonnie’,

 };

Anonymous hash and array constructors can be intermixed freely to produce as complicated a s
as you want. The multidimensional syntax described below works for these too. The values abo
literals, but variables and expressions would work just as well, because assignment operators
(even within local() or my()) are executable statements, not compile−time declarations.

Because curly brackets (braces) are used for several other things including BLOCKs, you
occasionally have to disambiguate braces at the beginning of a statement by putting a + or a return
in front so that Perl realizes the opening brace isn‘t starting a BLOCK. The economy and mne
value of using curlies is deemed worth this occasional extra hassle.

For example, if you wanted a function to make a new hash and return a reference to it, you hav
options:

 sub hashem { { @_ } } # silently wrong
 sub hashem { +{ @_ } } # ok
 sub hashem { return { @_ } } # ok

4. A reference to an anonymous subroutine can be constructed by using sub without a subname:

 $coderef = sub { print "Boink!\n" };

Note the presence of the semicolon. Except for the fact that the code inside isn‘t exe
immediately, a sub {} is not so much a declaration as it is an operator, like do{} or eval{} .
(However, no matter how many times you execute that line (unless you‘re in an eval("...")),
$coderef will still have a reference to the SAME anonymous subroutine.)

Anonymous subroutines act as closures with respect to my() variables, that is, variables visible
lexically within the current scope. Closure is a notion out of the Lisp world that says if you defin
anonymous function in a particular lexical context, it pretends to run in that context even whe
called outside of the context.

In human terms, it‘s a funny way of passing arguments to a subroutine when you define it as w
when you call it. It‘s useful for setting up little bits of code to run later, such as callbacks. You
even do object−oriented stuff with it, though Perl provides a different mechanism to do
already—see perlobj.

You can also think of closure as a way to write a subroutine template without using eval. (In fa
version 5.000, eval was the only way to get closures. You may wish to use "require 5.001" if you
closures.)

Here‘s a small example of how closures works:

 sub newprint {
my $x = shift;
return sub { my $y = shift; print "$x, $y!\n"; };

 }
 $h = newprint("Howdy");
 $g = newprint("Greetings");

 # Time passes...

 &$h("world");
 &$g("earthlings");
08−Oct−1996 Version 5.003 139

perlref Perl Programmers Reference Guide perlref

That‘s

 have
s about

re just
 with.
 so by
ing an

ext that
amples

the best

ack to

, you

below.
e, the
This prints

 Howdy, world!
 Greetings, earthlings!

Note particularly that $x continues to refer to the value passed into newprint() despite the fact that
the "my $x" has seemingly gone out of scope by the time the anonymous subroutine runs.
what closure is all about.

This only applies to lexical variables, by the way. Dynamic variables continue to work as they
always worked. Closure is not something that most Perl programmers need trouble themselve
to begin with.

5. References are often returned by special subroutines called constructors. Perl objects a
references to a special kind of object that happens to know which package it‘s associated
Constructors are just special subroutines that know how to create that association. They do
starting with an ordinary reference, and it remains an ordinary reference even while it‘s also be
object. Constructors are customarily named new() , but don‘t have to be:

 $objref = new Doggie (Tail => ’short’, Ears => ’long’);

6. References of the appropriate type can spring into existence if you dereference them in a cont
assumes they exist. Since we haven‘t talked about dereferencing yet, we can‘t show you any ex
yet.

7. References to filehandles can be created by taking a reference to a typeglob. This is currently
way to pass filehandles into or out of subroutines, or to store them in larger data structures.

 splutter(*STDOUT);
 sub splutter {

my $fh = shift;
print $fh "her um well a hmmm\n";

 }

 $rec = get_rec(*STDIN);
 sub get_rec {

my $fh = shift;
return scalar <$fh>;

 }

That‘s it for creating references. By now you‘re probably dying to know how to use references to get b
your long−lost data. There are several basic methods.

1. Anywhere you‘d put an identifier (or chain of identifiers) as part of a variable or subroutine name
can replace the identifier with a simple scalar variable containing a reference of the correct type:

 $bar = $$scalarref;
 push(@$arrayref, $filename);
 $$arrayref[0] = "January";
 $$hashref{"KEY"} = "VALUE";
 &$coderef(1,2,3);
 print $globref "output\n";

It‘s important to understand that we are specifically NOT dereferencing $arrayref[0] or
$hashref{"KEY"} there. The dereference of the scalar variable happens BEFORE it does any key
lookups. Anything more complicated than a simple scalar variable must use methods 2 or 3
However, a "simple scalar" includes an identifier that itself uses method 1 recursively. Therefor
following prints "howdy".

 $refrefref = \\\"howdy";
 print $$$$refrefref;
140 Version 5.003 08−Oct−1996

perlref Perl Programmers Reference Guide perlref

, you
s, the

trary

f
 If they
fference

through

d 2. As

erence.

hen in

ook

e

s just

and.

cess the
ackage
ulation
2. Anywhere you‘d put an identifier (or chain of identifiers) as part of a variable or subroutine name
can replace the identifier with a BLOCK returning a reference of the correct type. In other word
previous examples could be written like this:

 $bar = ${$scalarref};
 push(@{$arrayref}, $filename);
 ${$arrayref}[0] = "January";
 ${$hashref}{"KEY"} = "VALUE";
 &{$coderef}(1,2,3);
 $globref−>print("output\n"); # iff you use FileHandle

Admittedly, it‘s a little silly to use the curlies in this case, but the BLOCK can contain any arbi
expression, in particular, subscripted expressions:

 &{ $dispatch{$index} }(1,2,3); # call correct routine

Because of being able to omit the curlies for the simple case of $$x, people often make the mistake o
viewing the dereferencing symbols as proper operators, and wonder about their precedence.
were, though, you could use parens instead of braces. That‘s not the case. Consider the di
below; case 0 is a short−hand version of case 1, NOT case 2:

 $$hashref{"KEY"} = "VALUE"; # CASE 0
 ${$hashref}{"KEY"} = "VALUE"; # CASE 1
 ${$hashref{"KEY"}} = "VALUE"; # CASE 2
 ${$hashref−>{"KEY"}} = "VALUE"; # CASE 3

Case 2 is also deceptive in that you‘re accessing a variable called %hashref, not dereferencing
$hashref to the hash it‘s presumably referencing. That would be case 3.

3. The case of individual array elements arises often enough that it gets cumbersome to use metho
a form of syntactic sugar, the two lines like that above can be written:

 $arrayref−>[0] = "January";
 $hashref−>{"KEY"} = "VALUE";

The left side of the array can be any expression returning a reference, including a previous deref
 Note that $array[$x] is NOT the same thing as $array−>[$x] here:

 $array[$x]−>{"foo"}−>[0] = "January";

This is one of the cases we mentioned earlier in which references could spring into existence w
an lvalue context. Before this statement, $array[$x] may have been undefined. If so, it‘s
automatically defined with a hash reference so that we can look up {"foo"} in it. Likewise
$array[$x]−>{"foo"} will automatically get defined with an array reference so that we can l
up [0] in it.

One more thing here. The arrow is optional BETWEEN brackets subscripts, so you can shrink th
above down to

 $array[$x]{"foo"}[0] = "January";

Which, in the degenerate case of using only ordinary arrays, gives you multidimensional array
like C‘s:

 $score[$x][$y][$z] += 42;

Well, okay, not entirely like C‘s arrays, actually. C doesn‘t know how to grow its arrays on dem
Perl does.

4. If a reference happens to be a reference to an object, then there are probably methods to ac
things referred to, and you should probably stick to those methods unless you‘re in the class p
that defines the object‘s methods. In other words, be nice, and don‘t violate the object‘s encaps
08−Oct−1996 Version 5.003 141

perlref Perl Programmers Reference Guide perlref

 We do

t class.

 indicates

ck.

y what
a
n to be

o use
 say

 may

to
without a very good reason. Perl does not enforce encapsulation. We are not totalitarians here.
expect some basic civility though.

The ref() operator may be used to determine what type of thing the reference is pointing to. See perlfunc.

The bless() operator may be used to associate a reference with a package functioning as an objec
See perlobj.

A typeglob may be dereferenced the same way a reference can, since the dereference syntax always
the kind of reference desired. So ${*foo} and ${\$foo} both indicate the same scalar variable.

Here‘s a trick for interpolating a subroutine call into a string:

 print "My sub returned @{[mysub(1,2,3)]} that time.\n";

The way it works is that when the @{...} is seen in the double−quoted string, it‘s evaluated as a blo
The block creates a reference to an anonymous array containing the results of the call to mysub(1,2,3) .
So the whole block returns a reference to an array, which is then dereferenced by @{...} and stuck into the
double−quoted string. This chicanery is also useful for arbitrary expressions:

 print "That yields @{[$n + 5]} widgets\n";

Symbolic references
We said that references spring into existence as necessary if they are undefined, but we didn‘t sa
happens if a value used as a reference is already defined, but ISN‘T a hard reference. If you use it as
reference in this case, it‘ll be treated as a symbolic reference. That is, the value of the scalar is take
the NAME of a variable, rather than a direct link to a (possibly) anonymous value.

People frequently expect it to work like this. So it does.

 $name = "foo";
 $$name = 1; # Sets $foo
 ${$name} = 2; # Sets $foo
 ${$name x 2} = 3; # Sets $foofoo
 $name−>[0] = 4; # Sets $foo[0]
 @$name = (); # Clears @foo
 &$name(); # Calls &foo() (as in Perl 4)
 $pack = "THAT";
 ${"${pack}::$name"} = 5; # Sets $THAT::foo without eval

This is very powerful, and slightly dangerous, in that it‘s possible to intend (with the utmost sincerity) t
a hard reference, and accidentally use a symbolic reference instead. To protect against that, you can

 use strict ’refs’;

and then only hard references will be allowed for the rest of the enclosing block. An inner block
countermand that with

 no strict ’refs’;

Only package variables are visible to symbolic references. Lexical variables (declared with my()) aren‘t in
a symbol table, and thus are invisible to this mechanism. For example:

 local($value) = 10;
 $ref = \$value;
 {

my $value = 20;
print $$ref;

 }

This will still print 10, not 20. Remember that local() affects package variables, which are all "global"
the package.
142 Version 5.003 08−Oct−1996

perlref Perl Programmers Reference Guide perlref

ehave

s been

 in the
ing

 to any

h to do

d:

bout

you‘re

s of the
Not−so−symbolic references
A new feature contributing to readability in 5.001 is that the brackets around a symbolic reference b
more like quotes, just as they always have within a string. That is,

 $push = "pop on ";
 print "${push}over";

has always meant to print "pop on over", despite the fact that push is a reserved word. This ha
generalized to work the same outside of quotes, so that

 print ${push} . "over";

and even

 print ${ push } . "over";

will have the same effect. (This would have been a syntax error in 5.000, though Perl 4 allowed it
spaceless form.) Note that this construct is not considered to be a symbolic reference when you‘re us
strict refs:

 use strict ’refs’;
 ${ bareword }; # Okay, means $bareword.
 ${ "bareword" }; # Error, symbolic reference.

Similarly, because of all the subscripting that is done using single words, we‘ve applied the same rule
bareword that is used for subscripting a hash. So now, instead of writing

 $array{ "aaa" }{ "bbb" }{ "ccc" }

you can just write

 $array{ aaa }{ bbb }{ ccc }

and not worry about whether the subscripts are reserved words. In the rare event that you do wis
something like

 $array{ shift }

you can force interpretation as a reserved word by adding anything that makes it more than a barewor

 $array{ shift() }
 $array{ +shift }
 $array{ shift @_ }

The −w switch will warn you if it interprets a reserved word as a string. But it will no longer warn you a
using lowercase words, since the string is effectively quoted.

WARNING
You may not (usefully) use a reference as the key to a hash. It will be converted into a string:

 $x{ \$a } = $a;

If you try to dereference the key, it won‘t do a hard dereference, and you won‘t accomplish what
attempting. You might want to do something more like

 $r = \@a;
 $x{ $r } = $r;

And then at least you can use the values() , which will be real refs, instead of the keys() , which won‘t.

SEE ALSO
Besides the obvious documents, source code can be instructive. Some rather pathological example
use of references can be found in the t/op/ref.t regression test in the Perl source directory.
08−Oct−1996 Version 5.003 143

perlref Perl Programmers Reference Guide perlref
See also perldsc and perllol for how to use references to create complex data structures, and perlobj for how
to use them to create objects.
144 Version 5.003 08−Oct−1996

perldsc Perl Programmers Reference Guide perldsc

omplex
emulate
h the
ted
cked
ly.

and all

e eye!

it
ad back
ic?

can be
ntation

 of data
en you
xample

h of the

sional

 cannot

. For C
can be
NAME
perldsc − Perl Data Structures Cookbook

DESCRIPTION
The single feature most sorely lacking in the Perl programming language prior to its 5.0 release was c
data structures. Even without direct language support, some valiant programmers did manage to
them, but it was hard work and not for the faint of heart. You could occasionally get away wit
$m{$LoL,$b} notation borrowed from awk in which the keys are actually more like a single concatena
string "LoLb", but traversal and sorting were difficult. More desperate programmers even ha
Perl‘s internal symbol table directly, a strategy that proved hard to develop and maintain—to put it mild

The 5.0 release of Perl let us have complex data structures. You may now write something like this
of a sudden, you‘d have a array with three dimensions!

 for $x (1 .. 10) {
for $y (1 .. 10) {
 for $z (1 .. 10) {

$LoL[$x][$y][$z] =
 $x ** $y + $z;

 }
}

 }

Alas, however simple this may appear, underneath it‘s a much more elaborate construct than meets th

How do you print it out? Why can‘t you just say print @LoL ? How do you sort it? How can you pass
to a function or get one of these back from a function? Is is an object? Can you save it to disk to re
later? How do you access whole rows or columns of that matrix? Do all the values have to be numer

As you see, it‘s quite easy to become confused. While some small portion of the blame for this
attributed to the reference−based implementation, it‘s really more due to a lack of existing docume
with examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the many different sorts
structures you might want to develop. It should also serve as a cookbook of examples. That way, wh
need to create one of these complex data structures, you can just pinch, pilfer, or purloin a drop−in e
from here.

Let‘s look at each of these possible constructs in detail. There are separate documents on eac
following:

 arrays of arrays
 hashes of arrays
 arrays of hashes
 hashes of hashes
 more elaborate constructs
 recursive and self−referential data structures
 objects

But for now, let‘s look at some of the general issues common to all of these types of data structures.

REFERENCES
The most important thing to understand about all data structures in Perl — including multidimen
arrays—is that even though they might appear otherwise, Perl @ARRAYs and %HASHes are all internally
one−dimensional. They can only hold scalar values (meaning a string, number, or a reference). They
directly contain other arrays or hashes, but instead contain references to other arrays or hashes.

You can‘t use a reference to a array or hash in quite the same way that you would a real array or hash
or C++ programmers unused to distinguishing between arrays and pointers to the same, this
08−Oct−1996 Version 5.003 145

perldsc Perl Programmers Reference Guide perldsc

e rather
eding
ss to a
rely a

ell.

imple

hing a
, like

entally
 Here‘s

at you

d an

in the
confusing. If so, just think of it as the difference between a structure and a pointer to a structure.

You can (and should) read more about references in the perlref(1) man page. Briefly, references ar
like pointers that know what they point to. (Objects are also a kind of reference, but we won‘t be ne
them right away—if ever.) This means that when you have something which looks to you like an acce
two−or−more−dimensional array and/or hash, what‘s really going on is that the base type is me
one−dimensional entity that contains references to the next level. It‘s just that you can use it as though it
were a two−dimensional one. This is actually the way almost all C multidimensional arrays work as w

 $list[7][12] # array of arrays
 $list[7]{string} # array of hashes
 $hash{string}[7] # hash of arrays
 $hash{string}{’another string’} # hash of hashes

Now, because the top level only contains references, if you try to print out your array in with a s
print() function, you‘ll get something that doesn‘t look very nice, like this:

 @LoL = ([2, 3], [4, 5, 7], [0]);
 print $LoL[1][2];
 7
 print @LoL;
 ARRAY(0x83c38)ARRAY(0x8b194)ARRAY(0x8b1d0)

That‘s because Perl doesn‘t (ever) implicitly dereference your variables. If you want to get at the t
reference is referring to, then you have to do this yourself using either prefix typing indicators
${$blah}, @{$blah}, @{$blah[$i]}, or else postfix pointer arrows, like $a−>[3],
$h−>{fred}, or even $ob−>method()−>[3] .

COMMON MISTAKES
The two most common mistakes made in constructing something like an array of arrays is either accid
counting the number of elements or else taking a reference to the same memory location repeatedly.
the case where you just get the count instead of a nested array:

 for $i (1..10) {
@list = somefunc($i);
$LoL[$i] = @list; # WRONG!

 }

That‘s just the simple case of assigning a list to a scalar and getting its element count. If that‘s wh
really and truly want, then you might do well to consider being a tad more explicit about it, like this:

 for $i (1..10) {
@list = somefunc($i);
$counts[$i] = scalar @list;

 }

Here‘s the case of taking a reference to the same memory location again and again:

 for $i (1..10) {
@list = somefunc($i);
$LoL[$i] = \@list; # WRONG!

 }

So, just what‘s the big problem with that? It looks right, doesn‘t it? After all, I just told you that you nee
array of references, so by golly, you‘ve made me one!

Unfortunately, while this is true, it‘s still broken. All the references in @LoL refer to the very same place,
and they will therefore all hold whatever was last in @list! It‘s similar to the problem demonstrated
following C program:

 #include <pwd.h>
146 Version 5.003 08−Oct−1996

perldsc Perl Programmers Reference Guide perldsc

 to

thing in

e
dy

at was

 how
ey‘re

tinction
 main() {
struct passwd *getpwnam(), *rp, *dp;
rp = getpwnam("root");
dp = getpwnam("daemon");

printf("daemon name is %s\nroot name is %s\n",
dp−>pw_name, rp−>pw_name);

 }

Which will print

 daemon name is daemon
 root name is daemon

The problem is that both rp and dp are pointers to the same location in memory! In C, you‘d have
remember to malloc() yourself some new memory. In Perl, you‘ll want to use the array constructor [] or
the hash constructor {} instead. Here‘s the right way to do the preceding broken code fragments:

 for $i (1..10) {
@list = somefunc($i);
$LoL[$i] = [@list];

 }

The square brackets make a reference to a new array with a copy of what‘s in @list at the time of the
assignment. This is what you want.

Note that this will produce something similar, but it‘s much harder to read:

 for $i (1..10) {
@list = 0 .. $i;
@{$LoL[$i]} = @list;

 }

Is it the same? Well, maybe so—and maybe not. The subtle difference is that when you assign some
square brackets, you know for sure it‘s always a brand new reference with a new copy of the data. Something
else could be going on in this new case with the @{$LoL[$i]}} dereference on the left−hand−side of th
assignment. It all depends on whether $LoL[$i] had been undefined to start with, or whether it alrea
contained a reference. If you had already populated @LoL with references, as in

 $LoL[3] = \@another_list;

Then the assignment with the indirection on the left−hand−side would use the existing reference th
already there:

 @{$LoL[3]} = @list;

Of course, this would have the "interesting" effect of clobbering @another_list. (Have you ever noticed
when a programmer says something is "interesting", that rather than meaning "intriguing", th
disturbingly more apt to mean that it‘s "annoying", "difficult", or both? :−)

So just remember to always use the array or hash constructors with [] or {} , and you‘ll be fine, although
it‘s not always optimally efficient.

Surprisingly, the following dangerous−looking construct will actually work out fine:

 for $i (1..10) {
 my @list = somefunc($i);
 $LoL[$i] = \@list;
 }

That‘s because my() is more of a run−time statement than it is a compile−time declaration per se. This
means that the my() variable is remade afresh each time through the loop. So even though it looks as
though you stored the same variable reference each time, you actually did not! This is a subtle dis
08−Oct−1996 Version 5.003 147

perldsc Perl Programmers Reference Guide perldsc

mmers.
tions, I
 I advise
erstood
ting

aring:
ill no

nce

s most

ctures.
iting as

that can produce more efficient code at the risk of misleading all but the most experienced of progra
So I usually advise against teaching it to beginners. In fact, except for passing arguments to func
seldom like to see the gimme−a−reference operator (backslash) used much at all in code. Instead,
beginners that they (and most of the rest of us) should try to use the much more easily und
constructors [] and {} instead of relying upon lexical (or dynamic) scoping and hidden reference−coun
to do the right thing behind the scenes.

In summary:

 $LoL[$i] = [@list]; # usually best
 $LoL[$i] = \@list; # perilous; just how my() was that list?
 @{ $LoL[$i] } = @list; # way too tricky for most programmers

CAVEAT ON PRECEDENCE
Speaking of things like @{$LoL[$i]}, the following are actually the same thing:

 $listref−>[2][2] # clear
 $$listref[2][2] # confusing

That‘s because Perl‘s precedence rules on its five prefix dereferencers (which look like someone swe$
@ * % &) make them bind more tightly than the postfix subscripting brackets or braces! This w
doubt come as a great shock to the C or C++ programmer, who is quite accustomed to using *a[i] to mean
what‘s pointed to by the i‘th element of a. That is, they first take the subscript, and only then derefere
the thing at that subscript. That‘s fine in C, but this isn‘t C.

The seemingly equivalent construct in Perl, $$listref[$i] first does the deref of $listref, making
it take $listref as a reference to an array, and then dereference that, and finally tell you the i‘th value of
the array pointed to by $LoL. If you wanted the C notion, you‘d have to write ${$LoL[$i]} to force the
$LoL[$i] to get evaluated first before the leading $ dereferencer.

WHY YOU SHOULD ALWAYS use strict
If this is starting to sound scarier than it‘s worth, relax. Perl has some features to help you avoid it
common pitfalls. The best way to avoid getting confused is to start every program like this:

 #!/usr/bin/perl −w
 use strict;

This way, you‘ll be forced to declare all your variables with my() and also disallow accidental "symbolic
dereferencing". Therefore if you‘d done this:

 my $listref = [
["fred", "barney", "pebbles", "bambam", "dino",],
["homer", "bart", "marge", "maggie",],
["george", "jane", "alroy", "judy",],

];

 print $listref[2][2];

The compiler would immediately flag that as an error at compile time, because you were accidentally
accessing @listref , an undeclared variable, and it would thereby remind you to instead write:

 print $listref−>[2][2]

DEBUGGING
Before 5.002, the standard Perl debugger didn‘t do a very nice job of printing out complex data stru
With version 5.002 or above, the debugger includes several new features, including command line ed
well as the x command to dump out complex data structures. For example, given the assignment to$LoL
above, here‘s the debugger output:

 DB<1> X $LoL
 $LoL = ARRAY(0x13b5a0)
148 Version 5.003 08−Oct−1996

perldsc Perl Programmers Reference Guide perldsc

xamples
 0 ARRAY(0x1f0a24)
 0 ’fred’
 1 ’barney’
 2 ’pebbles’
 3 ’bambam’
 4 ’dino’

 1 ARRAY(0x13b558)
 0 ’homer’
 1 ’bart’
 2 ’marge’
 3 ’maggie’

 2 ARRAY(0x13b540)
 0 ’george’
 1 ’jane’
 2 ’alroy’
 3 ’judy’

There‘s also a lower−case x command which is nearly the same.

CODE EXAMPLES
Presented with little comment (these will get their own man pages someday) here are short code e
illustrating access of various types of data structures.

LISTS OF LISTS

Declaration of a LIST OF LISTS
 @LoL = (
 ["fred", "barney"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],
);

Generation of a LIST OF LISTS
 # reading from file
 while (<>) {
 push @LoL, [split];
 }

 # calling a function
 for $i (1 .. 10) {
 $LoL[$i] = [somefunc($i)];
 }

 # using temp vars
 for $i (1 .. 10) {
 @tmp = somefunc($i);
 $LoL[$i] = [@tmp];
 }

 # add to an existing row
 push @{ $LoL[0] }, "wilma", "betty";

Access and Printing of a LIST OF LISTS
 # one element
 $LoL[0][0] = "Fred";

 # another element
 $LoL[1][1] =~ s/(\w)/\u$1/;
08−Oct−1996 Version 5.003 149

perldsc Perl Programmers Reference Guide perldsc
 # print the whole thing with refs
 for $aref (@LoL) {
 print "\t [@$aref],\n";
 }

 # print the whole thing with indices
 for $i (0 .. $#LoL) {
 print "\t [@{$LoL[$i]}],\n";
 }

 # print the whole thing one at a time
 for $i (0 .. $#LoL) {
 for $j (0 .. $#{$LoL[$i]}) {
 print "elt $i $j is $LoL[$i][$j]\n";
 }
 }

HASHES OF LISTS

Declaration of a HASH OF LISTS
 %HoL = (
 "flintstones" => ["fred", "barney"],
 "jetsons" => ["george", "jane", "elroy"],
 "simpsons" => ["homer", "marge", "bart"],
);

Generation of a HASH OF LISTS
 # reading from file
 # flintstones: fred barney wilma dino
 while (<>) {
 next unless s/^(.*?):\s*//;
 $HoL{$1} = [split];
 }

 # reading from file; more temps
 # flintstones: fred barney wilma dino
 while ($line = <>) {
 ($who, $rest) = split /:\s*/, $line, 2;
 @fields = split ’ ’, $rest;
 $HoL{$who} = [@fields];
 }

 # calling a function that returns a list
 for $group ("simpsons", "jetsons", "flintstones") {
 $HoL{$group} = [get_family($group)];
 }

 # likewise, but using temps
 for $group ("simpsons", "jetsons", "flintstones") {
 @members = get_family($group);
 $HoL{$group} = [@members];
 }

 # append new members to an existing family
 push @{ $HoL{"flintstones"} }, "wilma", "betty";

Access and Printing of a HASH OF LISTS
 # one element
 $HoL{flintstones}[0] = "Fred";
150 Version 5.003 08−Oct−1996

perldsc Perl Programmers Reference Guide perldsc
 # another element
 $HoL{simpsons}[1] =~ s/(\w)/\u$1/;

 # print the whole thing
 foreach $family (keys %HoL) {
 print "$family: @{ $HoL{$family} }\n"
 }

 # print the whole thing with indices
 foreach $family (keys %HoL) {
 print "family: ";
 foreach $i (0 .. $#{ $HoL{$family}) {
 print " $i = $HoL{$family}[$i]";
 }
 print "\n";
 }

 # print the whole thing sorted by number of members
 foreach $family (sort { @{$HoL{$b}} <=> @{$HoL{$b}} } keys %HoL) {
 print "$family: @{ $HoL{$family} }\n"
 }

 # print the whole thing sorted by number of members and name
 foreach $family (sort { @{$HoL{$b}} <=> @{$HoL{$a}} } keys %HoL) {
 print "$family: ", join(", ", sort @{ $HoL{$family}), "\n";
 }

LISTS OF HASHES

Declaration of a LIST OF HASHES
 @LoH = (
 {
 Lead => "fred",
 Friend => "barney",
 },
 {
 Lead => "george",
 Wife => "jane",
 Son => "elroy",
 },
 {
 Lead => "homer",
 Wife => "marge",
 Son => "bart",
 }
);

Generation of a LIST OF HASHES
 # reading from file
 # format: LEAD=fred FRIEND=barney
 while (<>) {
 $rec = {};
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $rec−>{$key} = $value;
 }
 push @LoH, $rec;
 }
08−Oct−1996 Version 5.003 151

perldsc Perl Programmers Reference Guide perldsc
 # reading from file
 # format: LEAD=fred FRIEND=barney
 # no temp
 while (<>) {
 push @LoH, { split /[\s+=]/ };
 }

 # calling a function that returns a key,value list, like
 # "lead","fred","daughter","pebbles"
 while (%fields = getnextpairset()) {
 push @LoH, { %fields };
 }

 # likewise, but using no temp vars
 while (<>) {
 push @LoH, { parsepairs($_) };
 }

 # add key/value to an element
 $LoH[0]{pet} = "dino";
 $LoH[2]{pet} = "santa’s little helper";

Access and Printing of a LIST OF HASHES
 # one element
 $LoH[0]{lead} = "fred";

 # another element
 $LoH[1]{lead} =~ s/(\w)/\u$1/;

 # print the whole thing with refs
 for $href (@LoH) {
 print "{ ";
 for $role (keys %$href) {
 print "$role=$href−>{$role} ";
 }
 print "}\n";
 }

 # print the whole thing with indices
 for $i (0 .. $#LoH) {
 print "$i is { ";
 for $role (keys %{ $LoH[$i] }) {
 print "$role=$LoH[$i]{$role} ";
 }
 print "}\n";
 }

 # print the whole thing one at a time
 for $i (0 .. $#LoH) {
 for $role (keys %{ $LoH[$i] }) {
 print "elt $i $role is $LoH[$i]{$role}\n";
 }
 }

HASHES OF HASHES

Declaration of a HASH OF HASHES
 %HoH = (
 "flintstones" => {
152 Version 5.003 08−Oct−1996

perldsc Perl Programmers Reference Guide perldsc
 "lead" => "fred",
 "pal" => "barney",
 },
 "jetsons" => {
 "lead" => "george",
 "wife" => "jane",
 "his boy" => "elroy",
 },
 "simpsons" => {
 "lead" => "homer",
 "wife" => "marge",
 "kid" => "bart",

},
);

Generation of a HASH OF HASHES
 # reading from file
 # flintstones: lead=fred pal=barney wife=wilma pet=dino
 while (<>) {
 next unless s/^(.*?):\s*//;
 $who = $1;
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $HoH{$who}{$key} = $value;
 }

 # reading from file; more temps
 while (<>) {
 next unless s/^(.*?):\s*//;
 $who = $1;
 $rec = {};
 $HoH{$who} = $rec;
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $rec−>{$key} = $value;
 }
 }

 # calling a function that returns a key,value hash
 for $group ("simpsons", "jetsons", "flintstones") {
 $HoH{$group} = { get_family($group) };
 }

 # likewise, but using temps
 for $group ("simpsons", "jetsons", "flintstones") {
 %members = get_family($group);
 $HoH{$group} = { %members };
 }

 # append new members to an existing family
 %new_folks = (
 "wife" => "wilma",
 "pet" => "dino";
);

 for $what (keys %new_folks) {
 $HoH{flintstones}{$what} = $new_folks{$what};
08−Oct−1996 Version 5.003 153

perldsc Perl Programmers Reference Guide perldsc
 }

Access and Printing of a HASH OF HASHES
 # one element
 $HoH{flintstones}{wife} = "wilma";

 # another element
 $HoH{simpsons}{lead} =~ s/(\w)/\u$1/;

 # print the whole thing
 foreach $family (keys %HoH) {
 print "$family: { ";
 for $role (keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "}\n";
 }

 # print the whole thing somewhat sorted
 foreach $family (sort keys %HoH) {
 print "$family: { ";
 for $role (sort keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "}\n";
 }

 # print the whole thing sorted by number of members
 foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$b}} } keys %HoH) {
 print "$family: { ";
 for $role (sort keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "}\n";
 }

 # establish a sort order (rank) for each role
 $i = 0;
 for (qw(lead wife son daughter pal pet)) { $rank{$_} = ++$i }

 # now print the whole thing sorted by number of members
 foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$b}} } keys %HoH) {
 print "$family: { ";
 # and print these according to rank order
 for $role (sort { $rank{$a} <=> $rank{$b} keys %{ $HoH{$family} } }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "}\n";
 }

MORE ELABORATE RECORDS

Declaration of MORE ELABORATE RECORDS
Here‘s a sample showing how to create and use a record whose fields are of many different sorts:

 $rec = {
 TEXT => $string,
 SEQUENCE => [@old_values],
 LOOKUP => { %some_table },
154 Version 5.003 08−Oct−1996

perldsc Perl Programmers Reference Guide perldsc
 THATCODE => \&some_function,
 THISCODE => sub { $_[0] ** $_[1] },
 HANDLE => *STDOUT,

 };

 print $rec−>{TEXT};

 print $rec−>{LIST}[0];
 $last = pop @ { $rec−>{SEQUENCE} };

 print $rec−>{LOOKUP}{"key"};
 ($first_k, $first_v) = each %{ $rec−>{LOOKUP} };

 $answer = &{ $rec−>{THATCODE} }($arg);
 $answer = &{ $rec−>{THISCODE} }($arg1, $arg2);

 # careful of extra block braces on fh ref
 print { $rec−>{HANDLE} } "a string\n";

 use FileHandle;
 $rec−>{HANDLE}−>autoflush(1);
 $rec−>{HANDLE}−>print(" a string\n");

Declaration of a HASH OF COMPLEX RECORDS
 %TV = (
 "flintstones" => {
 series => "flintstones",
 nights => [qw(monday thursday friday)],
 members => [
 { name => "fred", role => "lead", age => 36, },
 { name => "wilma", role => "wife", age => 31, },
 { name => "pebbles", role => "kid", age => 4, },
],
 },

 "jetsons" => {
 series => "jetsons",
 nights => [qw(wednesday saturday)],
 members => [
 { name => "george", role => "lead", age => 41, },
 { name => "jane", role => "wife", age => 39, },
 { name => "elroy", role => "kid", age => 9, },
],
 },

 "simpsons" => {
 series => "simpsons",
 nights => [qw(monday)],
 members => [
 { name => "homer", role => "lead", age => 34, },
 { name => "marge", role => "wife", age => 37, },
 { name => "bart", role => "kid", age => 11, },
],
 },
);

Generation of a HASH OF COMPLEX RECORDS
 # reading from file
 # this is most easily done by having the file itself be
08−Oct−1996 Version 5.003 155

perldsc Perl Programmers Reference Guide perldsc
 # in the raw data format as shown above. perl is happy
 # to parse complex datastructures if declared as data, so
 # sometimes it’s easiest to do that

 # here’s a piece by piece build up
 $rec = {};
 $rec−>{series} = "flintstones";
 $rec−>{nights} = [find_days()];

 @members = ();
 # assume this file in field=value syntax
 while (<>) {
 %fields = split /[\s=]+/;
 push @members, { %fields };
 }
 $rec−>{members} = [@members];

 # now remember the whole thing
 $TV{ $rec−>{series} } = $rec;

 ###
 # now, you might want to make interesting extra fields that
 # include pointers back into the same data structure so if
 # change one piece, it changes everywhere, like for examples
 # if you wanted a {kids} field that was an array reference
 # to a list of the kids’ records without having duplicate
 # records and thus update problems.
 ###
 foreach $family (keys %TV) {
 $rec = $TV{$family}; # temp pointer
 @kids = ();
 for $person (@{$rec−>{members}}) {
 if ($person−>{role} =~ /kid|son|daughter/) {
 push @kids, $person;
 }
 }
 # REMEMBER: $rec and $TV{$family} point to same data!!
 $rec−>{kids} = [@kids];
 }

 # you copied the list, but the list itself contains pointers
 # to uncopied objects. this means that if you make bart get
 # older via

 $TV{simpsons}{kids}[0]{age}++;

 # then this would also change in
 print $TV{simpsons}{members}[2]{age};

 # because $TV{simpsons}{kids}[0] and $TV{simpsons}{members}[2]
 # both point to the same underlying anonymous hash table

 # print the whole thing
 foreach $family (keys %TV) {
 print "the $family";
 print " is on during @{ $TV{$family}{nights} }\n";
 print "its members are:\n";
 for $who (@{ $TV{$family}{members} }) {
 print " $who−>{name} ($who−>{role}), age $who−>{age}\n";
156 Version 5.003 08−Oct−1996

perldsc Perl Programmers Reference Guide perldsc

blem is
 with
partially
 }
 print "it turns out that $TV{$family}{’lead’} has ";
 print scalar (@{ $TV{$family}{kids} }), " kids named ";
 print join (", ", map { $_−>{name} } @{ $TV{$family}{kids} });
 print "\n";
 }

Database Ties
You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first pro
that all but GDBM and Berkeley DB have size limitations, but beyond that, you also have problems
how references are to be represented on disk. One experimental module that does attempt to
address this need is the MLDBM module. Check your nearest CPAN site as described in perlmod for source
code to MLDBM.

SEE ALSO
perlref(1), perllol(1), perldata(1), perlobj(1)

AUTHOR
Tom Christiansen <tchrist@perl.com>

Last update: Mon Jul 8 05:22:49 MDT 1996
08−Oct−1996 Version 5.003 157

perllol Perl Programmers Reference Guide perllol

asy to
er data

t with

 That‘s

s because

w

 to omit
ing a

ments

 that
LoL
NAME
perlLoL − Manipulating Lists of Lists in Perl

DESCRIPTION

Declaration and Access of Lists of Lists
The simplest thing to build is a list of lists (sometimes called an array of arrays). It‘s reasonably e
understand, and almost everything that applies here will also be applicable later on with the fanci
structures.

A list of lists, or an array of an array if you would, is just a regular old array @LoL that you can get a
two subscripts, like $LoL[3][2]. Here‘s a declaration of the array:

 # assign to our array a list of list references
 @LoL = (

 ["fred", "barney"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],

);

 print $LoL[2][2];
 bart

Now you should be very careful that the outer bracket type is a round one, that is, parentheses.
because you‘re assigning to an @list, so you need parens. If you wanted there not to be an @LoL, but rather
just a reference to it, you could do something more like this:

 # assign a reference to list of list references
 $ref_to_LoL = [

["fred", "barney", "pebbles", "bambam", "dino",],
["homer", "bart", "marge", "maggie",],
["george", "jane", "alroy", "judy",],

];

 print $ref_to_LoL−>[2][2];

Notice that the outer bracket type has changed, and so our access syntax has also changed. That‘
unlike C, in perl you can‘t freely interchange arrays and references thereto. $ref_to_LoL is a reference to
an array, whereas @LoL is an array proper. Likewise, $LoL[2] is not an array, but an array ref. So ho
come you can write these:

 $LoL[2][2]
 $ref_to_LoL−>[2][2]

instead of having to write these:

 $LoL[2]−>[2]
 $ref_to_LoL−>[2]−>[2]

Well, that‘s because the rule is that on adjacent brackets only (whether square or curly), you are free
the pointer dereferencing arrow. But you cannot do so for the very first one if it‘s a scalar contain
reference, which means that $ref_to_LoL always needs it.

Growing Your Own
That‘s all well and good for declaration of a fixed data structure, but what if you wanted to add new ele
on the fly, or build it up entirely from scratch?

First, let‘s look at reading it in from a file. This is something like adding a row at a time. We‘ll assume
there‘s a flat file in which each line is a row and each word an element. If you‘re trying to develop an @
list containing all these, here‘s the right way to do that:
158 Version 5.003 08−Oct−1996

perllol Perl Programmers Reference Guide perllol

be

, which

ou

tating
 while (<>) {
@tmp = split;
push @LoL, [@tmp];

 }

You might also have loaded that from a function:

 for $i (1 .. 10) {
$LoL[$i] = [somefunc($i)];

 }

Or you might have had a temporary variable sitting around with the list in it.

 for $i (1 .. 10) {
@tmp = somefunc($i);
$LoL[$i] = [@tmp];

 }

It‘s very important that you make sure to use the [] list reference constructor. That‘s because this will
very wrong:

 $LoL[$i] = @tmp;

You see, assigning a named list like that to a scalar just counts the number of elements in @tmp
probably isn‘t what you want.

If you are running under use strict , you‘ll have to add some declarations to make it happy:

 use strict;
 my(@LoL, @tmp);
 while (<>) {

@tmp = split;
push @LoL, [@tmp];

 }

Of course, you don‘t need the temporary array to have a name at all:

 while (<>) {
push @LoL, [split];

 }

You also don‘t have to use push() . You could just make a direct assignment if you knew where y
wanted to put it:

 my (@LoL, $i, $line);
 for $i (0 .. 10) {

$line = <>;
$LoL[$i] = [split ’ ’, $line];

 }

or even just

 my (@LoL, $i);
 for $i (0 .. 10) {

$LoL[$i] = [split ’ ’, <>];
 }

You should in general be leery of using potential list functions in a scalar context without explicitly s
such. This would be clearer to the casual reader:

 my (@LoL, $i);
 for $i (0 .. 10) {

$LoL[$i] = [split ’ ’, scalar(<>)];
08−Oct−1996 Version 5.003 159

perllol Perl Programmers Reference Guide perllol

 like

at‘s

s, it‘s

setting

ne of

r you.
−style
 }

If you wanted to have a $ref_to_LoL variable as a reference to an array, you‘d have to do something
this:

 while (<>) {
push @$ref_to_LoL, [split];

 }

Actually, if you were using strict, you‘d not only have to declare $ref_to_LoL as you had to declare
@LoL, but you‘d also having to initialize it to a reference to an empty list. (This was a bug in 5.001m th
been fixed for the 5.002 release.)

 my $ref_to_LoL = [];
 while (<>) {

push @$ref_to_LoL, [split];
 }

Ok, now you can add new rows. What about adding new columns? If you‘re just dealing with matrice
often easiest to use simple assignment:

 for $x (1 .. 10) {
for $y (1 .. 10) {
 $LoL[$x][$y] = func($x, $y);
}

 }

 for $x (3, 7, 9) {
$LoL[$x][20] += func2($x);

 }

It doesn‘t matter whether those elements are already there or not: it‘ll gladly create them for you,
intervening elements to undef as need be.

If you just wanted to append to a row, you‘d have to do something a bit funnier looking:

 # add new columns to an existing row
 push @{ $LoL[0] }, "wilma", "betty";

Notice that I couldn‘t just say:

 push $LoL[0], "wilma", "betty"; # WRONG!

In fact, that wouldn‘t even compile. How come? Because the argument to push() must be a real array, not
just a reference to such.

Access and Printing
Now it‘s time to print your data structure out. How are you going to do that? Well, if you only want o
the elements, it‘s trivial:

 print $LoL[0][0];

If you want to print the whole thing, though, you can‘t just say

 print @LoL; # WRONG

because you‘ll just get references listed, and perl will never automatically dereference things fo
Instead, you have to roll yourself a loop or two. This prints the whole structure, using the shell
for() construct to loop across the outer set of subscripts.

 for $aref (@LoL) {
print "\t [@$aref],\n";

 }
160 Version 5.003 08−Oct−1996

perllol Perl Programmers Reference Guide perllol

n your

some
r arrow
 write a
If you wanted to keep track of subscripts, you might do this:

 for $i (0 .. $#LoL) {
print "\t elt $i is [@{$LoL[$i]}],\n";

 }

or maybe even this. Notice the inner loop.

 for $i (0 .. $#LoL) {
for $j (0 .. $#{$LoL[$i]}) {
 print "elt $i $j is $LoL[$i][$j]\n";
}

 }

As you can see, it‘s getting a bit complicated. That‘s why sometimes is easier to take a temporary o
way through:

 for $i (0 .. $#LoL) {
$aref = $LoL[$i];
for $j (0 .. $#{$aref}) {
 print "elt $i $j is $LoL[$i][$j]\n";
}

 }

Hm... that‘s still a bit ugly. How about this:

 for $i (0 .. $#LoL) {
$aref = $LoL[$i];
$n = @$aref − 1;
for $j (0 .. $n) {
 print "elt $i $j is $LoL[$i][$j]\n";
}

 }

Slices
If you want to get at a slice (part of a row) in a multidimensional array, you‘re going to have to do
fancy subscripting. That‘s because while we have a nice synonym for single elements via the pointe
for dereferencing, no such convenience exists for slices. (Remember, of course, that you can always
loop to do a slice operation.)

Here‘s how to do one operation using a loop. We‘ll assume an @LoL variable as before.

 @part = ();
 $x = 4;
 for ($y = 7; $y < 13; $y++) {

push @part, $LoL[$x][$y];
 }

That same loop could be replaced with a slice operation:

 @part = @{ $LoL[4] } [7..12];

but as you might well imagine, this is pretty rough on the reader.

Ah, but what if you wanted a two−dimensional slice, such as having $x run from 4..8 and $y run from 7 to
12? Hm... here‘s the simple way:

 @newLoL = ();
 for ($startx = $x = 4; $x <= 8; $x++) {

for ($starty = $y = 7; $x <= 12; $y++) {
 $newLoL[$x − $startx][$y − $starty] = $LoL[$x][$y];
}
08−Oct−1996 Version 5.003 161

perllol Perl Programmers Reference Guide perllol

ode, it
 }

We can reduce some of the looping through slices

 for ($x = 4; $x <= 8; $x++) {
push @newLoL, [@{ $LoL[$x] } [7..12]];

 }

If you were into Schwartzian Transforms, you would probably have selected map for that

 @newLoL = map { [@{ $LoL[$_] } [7..12]] } 4 .. 8;

Although if your manager accused of seeking job security (or rapid insecurity) through inscrutable c
would be hard to argue. :−) If I were you, I‘d put that in a function:

 @newLoL = splice_2D(\@LoL, 4 => 8, 7 => 12);
 sub splice_2D {

my $lrr = shift; # ref to list of list refs!
my ($x_lo, $x_hi,
 $y_lo, $y_hi) = @_;

return map {
 [@{ $lrr−>[$_] } [$y_lo .. $y_hi]]
} $x_lo .. $x_hi;

 }

SEE ALSO
perldata(1), perlref(1), perldsc(1)

AUTHOR
Tom Christiansen <tchrist@perl.com>

Last udpate: Sat Oct 7 19:35:26 MDT 1995
162 Version 5.003 08−Oct−1996

perlobj Perl Programmers Reference Guide perlobj

r static

ely a
broutine

is is for
 it could

lass as
NAME
perlobj − Perl objects

DESCRIPTION
First of all, you need to understand what references are in Perl. See perlref for that.

Here are three very simple definitions that you should find reassuring.

1. An object is simply a reference that happens to know which class it belongs to.

2. A class is simply a package that happens to provide methods to deal with object references.

3. A method is simply a subroutine that expects an object reference (or a package name, fo
methods) as the first argument.

We‘ll cover these points now in more depth.

An Object is Simply a Reference
Unlike say C++, Perl doesn‘t provide any special syntax for constructors. A constructor is mer
subroutine that returns a reference to something "blessed" into a class, generally the class that the su
is defined in. Here is a typical constructor:

 package Critter;
 sub new { bless {} }

The {} constructs a reference to an anonymous hash containing no key/value pairs. The bless() takes
that reference and tells the object it references that it‘s now a Critter, and returns the reference. Th
convenience, since the referenced object itself knows that it has been blessed, and its reference to
have been returned directly, like this:

 sub new {
my $self = {};
bless $self;
return $self;

 }

In fact, you often see such a thing in more complicated constructors that wish to call methods in the c
part of the construction:

 sub new {
my $self = {}
bless $self;
$self−>initialize();
return $self;

 }

If you care about inheritance (and you should; see Modules: Creation, Use and Abuse in perlmod), then you
want to use the two−arg form of bless so that your constructors may be inherited:

 sub new {
my $class = shift;
my $self = {};
bless $self, $class
$self−>initialize();
return $self;

 }

Or if you expect people to call not just CLASS−>new() but also $obj−>new() , then use something like
this. The initialize() method used will be of whatever $class we blessed the object into:

 sub new {
08−Oct−1996 Version 5.003 163

perlobj Perl Programmers Reference Guide perlobj

rence.
 accessed

 class is
 to one

long to.
ider

.

e as a

d if you
@ISA
hed (depth
SA are

ciency.
gain.

sing

thod
 are

, this is
us hash,
t to do

 little
be the
ic and

 whole,
 static
my $this = shift;
my $class = ref($this) || $this;
my $self = {};
bless $self, $class
$self−>initialize();
return $self;

 }

Within the class package, the methods will typically deal with the reference as an ordinary refe
Outside the class package, the reference is generally treated as an opaque value that may only be
through the class‘s methods.

A constructor may re−bless a referenced object currently belonging to another class, but then the new
responsible for all cleanup later. The previous blessing is forgotten, as an object may only belong
class at a time. (Although of course it‘s free to inherit methods from many classes.)

A clarification: Perl objects are blessed. References are not. Objects know which package they be
References do not. The bless() function simply uses the reference in order to find the object. Cons
the following example:

 $a = {};
 $b = $a;
 bless $a, BLAH;
 print "\$b is a ", ref($b), "\n";

This reports $b as being a BLAH, so obviously bless() operated on the object and not on the reference

A Class is Simply a Package
Unlike say C++, Perl doesn‘t provide any special syntax for class definitions. You just use a packag
class by putting method definitions into the class.

There is a special array within each package called @ISA which says where else to look for a metho
can‘t find it in the current package. This is how Perl implements inheritance. Each element of the
array is just the name of another package that happens to be a class package. The classes are searc
first) for missing methods in the order that they occur in @ISA. The classes accessible through @I
known as base classes of the current class.

If a missing method is found in one of the base classes, it is cached in the current class for effi
Changing @ISA or defining new subroutines invalidates the cache and causes Perl to do the lookup a

If a method isn‘t found, but an AUTOLOAD routine is found, then that is called on behalf of the mis
method.

If neither a method nor an AUTOLOAD routine is found in @ISA, then one last try is made for the me
(or an AUTOLOAD routine) in a class called UNIVERSAL. (Several commonly used methods
automatically supplied in the UNIVERSAL class; see "Default UNIVERSAL methods" for more details.) If
that doesn‘t work, Perl finally gives up and complains.

Perl classes only do method inheritance. Data inheritance is left up to the class itself. By and large
not a problem in Perl, because most classes model the attributes of their object using an anonymo
which serves as its own little namespace to be carved up by the various classes that might wan
something with the object.

A Method is Simply a Subroutine
Unlike say C++, Perl doesn‘t provide any special syntax for method definition. (It does provide a
syntax for method invocation though. More on that later.) A method expects its first argument to
object or package it is being invoked on. There are just two types of methods, which we‘ll call stat
virtual, in honor of the two C++ method types they most closely resemble.

A static method expects a class name as the first argument. It provides functionality for the class as a
not for any individual object belonging to the class. Constructors are typically static methods. Many
164 Version 5.003 08−Oct−1996

perlobj Perl Programmers Reference Guide perlobj

‘t care
llow the
up an

 into a

which

defined
.

eses are

ble. The
t object
ction".
C++
s, the

ing
methods simply ignore their first argument, since they already know what package they‘re in, and don
what package they were invoked via. (These aren‘t necessarily the same, since static methods fo
inheritance tree just like ordinary virtual methods.) Another typical use for static methods is to look
object by name:

 sub find {
my ($class, $name) = @_;
$objtable{$name};

 }

A virtual method expects an object reference as its first argument. Typically it shifts the first argument
"self" or "this" variable, and then uses that as an ordinary reference.

 sub display {
my $self = shift;
my @keys = @_ ? @_ : sort keys %$self;
foreach $key (@keys) {
 print "\t$key => $self−>{$key}\n";
}

 }

Method Invocation
There are two ways to invoke a method, one of which you‘re already familiar with, and the other of
will look familiar. Perl 4 already had an "indirect object" syntax that you use when you say

 print STDERR "help!!!\n";

This same syntax can be used to call either static or virtual methods. We‘ll use the two methods
above, the static method to lookup an object reference and the virtual method to print out its attributes

 $fred = find Critter "Fred";
 display $fred ’Height’, ’Weight’;

These could be combined into one statement by using a BLOCK in the indirect object slot:

 display {find Critter "Fred"} ’Height’, ’Weight’;

For C++ fans, there‘s also a syntax using −> notation that does exactly the same thing. The parenth
required if there are any arguments.

 $fred = Critter−>find("Fred");
 $fred−>display(’Height’, ’Weight’);

or in one statement,

 Critter−>find("Fred")−>display(’Height’, ’Weight’);

There are times when one syntax is more readable, and times when the other syntax is more reada
indirect object syntax is less cluttered, but it has the same ambiguity as ordinary list operators. Indirec
method calls are parsed using the same rule as list operators: "If it looks like a function, it is a fun
(Presuming for the moment that you think two words in a row can look like a function name.
programmers seem to think so with some regularity, especially when the first word is "new".) Thu
parens of

 new Critter (’Barney’, 1.5, 70)

are assumed to surround ALL the arguments of the method call, regardless of what comes after. Say

 new Critter (’Bam’ x 2), 1.4, 45

would be equivalent to

 Critter−>new(’Bam’ x 2), 1.4, 45
08−Oct−1996 Version 5.003 165

perlobj Perl Programmers Reference Guide perlobj

ll your

e with

u
 having

an use
:

ther

 check

is

t will
ed as a
which is unlikely to do what you want.

There are times when you wish to specify which class‘s method to use. In this case, you can ca
method as an ordinary subroutine call, being sure to pass the requisite first argument explicitly:

 $fred = MyCritter::find("Critter", "Fred");
 MyCritter::display($fred, ’Height’, ’Weight’);

Note however, that this does not do any inheritance. If you merely wish to specify that Perl should START
looking for a method in a particular package, use an ordinary method call, but qualify the method nam
the package like this:

 $fred = Critter−>MyCritter::find("Fred");
 $fred−>MyCritter::display(’Height’, ’Weight’);

If you‘re trying to control where the method search begins and you‘re executing in the class itself, then yo
may use the SUPER pseudoclass, which says to start looking in your base class‘s @ISA list without
to explicitly name it:

 $self−>SUPER::display(’Height’, ’Weight’);

Please note that the SUPER:: construct is only meaningful within the class.

Sometimes you want to call a method when you don‘t know the method name ahead of time. You c
the arrow form, replacing the method name with a simple scalar variable containing the method name

 $method = $fast ? "findfirst" : "findbest";
 $fred−>$method(@args);

Default UNIVERSAL methods
The UNIVERSAL package automatically contains the following methods that are inherited by all o
classes:

isa (CLASS)
isa returns true if its object is blessed into a sub−class of CLASS

isa is also exportable and can be called as a sub with two arguments. This allows the ability to
what a reference points to. Example

 use UNIVERSAL qw(isa);

 if(isa($ref, ’ARRAY’)) {
 ...
 }

can (METHOD)
can checks to see if its object has a method called METHOD, if it does then a reference to the sub
returned, if it does not then undef is returned.

VERSION ([VERSION])
VERSION returns the VERSION number of the class (package). If an argument is given then i
check that the current version is not less that the given argument. This method is normally call
static method. This method is also called when the VERSION form of use is used.

 use A 1.2 qw(some imported subs);

 A−>require_version(1.2);

class ()
class returns the class name of its object.
166 Version 5.003 08−Oct−1996

perlobj Perl Programmers Reference Guide perlobj

class

 in any

even be
re the
t the

ur base
applies

 much
 not so

and CD

esign

is reason,
 your C

lly get
is_instance ()
is_instance returns true if its object is an instance of some class, false if its object is the
(package) itself. Example

 A−>is_instance(); # False

 $var = ’A’;
 $var−>is_instance(); # False

 $ref = bless [], ’A’;
 $ref−>is_instance(); # True

NOTE: can directly uses Perl‘s internal code for method lookup, and isa uses a very similar method and
cache−ing strategy. This may cause strange effects if the Perl code dynamically changes @ISA
package.

You may add other methods to the UNIVERSAL class via Perl or XS code.

Destructors
When the last reference to an object goes away, the object is automatically destroyed. (This may
after you exit, if you‘ve stored references in global variables.) If you want to capture control just befo
object is freed, you may define a DESTROY method in your class. It will automatically be called a
appropriate moment, and you can do any extra cleanup you need to do.

Perl doesn‘t do nested destruction for you. If your constructor reblessed a reference from one of yo
classes, your DESTROY may need to call DESTROY for any base classes that need it. But this only
to reblessed objects—an object reference that is merely CONTAINED in the current object will be freed and
destroyed automatically when the current object is freed.

WARNING
An indirect object is limited to a name, a scalar variable, or a block, because it would have to do too
lookahead otherwise, just like any other postfix dereference in the language. The left side of −> is
limited, because it‘s an infix operator, not a postfix operator.

That means that below, A and B are equivalent to each other, and C and D are equivalent, but AB
are different:

 A: method $obref−>{"fieldname"}
 B: (method $obref)−>{"fieldname"}
 C: $obref−>{"fieldname"}−>method()
 D: method {$obref−>{"fieldname"}}

Summary
That‘s about all there is to it. Now you just need to go off and buy a book about object−oriented d
methodology, and bang your forehead with it for the next six months or so.

Two−Phased Garbage Collection
For most purposes, Perl uses a fast and simple reference−based garbage collection system. For th
there‘s an extra dereference going on at some level, so if you haven‘t built your Perl executable using
compiler‘s −O flag, performance will suffer. If you have built Perl with cc −O , then this probably won‘t
matter.

A more serious concern is that unreachable memory with a non−zero reference count will not norma
freed. Therefore, this is a bad idea:

 {
my $a;
$a = \$a;

 }
08−Oct−1996 Version 5.003 167

perlobj Perl Programmers Reference Guide perlobj

 the
 such

urself.

tly but
t thread
e. For
Even thought $a should go away, it can‘t. When building recursive data structures, you‘ll have to break
self−reference yourself explicitly if you don‘t care to leak. For example, here‘s a self−referential node
as one might use in a sophisticated tree structure:

 sub new_node {
my $self = shift;
my $class = ref($self) || $self;
my $node = {};
$node−>{LEFT} = $node−>{RIGHT} = $node;
$node−>{DATA} = [@_];
return bless $node => $class;

 }

If you create nodes like that, they (currently) won‘t go away unless you break their self reference yo
(In other words, this is not to be construed as a feature, and you shouldn‘t depend on it.)

Almost.

When an interpreter thread finally shuts down (usually when your program exits), then a rather cos
complete mark−and−sweep style of garbage collection is performed, and everything allocated by tha
gets destroyed. This is essential to support Perl as an embedded or a multithreadable languag
example, this program demonstrates Perl‘s two−phased garbage collection:

 #!/usr/bin/perl
 package Subtle;

 sub new {
my $test;
$test = \$test;
warn "CREATING " . \$test;
return bless \$test;

 }

 sub DESTROY {
my $self = shift;
warn "DESTROYING $self";

 }

 package main;

 warn "starting program";
 {

my $a = Subtle−>new;
my $b = Subtle−>new;
$$a = 0; # break selfref
warn "leaving block";

 }

 warn "just exited block";
 warn "time to die...";
 exit;

When run as /tmp/test, the following output is produced:

 starting program at /tmp/test line 18.
 CREATING SCALAR(0x8e5b8) at /tmp/test line 7.
 CREATING SCALAR(0x8e57c) at /tmp/test line 7.
 leaving block at /tmp/test line 23.
 DESTROYING Subtle=SCALAR(0x8e5b8) at /tmp/test line 13.
 just exited block at /tmp/test line 26.
168 Version 5.003 08−Oct−1996

perlobj Perl Programmers Reference Guide perlobj

le.

rate pass
selves

test the
ble,
 time to die... at /tmp/test line 27.
 DESTROYING Subtle=SCALAR(0x8e57c) during global destruction.

Notice that "global destruction" bit there? That‘s the thread garbage collector reaching the unreachab

Objects are always destructed, even when regular refs aren‘t and in fact are destructed in a sepa
before ordinary refs just to try to prevent object destructors from using refs that have been them
destructed. Plain refs are only garbage collected if the destruct level is greater than 0. You can
higher levels of global destruction by setting the PERL_DESTRUCT_LEVEL environment varia
presuming −DDEBUGGING was enabled during perl build time.

A more complete garbage collection strategy will be implemented at a future date.

SEE ALSO
You should also check out perlbot for other object tricks, traps, and tips, as well as perlmod for some style
guides on constructing both modules and classes.
08−Oct−1996 Version 5.003 169

perltie Perl Programmers Reference Guide perltie

e
 built
 other

ccess
atically

ethods
they‘re

 a
e a

t

RE,

mething

turned.

ss
 the
NAME
perltie − how to hide an object class in a simple variable

SYNOPSIS
 tie VARIABLE, CLASSNAME, LIST

 $object = tied VARIABLE

 untie VARIABLE

DESCRIPTION
Prior to release 5.0 of Perl, a programmer could use dbmopen() to magically connect an on−disk databas
in the standard Unix dbm(3x) format to a %HASH in their program. However, their Perl was either
with one particular dbm library or another, but not both, and you couldn‘t extend this mechanism to
packages or types of variables.

Now you can.

The tie() function binds a variable to a class (package) that will provide the implementation for a
methods for that variable. Once this magic has been performed, accessing a tied variable autom
triggers method calls in the proper class. All of the complexity of the class is hidden behind magic m
calls. The method names are in ALL CAPS, which is a convention that Perl uses to indicate that
called implicitly rather than explicitly—just like the BEGIN() and END() functions.

In the tie() call, VARIABLE is the name of the variable to be enchanted. CLASSNAME is the name of a
class implementing objects of the correct type. Any additional arguments in the LIST are passed to the
appropriate constructor method for that class—meaning TIESCALAR() , TIEARRAY() , TIEHASH() or
TIEHANDLE() . (Typically these are arguments such as might be passed to the dbminit() function of
C.) The object returned by the "new" method is also returned by the tie() function, which would be useful
if you wanted to access other methods in CLASSNAME. (You don‘t actually have to return a reference to
right "type" (e.g. HASH or CLASSNAME) so long as it‘s a properly blessed object.) You can also retriev
reference to the underlying object using the tied() function.

Unlike dbmopen() , the tie() function will not use or require a module for you—you need to do tha
explicitly yourself.

Tying Scalars
A class implementing a tied scalar should define the following methods: TIESCALAR, FETCH, STO
and possibly DESTROY.

Let‘s look at each in turn, using as an example a tie class for scalars that allows the user to do so
like:

 tie $his_speed, ’Nice’, getppid();
 tie $my_speed, ’Nice’, $$;

And now whenever either of those variables is accessed, its current system priority is retrieved and re
If those variables are set, then the process‘s priority is changed!

We‘ll use Jarkko Hietaniemi <Jarkko.Hietaniemi@hut.fi>‘s BSD::Resource class (not included) to acce
the PRIO_PROCESS, PRIO_MIN, and PRIO_MAX constants from your system, as well as
getpriority() and setpriority() system calls. Here‘s the preamble of the class.

 package Nice;
 use Carp;
 use BSD::Resource;
 use strict;
 $Nice::DEBUG = 0 unless defined $Nice::DEBUG;
170 Version 5.003 08−Oct−1996

perltie Perl Programmers Reference Guide perltie

o a new

uld fail.
cks

ments
 in this

 which

 us to

rence,
TIESCALAR classname, LIST
This is the constructor for the class. That means it is expected to return a blessed reference t
scalar (probably anonymous) that it‘s creating. For example:

 sub TIESCALAR {
 my $class = shift;
 my $pid = shift || $$; # 0 means me

 if ($pid !~ /^\d+$/) {
 carp "Nice::Tie::Scalar got non−numeric pid $pid" if $^W;
 return undef;
 }

 unless (kill 0, $pid) { # EPERM or ERSCH, no doubt
 carp "Nice::Tie::Scalar got bad pid $pid: $!" if $^W;
 return undef;
 }

 return bless \$pid, $class;
 }

This tie class has chosen to return an error rather than raising an exception if its constructor sho
 While this is how dbmopen() works, other classes may well not wish to be so forgiving. It che
the global variable $^W to see whether to emit a bit of noise anyway.

FETCH this
This method will be triggered every time the tied variable is accessed (read). It takes no argu
beyond its self reference, which is the object representing the scalar we‘re dealing with. Since
case we‘re just using a SCALAR ref for the tied scalar object, a simple $$self allows the method to
get at the real value stored there. In our example below, that real value is the process ID to
we‘ve tied our variable.

 sub FETCH {
 my $self = shift;
 confess "wrong type" unless ref $self;
 croak "usage error" if @_;
 my $nicety;
 local($!) = 0;
 $nicety = getpriority(PRIO_PROCESS, $$self);
 if ($!) { croak "getpriority failed: $!" }
 return $nicety;
 }

This time we‘ve decided to blow up (raise an exception) if the renice fails—there‘s no place for
return an error otherwise, and it‘s probably the right thing to do.

STORE this, value
This method will be triggered every time the tied variable is set (assigned). Beyond its self refe
it also expects one (and only one) argument—the new value the user is trying to assign.

 sub STORE {
 my $self = shift;
 confess "wrong type" unless ref $self;
 my $new_nicety = shift;
 croak "usage error" if @_;

 if ($new_nicety < PRIO_MIN) {
 carp sprintf
 "WARNING: priority %d less than minimum system priority %d",
08−Oct−1996 Version 5.003 171

perltie Perl Programmers Reference Guide perltie

object
ory for

ging

hings
sses are

CH,

ccess
nt; an
 $new_nicety, PRIO_MIN if $^W;
 $new_nicety = PRIO_MIN;
 }

 if ($new_nicety > PRIO_MAX) {
 carp sprintf
 "WARNING: priority %d greater than maximum system priority %d",
 $new_nicety, PRIO_MAX if $^W;
 $new_nicety = PRIO_MAX;
 }

 unless (defined setpriority(PRIO_PROCESS, $$self, $new_nicety)) {
 confess "setpriority failed: $!";
 }
 return $new_nicety;
 }

DESTROY this
This method will be triggered when the tied variable needs to be destructed. As with other
classes, such a method is seldom necessary, since Perl deallocates its moribund object‘s mem
you automatically—this isn‘t C++, you know. We‘ll use a DESTROY method here for debug
purposes only.

 sub DESTROY {
 my $self = shift;
 confess "wrong type" unless ref $self;
 carp "[Nice::DESTROY pid $$self]" if $Nice::DEBUG;
 }

That‘s about all there is to it. Actually, it‘s more than all there is to it, since we‘ve done a few nice t
here for the sake of completeness, robustness, and general aesthetics. Simpler TIESCALAR cla
certainly possible.

Tying Arrays
A class implementing a tied ordinary array should define the following methods: TIEARRAY, FET
STORE, and perhaps DESTROY.

WARNING : Tied arrays are incomplete. They are also distinctly lacking something for the $#ARRAY
access (which is hard, as it‘s an lvalue), as well as the other obvious array functions, like push() , pop() ,
shift() , unshift() , and splice() .

For this discussion, we‘ll implement an array whose indices are fixed at its creation. If you try to a
anything beyond those bounds, you‘ll take an exception. (Well, if you access an individual eleme
aggregate assignment would be missed.) For example:

 require Bounded_Array;
 tie @ary, ’Bounded_Array’, 2;
 $| = 1;
 for $i (0 .. 10) {
 print "setting index $i: ";
 $ary[$i] = 10 * $i;
 $ary[$i] = 10 * $i;
 print "value of elt $i now $ary[$i]\n";
 }

The preamble code for the class is as follows:

 package Bounded_Array;
 use Carp;
 use strict;
172 Version 5.003 08−Oct−1996

perltie Perl Programmers Reference Guide perltie

through

l
 type:

king it
ect‘s

d). It

s, even
uld
s easiest

s two
 value

lar tie
e we‘ll
TIEARRAY classname, LIST
This is the constructor for the class. That means it is expected to return a blessed reference
which the new array (probably an anonymous ARRAY ref) will be accessed.

In our example, just to show you that you don‘t really have to return an ARRAY reference, we‘l
choose a HASH reference to represent our object. A HASH works out well as a generic record
the {BOUND} field will store the maximum bound allowed, and the {ARRAY} field will hold the true
ARRAY ref. If someone outside the class tries to dereference the object returned (doubtless thin
an ARRAY ref), they‘ll blow up. This just goes to show you that you should respect an obj
privacy.

 sub TIEARRAY {
my $class = shift;
my $bound = shift;
confess "usage: tie(\@ary, ’Bounded_Array’, max_subscript)"
 if @_ || $bound =~ /\D/;
return bless {
 BOUND => $bound,
 ARRAY => [],
}, $class;

 }

FETCH this, index
This method will be triggered every time an individual element the tied array is accessed (rea
takes one argument beyond its self reference: the index whose value we‘re trying to fetch.

 sub FETCH {
 my($self,$idx) = @_;
 if ($idx > $self−>{BOUND}) {

confess "Array OOB: $idx > $self−>{BOUND}";
 }
 return $self−>{ARRAY}[$idx];
 }

As you may have noticed, the name of the FETCH method (et al.) is the same for all accesse
though the constructors differ in names (TIESCALAR vs TIEARRAY). While in theory you co
have the same class servicing several tied types, in practice this becomes cumbersome, and it‘
to simply keep them at one tie type per class.

STORE this, index, value
This method will be triggered every time an element in the tied array is set (written). It take
arguments beyond its self reference: the index at which we‘re trying to store something and the
we‘re trying to put there. For example:

 sub STORE {
 my($self, $idx, $value) = @_;
 print "[STORE $value at $idx]\n" if _debug;
 if ($idx > $self−>{BOUND}) {
 confess "Array OOB: $idx > $self−>{BOUND}";
 }
 return $self−>{ARRAY}[$idx] = $value;
 }

DESTROY this
This method will be triggered when the tied variable needs to be destructed. As with the sca
class, this is almost never needed in a language that does its own garbage collection, so this tim
just leave it out.
08−Oct−1996 Version 5.003 173

perltie Perl Programmers Reference Guide perltie

ore than
f @ary,

eful
thods:
hether

key and

f your

hash but

articular
k that

elds, of
The code we presented at the top of the tied array class accesses many elements of the array, far m
we‘ve set the bounds to. Therefore, it will blow up once they try to access beyond the 2nd element o
as the following output demonstrates:

 setting index 0: value of elt 0 now 0
 setting index 1: value of elt 1 now 10
 setting index 2: value of elt 2 now 20
 setting index 3: Array OOB: 3 > 2 at Bounded_Array.pm line 39
 Bounded_Array::FETCH called at testba line 12

Tying Hashes
As the first Perl data type to be tied (see dbmopen()), associative arrays have the most complete and us
tie() implementation. A class implementing a tied associative array should define the following me
 TIEHASH is the constructor. FETCH and STORE access the key and value pairs. EXISTS reports w
a key is present in the hash, and DELETE deletes one. CLEAR empties the hash by deleting all the
value pairs. FIRSTKEY and NEXTKEY implement the keys() and each() functions to iterate over all
the keys. And DESTROY is called when the tied variable is garbage collected.

If this seems like a lot, then feel free to merely inherit from the standard Tie::Hash module for most o
methods, redefining only the interesting ones. See Tie::Hash for details.

Remember that Perl distinguishes between a key not existing in the hash, and the key existing in the
having a corresponding value of undef . The two possibilities can be tested with the exists() and
defined() functions.

Here‘s an example of a somewhat interesting tied hash class: it gives you a hash representing a p
user‘s dotfiles. You index into the hash with the name of the file (minus the dot) and you get bac
dotfile‘s contents. For example:

 use DotFiles;
 tie %dot, ’DotFiles’;
 if ($dot{profile} =~ /MANPATH/ ||
 $dot{login} =~ /MANPATH/ ||
 $dot{cshrc} =~ /MANPATH/)
 {

print "you seem to set your manpath\n";
 }

Or here‘s another sample of using our tied class:

 tie %him, ’DotFiles’, ’daemon’;
 foreach $f (keys %him) {

printf "daemon dot file %s is size %d\n",
 $f, length $him{$f};

 }

In our tied hash DotFiles example, we use a regular hash for the object containing several important fi
which only the {LIST} field will be what the user thinks of as the real hash.

USER
whose dot files this object represents

HOME
where those dotfiles live

CLOBBER
whether we should try to change or remove those dot files
174 Version 5.003 08−Oct−1996

Tie::Hash

perltie Perl Programmers Reference Guide perltie

 keep

through

ou‘d

es one
LIST the hash of dotfile names and content mappings

Here‘s the start of Dotfiles.pm:

 package DotFiles;
 use Carp;
 sub whowasi { (caller(1))[3] . ’()’ }
 my $DEBUG = 0;
 sub debug { $DEBUG = @_ ? shift : 1 }

For our example, we want to able to emit debugging info to help in tracing during development. We
also one convenience function around internally to help print out warnings; whowasi() returns the
function name that calls it.

Here are the methods for the DotFiles tied hash.

TIEHASH classname, LIST
This is the constructor for the class. That means it is expected to return a blessed reference
which the new object (probably but not necessarily an anonymous hash) will be accessed.

Here‘s the constructor:

 sub TIEHASH {
my $self = shift;
my $user = shift || $>;
my $dotdir = shift || ’’;
croak "usage: @{[&whowasi]} [USER [DOTDIR]]" if @_;
$user = getpwuid($user) if $user =~ /^\d+$/;
my $dir = (getpwnam($user))[7]

|| croak "@{[&whowasi]}: no user $user";
$dir .= "/$dotdir" if $dotdir;

my $node = {
 USER => $user,
 HOME => $dir,
 LIST => {},
 CLOBBER => 0,
};

opendir(DIR, $dir)
|| croak "@{[&whowasi]}: can’t opendir $dir: $!";

foreach $dot (grep /^\./ && −f "$dir/$_", readdir(DIR)) {
 $dot =~ s/^\.//;
 $node−>{LIST}{$dot} = undef;
}
closedir DIR;
return bless $node, $self;

 }

It‘s probably worth mentioning that if you‘re going to filetest the return values out of a readdir, y
better prepend the directory in question. Otherwise, since we didn‘t chdir() there, it would have
been testing the wrong file.

FETCH this, key
This method will be triggered every time an element in the tied hash is accessed (read). It tak
argument beyond its self reference: the key whose value we‘re trying to fetch.

Here‘s the fetch for our DotFiles example.

 sub FETCH {
08−Oct−1996 Version 5.003 175

perltie Perl Programmers Reference Guide perltie

table
nixy

s two
 value

y‘ve
carp &whowasi if $DEBUG;
my $self = shift;
my $dot = shift;
my $dir = $self−>{HOME};
my $file = "$dir/.$dot";

unless (exists $self−>{LIST}−>{$dot} || −f $file) {
 carp "@{[&whowasi]}: no $dot file" if $DEBUG;
 return undef;
}

if (defined $self−>{LIST}−>{$dot}) {
 return $self−>{LIST}−>{$dot};
} else {
 return $self−>{LIST}−>{$dot} = ‘cat $dir/.$dot‘;
}

 }

It was easy to write by having it call the Unix cat(1) command, but it would probably be more por
to open the file manually (and somewhat more efficient). Of course, since dot files are a U
concept, we‘re not that concerned.

STORE this, key, value
This method will be triggered every time an element in the tied hash is set (written). It take
arguments beyond its self reference: the index at which we‘re trying to store something, and the
we‘re trying to put there.

Here in our DotFiles example, we‘ll be careful not to let them try to overwrite the file unless the
called the clobber() method on the original object reference returned by tie() .

 sub STORE {
carp &whowasi if $DEBUG;
my $self = shift;
my $dot = shift;
my $value = shift;
my $file = $self−>{HOME} . "/.$dot";
my $user = $self−>{USER};

croak "@{[&whowasi]}: $file not clobberable"
 unless $self−>{CLOBBER};

open(F, "> $file") || croak "can’t open $file: $!";
print F $value;
close(F);

 }

If they wanted to clobber something, they might say:

 $ob = tie %daemon_dots, ’daemon’;
 $ob−>clobber(1);
 $daemon_dots{signature} = "A true daemon\n";

Another way to lay hands on a reference to the underlying object is to use the tied() function, so
they might alternately have set clobber using:

 tie %daemon_dots, ’daemon’;
 tied(%daemon_dots)−>clobber(1);

The clobber method is simply:

 sub clobber {
176 Version 5.003 08−Oct−1996

perltie Perl Programmers Reference Guide perltie

g the

ed
hether

st to it.

 have

r

my $self = shift;
$self−>{CLOBBER} = @_ ? shift : 1;

 }

DELETE this, key
This method is triggered when we remove an element from the hash, typically by usin
delete() function. Again, we‘ll be careful to check whether they really want to clobber files.

 sub DELETE {
carp &whowasi if $DEBUG;

my $self = shift;
my $dot = shift;
my $file = $self−>{HOME} . "/.$dot";
croak "@{[&whowasi]}: won’t remove file $file"
 unless $self−>{CLOBBER};
delete $self−>{LIST}−>{$dot};
my $success = unlink($file);
carp "@{[&whowasi]}: can’t unlink $file: $!" unless $success;
$success;

 }

The value returned by DELETE becomes the return value of the call to delete() . If you want to
emulate the normal behavior of delete() , you should return whatever FETCH would have return
for this key. In this example, we have chosen instead to return a value which tells the caller w
the file was successfully deleted.

CLEAR this
This method is triggered when the whole hash is to be cleared, usually by assigning the empty li

In our example, that would remove all the user‘s dotfiles! It‘s such a dangerous thing that they‘ll
to set CLOBBER to something higher than 1 to make it happen.

 sub CLEAR {
carp &whowasi if $DEBUG;
my $self = shift;
croak "@{[&whowasi]}: won’t remove all dotfiles for $self−>{USER}"
 unless $self−>{CLOBBER} > 1;
my $dot;
foreach $dot (keys %{$self−>{LIST}}) {
 $self−>DELETE($dot);
}

 }

EXISTS this, key
This method is triggered when the user uses the exists() function on a particular hash. In ou
example, we‘ll look at the {LIST} hash element for this:

 sub EXISTS {
carp &whowasi if $DEBUG;
my $self = shift;
my $dot = shift;
return exists $self−>{LIST}−>{$dot};

 }

FIRSTKEY this
This method will be triggered when the user is going to iterate through the hash, such as via a keys()
or each() call.
08−Oct−1996 Version 5.003 177

perltie Perl Programmers Reference Guide perltie

is
ng the

irect

unless

ge

d/or

T and
es.

of some
e.
 sub FIRSTKEY {
carp &whowasi if $DEBUG;
my $self = shift;
my $a = keys %{$self−>{LIST}}; # reset each() iterator
each %{$self−>{LIST}}

 }

NEXTKEY this, lastkey
This method gets triggered during a keys() or each() iteration. It has a second argument which
the last key that had been accessed. This is useful if you‘re carrying about ordering or calli
iterator from more than one sequence, or not really storing things in a hash anywhere.

For our example, we‘re using a real hash so we‘ll just do the simple thing, but we‘ll have to ind
through the LIST field.

 sub NEXTKEY {
carp &whowasi if $DEBUG;
my $self = shift;
return each %{ $self−>{LIST} }

 }

DESTROY this
This method is triggered when a tied hash is about to go out of scope. You don‘t really need it
you‘re trying to add debugging or have auxiliary state to clean up. Here‘s a very simple function:

 sub DESTROY {
carp &whowasi if $DEBUG;

 }

Note that functions such as keys() and values() may return huge array values when used on lar
objects, like DBM files. You may prefer to use the each() function to iterate over such. Example:

 # print out history file offsets
 use NDBM_File;
 tie(%HIST, ’NDBM_File’, ’/usr/lib/news/history’, 1, 0);
 while (($key,$val) = each %HIST) {
 print $key, ’ = ’, unpack(’L’,$val), "\n";
 }
 untie(%HIST);

Tying FileHandles
This is partially implemented now.

A class implementing a tied filehandle should define the following methods: TIEHANDLE, PRINT an
READLINE, and possibly DESTROY.

It is especially useful when perl is embedded in some other program, where output to STDOU
STDERR may have to be redirected in some special way. See nvi and the Apache module for exampl

In our example we‘re going to create a shouting handle.

 package Shout;

TIEHANDLE classname, LIST
This is the constructor for the class. That means it is expected to return a blessed reference
sort. The reference can be used to hold some internal information. We won‘t use it in out exampl

 sub TIEHANDLE { print "<shout>\n"; my $i; bless \$i, shift }
178 Version 5.003 08−Oct−1996

perltie Perl Programmers Reference Guide perltie

it also

 there

troyed.

blem is
 with
partially
PRINT this, LIST
This method will be triggered every time the tied handle is printed to. Beyond its self reference
expects the list that was passed to the print function.

 sub PRINT { $r = shift; $$r++; print join($,,map(uc($_),@_)),$\ }

READLINE this
This method will be called when the handle is read from. The method should return undef when
is no more data.

 sub READLINE { $r = shift; "PRINT called $$r times\n"; }

DESTROY this
As with the other types of ties, this method will be called when the tied handle is about to be des
This is useful for debugging and possibly cleaning up.

 sub DESTROY { print "</shout>\n" }

Here‘s how to use our little example:

 tie(*FOO,’Shout’);
 print FOO "hello\n";
 $a = 4; $b = 6;
 print FOO $a, " plus ", $b, " equals ", $a + $b, "\n";
 print <FOO>;

SEE ALSO
See DB_File or Config for some interesting tie() implementations.

BUGS
Tied arrays are incomplete. They are also distinctly lacking something for the $#ARRAY access (which is
hard, as it‘s an lvalue), as well as the other obvious array functions, like push() , pop() , shift() ,
unshift() , and splice() .

You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first pro
that all but GDBM and Berkeley DB have size limitations, but beyond that, you also have problems
how references are to be represented on disk. One experimental module that does attempt to
address this need is the MLDBM module. Check your nearest CPAN site as described in perlmod for source
code to MLDBM.

AUTHOR
Tom Christiansen

TIEHANDLE by Sven Verdoolaege <skimo@dns.ufsia.ac.be>
08−Oct−1996 Version 5.003 179

perlbot Perl Programmers Reference Guide perlbot

the use
raged to
is not
riented

of

ly the
nyway.

hould

wed to

me

ove the

−find

 might
ng the

ne to

s are also
NAME
perlbot − Bag‘o Object Tricks (the BOT)

DESCRIPTION
The following collection of tricks and hints is intended to whet curious appetites about such things as
of instance variables and the mechanics of object and class relationships. The reader is encou
consult relevant textbooks for discussion of Object Oriented definitions and methodology. This
intended as a tutorial for object−oriented programming or as a comprehensive guide to Perl‘s object o
features, nor should it be construed as a style guide.

The Perl motto still holds: There‘s more than one way to do it.

OO SCALING TIPS

1 Do not attempt to verify the type of $self. That‘ll break if the class is inherited, when the type
$self is valid but its package isn‘t what you expect. See rule 5.

2 If an object−oriented (OO) or indirect−object (IO) syntax was used, then the object is probab
correct type and there‘s no need to become paranoid about it. Perl isn‘t a paranoid language a
If people subvert the OO or IO syntax then they probably know what they‘re doing and you s
let them do it. See rule 1.

3 Use the two−argument form of bless() . Let a subclass use your constructor. See
INHERITING A CONSTRUCTOR.

4 The subclass is allowed to know things about its immediate superclass, the superclass is allo
know nothing about a subclass.

5 Don‘t be trigger happy with inheritance. A "using", "containing", or "delegation" relationship (so
sort of aggregation, at least) is often more appropriate. See OBJECT RELATIONSHIPS,
USING RELATIONSHIP WITH SDBM, and "DELEGATION".

6 The object is the namespace. Make package globals accessible via the object. This will rem
guess work about the symbol‘s home package. See CLASS CONTEXT AND THE OBJECT.

7 IO syntax is certainly less noisy, but it is also prone to ambiguities which can cause difficult−to
bugs. Allow people to use the sure−thing OO syntax, even if you don‘t like it.

8 Do not use function−call syntax on a method. You‘re going to be bitten someday. Someone
move that method into a superclass and your code will be broken. On top of that you‘re feedi
paranoia in rule 2.

9 Don‘t assume you know the home package of a method. You‘re making it difficult for someo
override that method. See THINKING OF CODE REUSE.

INSTANCE VARIABLES
An anonymous array or anonymous hash can be used to hold instance variables. Named parameter
demonstrated.

package Foo;

sub new {
my $type = shift;
my %params = @_;
my $self = {};
$self−>{’High’} = $params{’High’};
$self−>{’Low’} = $params{’Low’};
bless $self, $type;

}

package Bar;
180 Version 5.003 08−Oct−1996

perlbot Perl Programmers Reference Guide perlbot

 in the
s to the
sub new {
my $type = shift;
my %params = @_;
my $self = [];
$self−>[0] = $params{’Left’};
$self−>[1] = $params{’Right’};
bless $self, $type;

}

package main;

$a = Foo−>new(’High’ => 42, ’Low’ => 11);
print "High=$a−>{’High’}\n";
print "Low=$a−>{’Low’}\n";

$b = Bar−>new(’Left’ => 78, ’Right’ => 40);
print "Left=$b−>[0]\n";
print "Right=$b−>[1]\n";

SCALAR INSTANCE VARIABLES
An anonymous scalar can be used when only one instance variable is needed.

package Foo;

sub new {
my $type = shift;
my $self;
$self = shift;
bless \$self, $type;

}

package main;

$a = Foo−>new(42);
print "a=$$a\n";

INSTANCE VARIABLE INHERITANCE
This example demonstrates how one might inherit instance variables from a superclass for inclusion
new class. This requires calling the superclass‘s constructor and adding one‘s own instance variable
new object.

package Bar;

sub new {
my $type = shift;
my $self = {};
$self−>{’buz’} = 42;
bless $self, $type;

}

package Foo;
@ISA = qw(Bar);

sub new {
my $type = shift;
my $self = Bar−>new;
$self−>{’biz’} = 11;
bless $self, $type;

}

package main;
08−Oct−1996 Version 5.003 181

perlbot Perl Programmers Reference Guide perlbot

ween

rridden
ithout
$a = Foo−>new;
print "buz = ", $a−>{’buz’}, "\n";
print "biz = ", $a−>{’biz’}, "\n";

OBJECT RELATIONSHIPS
The following demonstrates how one might implement "containing" and "using" relationships bet
objects.

package Bar;

sub new {
my $type = shift;
my $self = {};
$self−>{’buz’} = 42;
bless $self, $type;

}

package Foo;

sub new {
my $type = shift;
my $self = {};
$self−>{’Bar’} = Bar−>new;
$self−>{’biz’} = 11;
bless $self, $type;

}

package main;

$a = Foo−>new;
print "buz = ", $a−>{’Bar’}−>{’buz’}, "\n";
print "biz = ", $a−>{’biz’}, "\n";

OVERRIDING SUPERCLASS METHODS
The following example demonstrates how to override a superclass method and then call the ove
method. The SUPER pseudo−class allows the programmer to call an overridden superclass method w
actually knowing where that method is defined.

package Buz;
sub goo { print "here’s the goo\n" }

package Bar; @ISA = qw(Buz);
sub google { print "google here\n" }

package Baz;
sub mumble { print "mumbling\n" }

package Foo;
@ISA = qw(Bar Baz);

sub new {
my $type = shift;
bless [], $type;

}
sub grr { print "grumble\n" }
sub goo {

my $self = shift;
$self−>SUPER::goo();

}
sub mumble {

my $self = shift;
182 Version 5.003 08−Oct−1996

perlbot Perl Programmers Reference Guide perlbot

een the
$self−>SUPER::mumble();
}
sub google {

my $self = shift;
$self−>SUPER::google();

}

package main;

$foo = Foo−>new;
$foo−>mumble;
$foo−>grr;
$foo−>goo;
$foo−>google;

USING RELATIONSHIP WITH SDBM
This example demonstrates an interface for the SDBM class. This creates a "using" relationship betw
SDBM class and the new class Mydbm.

package Mydbm;

require SDBM_File;
require Tie::Hash;
@ISA = qw(Tie::Hash);

sub TIEHASH {
 my $type = shift;
 my $ref = SDBM_File−>new(@_);
 bless {’dbm’ => $ref}, $type;
}
sub FETCH {
 my $self = shift;
 my $ref = $self−>{’dbm’};
 $ref−>FETCH(@_);
}
sub STORE {
 my $self = shift;
 if (defined $_[0]){

my $ref = $self−>{’dbm’};
$ref−>STORE(@_);

 } else {
die "Cannot STORE an undefined key in Mydbm\n";

 }
}

package main;
use Fcntl qw(O_RDWR O_CREAT);

tie %foo, "Mydbm", "Sdbm", O_RDWR|O_CREAT, 0640;
$foo{’bar’} = 123;
print "foo−bar = $foo{’bar’}\n";

tie %bar, "Mydbm", "Sdbm2", O_RDWR|O_CREAT, 0640;
$bar{’Cathy’} = 456;
print "bar−Cathy = $bar{’Cathy’}\n";
08−Oct−1996 Version 5.003 183

perlbot Perl Programmers Reference Guide perlbot

. The
romote

ethod
THINKING OF CODE REUSE
One strength of Object−Oriented languages is the ease with which old code can use new code
following examples will demonstrate first how one can hinder code reuse and then how one can p
code reuse.

This first example illustrates a class which uses a fully−qualified method call to access the "private" m
BAZ() . The second example will show that it is impossible to override the BAZ() method.

package FOO;

sub new {
my $type = shift;
bless {}, $type;

}
sub bar {

my $self = shift;
$self−>FOO::private::BAZ;

}

package FOO::private;

sub BAZ {
print "in BAZ\n";

}

package main;

$a = FOO−>new;
$a−>bar;

Now we try to override the BAZ() method. We would like FOO::bar() to call GOOP::BAZ() , but this
cannot happen because FOO::bar() explicitly calls FOO::private::BAZ() .

package FOO;

sub new {
my $type = shift;
bless {}, $type;

}
sub bar {

my $self = shift;
$self−>FOO::private::BAZ;

}

package FOO::private;

sub BAZ {
print "in BAZ\n";

}

package GOOP;
@ISA = qw(FOO);
sub new {

my $type = shift;
bless {}, $type;

}

sub BAZ {
print "in GOOP::BAZ\n";

}
184 Version 5.003 08−Oct−1996

perlbot Perl Programmers Reference Guide perlbot

 shows

available

ant to
 to find

look in
a ("Is it
ry. It is
package main;

$a = GOOP−>new;
$a−>bar;

To create reusable code we must modify class FOO, flattening class FOO::private. The next example
a reusable class FOO which allows the method GOOP::BAZ() to be used in place of FOO::BAZ() .

package FOO;

sub new {
my $type = shift;
bless {}, $type;

}
sub bar {

my $self = shift;
$self−>BAZ;

}

sub BAZ {
print "in BAZ\n";

}

package GOOP;
@ISA = qw(FOO);

sub new {
my $type = shift;
bless {}, $type;

}
sub BAZ {

print "in GOOP::BAZ\n";
}

package main;

$a = GOOP−>new;
$a−>bar;

CLASS CONTEXT AND THE OBJECT
Use the object to solve package and class context problems. Everything a method needs should be
via the object or should be passed as a parameter to the method.

A class will sometimes have static or global data to be used by the methods. A subclass may w
override that data and replace it with new data. When this happens the superclass may not know how
the new copy of the data.

This problem can be solved by using the object to define the context of the method. Let the method
the object for a reference to the data. The alternative is to force the method to go hunting for the dat
in my class, or in a subclass? Which subclass?"), and this can be inconvenient and will lead to hacke
better to just let the object tell the method where that data is located.

package Bar;

%fizzle = (’Password’ => ’XYZZY’);

sub new {
my $type = shift;
my $self = {};
$self−>{’fizzle’} = \%fizzle;
bless $self, $type;

}
08−Oct−1996 Version 5.003 185

perlbot Perl Programmers Reference Guide perlbot

tructor
sub enter {
my $self = shift;

Don’t try to guess if we should use %Bar::fizzle
or %Foo::fizzle. The object already knows which
we should use, so just ask it.

my $fizzle = $self−>{’fizzle’};

print "The word is ", $fizzle−>{’Password’}, "\n";
}

package Foo;
@ISA = qw(Bar);

%fizzle = (’Password’ => ’Rumple’);

sub new {
my $type = shift;
my $self = Bar−>new;
$self−>{’fizzle’} = \%fizzle;
bless $self, $type;

}

package main;

$a = Bar−>new;
$b = Foo−>new;
$a−>enter;
$b−>enter;

INHERITING A CONSTRUCTOR
An inheritable constructor should use the second form of bless() which allows blessing directly into a
specified class. Notice in this example that the object will be a BAR not a FOO, even though the cons
is in class FOO.

package FOO;

sub new {
my $type = shift;
my $self = {};
bless $self, $type;

}

sub baz {
print "in FOO::baz()\n";

}

package BAR;
@ISA = qw(FOO);

sub baz {
print "in BAR::baz()\n";

}

package main;

$a = BAR−>new;
$a−>baz;
186 Version 5.003 08−Oct−1996

perlbot Perl Programmers Reference Guide perlbot

 objects.
tionship

 The
DELEGATION
Some classes, such as SDBM_File, cannot be effectively subclassed because they create foreign
Such a class can be extended with some sort of aggregation technique such as the "using" rela
mentioned earlier or by delegation.

The following example demonstrates delegation using an AUTOLOAD() function to perform
message−forwarding. This will allow the Mydbm object to behave exactly like an SDBM_File object.
Mydbm class could now extend the behavior by adding custom FETCH() and STORE() methods, if this is
desired.

package Mydbm;

require SDBM_File;
require Tie::Hash;
@ISA = qw(Tie::Hash);

sub TIEHASH {
my $type = shift;
my $ref = SDBM_File−>new(@_);
bless {’delegate’ => $ref};

}

sub AUTOLOAD {
my $self = shift;

The Perl interpreter places the name of the
message in a variable called $AUTOLOAD.

DESTROY messages should never be propagated.
return if $AUTOLOAD =~ /::DESTROY$/;

Remove the package name.
$AUTOLOAD =~ s/^Mydbm:://;

Pass the message to the delegate.
$self−>{’delegate’}−>$AUTOLOAD(@_);

}

package main;
use Fcntl qw(O_RDWR O_CREAT);

tie %foo, "Mydbm", "adbm", O_RDWR|O_CREAT, 0640;
$foo{’bar’} = 123;
print "foo−bar = $foo{’bar’}\n";
08−Oct−1996 Version 5.003 187

perlipc Perl Programmers Reference Guide perlipc

aphores)

s, the

installed
al that
l−C or
events

global
o calling

ger a

m
 indexed

rl
such as
use a
 that
NAME
perlipc − Perl interprocess communication (signals, fifos, pipes, safe subprocesses, sockets, and sem

DESCRIPTION
The basic IPC facilities of Perl are built out of the good old Unix signals, named pipes, pipe open
Berkeley socket routines, and SysV IPC calls. Each is used in slightly different situations.

Signals
Perl uses a simple signal handling model: the %SIG hash contains names or references of user−
signal handlers. These handlers will be called with an argument which is the name of the sign
triggered it. A signal may be generated intentionally from a particular keyboard sequence like contro
control−Z, sent to you from another process, or triggered automatically by the kernel when special
transpire, like a child process exiting, your process running out of stack space, or hitting file size limit.

For example, to trap an interrupt signal, set up a handler like this. Notice how all we do is set a
variable and then raise an exception. That‘s because on most systems libraries are not re−entrant, s
any print() functions (or even anything that needs to malloc(3) more memory) could in theory trig
memory fault and subsequent core dump.

 sub catch_zap {
my $signame = shift;
$shucks++;
die "Somebody sent me a SIG$signame";

 }
 $SIG{INT} = ’catch_zap’; # could fail in modules
 $SIG{INT} = \&catch_zap; # best strategy

The names of the signals are the ones listed out by kill −l on your system, or you can retrieve them fro
the Config module. Set up an @signame list indexed by number to get the name and a %signo table
by name to get the number:

 use Config;
 defined $Config{sig_name} || die "No sigs?";
 foreach $name (split(’ ’, $Config{sig_name})) {

$signo{$name} = $i;
$signame[$i] = $name;
$i++;

 }

So to check whether signal 17 and SIGALRM were the same, just do this:

 print "signal #17 = $signame[17]\n";
 if ($signo{ALRM}) {

print "SIGALRM is $signo{ALRM}\n";
 }

You may also choose to assign the strings ‘IGNORE’ or ‘DEFAULT’ as the handler, in which case Pe
will try to discard the signal or do the default thing. Some signals can be neither trapped nor ignored,
the KILL and STOP (but not the TSTP) signals. One strategy for temporarily ignoring signals is to
local() statement, which will be automatically restored once your block is exited. (Remember
local() values are "inherited" by functions called from within that block.)

 sub precious {
local $SIG{INT} = ’IGNORE’;
&more_functions;

 }
 sub more_functions {
188 Version 5.003 08−Oct−1996

perlipc Perl Programmers Reference Guide perlipc

−group.

ss, but

ecause
etimes
he old
‘ll see

mber of
exited
g

interrupts still ignored, for now...
 }

Sending a signal to a negative process ID means that you send the signal to the entire Unix process
This code send a hang−up signal to all processes in the current process group except for the current process
itself:

 {
local $SIG{HUP} = ’IGNORE’;
kill HUP => −$$;
snazzy writing of: kill(’HUP’, −$$)

 }

Another interesting signal to send is signal number zero. This doesn‘t actually affect another proce
instead checks whether it‘s alive or has changed its UID.

 unless (kill 0 => $kid_pid) {
warn "something wicked happened to $kid_pid";

 }

You might also want to employ anonymous functions for simple signal handlers:

 $SIG{INT} = sub { die "\nOutta here!\n" };

But that will be problematic for the more complicated handlers that need to re−install themselves. B
Perl‘s signal mechanism is currently based on the signal(3) function from the C library, you may som
be so misfortunate as to run on systems where that function is "broken", that is, it behaves in t
unreliable SysV way rather than the newer, more reasonable BSD and POSIX fashion. So you
defensive people writing signal handlers like this:

 sub REAPER {
$SIG{CHLD} = \&REAPER; # loathe sysV
$waitedpid = wait;

 }
 $SIG{CHLD} = \&REAPER;
 # now do something that forks...

or even the more elaborate:

 use POSIX ":wait_h";
 sub REAPER {

my $child;
$SIG{CHLD} = \&REAPER; # loathe sysV

 while ($child = waitpid(−1,WNOHANG)) {
 $Kid_Status{$child} = $?;
}

 }
 $SIG{CHLD} = \&REAPER;
 # do something that forks...

Signal handling is also used for timeouts in Unix, While safely protected within an eval{} block, you set
a signal handler to trap alarm signals and then schedule to have one delivered to you in some nu
seconds. Then try your blocking operation, clearing the alarm when it‘s done but not before you‘ve
your eval{} block. If it goes off, you‘ll use die() to jump out of the block, much as you might usin
longjmp() or throw() in other languages.

Here‘s an example:

 eval {
 local $SIG{ALRM} = sub { die "alarm clock restart" };
 alarm 10;
08−Oct−1996 Version 5.003 189

perlipc Perl Programmers Reference Guide perlipc

almost

ting on
ocesses

y not be

ifo, the

the
d from
e the

either
 flock(FH, 2); # blocking write lock
 alarm 0;
 };
 if ($@ and $@ !~ /alarm clock restart/) { die }

For more complex signal handling, you might see the standard POSIX module. Lamentably, this is
entirely undocumented, but the t/lib/posix.t file from the Perl source distribution has some examples in it.

Named Pipes
A named pipe (often referred to as a FIFO) is an old Unix IPC mechanism for processes communica
the same machine. It works just like a regular, connected anonymous pipes, except that the pr
rendezvous using a filename and don‘t have to be related.

To create a named pipe, use the Unix command mknod(1) or on some systems, mkfifo(1). These ma
in your normal path.

 # system return val is backwards, so && not ||
 #
 $ENV{PATH} .= ":/etc:/usr/etc";
 if (system(’mknod’, $path, ’p’)

 && system(’mkfifo’, $path))
 {

die "mk{nod,fifo} $path failed;
 }

A fifo is convenient when you want to connect a process to an unrelated one. When you open a f
program will block until there‘s something on the other end.

For example, let‘s say you‘d like to have your .signature file be a named pipe that has a Perl program on
other end. Now every time any program (like a mailer, newsreader, finger program, etc.) tries to rea
that file, the reading program will block and your program will supply the the new signature. We‘ll us
pipe−checking file test −p to find out whether anyone (or anything) has accidentally removed our fifo.

 chdir; # go home
 $FIFO = ’.signature’;
 $ENV{PATH} .= ":/etc:/usr/games";

 while (1) {
unless (−p $FIFO) {
 unlink $FIFO;
 system(’mknod’, $FIFO, ’p’)

&& die "can’t mknod $FIFO: $!";
}

next line blocks until there’s a reader
open (FIFO, "> $FIFO") || die "can’t write $FIFO: $!";
print FIFO "John Smith (smith\@host.org)\n", ‘fortune −s‘;
close FIFO;
sleep 2; # to avoid dup sigs

 }

Using open() for IPC
Perl‘s basic open() statement can also be used for unidirectional interprocess communication by
appending or prepending a pipe symbol to the second argument to open() . Here‘s how to start something
up in a child process you intend to write to:

 open(SPOOLER, "| cat −v | lpr −h 2>/dev/null")
 || die "can’t fork: $!";

 local $SIG{PIPE} = sub { die "spooler pipe broke" };
 print SPOOLER "stuff\n";
190 Version 5.003 08−Oct−1996

perlipc Perl Programmers Reference Guide perlipc

 clever

 time
ntrol of

nd that

mand
f

 better

nicate

hild is
der an
d
u

 close SPOOLER || die "bad spool: $! $?";

And here‘s how to start up a child process you intend to read from:

 open(STATUS, "netstat −an 2>&1 |")
 || die "can’t fork: $!";

 while (<STATUS>) {
next if /^(tcp|udp)/;
print;

 }
 close STATUS || die "bad netstat: $! $?";

If one can be sure that a particular program is a Perl script that is expecting filenames in @ARGV, the
programmer can write something like this:

 $ program f1 "cmd1|" − f2 "cmd2|" f3 < tmpfile

and irrespective of which shell it‘s called from, the Perl program will read from the file f1, the process cmd1,
standard input (tmpfile in this case), the f2 file, the cmd2 command, and finally the f3 file. Pretty nifty, eh?

You might notice that you could use backticks for much the same effect as opening a pipe for reading:

 print grep { !/^(tcp|udp)/ } ‘netstat −an 2>&1‘;
 die "bad netstat" if $?;

While this is true on the surface, it‘s much more efficient to process the file one line or record at a
because then you don‘t have to read the whole thing into memory at once. It also gives you finer co
the whole process, letting you to kill off the child process early if you‘d like.

Be careful to check both the open() and the close() return values. If you‘re writing to a pipe, you
should also trap SIGPIPE. Otherwise, think of what happens when you start up a pipe to a comma
doesn‘t exist: the open() will in all likelihood succeed (it only reflects the fork() ‘s success), but then
your output will fail—spectacularly. Perl can‘t know whether the command worked because your com
is actually running in a separate process whose exec() might have failed. Therefore, while readers o
bogus commands just return a quick end of file, writers to bogus command will trigger a signal they‘d
be prepared to handle. Consider:

 open(FH, "|bogus");
 print FH "bang\n";
 close FH;

Safe Pipe Opens
Another interesting approach to IPC is making your single program go multiprocess and commu
between (or even amongst) yourselves. The open() function will accept a file argument of either "−|" or
"|−" to do a very interesting thing: it forks a child connected to the filehandle you‘ve opened. The c
running the same program as the parent. This is useful for safely opening a file when running un
assumed UID or GID, for example. If you open a pipe to minus, you can write to the filehandle you opene
and your kid will find it in his STDIN. If you open a pipe from minus, you can read from the filehandle yo
opened whatever your kid writes to his STDOUT.

 use English;
 my $sleep_count = 0;

 do {
$pid = open(KID_TO_WRITE, "|−");
unless (defined $pid) {
 warn "cannot fork: $!";
 die "bailing out" if $sleep_count++ > 6;
 sleep 10;
}

 } until defined $pid;
08−Oct−1996 Version 5.003 191

perlipc Perl Programmers Reference Guide perlipc

shell‘s
at‘s
er−level

n alien
ee the
 if ($pid) { # parent
print KID_TO_WRITE @some_data;
close(KID_TO_WRITE) || warn "kid exited $?";

 } else { # child
($EUID, $EGID) = ($UID, $GID); # suid progs only
open (FILE, "> /safe/file")
 || die "can’t open /safe/file: $!";
while (<STDIN>) {
 print FILE; # child’s STDIN is parent’s KID
}
exit; # don’t forget this

 }

Another common use for this construct is when you need to execute something without the
interference. With system() , it‘s straightforward, but you can‘t use a pipe open or backticks safely. Th
because there‘s no way to stop the shell from getting its hands on your arguments. Instead, use low
control to call exec() directly.

Here‘s a safe backtick or pipe open for read:

 # add error processing as above
 $pid = open(KID_TO_READ, "−|");

 if ($pid) { # parent
while (<KID_TO_READ>) {
 # do something interesting
}
close(KID_TO_READ) || warn "kid exited $?";

 } else { # child
($EUID, $EGID) = ($UID, $GID); # suid only
exec($program, @options, @args)
 || die "can’t exec program: $!";
NOTREACHED

 }

And here‘s a safe pipe open for writing:

 # add error processing as above
 $pid = open(KID_TO_WRITE, "|−");
 $SIG{ALRM} = sub { die "whoops, $program pipe broke" };

 if ($pid) { # parent
for (@data) {
 print KID_TO_WRITE;
}
close(KID_TO_WRITE) || warn "kid exited $?";

 } else { # child
($EUID, $EGID) = ($UID, $GID);
exec($program, @options, @args)
 || die "can’t exec program: $!";
NOTREACHED

 }

Note that these operations are full Unix forks, which means they may not be correctly implemented o
systems. Additionally, these are not true multithreading. If you‘d like to learn more about threading, s
modules file mentioned below in the SEE ALSO section.
192 Version 5.003 08−Oct−1996

perlipc Perl Programmers Reference Guide perlipc

o
hen

sing

orting

u can‘t
, we

d to
 of the

ve

or

 as do
ly isn‘t
agrams

lls in C,
 file
ation.
Bidirectional Communication
While this works reasonably well for unidirectional communication, what about bidirectional
communication? The obvious thing you‘d like to do doesn‘t actually work:

 open(PROG_FOR_READING_AND_WRITING, "| some program |")

and if you forget to use the −w flag, then you‘ll miss out entirely on the diagnostic message:

 Can’t do bidirectional pipe at −e line 1.

If you really want to, you can use the standard open2() library function to catch both ends. There‘s als
an open3() for tridirectional I/O so you can also catch your child‘s STDERR, but doing so would t
require an awkward select() loop and wouldn‘t allow you to use normal Perl input operations.

If you look at its source, you‘ll see that open2() uses low−level primitives like Unix pipe() and
exec() to create all the connections. While it might have been slightly more efficient by u
socketpair() , it would have then been even less portable than it already is. The open2() and
open3() functions are unlikely to work anywhere except on a Unix system or some other one purp
to be POSIX compliant.

Here‘s an example of using open2() :

 use FileHandle;
 use IPC::Open2;
 $pid = open2(*Reader, *Writer, "cat −u −n");
 Writer−>autoflush(); # default here, actually
 print Writer "stuff\n";
 $got = <Reader>;

The problem with this is that Unix buffering is going to really ruin your day. Even though your Writer
filehandle is autoflushed, and the process on the other end will get your data in a timely manner, yo
usually do anything to force it to actually give it back to you in a similarly quick fashion. In this case
could, because we gave cat a −u flag to make it unbuffered. But very few Unix commands are designe
operate over pipes, so this seldom works unless you yourself wrote the program on the other end
double−ended pipe.

A solution to this is the non−standard Comm.pl library. It uses pseudo−ttys to make your program beha
more reasonably:

 require ’Comm.pl’;
 $ph = open_proc(’cat −n’);
 for (1..10) {

print $ph "a line\n";
print "got back ", scalar <$ph>;

 }

This way you don‘t have to have control over the source code of the program you‘re using. The Comm
library also has expect() and interact() functions. Find the library (and hopefully its success
IPC::Chat) at your nearest CPAN archive as detailed in the SEE ALSO section below.

Sockets: Client/Server Communication
While not limited to Unix−derived operating systems (e.g. WinSock on PCs provides socket support,
some VMS libraries), you may not have sockets on your system, in which case this section probab
going to do you much good. With sockets, you can do both virtual circuits (i.e. TCP streams) and dat
(i.e. UDP packets). You may be able to do even more depending on your system.

The Perl function calls for dealing with sockets have the same names as the corresponding system ca
but their arguments tend to differ for two reasons: first, Perl filehandles work differently than C
descriptors. Second, Perl already knows the length of its strings, so you don‘t need to pass that inform
08−Oct−1996 Version 5.003 193

perlipc Perl Programmers Reference Guide perlipc

e of the
etting
 the

nd to

at the
terface
ress
One of the major problems with old socket code in Perl was that it used hard−coded values for som
constants, which severely hurt portability. If you ever see code that does anything like explicitly s
$AF_INET = 2 , you know you‘re in for big trouble: An immeasurably superior approach is to use
Socket module, which more reliably grants access to various constants and functions you‘ll need.

Internet TCP Clients and Servers
Use Internet−domain sockets when you want to do client−server communication that might exte
machines outside of your own system.

Here‘s a sample TCP client using Internet−domain sockets:

 #!/usr/bin/perl −w
 require 5.002;
 use strict;
 use Socket;
 my ($remote,$port, $iaddr, $paddr, $proto, $line);

 $remote = shift || ’localhost’;
 $port = shift || 2345; # random port
 if ($port =~ /\D/) { $port = getservbyname($port, ’tcp’) }
 die "No port" unless $port;
 $iaddr = inet_aton($remote) || die "no host: $remote";
 $paddr = sockaddr_in($port, $iaddr);

 $proto = getprotobyname(’tcp’);
 socket(SOCK, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
 connect(SOCK, $paddr) || die "connect: $!";
 while ($line = <SOCK>) {

print $line;
 }

 close (SOCK) || die "close: $!";
 exit;

And here‘s a corresponding server to go along with it. We‘ll leave the address as INADDR_ANY so th
kernel can choose the appropriate interface on multihomed hosts. If you want sit on a particular in
(like the external side of a gateway or firewall machine), you should fill this in with your real add
instead.

 #!/usr/bin/perl −Tw
 require 5.002;
 use strict;
 BEGIN { $ENV{PATH} = ’/usr/ucb:/bin’ }
 use Socket;
 use Carp;

 sub logmsg { print "$0 $$: @_ at ", scalar localtime, "\n" }

 my $port = shift || 2345;
 my $proto = getprotobyname(’tcp’);
 socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
 setsockopt(Server, SOL_SOCKET, SO_REUSEADDR,

pack("l", 1)) || die "setsockopt: $!";
 bind(Server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!";
 listen(Server,SOMAXCONN) || die "listen: $!";

 logmsg "server started on port $port";

 my $paddr;
194 Version 5.003 08−Oct−1996

perlipc Perl Programmers Reference Guide perlipc

rks) a
w client.
 $SIG{CHLD} = \&REAPER;

 for (; $paddr = accept(Client,Server); close Client) {
my($port,$iaddr) = sockaddr_in($paddr);
my $name = gethostbyaddr($iaddr,AF_INET);

logmsg "connection from $name [",
inet_ntoa($iaddr), "]
at port $port";

print Client "Hello there, $name, it’s now ",
scalar localtime, "\n";

 }

And here‘s a multithreaded version. It‘s multithreaded in that like most typical servers, it spawns (fo
slave server to handle the client request so that the master server can quickly go back to service a ne

 #!/usr/bin/perl −Tw
 require 5.002;
 use strict;
 BEGIN { $ENV{PATH} = ’/usr/ucb:/bin’ }
 use Socket;
 use Carp;

 sub spawn; # forward declaration
 sub logmsg { print "$0 $$: @_ at ", scalar localtime, "\n" }

 my $port = shift || 2345;
 my $proto = getprotobyname(’tcp’);
 $port = $1 if $port =~ /(\d+)/; # untaint port number

 socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
 setsockopt(Server, SOL_SOCKET, SO_REUSEADDR,

pack("l", 1)) || die "setsockopt: $!";
 bind(Server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!";
 listen(Server,SOMAXCONN) || die "listen: $!";

 logmsg "server started on port $port";

 my $waitedpid = 0;
 my $paddr;

 sub REAPER {
$SIG{CHLD} = \&REAPER; # loathe sysV
$waitedpid = wait;
logmsg "reaped $waitedpid" . ($? ? " with exit $?" : ’’);

 }

 $SIG{CHLD} = \&REAPER;

 for ($waitedpid = 0;
 ($paddr = accept(Client,Server)) || $waitedpid;
 $waitedpid = 0, close Client)

 {
next if $waitedpid;
my($port,$iaddr) = sockaddr_in($paddr);
my $name = gethostbyaddr($iaddr,AF_INET);

logmsg "connection from $name [",
inet_ntoa($iaddr), "]
08−Oct−1996 Version 5.003 195

perlipc Perl Programmers Reference Guide perlipc

t

bout
fill up

ike CGI
system.

ferent
at port $port";

spawn sub {
 print "Hello there, $name, it’s now ", scalar localtime, "\n";
 exec ’/usr/games/fortune’

or confess "can’t exec fortune: $!";
};

 }

 sub spawn {
my $coderef = shift;

unless (@_ == 0 && $coderef && ref($coderef) eq ’CODE’) {
 confess "usage: spawn CODEREF";
}

my $pid;
if (!defined($pid = fork)) {
 logmsg "cannot fork: $!";
 return;
} elsif ($pid) {
 logmsg "begat $pid";
 return; # i’m the parent
}
else i’m the child −− go spawn

open(STDIN, "<&Client") || die "can’t dup client to stdin";
open(STDOUT, ">&Client") || die "can’t dup client to stdout";
open(STDERR, ">&STDOUT") || die "can’t dup stdout to stderr";
exit &$coderef();

 }

This server takes the trouble to clone off a child version via fork() for each incoming request. That way i
can handle many requests at once, which you might not always want. Even if you don‘t fork() , the
listen() will allow that many pending connections. Forking servers have to be particularly careful a
cleaning up their dead children (called "zombies" in Unix parlance), because otherwise you‘ll quickly
your process table.

We suggest that you use the −T flag to use taint checking (see perlsec) even if we aren‘t running setuid or
setgid. This is always a good idea for servers and other programs run on behalf of someone else (l
scripts), because it lessens the chances that people from the outside will be able to compromise your

Let‘s look at another TCP client. This one connects to the TCP "time" service on a number of dif
machines and shows how far their clocks differ from the system on which it‘s being run:

 #!/usr/bin/perl −w
 require 5.002;
 use strict;
 use Socket;

 my $SECS_of_70_YEARS = 2208988800;
 sub ctime { scalar localtime(shift) }

 my $iaddr = gethostbyname(’localhost’);
 my $proto = getprotobyname(’tcp’);
 my $port = getservbyname(’time’, ’tcp’);
 my $paddr = sockaddr_in(0, $iaddr);
 my($host);
196 Version 5.003 08−Oct−1996

perlipc Perl Programmers Reference Guide perlipc

u can
, and are
 show
 $| = 1;
 printf "%−24s %8s %s\n", "localhost", 0, ctime(time());

 foreach $host (@ARGV) {
printf "%−24s ", $host;
my $hisiaddr = inet_aton($host) || die "unknown host";
my $hispaddr = sockaddr_in($port, $hisiaddr);
socket(SOCKET, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
connect(SOCKET, $hispaddr) || die "bind: $!";
my $rtime = ’ ’;
read(SOCKET, $rtime, 4);
close(SOCKET);
my $histime = unpack("N", $rtime) − $SECS_of_70_YEARS ;
printf "%8d %s\n", $histime − time, ctime($histime);

 }

Unix−Domain TCP Clients and Servers
That‘s fine for Internet−domain clients and servers, but what about local communications? While yo
use the same setup, sometimes you don‘t want to. Unix−domain sockets are local to the current host
often used internally to implement pipes. Unlike Internet domain sockets, UNIX domain sockets can
up in the file system with an ls(1) listing.

 $ ls −l /dev/log
 srw−rw−rw− 1 root 0 Oct 31 07:23 /dev/log

You can test for these with Perl‘s −S file test:

 unless (−S ’/dev/log’) {
die "something’s wicked with the print system";

 }

Here‘s a sample Unix−domain client:

 #!/usr/bin/perl −w
 require 5.002;
 use Socket;
 use strict;
 my ($rendezvous, $line);

 $rendezvous = shift || ’/tmp/catsock’;
 socket(SOCK, PF_UNIX, SOCK_STREAM, 0) || die "socket: $!";
 connect(SOCK, sockaddr_un($remote)) || die "connect: $!";
 while ($line = <SOCK>) {

print $line;
 }
 exit;

And here‘s a corresponding server.

 #!/usr/bin/perl −Tw
 require 5.002;
 use strict;
 use Socket;
 use Carp;

 BEGIN { $ENV{PATH} = ’/usr/ucb:/bin’ }

 my $NAME = ’/tmp/catsock’;
 my $uaddr = sockaddr_un($NAME);
 my $proto = getprotobyname(’tcp’);
08−Oct−1996 Version 5.003 197

perlipc Perl Programmers Reference Guide perlipc

we‘ve

ause a
socket

rom the
small,
domain

ications
es will
 being
 local
ssage

ecking
st and
use
 socket(Server,PF_UNIX,SOCK_STREAM,0) || die "socket: $!";
 unlink($NAME);
 bind (Server, $uaddr) || die "bind: $!";
 listen(Server,SOMAXCONN) || die "listen: $!";

 logmsg "server started on $NAME";

 $SIG{CHLD} = \&REAPER;

 for ($waitedpid = 0;
 accept(Client,Server) || $waitedpid;
 $waitedpid = 0, close Client)

 {
next if $waitedpid;
logmsg "connection on $NAME";
spawn sub {
 print "Hello there, it’s now ", scalar localtime, "\n";
 exec ’/usr/games/fortune’ or die "can’t exec fortune: $!";
};

 }

As you see, it‘s remarkably similar to the Internet domain TCP server, so much so, in fact, that
omitted several duplicate functions—spawn() , logmsg() , ctime() , and REAPER()—which are
exactly the same as in the other server.

So why would you ever want to use a Unix domain socket instead of a simpler named pipe? Bec
named pipe doesn‘t give you sessions. You can‘t tell one process‘s data from another‘s. With
programming, you get a separate session for each client: that‘s why accept() takes two arguments.

For example, let‘s say that you have a long running database server daemon that you want folks f
World Wide Web to be able to access, but only if they go through a CGI interface. You‘d have a
simple CGI program that does whatever checks and logging you feel like, and then acts as a Unix−
client and connects to your private server.

UDP: Message Passing
Another kind of client−server setup is one that uses not connections, but messages. UDP commun
involve much lower overhead but also provide less reliability, as there are no promises that messag
arrive at all, let alone in order and unmangled. Still, UDP offers some advantages over TCP, including
able to "broadcast" or "multicast" to a whole bunch of destination hosts at once (usually on your
subnet). If you find yourself overly concerned about reliability and start building checks into your me
system, then you probably should just use TCP to start with.

Here‘s a UDP program similar to the sample Internet TCP client given above. However, instead of ch
one host at a time, the UDP version will check many of them asynchronously by simulating a multica
then using select() to do a timed−out wait for I/O. To do something similar with TCP, you‘d have to
a different socket handle for each host.

 #!/usr/bin/perl −w
 use strict;
 require 5.002;
 use Socket;
 use Sys::Hostname;

 my ($count, $hisiaddr, $hispaddr, $histime,
 $host, $iaddr, $paddr, $port, $proto,
 $rin, $rout, $rtime, $SECS_of_70_YEARS);

 $SECS_of_70_YEARS = 2208988800;

 $iaddr = gethostbyname(hostname());
198 Version 5.003 08−Oct−1996

perlipc Perl Programmers Reference Guide perlipc

wever,
ngst
 $proto = getprotobyname(’udp’);
 $port = getservbyname(’time’, ’udp’);
 $paddr = sockaddr_in(0, $iaddr); # 0 means let kernel pick

 socket(SOCKET, PF_INET, SOCK_DGRAM, $proto) || die "socket: $!";
 bind(SOCKET, $paddr) || die "bind: $!";

 $| = 1;
 printf "%−12s %8s %s\n", "localhost", 0, scalar localtime time;
 $count = 0;
 for $host (@ARGV) {

$count++;
$hisiaddr = inet_aton($host) || die "unknown host";
$hispaddr = sockaddr_in($port, $hisiaddr);
defined(send(SOCKET, 0, 0, $hispaddr)) || die "send $host: $!";

 }

 $rin = ’’;
 vec($rin, fileno(SOCKET), 1) = 1;

 # timeout after 10.0 seconds
 while ($count && select($rout = $rin, undef, undef, 10.0)) {

$rtime = ’’;
($hispaddr = recv(SOCKET, $rtime, 4, 0)) || die "recv: $!";
($port, $hisiaddr) = sockaddr_in($hispaddr);
$host = gethostbyaddr($hisiaddr, AF_INET);
$histime = unpack("N", $rtime) − $SECS_of_70_YEARS ;
printf "%−12s ", $host;
printf "%8d %s\n", $histime − time, scalar localtime($histime);
$count−−;

 }

SysV IPC
While System V IPC isn‘t so widely used as sockets, it still has some interesting uses. You can‘t, ho
effectively use SysV IPC or Berkeley mmap() to have shared memory so as to share a variable amo
several processes. That‘s because Perl would reallocate your string when you weren‘t wanting it to.

Here‘s a small example showing shared memory usage.

 $IPC_PRIVATE = 0;
 $IPC_RMID = 0;
 $size = 2000;
 $key = shmget($IPC_PRIVATE, $size , 0777);
 die unless defined $key;

 $message = "Message #1";
 shmwrite($key, $message, 0, 60) || die "$!";
 shmread($key,$buff,0,60) || die "$!";

 print $buff,"\n";

 print "deleting $key\n";
 shmctl($key ,$IPC_RMID, 0) || die "$!";

Here‘s an example of a semaphore:

 $IPC_KEY = 1234;
 $IPC_RMID = 0;
 $IPC_CREATE = 0001000;
 $key = semget($IPC_KEY, $nsems , 0666 | $IPC_CREATE);
08−Oct−1996 Version 5.003 199

perlipc Perl Programmers Reference Guide perlipc

 very
ld

 near

in this

to
 die if !defined($key);
 print "$key\n";

Put this code in a separate file to be run in more than one process. Call the file take:

 # create a semaphore

 $IPC_KEY = 1234;
 $key = semget($IPC_KEY, 0 , 0);
 die if !defined($key);

 $semnum = 0;
 $semflag = 0;

 # ’take’ semaphore
 # wait for semaphore to be zero
 $semop = 0;
 $opstring1 = pack("sss", $semnum, $semop, $semflag);

 # Increment the semaphore count
 $semop = 1;
 $opstring2 = pack("sss", $semnum, $semop, $semflag);
 $opstring = $opstring1 . $opstring2;

 semop($key,$opstring) || die "$!";

Put this code in a separate file to be run in more than one process. Call this file give:

 # ’give’ the semaphore
 # run this in the original process and you will see
 # that the second process continues

 $IPC_KEY = 1234;
 $key = semget($IPC_KEY, 0, 0);
 die if !defined($key);

 $semnum = 0;
 $semflag = 0;

 # Decrement the semaphore count
 $semop = −1;
 $opstring = pack("sss", $semnum, $semop, $semflag);

 semop($key,$opstring) || die "$!";

WARNING
The SysV IPC code above was written long ago, and it‘s definitely clunky looking. It should at the
least be made to use strict and require "sys/ipc.ph" . Better yet, perhaps someone shou
create an IPC::SysV module the way we have the Socket module for normal client−server
communications.

(... time passes)

Voila! Check out the IPC::SysV modules written by Jack Shirazi. You can find them at a CPAN store
you.

NOTES
If you are running under version 5.000 (dubious) or 5.001, you can still use most of the examples
document. You may have to remove the use strict and some of the my() statements for 5.000, and for
both you‘ll have to load in version 1.2 or older of the Socket.pm module, which is included in perl5.002.

Most of these routines quietly but politely return undef when they fail instead of causing your program
die right then and there due to an uncaught exception. (Actually, some of the new Socket conversion
200 Version 5.003 08−Oct−1996

perlipc Perl Programmers Reference Guide perlipc

ues of
to add

ercy of
tics for
riptors

o little

on

at and
elnet,
functions croak() on bad arguments.) It is therefore essential that you should check the return val
these functions. Always begin your socket programs this way for optimal success, and don‘t forget
−T taint checking flag to the pound−bang line for servers:

 #!/usr/bin/perl −w
 require 5.002;
 use strict;
 use sigtrap;
 use Socket;

BUGS
All these routines create system−specific portability problems. As noted elsewhere, Perl is at the m
your C libraries for much of its system behaviour. It‘s probably safest to assume broken SysV seman
signals and to stick with simple TCP and UDP socket operations; e.g. don‘t try to pass open file desc
over a local UDP datagram socket if you want your code to stand a chance of being portable.

Because few vendors provide C libraries that are safely re−entrant, the prudent programmer will d
else within a handler beyond die() to raise an exception and longjmp(3) out.

AUTHOR
Tom Christiansen, with occasional vestiges of Larry Wall‘s original version.

SEE ALSO
Besides the obvious functions in perlfunc, you should also check out the modules file at your nearest CPAN
site. (See perlmod or best yet, the Perl FAQ for a description of what CPAN is and where to get it.) Secti
5 of the modules file is devoted to "Networking, Device Control (modems) and Interprocess
Communication", and contains numerous unbundled modules numerous networking modules, Ch
Expect operations, CGI programming, DCE, FTP, IPC, NNTP, Proxy, Ptty, RPC, SNMP, SMTP, T
Threads, and ToolTalk—just to name a few.
08−Oct−1996 Version 5.003 201

perldebug Perl Programmers Reference Guide perldebug

e an
de, set
ou often
. For

nstead,
to the
 when

ing
tations,

een,
er, as

st
 not

hion.

ontrol
e
NAME
perldebug − Perl debugging

DESCRIPTION
First of all, have you tried using the −w switch?

The Perl Debugger
If you invoke Perl with the −d switch, your script runs under the Perl source debugger. This works lik
interactive Perl environment, prompting for debugger commands that let you examine source co
breakpoints, get stack backtraces, change the values of variables, etc. This is so convenient that y
fire up the debugger all by itself just to test out Perl constructs interactively to see what they do
example:

 perl −d −e 42

In Perl, the debugger is not a separate program as it usually is in the typical compiled environment. I
the −d flag tells the compiler to insert source information into the parse trees it‘s about to hand off
interpreter. That means your code must first compile correctly for the debugger to work on it. Then
the interpreter starts up, it pre−loads a Perl library file containing the debugger itself.

The program will halt right before the first run−time executable statement (but see below regard
compile−time statements) and ask you to enter a debugger command. Contrary to popular expec
whenever the debugger halts and shows you a line of code, it always displays the line it‘s about to execute,
rather than the one it has just executed.

Any command not recognized by the debugger is directly executed (eval ‘d) as Perl code in the current
package. (The debugger uses the DB package for its own state information.)

Leading white space before a command would cause the debugger to think it‘s NOT a debugger command
but for Perl, so be careful not to do that.

Debugger Commands
The debugger understands the following commands:

h [command] Prints out a help message.

If you supply another debugger command as an argument to the h command, it prints out
the description for just that command. The special argument of h h produces a more
compact help listing, designed to fit together on one screen.

If the output the h command (or any command, for that matter) scrolls past your scr
either precede the command with a leading pipe symbol so it‘s run through your pag
in

 DB> |h

p expr Same as print DB::OUT expr in the current package. In particular, since this is ju
Perl‘s own print function, this means that nested data structures and objects are
dumped, unlike with the x command.

x expr Evals its expression in list context and dumps out the result in a pretty−printed fas
Nested data structures are printed out recursively, unlike the print function.

V [pkg [vars]] Display all (or some) variables in package (defaulting to the main package) using a data
pretty−printer (hashes show their keys and values so you see what‘s what, c
characters are made printable, etc.). Make sure you don‘t put the type specifier (lik$)
there, just the symbol names, like this:

 V DB filename line

Use ~pattern and !pattern for positive and negative regexps.
202 Version 5.003 08−Oct−1996

perldebug Perl Programmers Reference Guide perldebug

g into
ll be

ent.
Nested data structures are printed out in a legible fashion, unlike the print function.

X [vars] Same as V currentpackage [vars] .

T Produce a stack backtrace. See below for details on its output.

s [expr] Single step. Executes until it reaches the beginning of another statement, descendin
subroutine calls. If an expression is supplied that includes function calls, it too wi
single−stepped.

n Next. Executes over subroutine calls, until it reaches the beginning of the next statem

<CR> Repeat last n or s command.

c [line] Continue, optionally inserting a one−time−only breakpoint at the specified line.

l List next window of lines.

l min+incr List incr+1 lines starting at min .

l min−max List lines min through max.

l line List a single line.

l subname List first window of lines from subroutine.

− List previous window of lines.

w [line] List window (a few lines) around the current line.

. Return debugger pointer to the last−executed line and print it out.

f filename Switch to viewing a different file.

/pattern/ Search forwards for pattern; final / is optional.

?pattern? Search backwards for pattern; final ? is optional.

L List all breakpoints and actions for the current file.

S [[!]pattern] List subroutine names [not] matching pattern.

t Toggle trace mode.

t expr Trace through execution of expr. For example:

 $ perl −de 42
 Stack dump during die enabled outside of evals.

 Loading DB routines from perl5db.pl patch level 0.94
 Emacs support available.

 Enter h or ‘h h’ for help.

 main::(−e:1): 0
 DB<1> sub foo { 14 }

 DB<2> sub bar { 3 }

 DB<3> t print foo() * bar()
 main::((eval 172):3): print foo() + bar();
 main::foo((eval 168):2):
 main::bar((eval 170):2):
 42
 DB<4> q
08−Oct−1996 Version 5.003 203

perldebug Perl Programmers Reference Guide perldebug

o be
d and
lines

n the

 by the

ptions

hese

ning
b [line] [condition]
Set a breakpoint. If line is omitted, sets a breakpoint on the line that is about t
executed. If a condition is specified, it‘s evaluated each time the statement is reache
a breakpoint is taken only if the condition is true. Breakpoints may only be set on
that begin an executable statement. Conditions don‘t use if :

 b 237 $x > 30
 b 33 /pattern/i

b subname [condition]
Set a breakpoint at the first line of the named subroutine.

d [line] Delete a breakpoint at the specified line. If line is omitted, deletes the breakpoint o
line that is about to be executed.

D Delete all installed breakpoints.

a [line] command
Set an action to be done before the line is executed. The sequence of steps taken
debugger is

1 check for a breakpoint at this line

2 print the line if necessary (tracing)

3 do any actions associated with that line

4 prompt user if at a breakpoint or in single−step

5 evaluate line

For example, this will print out $foo every time line 53 is passed:

 a 53 print "DB FOUND $foo\n"

A Delete all installed actions.

O [opt[=val]] [opt"val"] [opt?]...
Set or query values of options. val defaults to 1. opt can be abbreviated. Several o
can be listed.

recallCommand, ShellBang
The characters used to recall command or spawn shell. By default, t
are both set to ! .

pager Program to use for output of pager−piped commands (those begin
with a | character.) By default, $ENV{PAGER} will be used.

The following options affect what happens with V, X, and x commands:

arrayDepth, hashDepth
Print only first N elements (‘’ for all).

compactDump, veryCompact
Change style of array and hash dump.

globPrint Whether to print contents of globs.

DumpDBFiles Dump arrays holding debugged files.

DumpPackages
Dump symbol tables of packages.
204 Version 5.003 08−Oct−1996

perldebug Perl Programmers Reference Guide perldebug

d on

h

 the

y be

rn to
es.

umber

is,

,

quote, HighBit, undefPrint
Change style of string dump.

tkRunning Run Tk while prompting (with ReadLine).

signalLevel, warnLevel. dieLevel
Level of verbosity.

The option PrintRet affects printing of return value after r command, The option
frame affects printing messages on entry and exit from subroutines. If frame is 1,
messages are printed on entry only; if it‘s set to more than that, they‘ll will be printe
exit as well, which may be useful if interdispersed with other messages.

During startup options are initialized from $ENV{PERLDB_OPTS}. You can put
additional initialization options TTY, noTTY, ReadLine , and NonStop there. Here‘s
an example of using the $ENV{PERLDB_OPTS} variable:

 $ PERLDB_OPTS="N f=2" perl −d myprogram

will run the script myprogram without human intervention, printing out the call tree wit
entry and exit points. Note that N f=2 is equivalent to NonStop=1 frame=2 . Note
also that at the moment when this documentation was written all the options to
debugger could be uniquely abbreviated by the first letter.

See "Debugger Internals" below for more details.

< command Set an action to happen before every debugger prompt. A multiline command ma
entered by backslashing the newlines.

> command Set an action to happen after the prompt when you‘ve just given a command to retu
executing the script. A multiline command may be entered by backslashing the newlin

! number Redo a previous command (default previous command).

! −number Redo number‘th−to−last command.

! pattern Redo last command that started with pattern. See O recallCommand , too.

!! cmd Run cmd in a subprocess (reads from DB::IN, writes to DB::OUT) See O shellBang
too.

H −number Display last n commands. Only commands longer than one character are listed. If n
is omitted, lists them all.

q or ^D Quit. ("quit" doesn‘t work for this.)

R Restart the debugger by execing a new session. It tries to maintain your history across th
but internal settings and command line options may be lost.

|dbcmd Run debugger command, piping DB::OUT to current pager.

||dbcmd Same as |dbcmd but DB::OUT is temporarily selected as well. Often used with
commands that would otherwise produce long output, such as

 |V main

= [alias value] Define a command alias, or list current aliases.

command Execute command as a Perl statement. A missing semicolon will be supplied.

p expr Same as print DB::OUT expr . The DB::OUT filehandle is opened to /dev/tty
regardless of where STDOUT may be redirected to.

The debugger prompt is something like
08−Oct−1996 Version 5.003 205

perldebug Perl Programmers Reference Guide perldebug

 depth
akpoint

u may
mple:

ger.

et you

n

n
r is not

ed

s

,

 DB<8>

or even

 DB<<17>>

where that number is the command number, which you‘d use to access with the built−in csh−like history
mechanism, e.g. !17 would repeat command number 17. The number of angle brackets indicates the
of the debugger. You could get more than one set of brackets, for example, if you‘d already at a bre
and then printed out the result of a function call that itself also has a breakpoint.

If you want to enter a multi−line command, such as a subroutine definition with several statements, yo
escape the newline that would normally end the debugger command with a backslash. Here‘s an exa

 DB<1> for (1..4) { \
 cont: print "ok\n"; \
 cont: }
 ok
 ok
 ok
 ok

Note that this business of escaping a newline is specific to interactive commands typed into the debug

Here‘s an example of what a stack backtrace might look like:

 $ = main::infested called from file ‘Ambulation.pm’ line 10
 @ = Ambulation::legs(1, 2, 3, 4) called from file ‘camel_flea’ line 7
 $ = main::pests(’bactrian’, 4) called from file ‘camel_flea’ line 4

The left−hand character up there tells whether the function was called in a scalar or list context (we b
can tell which is which). What that says is that you were in the function main::infested when you ran
the stack dump, and that it was called in a scalar context from line 10 of the file Ambulation.pm, but without
any arguments at all, meaning it was called as &infested. The next stack frame shows that the functio
Ambulation::legs was called in a list context from the camel_flea file with four arguments. The last
stack frame shows that main::pests was called in a scalar context, also from camel_flea, but from line 4.

If you have any compile−time executable statements (code within a BEGIN block or a use statement), these
will NOT be stopped by debugger, although require s will. From your own Perl code, however, you ca
transfer control back to the debugger using the following statement, which is harmless if the debugge
running:

 $DB::single = 1;

If you set $DB::single to the value 2, it‘s equivalent to having just typed the n command, whereas a
value of 1 means the s command. The $DB::trace variable should be set to 1 to simulate having typ
the t command.

Debugger Customization
If you want to modify the debugger, copy perl5db.pl from the Perl library to another name and modify it a
necessary. You‘ll also want to set your PERL5DB environment variable to say something like this:

 BEGIN { require "myperl5db.pl" }

You can do some customization by setting up a .perldb file which contains initialization code. For instance
you could make aliases like these (the last one is one people expect to be there):

 $DB::alias{’len’} = ’s/^len(.*)/p length($1)/’;
 $DB::alias{’stop’} = ’s/^stop (at|in)/b/’;
 $DB::alias{’ps’} = ’s/^ps\b/p scalar /’;
 $DB::alias{’quit’} = ’s/^quit(\s*)/exit\$/’;
206 Version 5.003 08−Oct−1996

perldebug Perl Programmers Reference Guide perldebug

mation
 will

 an

ds

but

nd a

ted

your

ich is

uch as
r‘s

).
) is

 rest of
Readline Support
As shipped, the only command line history supplied is a simplistic one that checks for leading excla
points. However, if you install the Term::ReadKey and Term::ReadLine modules from CPAN, you
have full editing capabilities much like GNU readline(3) provides. Look for these in the
modules/by−module/Term directory on CPAN.

Editor Support for Debugging
If you have GNU emacs installed on your system, it can interact with the Perl debugger to provide
integrated software development environment reminiscent of its interactions with C debuggers.

Perl is also delivered with a start file for making emacs act like a syntax−directed editor that understan
(some of) Perl‘s syntax. Look in the emacs directory of the Perl source distribution.

(Historically, a similar setup for interacting with vi and the X11 window system had also been available,
at the time of this writing, no debugger support for vi currently exists.)

The Perl Profiler
If you wish to supply an alternative debugger for Perl to run, just invoke your script with a colon a
package argument given to the −d flag. One of the most popular alternative debuggers for Perl is DProf, the
Perl profiler. As of this writing, DProf is not included with the standard Perl distribution, but it is expec
to be included soon, for certain values of "soon".

Meanwhile, you can fetch the Devel::Dprof module from CPAN. Assuming it‘s properly installed on
system, to profile your Perl program in the file mycode.pl, just type:

 perl −d:DProf mycode.pl

When the script terminates the profiler will dump the profile information to a file called tmon.out. A tool
like dprofpp (also supplied with the Devel::DProf package) can be used to interpret the information wh
in that profile.

Debugger Internals
When you call the caller function from package DB, Perl sets the @DB::args array to contain the
arguments that stack frame was called with. It also maintains other magical internal variables, s
@DB::dbline , an array of the source code lines for the currently selected (with the debuggef
command) file. Perl effectively inserts a call to the function DB::DB (linenum) in front of every place that
can have a breakpoint. Instead of a subroutine call it calls DB::sub setting $DB::sub being the called
subroutine. It also inserts a BEGIN {require ‘perl5db.pl‘} before the first line.

Note that no subroutine call is possible until &DB::sub is defined (for subroutines defined outside this file
 In fact, the same is true if $DB::deep (how many levels of recursion deep into the debugger you are
not defined.

At the start, the debugger reads your rc file (./.perldb or ~/.perldb under UNIX), which can set important
options. This file may define a subroutine &afterinit to be executed after the debugger is initialized.

After the rc file is read, the debugger reads environment variable PERLDB_OPTS and parses it as a
O ... line in debugger prompt.

The following options can only be specified at startup. To set them in your rc file, call
&parse_options("optionName=new_value").

TTY The TTY to use for debugging I/O.

noTTY If set, goes in NonStop mode. On interrupt if TTY is not set uses the value of noTTY or
"/tmp/perldbtty$$" to find TTY using Term::Rendezvous . Current variant is to have
the name of TTY in this file.

ReadLine If false, dummy ReadLine is used, so you can debug ReadLine applications.
08−Oct−1996 Version 5.003 207

perldebug Perl Programmers Reference Guide perldebug

sage

ile

y Perl,
NonStop If true, no I/O is performed until an interrupt.

LineInfo File or pipe to print line number info to. If it is a pipe, then a short, "emacs like" mes
is used.

Example rc file:

 &parse_options("NonStop=1 LineInfo=db.out");
 sub afterinit { $trace = 1; }

The script will run without human intervention, putting trace information into the f
db.out. (If you interrupt it, you would better reset LineInfo to something "interactive"!)

Other resources
You did try the −w switch, didn‘t you?

BUGS
If your program exit() s or die() s, so too does the debugger.

You cannot get the stack frame information or otherwise debug functions that were not compiled b
such as C or C++ extensions.

If you alter your @_ arguments in a subroutine (such as with shift or pop, the stack backtrace will not show
the original values.
208 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

g
 See

at. Note

 with a

 to the
ill still

. See

e. See

 loses

into a

an its
ould
NAME
perldiag − various Perl diagnostics

DESCRIPTION
These messages are classified as follows (listed in increasing order of desperation):

 (W) A warning (optional).
 (D) A deprecation (optional).
 (S) A severe warning (mandatory).
 (F) A fatal error (trappable).
 (P) An internal error you should never see (trappable).
 (X) A very fatal error (non−trappable).
 (A) An alien error message (not generated by Perl).

Optional warnings are enabled by using the −w switch. Warnings may be captured by settin
$SIG{__WARN__} to a reference to a routine that will be called on each warning instead of printing it.
perlvar. Trappable errors may be trapped using the eval operator. See eval.

Some of these messages are generic. Spots that vary are denoted with a %s, just as in a printf form
that some messages start with a %s! The symbols "%−?@ sort before the letters, while [and \ sort after.

"my" variable %s can‘t be in a package
(F) Lexically scoped variables aren‘t in a package, so it doesn‘t make sense to try to declare one
package qualifier on the front. Use local() if you want to localize a package variable.

"my" variable %s masks earlier declaration in same scope
(S) A lexical variable has been redeclared in the same scope, effectively eliminating all access
previous instance. This is almost always a typographical error. Note that the earlier variable w
exist until the end of the scope or until all closure referents to it are destroyed.

"no" not allowed in expression
(F) The "no" keyword is recognized and executed at compile time, and returns no useful value
perlmod.

"use" not allowed in expression
(F) The "use" keyword is recognized and executed at compile time, and returns no useful valu
perlmod.

% may only be used in unpack
(F) You can‘t pack a string by supplying a checksum, since the checksumming process
information, and you can‘t go the other way. See unpack.

%s (...) interpreted as function
(W) You‘ve run afoul of the rule that says that any list operator followed by parentheses turns
function, with all the list operators arguments found inside the parens. See
Terms and List Operators (Leftward).

%s argument is not a HASH element
(F) The argument to delete() or exists() must be a hash element, such as

 $foo{$bar}
 $ref−>[12]−>{"susie"}

%s did not return a true value
(F) A required (or used) file must return a true value to indicate that it compiled correctly and r
initialization code correctly. It‘s traditional to end such a file with a "1;", though any true value w
do. See require.
08−Oct−1996 Version 5.003 209

perldiag Perl Programmers Reference Guide perldiag

 a term
at an

s would

idn‘t

ly have

ly

ly

ly

 line,

a race

tdio.

 See

d. See
%s found where operator expected
(S) The Perl lexer knows whether to expect a term or an operator. If it sees what it knows to be
when it was expecting to see an operator, it gives you this warning. Usually it indicates th
operator or delimiter was omitted, such as a semicolon.

%s had compilation errors.
(F) The final summary message when a perl −c fails.

%s has too many errors.
(F) The parser has given up trying to parse the program after 10 errors. Further error message
likely be uninformative.

%s matches null string many times
(W) The pattern you‘ve specified would be an infinite loop if the regular expression engine d
specifically check for that. See perlre.

%s never introduced
(S) The symbol in question was declared but somehow went out of scope before it could possib
been used.

%s syntax OK
(F) The final summary message when a perl −c succeeds.

%s: Command not found.
(A) You‘ve accidentally run your script through csh instead of Perl. Check the <#!> line, or manual
feed your script into Perl yourself.

%s: Expression syntax.
(A) You‘ve accidentally run your script through csh instead of Perl. Check the <#!> line, or manual
feed your script into Perl yourself.

%s: Undefined variable.
(A) You‘ve accidentally run your script through csh instead of Perl. Check the <#!> line, or manual
feed your script into Perl yourself.

%s: not found
(A) You‘ve accidentally run your script through the Bourne shell instead of Perl. Check the <#!>
or manually feed your script into Perl yourself.

−P not allowed for setuid/setgid script
(F) The script would have to be opened by the C preprocessor by name, which provides
condition that breaks security.

−T and −B not implemented on filehandles
(F) Perl can‘t peek at the stdio buffer of filehandles when it doesn‘t know about your kind of s
You‘ll have to use a filename instead.

500 Server error
See Server error.

?+* follows nothing in regexp
(F) You started a regular expression with a quantifier. Backslash it if you meant it literally.
perlre.

@ outside of string
(F) You had a pack template that specified an absolute position outside the string being unpacke
pack.
210 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

f your

 easy

ments

instead.

ated.

lars or

it. An

at

overed
d. This

ry has
accept() on closed fd
(W) You tried to do an accept on a closed socket. Did you forget to check the return value o
socket() call? See accept.

Allocation too large: %lx
(F) You can‘t allocate more than 64K on an MSDOS machine.

Arg too short for msgsnd
(F) msgsnd() requires a string at least as long as sizeof(long).

Ambiguous use of %s resolved as %s
(W)(S) You said something that may not be interpreted the way you thought. Normally it‘s pretty
to disambiguate it by supplying a missing quote, operator, paren pair or declaration.

Args must match #! line
(F) The setuid emulator requires that the arguments Perl was invoked with match the argu
specified on the #! line.

Argument "%s" isn‘t numeric
(W) The indicated string was fed as an argument to an operator that expected a numeric value
If you‘re fortunate the message will identify which operator was so unfortunate.

Array @%s missing the @ in argument %d of %s()
(D) Really old Perl let you omit the @ on array names in some spots. This is now heavily deprec

assertion botched: %s
(P) The malloc package that comes with Perl had an internal failure.

Assertion failed: file "%s"
(P) A general assertion failed. The file in question must be examined.

Assignment to both a list and a scalar
(F) If you assign to a conditional operator, the 2nd and 3rd arguments must either both be sca
both be lists. Otherwise Perl won‘t know which context to supply to the right side.

Attempt to free non−arena SV: 0x%lx
(P) All SV objects are supposed to be allocated from arenas that will be garbage collected on ex
SV was discovered to be outside any of those arenas.

Attempt to free temp prematurely
(W) Mortalized values are supposed to be freed by the free_tmps() routine. This indicates that
something else is freeing the SV before the free_tmps() routine gets a chance, which means th
the free_tmps() routine will be freeing an unreferenced scalar when it does try to free it.

Attempt to free unreferenced glob pointers
(P) The reference counts got screwed up on symbol aliases.

Attempt to free unreferenced scalar
(W) Perl went to decrement the reference count of a scalar to see if it would go to 0, and disc
that it had already gone to 0 earlier, and should have been freed, and in fact, probably was free
could indicate that SvREFCNT_dec() was called too many times, or that SvREFCNT_inc() was
called too few times, or that the SV was mortalized when it shouldn‘t have been, or that memo
been corrupted.

Attempt to use reference as lvalue in substr
(W) You supplied a reference as the first argument to substr() used as an lvalue, which is pretty
strange. Perhaps you forgot to dereference it first. See substr.
08−Oct−1996 Version 5.003 211

perldiag Perl Programmers Reference Guide perldiag

 *) and

andle

l. In

.

ntry.

ly

stops

 your

y bitty
as a
 inner
Bad arg length for %s, is %d, should be %d
(F) You passed a buffer of the wrong size to one of msgctl() , semctl() or shmctl() . In C
parlance, the correct sizes are, respectively, sizeof(struct msqid_ds *), sizeof(struct semid_ds
sizeof(struct shmid_ds *).

Bad associative array
(P) One of the internal hash routines was passed a null HV pointer.

Bad filehandle: %s
(F) A symbol was passed to something wanting a filehandle, but the symbol has no fileh
associated with it. Perhaps you didn‘t do an open() , or did it in another package.

Bad free() ignored
(S) An internal routine called free() on something that had never been malloc() ed in the first
place.

Bad name after %s::
(F) You started to name a symbol by using a package prefix, and then didn‘t finish the symbo
particular, you can‘t interpolate outside of quotes, so

 $var = ’myvar’;
 $sym = mypack::$var;

is not the same as

 $var = ’myvar’;
 $sym = "mypack::$var";

Bad symbol for array
(P) An internal request asked to add an array entry to something that wasn‘t a symbol table entry

Bad symbol for filehandle
(P) An internal request asked to add a filehandle entry to something that wasn‘t a symbol table e

Bad symbol for hash
(P) An internal request asked to add a hash entry to something that wasn‘t a symbol table entry.

Badly placed () ‘s
(A) You‘ve accidentally run your script through csh instead of Perl. Check the <#!> line, or manual
feed your script into Perl yourself.

BEGIN failed—compilation aborted
(F) An untrapped exception was raised while executing a BEGIN subroutine. Compilation
immediately and the interpreter is exited.

bind() on closed fd
(W) You tried to do a bind on a closed socket. Did you forget to check the return value of
socket() call? See bind.

Bizarre copy of %s in %s
(P) Perl detected an attempt to copy an internal value that is not copiable.

Callback called exit
(F) A subroutine invoked from an external package via perl_call_sv() exited by calling exit.

Can‘t "last" outside a block
(F) A "last" statement was executed to break out of the current block, except that there‘s this itt
problem called there isn‘t a current block. Note that an "if" or "else" block doesn‘t count
"loopish" block. You can usually double the curlies to get the same effect though, since the
212 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

. Note
es to
e

 Note
es to
e

s. See

ified

ut that

 the
sn‘t an

 name
it‘s null?)

ly

 stop

 stop
curlies will be considered a block that loops once. See last.

Can‘t "next" outside a block
(F) A "next" statement was executed to reiterate the current block, but there isn‘t a current block
that an "if" or "else" block doesn‘t count as a "loopish" block. You can usually double the curli
get the same effect though, since the inner curlies will be considered a block that loops once. Selast.

Can‘t "redo" outside a block
(F) A "redo" statement was executed to restart the current block, but there isn‘t a current block.
that an "if" or "else" block doesn‘t count as a "loopish" block. You can usually double the curli
get the same effect though, since the inner curlies will be considered a block that loops once. Selast.

Can‘t bless non−reference value
(F) Only hard references may be blessed. This is how Perl "enforces" encapsulation of object
perlobj.

Can‘t break at that line
(S) A warning intended for while running within the debugger, indicating the line number spec
wasn‘t the location of a statement that could be stopped at.

Can‘t call method "%s" in empty package "%s"
(F) You called a method correctly, and it correctly indicated a package functioning as a class, b
package doesn‘t have ANYTHING defined in it, let alone methods. See perlobj.

Can‘t call method "%s" on unblessed reference
(F) A method call must know what package it‘s supposed to run in. It ordinarily finds this out from
object reference you supply, but you didn‘t supply an object reference in this case. A reference i
object reference until it has been blessed. See perlobj.

Can‘t call method "%s" without a package or object reference
(F) You used the syntax of a method call, but the slot filled by the object reference or package
contains an expression that returns neither an object reference nor a package name. (Perhaps
Something like this will reproduce the error:

 $BADREF = undef;
 process $BADREF 1,2,3;
 $BADREF−>process(1,2,3);

Can‘t chdir to %s
(F) You called perl −x/foo/bar , but /foo/bar is not a directory that you can chdir to, possib
because it doesn‘t exist.

Can‘t coerce %s to integer in %s
(F) Certain types of SVs, in particular real symbol table entries (type GLOB), can‘t be forced to
being what they are. So you can‘t say things like:

 *foo += 1;

You CAN say

 $foo = *foo;
 $foo += 1;

but then $foo no longer contains a glob.

Can‘t coerce %s to number in %s
(F) Certain types of SVs, in particular real symbol table entries (type GLOB), can‘t be forced to
being what they are.
08−Oct−1996 Version 5.003 213

perldiag Perl Programmers Reference Guide perldiag

 stop

bing

t have

ut still

as

uldn‘t
resides
k the

ething

ind of

the
asn‘t

e #!
ystem
Can‘t coerce %s to string in %s
(F) Certain types of SVs, in particular real symbol table entries (type GLOB), can‘t be forced to
being what they are.

Can‘t create pipe mailbox
(P) An error peculiar to VMS. The process is suffering from exhausted quotas or other plum
problems.

Can‘t declare %s in my
(F) Only scalar, array and hash variables may be declared as lexical variables. They mus
ordinary identifiers as names.

Can‘t do inplace edit on %s: %s
(S) The creation of the new file failed for the indicated reason.

Can‘t do inplace edit without backup
(F) You‘re on a system such as MSDOS that gets confused if you try reading from a deleted (b
opened) file. You have to say −i.bak , or some such.

Can‘t do inplace edit: %s > 14 characters
(S) There isn‘t enough room in the filename to make a backup name for the file.

Can‘t do inplace edit: %s is not a regular file
(S) You tried to use the −i switch on a special file, such as a file in /dev, or a FIFO. The file w
ignored.

Can‘t do setegid!
(P) The setegid() call failed for some reason in the setuid emulator of suidperl.

Can‘t do seteuid!
(P) The setuid emulator of suidperl failed for some reason.

Can‘t do setuid
(F) This typically means that ordinary perl tried to exec suidperl to do setuid emulation, but co
exec it. It looks for a name of the form sperl5.000 in the same directory that the perl executable
under the name perl5.000, typically /usr/local/bin on Unix machines. If the file is there, chec
execute permissions. If it isn‘t, ask your sysadmin why he and/or she removed it.

Can‘t do waitpid with flags
(F) This machine doesn‘t have either waitpid() or wait4() , so only waitpid() without flags
is emulated.

Can‘t do {n,m} with n > m
(F) Minima must be less than or equal to maxima. If you really want your regexp to match som
0 times, just put {0}. See perlre.

Can‘t emulate −%s on #! line
(F) The #! line specifies a switch that doesn‘t make sense at this point. For example, it‘d be k
silly to put a −x on the #! line.

Can‘t exec "%s": %s
(W) An system() , exec() or piped open call could not execute the named program for
indicated reason. Typical reasons include: the permissions were wrong on the file, the file w
found in $ENV{PATH}, the executable in question was compiled for another architecture, or th
line in a script points to an interpreter that can‘t be run for similar reasons. (Or maybe your s
doesn‘t support #! at all.)
214 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

id. If

t not

er was
is:

 under
name,
count.
sses it,
g the
equent
ing
, just to

f some

e for

,

t can‘t
AD

‘t
bol

 "my".
h the
Can‘t exec %s
(F) Perl was trying to execute the indicated program for you because that‘s what the #! line sa
that‘s not what you wanted, you may need to mention "perl" on the #! line somewhere.

Can‘t execute %s
(F) You used the −S switch, but the script to execute could not be found in the PATH, or at leas
with the correct permissions.

Can‘t find label %s
(F) You said to goto a label that isn‘t mentioned anywhere that it‘s possible for us to go to. See goto.

Can‘t find string terminator %s anywhere before EOF
(F) Perl strings can stretch over multiple lines. This message means that the closing delimit
omitted. Since bracketed quotes count nesting levels, the following is missing its final parenthes

 print q(The character ’(’ starts a side comment.)

Can‘t fork
(F) A fatal error occurred while trying to fork while opening a pipeline.

Can‘t get filespec − stale stat buffer?
(S) A warning peculiar to VMS. This arises because of the difference between access checks
VMS and under the Unix model Perl assumes. Under VMS, access checks are done by file
rather than by bits in the stat buffer, so that ACLs and other protections can be taken into ac
Unfortunately, Perl assumes that the stat buffer contains all the necessary information, and pa
instead of the filespec, to the access checking routine. It will try to retrieve the filespec usin
device name and FID present in the stat buffer, but this works only if you haven‘t made a subs
call to the CRTL stat() routine, since the device name is overwritten with each call. If this warn
appears, the name lookup failed, and the access checking routine gave up and returned FALSE
be conservative. (Note: The access checking routine knows about the Perl stat operator and file
tests, so you shouldn‘t ever see this warning in response to a Perl command; it arises only i
internal code takes stat buffers lightly.)

Can‘t get pipe mailbox device name
(P) An error peculiar to VMS. After creating a mailbox to act as a pipe, Perl can‘t retrieve its nam
later use.

Can‘t get SYSGEN parameter value for MAXBUF
(P) An error peculiar to VMS. Perl asked $GETSYI how big you want your mailbox buffers to be
and didn‘t get an answer.

Can‘t goto subroutine outside a subroutine
(F) The deeply magical "goto subroutine" call can only replace one subroutine call for another. I
manufacture one out of whole cloth. In general you should only be calling it out of an AUTOLO
routine anyway. See goto.

Can‘t localize a reference
(F) You said something like local $$ref, which is not allowed because the compiler can
determine whether $ref will end up pointing to anything with a symbol table entry, and a sym
table entry is necessary to do a local.

Can‘t localize lexical variable %s
(F) You used local on a variable name that was previously declared as a lexical variable using
This is not allowed. If you want to localize a package variable of the same name, qualify it wit
package name.
08−Oct−1996 Version 5.003 215

perldiag Perl Programmers Reference Guide perldiag

ed in
ary is,
ame of

ut that

ith an

e you

al
 a file

e file

e file

e file

 pipe

rite
Can‘t locate %s in @INC
(F) You said to do (or require, or use) a file that couldn‘t be found in any of the libraries mention
@INC. Perhaps you need to set the PERL5LIB environment variable to say where the extra libr
or maybe the script needs to add the library name to @INC. Or maybe you just misspelled the n
the file. See require.

Can‘t locate object method "%s" via package "%s"
(F) You called a method correctly, and it correctly indicated a package functioning as a class, b
package doesn‘t define that particular method, nor does any of its base classes. See perlobj.

Can‘t locate package %s for @%s::ISA
(W) The @ISA array contained the name of another package that doesn‘t seem to exist.

Can‘t mktemp()
(F) The mktemp() routine failed for some reason while trying to process a −e switch. Maybe your
/tmp partition is full, or clobbered.

Can‘t modify %s in %s
(F) You aren‘t allowed to assign to the item indicated, or otherwise try to change it, such as w
autoincrement.

Can‘t modify non−existent substring
(P) The internal routine that does assignment to a substr() was handed a NULL.

Can‘t msgrcv to readonly var
(F) The target of a msgrcv must be modifiable in order to be used as a receive buffer.

Can‘t open %s: %s
(S) An inplace edit couldn‘t open the original file for the indicated reason. Usually this is becaus
don‘t have read permission for the file.

Can‘t open bidirectional pipe
(W) You tried to say open(CMD, "|cmd|") , which is not supported. You can try any of sever
modules in the Perl library to do this, such as "open2.pl". Alternately, direct the pipe‘s output to
using ">", and then read it in under a different file handle.

Can‘t open error file %s as stderr
(F) An error peculiar to VMS. Perl does its own command line redirection, and couldn‘t open th
specified after ‘2>’ or ‘2>>’ on the command line for writing.

Can‘t open input file %s as stdin
(F) An error peculiar to VMS. Perl does its own command line redirection, and couldn‘t open th
specified after ‘<’ on the command line for reading.

Can‘t open output file %s as stdout
(F) An error peculiar to VMS. Perl does its own command line redirection, and couldn‘t open th
specified after ‘>’ or ‘>>’ on the command line for writing.

Can‘t open output pipe (name: %s)
(P) An error peculiar to VMS. Perl does its own command line redirection, and couldn‘t open the
into which to send data destined for stdout.

Can‘t open perl script "%s": %s
(F) The script you specified can‘t be opened for the indicated reason.

Can‘t rename %s to %s: %s, skipping file
(S) The rename done by the −i switch failed for some reason, probably because you don‘t have w
permission to the directory.
216 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

inary

 call to

re‘s a

 it‘s
ure.

d kind
d. This

ing to

ariable.

eeded.
Can‘t reopen input pipe (name: %s) in binary mode
(P) An error peculiar to VMS. Perl thought stdin was a pipe, and tried to reopen it to accept b
data. Alas, it failed.

Can‘t reswap uid and euid
(P) The setreuid() call failed for some reason in the setuid emulator of suidperl.

Can‘t return outside a subroutine
(F) The return statement was executed in mainline code, that is, where there was no subroutine
return out of. See perlsub.

Can‘t stat script "%s"
(P) For some reason you can‘t fstat() the script even though you have it open already. Bizarre.

Can‘t swap uid and euid
(P) The setreuid() call failed for some reason in the setuid emulator of suidperl.

Can‘t take log of %g
(F) Logarithms are only defined on positive real numbers.

Can‘t take sqrt of %g
(F) For ordinary real numbers, you can‘t take the square root of a negative number. The
Complex package available for Perl, though, if you really want to do that.

Can‘t undef active subroutine
(F) You can‘t undefine a routine that‘s currently running. You can, however, redefine it while
running, and you can even undef the redefined subroutine while the old routine is running. Go fig

Can‘t unshift
(F) You tried to unshift an "unreal" array that can‘t be unshifted, such as the main Perl stack.

Can‘t untie: %d inner references still exist
(F) With "use strict untie" in effect, a copy of the object returned from tie (or tied) was still valid
when untie was called.

Can‘t upgrade that kind of scalar
(P) The internal sv_upgrade routine adds "members" to an SV, making it into a more specialize
of SV. The top several SV types are so specialized, however, that they cannot be interconverte
message indicates that such a conversion was attempted.

Can‘t upgrade to undef
(P) The undefined SV is the bottom of the totem pole, in the scheme of upgradability. Upgrad
undef indicates an error in the code calling sv_upgrade.

Can‘t use "my %s" in sort comparison
(F) The global variables $a and $b are reserved for sort comparisons. You mentioned $a or $b in the
same line as the <=> or cmp operator, and the variable had earlier been declared as a lexical v
Either qualify the sort variable with the package name, or rename the lexical variable.

Can‘t use %s for loop variable
(F) Only a simple scalar variable may be used as a loop variable on a foreach.

Can‘t use %s ref as %s ref
(F) You‘ve mixed up your reference types. You have to dereference a reference of the type n
You can use the ref() function to test the type of the reference, if need be.
08−Oct−1996 Version 5.003 217

perldiag Perl Programmers Reference Guide perldiag

gument.
rt of a
ts out

is helps

se the
dibly

rackets

, which
t that.

stants

f your

Can‘t use \1 to mean $1 in expression
(W) In an ordinary expression, backslash is a unary operator that creates a reference to its ar
The use of backslash to indicate a backreference to a matched substring is only valid as pa
regular expression pattern. Trying to do this in ordinary Perl code produces a value that prin
looking like SCALAR(0xdecaf). Use the $1 form instead.

Can‘t use string ("%s") as %s ref while "strict refs" in use
(F) Only hard references are allowed by "strict refs". Symbolic references are disallowed. See perlref.

Can‘t use an undefined value as %s reference
(F) A value used as either a hard reference or a symbolic reference must be a defined value. Th
to de−lurk some insidious errors.

Can‘t use global %s in "my"
(F) You tried to declare a magical variable as a lexical variable. This is not allowed, becau
magic can only be tied to one location (namely the global variable) and it would be incre
confusing to have variables in your program that looked like magical variables but weren‘t.

Can‘t use subscript on %s
(F) The compiler tried to interpret a bracketed expression as a subscript. But to the left of the b
was an expression that didn‘t look like an array reference, or anything else subscriptable.

Can‘t write to temp file for −e: %s
(F) The write routine failed for some reason while trying to process a −e switch. Maybe your /tmp
partition is full, or clobbered.

Can‘t x= to readonly value
(F) You tried to repeat a constant value (often the undefined value) with an assignment operator
implies modifying the value itself. Perhaps you need to copy the value to a temporary, and repea

Cannot open temporary file
(F) The create routine failed for some reason while trying to process a −e switch. Maybe your /tmp
partition is full, or clobbered.

chmod: mode argument is missing initial 0
(W) A novice will sometimes say

 chmod 777, $filename

not realizing that 777 will be interpreted as a decimal number, equivalent to 01411. Octal con
are introduced with a leading 0 in Perl, as in C.

Close on unopened file <%s>
(W) You tried to close a filehandle that was never opened.

connect() on closed fd
(W) You tried to do a connect on a closed socket. Did you forget to check the return value o
socket() call? See connect.

Corrupt malloc ptr 0x%lx at 0x%lx
(P) The malloc package that comes with Perl had an internal failure.

corrupted regexp pointers
(P) The regular expression engine got confused by what the regular expression compiler gave it.

corrupted regexp program
(P) The regular expression engine got passed a regexp program without a valid magic number.
218 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

This
which

perator
eclared
kage",
ually
b foo;"

eted
his is

ter is

S or
ou‘ve
don‘t

t.

tement.

control
Deep recursion on subroutine "%s"
(W) This subroutine has called itself (directly or indirectly) 100 times than it has returned.
probably indicates an infinite recursion, unless you‘re writing strange benchmark programs, in
case it indicates something else.

Did you mean &%s instead?
(W) You probably referred to an imported subroutine &FOO as $FOO or some such.

Did you mean $ or @ instead of %?
(W) You probably said %hash{$key} when you meant $hash{$key} or @hash{@keys}. On the
other hand, maybe you just meant %hash and got carried away.

Do you need to predeclare %s?
(S) This is an educated guess made in conjunction with the message "%s found where o
expected". It often means a subroutine or module name is being referenced that hasn‘t been d
yet. This may be because of ordering problems in your file, or because of a missing "sub", "pac
"require", or "use" statement. If you‘re referencing something that isn‘t defined yet, you don‘t act
have to define the subroutine or package before the current location. You can use an empty "su
or "package FOO;" to enter a "forward" declaration.

Don‘t know how to handle magic of type ‘%s’
(P) The internal handling of magical variables has been cursed.

do_study: out of memory
(P) This should have been caught by safemalloc() instead.

Duplicate free() ignored
(S) An internal routine called free() on something that had already been freed.

elseif should be elsif
(S) There is no keyword "elseif" in Perl because Larry thinks it‘s ugly. Your code will be interpr
as an attempt to call a method named "elseif" for the class returned by the following block. T
unlikely to be what you want.

END failed—cleanup aborted
(F) An untrapped exception was raised while executing an END subroutine. The interpre
immediately exited.

Error converting file specification %s
(F) An error peculiar to VMS. Since Perl may have to deal with file specifications in either VM
Unix syntax, it converts them to a single form when it must operate on them directly. Either y
passed an invalid file specification to Perl, or you‘ve found a case the conversion routines
handle. Drat.

Execution of %s aborted due to compilation errors.
(F) The final summary message when a Perl compilation fails.

Exiting eval via %s
(W) You are exiting an eval by unconventional means, such as a goto, or a loop control statemen

Exiting subroutine via %s
(W) You are exiting a subroutine by unconventional means, such as a goto, or a loop control sta

Exiting substitution via %s
(W) You are exiting a substitution by unconventional means, such as a return, a goto, or a loop
statement.
08−Oct−1996 Version 5.003 219

perldiag Perl Programmers Reference Guide perldiag

 RTL
ber in

do an

 you
 to

 you
 to

as
ackslash

r was
ackslash

hout
Fatal VMS error at %s, line %d
(P) An error peculiar to VMS. Something untoward happened in a VMS system service or
routine; Perl‘s exit status should provide more details. The filename in "at %s" and the line num
"line %d" tell you which section of the Perl source code is distressed.

fcntl is not implemented
(F) Your machine apparently doesn‘t implement fcntl() . What is this, a PDP−11 or something?

Filehandle %s never opened
(W) An I/O operation was attempted on a filehandle that was never initialized. You need to
open() or a socket() call, or call a constructor from the FileHandle package.

Filehandle %s opened only for input
(W) You tried to write on a read−only filehandle. If you intended it to be a read−write filehandle,
needed to open it with "+<" or "+>" or "+>>" instead of with "<" or nothing. If you only intended
write the file, use ">" or ">>". See open.

Filehandle only opened for input
(W) You tried to write on a read−only filehandle. If you intended it to be a read−write filehandle,
needed to open it with "+<" or "+>" or "+>>" instead of with "<" or nothing. If you only intended
write the file, use ">" or ">>". See open.

Final $ should be \$ or $name
(F) You must now decide whether the final $ in a string was meant to be a literal dollar sign, or w
meant to introduce a variable name that happens to be missing. So you have to put either the b
or the name.

Final @ should be \@ or @name
(F) You must now decide whether the final @ in a string was meant to be a literal "at" sign, o
meant to introduce a variable name that happens to be missing. So you have to put either the b
or the name.

Format %s redefined
(W) You redefined a format. To suppress this warning, say

 {
local $^W = 0;
eval "format NAME =...";

 }

Format not terminated
(F) A format must be terminated by a line with a solitary dot. Perl got to the end of your file wit
finding such a line.

Found = in conditional, should be ==
(W) You said

 if ($foo = 123)

when you meant

 if ($foo == 123)

(or something like that).

gdbm store returned %d, errno %d, key "%s"
(S) A warning from the GDBM_File extension that a store failed.
220 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

ck the

or the
ntheses

oped

 some

ated.

 over
slated
some
s, or it

 put a

y.

topped

m is

dered
 error.
gethostent not implemented
(F) Your C library apparently doesn‘t implement gethostent() , probably because if it did, it‘d feel
morally obligated to return every hostname on the Internet.

get{sock,peer}name() on closed fd
(W) You tried to get a socket or peer socket name on a closed socket. Did you forget to che
return value of your socket() call?

getpwnam returned invalid UIC %#o for user "%s"
(S) A warning peculiar to VMS. The call to sys$getuai underlying the getpwnam operator
returned an invalid UIC.

Glob not terminated
(F) The lexer saw a left angle bracket in a place where it was expecting a term, so it‘s looking f
corresponding right angle bracket, and not finding it. Chances are you left some needed pare
out earlier in the line, and you really meant a "less than".

Global symbol "%s" requires explicit package name
(F) You‘ve said "use strict vars", which indicates that all variables must either be lexically sc
(using "my"), or explicitly qualified to say which package the global variable is in (using "::").

goto must have label
(F) Unlike with "next" or "last", you‘re not allowed to goto an unspecified destination. See goto.

Had to create %s unexpectedly
(S) A routine asked for a symbol from a symbol table that ought to have existed already, but for
reason it didn‘t, and had to be created on an emergency basis to prevent a core dump.

Hash %%s missing the % in argument %d of %s()
(D) Really old Perl let you omit the % on hash names in some spots. This is now heavily deprec

Ill−formed logical name |%s| in prime_env_iter
(W) A warning peculiar to VMS. A logical name was encountered when preparing to iterate
%ENV which violates the syntactic rules governing logical names. Since it cannot be tran
normally, it is skipped, and will not appear in %ENV. This may be a benign occurence, as
software packages might directly modify logical name tables and introduce non−standard name
may indicate that a logical name table has been corrupted.

Illegal division by zero
(F) You tried to divide a number by 0. Either something was wrong in your logic, or you need to
conditional in to guard against meaningless input.

Illegal modulus zero
(F) You tried to divide a number by 0 to get the remainder. Most numbers don‘t take to this kindl

Illegal octal digit
(F) You used an 8 or 9 in a octal number.

Illegal octal digit ignored
(W) You may have tried to use an 8 or 9 in a octal number. Interpretation of the octal number s
before the 8 or 9.

Insecure dependency in %s
(F) You tried to do something that the tainting mechanism didn‘t like. The tainting mechanis
turned on when you‘re running setuid or setgid, or when you specify −T to turn it on explicitly. The
tainting mechanism labels all data that‘s derived directly or indirectly from the user, who is consi
to be unworthy of your trust. If any such data is used in a "dangerous" operation, you get this
See perlsec for more information.
08−Oct−1996 Version 5.003 221

perldiag Perl Programmers Reference Guide perldiag

th to a

s and

ximum

t

if you

f you

count

 your

l @. It
, and
eral, or
 will

nt to a
Insecure directory in %s
(F) You can‘t use system() , exec() , or a piped open in a setuid or setgid script if $ENV{PATH}
contains a directory that is writable by the world. See perlsec.

Insecure PATH
(F) You can‘t use system() , exec() , or a piped open in a setuid or setgid script if $ENV{PATH}
is derived from data supplied (or potentially supplied) by the user. The script must set the pa
known value, using trustworthy data. See perlsec.

Internal inconsistency in tracking vforks
(S) A warning peculiar to VMS. Perl keeps track of the number of times you‘ve called fork and
exec , in order to determine whether the current call to exec should affect the current script or a
subprocess (see exec). Somehow, this count has become scrambled, so Perl is making a gues
treating this exec as a request to terminate the Perl script and execute the specified command.

internal disaster in regexp
(P) Something went badly wrong in the regular expression parser.

internal urp in regexp at /%s/
(P) Something went badly awry in the regular expression parser.

invalid [] range in regexp
(F) The range specified in a character class had a minimum character greater than the ma
character. See perlre.

ioctl is not implemented
(F) Your machine apparently doesn‘t implement ioctl() , which is pretty strange for a machine tha
supports C.

junk on end of regexp
(P) The regular expression parser is confused.

Label not found for "last %s"
(F) You named a loop to break out of, but you‘re not currently in a loop of that name, not even
count where you were called from. See last.

Label not found for "next %s"
(F) You named a loop to continue, but you‘re not currently in a loop of that name, not even i
count where you were called from. See last.

Label not found for "redo %s"
(F) You named a loop to restart, but you‘re not currently in a loop of that name, not even if you
where you were called from. See last.

listen() on closed fd
(W) You tried to do a listen on a closed socket. Did you forget to check the return value of
socket() call? See listen.

Literal @%s now requires backslash
(F) It used to be that Perl would try to guess whether you wanted an array interpolated or a litera
did this when the string was first used at runtime. Now strings are parsed at compile time
ambiguous instances of @ must be disambiguated, either by putting a backslash to indicate a lit
by declaring (or using) the array within the program before the string (lexically). (Someday it
simply assume that an unbackslashed @ interpolates an array.)

Method for operation %s not found in package %s during blessing
(F) An attempt was made to specify an entry in an overloading table that doesn‘t somehow poi
valid method. See overload.
222 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

r on a

the

perator

, you‘ll

perator
 this

"2 =

gative,

eculiar

on for
Might be a runaway multi−line %s string starting on line %d
(S) An advisory indicating that the previous error may have been caused by a missing delimite
string or pattern, because it eventually ended earlier on the current line.

Misplaced _ in number
(W) An underline in a decimal constant wasn‘t on a 3−digit boundary.

Missing $ on loop variable
(F) Apparently you‘ve been programming in csh too much. Variables are always mentioned with the$
in Perl, unlike in the shells, where it can vary from one line to the next.

Missing comma after first argument to %s function
(F) While certain functions allow you to specify a filehandle or an "indirect object" before
argument list, this ain‘t one of them.

Missing operator before %s?
(S) This is an educated guess made in conjunction with the message "%s found where o
expected". Often the missing operator is a comma.

Missing right bracket
(F) The lexer counted more opening curly brackets (braces) than closing ones. As a general rule
find it‘s missing near the place you were last editing.

Missing semicolon on previous line?
(S) This is an educated guess made in conjunction with the message "%s found where o
expected". Don‘t automatically put a semicolon on the previous line just because you saw
message.

Modification of a read−only value attempted
(F) You tried, directly or indirectly, to change the value of a constant. You didn‘t, of course, try
1", since the compiler catches that. But an easy way to do the same thing is:

 sub mod { $_[0] = 1 }
 mod(2);

Another way is to assign to a substr() that‘s off the end of the string.

Modification of non−creatable array value attempted, subscript %d
(F) You tried to make an array value spring into existence, and the subscript was probably ne
even counting from end of the array backwards.

Modification of non−creatable hash value attempted, subscript "%s"
(F) You tried to make a hash value spring into existence, and it couldn‘t be created for some p
reason.

Module name must be constant
(F) Only a bare module name is allowed as the first argument to a "use".

msg%s not implemented
(F) You don‘t have System V message IPC on your system.

Multidimensional syntax %s not supported
(W) Multidimensional arrays aren‘t written like $foo[1,2,3]. They‘re written like
$foo[1][2][3], as in C.

Name "%s::%s" used only once: possible typo
(W) Typographical errors often show up as unique variable names. If you had a good reas
having a unique name, then just mention it again somehow to suppress the message (the use vars
pragma is provided for just this purpose).
08−Oct−1996 Version 5.003 223

perldiag Perl Programmers Reference Guide perldiag

his is

are

tifiers,

t don‘t

owed to
ure, at

tween

t the
nd.

l
ment.
 up the

s, since

l
each

 or a
 for

n the

‘>’ at
Negative length
(F) You tried to do a read/write/send/recv operation with a buffer length that is less than 0. T
difficult to imagine.

nested *?+ in regexp
(F) You can‘t quantify a quantifier without intervening parens. So things like ** or +* or ?*
illegal.

Note, however, that the minimal matching quantifiers, *?, +? and ?? appear to be nested quan
but aren‘t. See perlre.

No #! line
(F) The setuid emulator requires that scripts have a well−formed #! line even on machines tha
support the #! construct.

No %s allowed while running setuid
(F) Certain operations are deemed to be too insecure for a setuid or setgid script to even be all
attempt. Generally speaking there will be another way to do what you want that is, if not sec
least securable. See perlsec.

No −e allowed in setuid scripts
(F) A setuid script can‘t be specified by the user.

No comma allowed after %s
(F) A list operator that has a filehandle or "indirect object" is not allowed to have a comma be
that and the following arguments. Otherwise it‘d be just another one of the arguments.

No command into which to pipe on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a ‘|’ a
end of the command line, so it doesn‘t know whither you want to pipe the output from this comma

No DB::DB routine defined
(F) The currently executing code was compiled with the −d switch, but for some reason the perl5db.p
file (or some facsimile thereof) didn‘t define a routine to be called at the beginning of each state
Which is odd, because the file should have been required automatically, and should have blown
require if it didn‘t parse right.

No dbm on this machine
(P) This is counted as an internal error, because every machine should supply dbm nowaday
Perl comes with SDBM. See SDBM_File.

No DBsub routine
(F) The currently executing code was compiled with the −d switch, but for some reason the perl5db.p
file (or some facsimile thereof) didn‘t define a DB::sub routine to be called at the beginning of
ordinary subroutine call.

No error file after 2> or 2>> on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a ‘2>’
‘2>>’ on the command line, but can‘t find the name of the file to which to write data destined
stderr.

No input file after < on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a ‘<’ o
command line, but can‘t find the name of the file from which to read data for stdin.

No output file after > on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a lone
the end of the command line, so it doesn‘t know whither you wanted to redirect stdout.
224 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

 or a
dout.

rd

dle.

ference

dicates

ks like

ing else

t don‘t

ing else

ference
No output file after > or >> on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a ‘>’
‘>>’ on the command line, but can‘t find the name of the file to which to write data destined for st

No Perl script found in input
(F) You called perl −x , but no line was found in the file beginning with #! and containing the wo
"perl".

No setregid available
(F) Configure didn‘t find anything resembling the setregid() call for your system.

No setreuid available
(F) Configure didn‘t find anything resembling the setreuid() call for your system.

No space allowed after −I
(F) The argument to −I must follow the −I immediately with no intervening space.

No such pipe open
(P) An error peculiar to VMS. The internal routine my_pclose() tried to close a pipe which hadn‘t
been opened. This should have been caught earlier as an attempt to close an unopened filehan

No such signal: SIG%s
(W) You specified a signal name as a subscript to %SIG that was not recognized. Say kill −l in
your shell to see the valid signal names on your system.

Not a CODE reference
(F) Perl was trying to evaluate a reference to a code value (that is, a subroutine), but found a re
to something else instead. You can use the ref() function to find out what kind of ref it really was.
See also perlref.

Not a format reference
(F) I‘m not sure how you managed to generate a reference to an anonymous format, but this in
you did, and that it didn‘t exist.

Not a GLOB reference
(F) Perl was trying to evaluate a reference to a "type glob" (that is, a symbol table entry that loo
*foo), but found a reference to something else instead. You can use the ref() function to find out
what kind of ref it really was. See perlref.

Not a HASH reference
(F) Perl was trying to evaluate a reference to a hash value, but found a reference to someth
instead. You can use the ref() function to find out what kind of ref it really was. See perlref.

Not a perl script
(F) The setuid emulator requires that scripts have a well−formed #! line even on machines tha
support the #! construct. The line must mention perl.

Not a SCALAR reference
(F) Perl was trying to evaluate a reference to a scalar value, but found a reference to someth
instead. You can use the ref() function to find out what kind of ref it really was. See perlref.

Not a subroutine reference
(F) Perl was trying to evaluate a reference to a code value (that is, a subroutine), but found a re
to something else instead. You can use the ref() function to find out what kind of ref it really was.
See also perlref.
08−Oct−1996 Version 5.003 225

perldiag Perl Programmers Reference Guide perldiag

nt to a

ng else

urrent

me in

ts to a

rser has
ple, if

(or
Not a subroutine reference in %OVERLOAD
(F) An attempt was made to specify an entry in an overloading table that doesn‘t somehow poi
valid subroutine. See overload.

Not an ARRAY reference
(F) Perl was trying to evaluate a reference to an array value, but found a reference to somethi
instead. You can use the ref() function to find out what kind of ref it really was. See perlref.

Not enough arguments for %s
(F) The function requires more arguments than you specified.

Not enough format arguments
(W) A format specified more picture fields than the next line supplied. See perlform.

Null filename used
(F) You can‘t require the null filename, especially since on many machines that means the c
directory! See require.

NULL OP IN RUN
(P) Some internal routine called run() with a null opcode pointer.

Null realloc
(P) An attempt was made to realloc NULL.

NULL regexp argument
(P) The internal pattern matching routines blew it bigtime.

NULL regexp parameter
(P) The internal pattern matching routines are out of their gourd.

Odd number of elements in hash list
(S) You specified an odd number of elements to a hash list, which is odd, since hash lists co
key/value pairs.

oops: oopsAV
(S) An internal warning that the grammar is screwed up.

oops: oopsHV
(S) An internal warning that the grammar is screwed up.

Operation ‘%s’ %s: no method found,
(F) An attempt was made to use an entry in an overloading table that somehow no longer poin
valid method. See overload.

Operator or semicolon missing before %s
(S) You used a variable or subroutine call where the parser was expecting an operator. The pa
assumed you really meant to use an operator, but this is highly likely to be incorrect. For exam
you say "*foo *foo" it will be interpreted as if you said "*foo * ‘foo‘".

Out of memory for yacc stack
(F) The yacc parser wanted to grow its stack so it could continue parsing, but realloc() wouldn‘t
give it more memory, virtual or otherwise.

Out of memory!
(X) The malloc() function returned 0, indicating there was insufficient remaining memory
virtual memory) to satisfy the request.
226 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

k.

t.

asn‘t a

t.

es and
page overflow
(W) A single call to write() produced more lines than can fit on a page. See perlform.

panic: ck_grep
(P) Failed an internal consistency check trying to compile a grep.

panic: ck_split
(P) Failed an internal consistency check trying to compile a split.

panic: corrupt saved stack index
(P) The savestack was requested to restore more localized values than there are in the savestac

panic: die %s
(P) We popped the context stack to an eval context, and then discovered it wasn‘t an eval contex

panic: do_match
(P) The internal pp_match() routine was called with invalid operational data.

panic: do_split
(P) Something terrible went wrong in setting up for the split.

panic: do_subst
(P) The internal pp_subst() routine was called with invalid operational data.

panic: do_trans
(P) The internal do_trans() routine was called with invalid operational data.

panic: goto
(P) We popped the context stack to a context with the specified label, and then discovered it w
context we know how to do a goto in.

panic: INTERPCASEMOD
(P) The lexer got into a bad state at a case modifier.

panic: INTERPCONCAT
(P) The lexer got into a bad state parsing a string with brackets.

panic: last
(P) We popped the context stack to a block context, and then discovered it wasn‘t a block contex

panic: leave_scope clearsv
(P) A writable lexical variable became readonly somehow within the scope.

panic: leave_scope inconsistency
(P) The savestack probably got out of sync. At least, there was an invalid enum on the top of it.

panic: malloc
(P) Something requested a negative number of bytes of malloc.

panic: mapstart
(P) The compiler is screwed up with respect to the map() function.

panic: null array
(P) One of the internal array routines was passed a null AV pointer.

panic: pad_alloc
(P) The compiler got confused about which scratch pad it was allocating and freeing temporari
lexicals from.
08−Oct−1996 Version 5.003 227

perldiag Perl Programmers Reference Guide perldiag

es and

es and

es and

n.

asn‘t a

unning
panic: pad_free curpad
(P) The compiler got confused about which scratch pad it was allocating and freeing temporari
lexicals from.

panic: pad_free po
(P) An invalid scratch pad offset was detected internally.

panic: pad_reset curpad
(P) The compiler got confused about which scratch pad it was allocating and freeing temporari
lexicals from.

panic: pad_sv po
(P) An invalid scratch pad offset was detected internally.

panic: pad_swipe curpad
(P) The compiler got confused about which scratch pad it was allocating and freeing temporari
lexicals from.

panic: pad_swipe po
(P) An invalid scratch pad offset was detected internally.

panic: pp_iter
(P) The foreach iterator got called in a non−loop context frame.

panic: realloc
(P) Something requested a negative number of bytes of realloc.

panic: restartop
(P) Some internal routine requested a goto (or something like it), and didn‘t supply the destinatio

panic: return
(P) We popped the context stack to a subroutine or eval context, and then discovered it w
subroutine or eval context.

panic: scan_num
(P) scan_num() got called on something that wasn‘t a number.

panic: sv_insert
(P) The sv_insert() routine was told to remove more string than there was string.

panic: top_env
(P) The compiler attempted to do a goto, or something weird like that.

panic: yylex
(P) The lexer got into a bad state while processing a case modifier.

Parens missing around "%s" list
(W) You said something like

 my $foo, $bar = @_;

when you meant

 my ($foo, $bar) = @_;

Remember that "my" and "local" bind closer than comma.

Perl %3.3f required—this is only version %s, stopped
(F) The module in question uses features of a version of Perl more recent than the currently r
version. How long has it been since you upgraded, anyway? See require.
228 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

a
what

n,

nable
te got

 open
ead of

w.

.

n || or

ction

flow.

Perl,

 your
Permission denied
(F) The setuid emulator in suidperl decided you were up to no good.

pid %d not a child
(W) A warning peculiar to VMS. Waitpid() was asked to wait for a process which isn‘t
subprocess of the current process. While this is fine from VMS’ perspective, it‘s probably not
you intended.

POSIX getpgrp can‘t take an argument
(F) Your C compiler uses POSIX getpgrp() , which takes no argument, unlike the BSD versio
which takes a pid.

Possible memory corruption: %s overflowed 3rd argument
(F) An ioctl() or fcntl() returned more than Perl was bargaining for. Perl guesses a reaso
buffer size, but puts a sentinel byte at the end of the buffer just in case. This sentinel by
clobbered, and Perl assumes that memory is now corrupted. See ioctl.

Precedence problem: open %s should be open(%s)
(S) The old irregular construct

 open FOO || die;

is now misinterpreted as

 open(FOO || die);

because of the strict regularization of Perl 5‘s grammar into unary and list operators. (The old
was a little of both.) You must put parens around the filehandle, or use the new "or" operator inst
"||".

print on closed filehandle %s
(W) The filehandle you‘re printing on got itself closed sometime before now. Check your logic flo

printf on closed filehandle %s
(W) The filehandle you‘re writing to got itself closed sometime before now. Check your logic flow

Probable precedence problem on %s
(W) The compiler found a bare word where it expected a conditional, which often indicates that a
&& was parsed as part of the last argument of the previous construct, for example:

 open FOO || die;

Prototype mismatch: (%s) vs (%s)
(S) The subroutine being defined had a predeclared (forward) declaration with a different fun
prototype.

Read on closed filehandle <%s>
(W) The filehandle you‘re reading from got itself closed sometime before now. Check your logic

Reallocation too large: %lx
(F) You can‘t allocate more than 64K on an MSDOS machine.

Recompile perl with −DDEBUGGING to use −D switch
(F) You can‘t use the −D option unless the code to produce the desired output is compiled into
which entails some overhead, which is why it‘s currently left out of your copy.

Recursive inheritance detected
(F) More than 100 levels of inheritance were used. Probably indicates an unintended loop in
inheritance hierarchy.
08−Oct−1996 Version 5.003 229

perldiag Perl Programmers Reference Guide perldiag

han

 string.
 up.

ltiple

avoid

e, and
ts to
g (for

lly it‘s

 weird

ok into
 See

 This

ting

een

rked
Reference miscount in sv_replace()
(W) The internal sv_replace() function was handed a new SV with a reference count of other t
1.

regexp memory corruption
(P) The regular expression engine got confused by what the regular expression compiler gave it.

regexp out of space
(P) A "can‘t happen" error, because safemalloc() should have caught it earlier.

regexp too big
(F) The current implementation of regular expressions uses shorts as address offsets within a
Unfortunately this means that if the regular expression compiles to longer than 32767, it‘ll blow
Usually when you want a regular expression this big, there is a better way to do it with mu
statements. See perlre.

Reversed %s= operator
(W) You wrote your assignment operator backwards. The = must always comes last, to
ambiguity with subsequent unary operators.

Runaway format
(F) Your format contained the ~~ repeat−until−blank sequence, but it produced 200 lines at onc
the 200th line looked exactly like the 199th line. Apparently you didn‘t arrange for the argumen
exhaust themselves, either by using ^ instead of @ (for scalar variables), or by shifting or poppin
array variables). See perlform.

Scalar value @%s[%s] better written as $%s[%s]
(W) You‘ve used an array slice (indicated by @) to select a single value of an array. Genera
better to ask for a scalar value (indicated by $). The difference is that $foo[&bar] always behaves
like a scalar, both when assigning to it and when evaluating its argument, while @foo[&bar]
behaves like a list when you assign to it, and provides a list context to its subscript, which can do
things if you‘re only expecting one subscript.

On the other hand, if you were actually hoping to treat the array element as a list, you need to lo
how references work, since Perl will not magically convert between scalars and lists for you.
perlref.

Script is not setuid/setgid in suidperl
(F) Oddly, the suidperl program was invoked on a script with its setuid or setgid bit not set.
doesn‘t make much sense.

Search pattern not terminated
(F) The lexer couldn‘t find the final delimiter of a // or m{} construct. Remember that bracke
delimiters count nesting level.

seek() on unopened file
(W) You tried to use the seek() function on a filehandle that was either never opened or has b
closed since.

select not implemented
(F) This machine doesn‘t implement the select() system call.

sem%s not implemented
(F) You don‘t have System V semaphore IPC on your system.

semi−panic: attempt to dup freed string
(S) The internal newSVsv() routine was called to duplicate a scalar that had previously been ma
as free.
230 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

 other

.

 parens

 written.

e your
not the
m the
re or

 have

rong

was a
Semicolon seems to be missing
(W) A nearby syntax error was probably caused by a missing semicolon, or possibly some
missing operator, such as a comma.

Send on closed socket
(W) The filehandle you‘re sending to got itself closed sometime before now. Check your logic flow

Sequence (?#... not terminated
(F) A regular expression comment must be terminated by a closing parenthesis. Embedded
aren‘t allowed. See perlre.

Sequence (?%s...) not implemented
(F) A proposed regular expression extension has the character reserved but has not yet been
See perlre.

Sequence (?%s...) not recognized
(F) You used a regular expression extension that doesn‘t make sense. See perlre.

Server error
Also known as "500 Server error". This is a CGI error, not a Perl error. You need to make sur
script is executable, is accessible by the user CGI is running the script under (which is probably
user account you tested it under), does not rely on any environment variables (like PATH) fro
user it isn‘t running under, and isn‘t in a location where the CGI server can‘t find it, basically, mo
less.

setegid() not implemented
(F) You tried to assign to $), and your operating system doesn‘t support the setegid() system call
(or equivalent), or at least Configure didn‘t think so.

seteuid() not implemented
(F) You tried to assign to $>, and your operating system doesn‘t support the seteuid() system call
(or equivalent), or at least Configure didn‘t think so.

setrgid() not implemented
(F) You tried to assign to $(, and your operating system doesn‘t support the setrgid() system call
(or equivalent), or at least Configure didn‘t think so.

setruid() not implemented
(F) You tried to assign to $<lt , and your operating system doesn‘t support the setruid() system
call (or equivalent), or at least Configure didn‘t think so.

Setuid/gid script is writable by world
(F) The setuid emulator won‘t run a script that is writable by the world, because the world might
written on it already.

shm%s not implemented
(F) You don‘t have System V shared memory IPC on your system.

shutdown() on closed fd
(W) You tried to do a shutdown on a closed socket. Seems a bit superfluous.

SIG%s handler "%s" not defined.
(W) The signal handler named in %SIG doesn‘t, in fact, exist. Perhaps you put it into the w
package?

sort is now a reserved word
(F) An ancient error message that almost nobody ever runs into anymore. But before sort
keyword, people sometimes used it as a filehandle.
08−Oct−1996 Version 5.003 231

perldiag Perl Programmers Reference Guide perldiag

t. See

 are

er

use

mes
tion in

at

ting

 of

e

Sort subroutine didn‘t return a numeric value
(F) A sort comparison routine must return a number. You probably blew it by not using <=> or cmp,
or by not using them correctly. See sort.

Sort subroutine didn‘t return single value
(F) A sort comparison subroutine may not return a list value with more or less than one elemen
sort.

Split loop
(P) The split was looping infinitely. (Obviously, a split shouldn‘t iterate more times than there
characters of input, which is what happened.) See split.

Stat on unopened file <%s>
(W) You tried to use the stat() function (or an equivalent file test) on a filehandle that was eith
never opened or has been closed since.

Statement unlikely to be reached
(W) You did an exec() with some statement after it other than a die() . This is almost always an
error, because exec() never returns unless there was a failure. You probably wanted to
system() instead, which does return. To suppress this warning, put the exec() in a block by itself.

Subroutine %s redefined
(W) You redefined a subroutine. To suppress this warning, say

 {
local $^W = 0;
eval "sub name { ... }";

 }

Substitution loop
(P) The substitution was looping infinitely. (Obviously, a substitution shouldn‘t iterate more ti
than there are characters of input, which is what happened.) See the discussion of substitu
Quote and Quotelike Operators in perlop.

Substitution pattern not terminated
(F) The lexer couldn‘t find the interior delimiter of a s/// or s{}{} construct. Remember th
bracketing delimiters count nesting level.

Substitution replacement not terminated
(F) The lexer couldn‘t find the final delimiter of a s/// or s{}{} construct. Remember that bracke
delimiters count nesting level.

substr outside of string
(W) You tried to reference a substr() that pointed outside of a string. That is, the absolute value
the offset was larger than the length of the string. See substr.

suidperl is no longer needed since...
(F) Your Perl was compiled with −DSETUID_SCRIPTS_ARE_SECURE_NOW, but a version of th
setuid emulator somehow got run anyway.

syntax error
(F) Probably means you had a syntax error. Common reasons include:

 A keyword is misspelled.
 A semicolon is missing.
 A comma is missing.
 An opening or closing parenthesis is missing.
232 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

ation.
ine
is good
 a blue

ion of

 line,

.

een

 also

ay

module

ure.

or
st that

ote to
d.
 An opening or closing brace is missing.
 A closing quote is missing.

Often there will be another error message associated with the syntax error giving more inform
(Sometimes it helps to turn on −w.) The error message itself often tells you where it was in the l
when it decided to give up. Sometimes the actual error is several tokens before this, since Perl
at understanding random input. Occasionally the line number may be misleading, and once in
moon the only way to figure out what‘s triggering the error is to call perl −c repeatedly, chopping
away half the program each time to see if the error went away. Sort of the cybernetic vers
20 questions.

syntax error at line %d: ‘%s’ unexpected
(A) You‘ve accidentally run your script through the Bourne shell instead of Perl. Check the <#!>
or manually feed your script into Perl yourself.

System V IPC is not implemented on this machine
(F) You tried to do something with a function beginning with "sem", "shm" or "msg". See semctl, for
example.

Syswrite on closed filehandle
(W) The filehandle you‘re writing to got itself closed sometime before now. Check your logic flow

tell() on unopened file
(W) You tried to use the tell() function on a filehandle that was either never opened or has b
closed since.

Test on unopened file <%s>
(W) You tried to invoke a file test operator on a filehandle that isn‘t open. Check your logic. See
−X.

That use of $[is unsupported
(F) Assignment to $[is now strictly circumscribed, and interpreted as a compiler directive. You m
only say one of

 $[= 0;
 $[= 1;
 ...
 local $[= 0;
 local $[= 1;
 ...

This is to prevent the problem of one module changing the array base out from under another
inadvertently. See $[.

The %s function is unimplemented
The function indicated isn‘t implemented on this architecture, according to the probings of Config

The crypt() function is unimplemented due to excessive paranoia.
(F) Configure couldn‘t find the crypt() function on your machine, probably because your vend
didn‘t supply it, probably because they think the U.S. Government thinks it‘s a secret, or at lea
they will continue to pretend that it is. And if you quote me on that, I will deny it.

The stat preceding −l _ wasn‘t an lstat
(F) It makes no sense to test the current stat buffer for symbolic linkhood if the last stat that wr
the stat buffer already went past the symlink to get to the real file. Use an actual filename instea

times not implemented
(F) Your version of the C library apparently doesn‘t do times() . I suspect you‘re not running on
Unix.
08−Oct−1996 Version 5.003 233

perldiag Perl Programmers Reference Guide perldiag

ly

st be

rl, as

ed and

zed.

ed and

kage?
Too few args to syscall
(F) There has to be at least one argument to syscall() to specify the system call to call, silly dilly.

Too many (‘s
Too many)‘s

(A) You‘ve accidentally run your script through csh instead of Perl. Check the <#!> line, or manual
feed your script into Perl yourself.

Too many args to syscall
(F) Perl only supports a maximum of 14 args to syscall() .

Too many arguments for %s
(F) The function requires fewer arguments than you specified.

trailing \ in regexp
(F) The regular expression ends with an unbackslashed backslash. Backslash it. See perlre.

Translation pattern not terminated
(F) The lexer couldn‘t find the interior delimiter of a tr/// or tr[][] construct.

Translation replacement not terminated
(F) The lexer couldn‘t find the final delimiter of a tr/// or tr[][] construct.

truncate not implemented
(F) Your machine doesn‘t implement a file truncation mechanism that Configure knows about.

Type of arg %d to %s must be %s (not %s)
(F) This function requires the argument in that position to be of a certain type. Arrays mu
@NAME or @{EXPR}. Hashes must be %NAME or %{EXPR}. No implicit dereferencing is
allowed—use the {EXPR} forms as an explicit dereference. See perlref.

umask: argument is missing initial 0
(W) A umask of 222 is incorrect. It should be 0222, since octal literals always start with 0 in Pe
in C.

Unable to create sub named "%s"
(F) You attempted to create or access a subroutine with an illegal name.

Unbalanced context: %d more PUSHes than POPs
(W) The exit code detected an internal inconsistency in how many execution contexts were enter
left.

Unbalanced saves: %d more saves than restores
(W) The exit code detected an internal inconsistency in how many values were temporarily locali

Unbalanced scopes: %d more ENTERs than LEAVEs
(W) The exit code detected an internal inconsistency in how many blocks were entered and left.

Unbalanced tmps: %d more allocs than frees
(W) The exit code detected an internal inconsistency in how many mortal scalars were allocat
freed.

Undefined format "%s" called
(F) The format indicated doesn‘t seem to exist. Perhaps it‘s really in another package? See perlform.

Undefined sort subroutine "%s" called
(F) The sort comparison routine specified doesn‘t seem to exist. Perhaps it‘s in a different pac
See sort.
234 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

 been

et. See

bably

ser, the

obably
e place

et in a

 such a
it as a

cter on

e #!

e the
Undefined subroutine &%s called
(F) The subroutine indicated hasn‘t been defined, or if it was, it has since been undefined.

Undefined subroutine called
(F) The anonymous subroutine you‘re trying to call hasn‘t been defined, or if it was, it has since
undefined.

Undefined subroutine in sort
(F) The sort comparison routine specified is declared but doesn‘t seem to have been defined y
sort.

Undefined top format "%s" called
(F) The format indicated doesn‘t seem to exist. Perhaps it‘s really in another package? See perlform.

unexec of %s into %s failed!
(F) The unexec() routine failed for some reason. See your local FSF representative, who pro
put it there in the first place.

Unknown BYTEORDER
(F) There are no byteswapping functions for a machine with this byte order.

unmatched () in regexp
(F) Unbackslashed parentheses must always be balanced in regular expressions. If you‘re a vi u
% key is valuable for finding the matching paren. See perlre.

Unmatched right bracket
(F) The lexer counted more closing curly brackets (braces) than opening ones, so you‘re pr
missing an opening bracket. As a general rule, you‘ll find the missing one (so to speak) near th
you were last editing.

unmatched [] in regexp
(F) The brackets around a character class must match. If you wish to include a closing brack
character class, backslash it or put it first. See perlre.

Unquoted string "%s" may clash with future reserved word
(W) You used a bare word that might someday be claimed as a reserved word. It‘s best to put
word in quotes, or capitalize it somehow, or insert an underbar into it. You might also declare
subroutine.

Unrecognized character \%03o ignored
(S) A garbage character was found in the input, and ignored, in case it‘s a weird control chara
an EBCDIC machine, or some such.

Unrecognized signal name "%s"
(F) You specified a signal name to the kill() function that was not recognized. Say kill −l in
your shell to see the valid signal names on your system.

Unrecognized switch: −%s
(F) You specified an illegal option to Perl. Don‘t do that. (If you think you didn‘t do that, check th
line to see if it‘s supplying the bad switch on your behalf.)

Unsuccessful %s on filename containing newline
(W) A file operation was attempted on a filename, and that operation failed, PROBABLY becaus
filename contained a newline, PROBABLY because you forgot to chop() or chomp() it off. See
chop.
08−Oct−1996 Version 5.003 235

perldiag Perl Programmers Reference Guide perldiag

esn‘t

figure

or the
ntheses

less

there‘s

ter way

s the

etter

 0, but

, such
erator.
 way
thon

ould be
Unsupported directory function "%s" called
(F) Your machine doesn‘t support opendir() and readdir() .

Unsupported function %s
(F) This machines doesn‘t implement the indicated function, apparently. At least, Configure do
think so.

Unsupported socket function "%s" called
(F) Your machine doesn‘t support the Berkeley socket mechanism, or at least that‘s what Con
thought.

Unterminated <> operator
(F) The lexer saw a left angle bracket in a place where it was expecting a term, so it‘s looking f
corresponding right angle bracket, and not finding it. Chances are you left some needed pare
out earlier in the line, and you really meant a "less than".

Use of $# is deprecated
(D) This was an ill−advised attempt to emulate a poorly defined awk feature. Use an explicit
printf() or sprintf() instead.

Use of $* is deprecated
(D) This variable magically turned on multiline pattern matching, both for you and for any luck
subroutine that you happen to call. You should use the new //m and //s modifiers now to do that
without the dangerous action−at−a−distance effects of $*.

Use of %s in printf format not supported
(F) You attempted to use a feature of printf that is accessible only from C. This usually means
a better way to do it in Perl.

Use of %s is deprecated
(D) The construct indicated is no longer recommended for use, generally because there‘s a bet
to do it, and also because the old way has bad side effects.

Use of bare << to mean <<"" is deprecated
(D) You are now encouraged to use the explicitly quoted form if you wish to use a blank line a
terminator of the here−document.

Use of implicit split to @_ is deprecated
(D) It makes a lot of work for the compiler when you clobber a subroutine‘s argument list, so it‘s b
if you assign the results of a split() explicitly to an array (or list).

Use of uninitialized value
(W) An undefined value was used as if it were already defined. It was interpreted as a "" or a
maybe it was a mistake. To suppress this warning assign an initial value to your variables.

Useless use of %s in void context
(W) You did something without a side effect in a context that does nothing with the return value
as a statement that doesn‘t return a value from a block, or the left side of a scalar comma op
Very often this points not to stupidity on your part, but a failure of Perl to parse your program the
you thought it would. For example, you‘d get this if you mixed up your C precedence with Py
precedence and said

 $one, $two = 1, 2;

when you meant to say

 ($one, $two) = (1, 2);

Another common error is to use ordinary parentheses to construct a list reference when you sh
236 Version 5.003 08−Oct−1996

perldiag Perl Programmers Reference Guide perldiag

when a
, which

 was
tine) is

f your

ly

d also
ion has

.

 being

being

st any
using square or curly brackets, for example, if you say

 $array = (1,2);

when you should have said

 $array = [1,2];

The square brackets explicitly turn a list value into a scalar value, while parentheses do not. So
parenthesized list is evaluated in a scalar context, the comma is treated like C‘s comma operator
throws away the left argument, which is not what you want. See perlref for more on this.

Variable "%s" is not exported
(F) While "use strict" in effect, you referred to a global variable that you apparently thought
imported from another module, because something else of the same name (usually a subrou
exported by that module. It usually means you put the wrong funny character on the front o
variable.

Variable syntax.
(A) You‘ve accidentally run your script through csh instead of Perl. Check the <#!> line, or manual
feed your script into Perl yourself.

Warning: unable to close filehandle %s properly.
(S) The implicit close() done by an open() got an error indication on the close() . This usually
indicates your filesystem ran out of disk space.

Warning: Use of "%s" without parens is ambiguous
(S) You wrote a unary operator followed by something that looks like a binary operator that coul
have been interpreted as a term or unary operator. For instance, if you know that the rand funct
a default argument of 1.0, and you write

 rand + 5;

you may THINK you wrote the same thing as

 rand() + 5;

but in actual fact, you got

 rand(+5);

So put in parens to say what you really mean.

Write on closed filehandle
(W) The filehandle you‘re writing to got itself closed sometime before now. Check your logic flow

X outside of string
(F) You had a pack template that specified a relative position before the beginning of the string
unpacked. See pack.

x outside of string
(F) You had a pack template that specified a relative position after the end of the string
unpacked. See pack.

Xsub "%s" called in sort
(F) The use of an external subroutine as a sort comparison is not yet supported.

Xsub called in sort
(F) The use of an external subroutine as a sort comparison is not yet supported.

You can‘t use −l on a filehandle
(F) A filehandle represents an opened file, and when you opened the file it already went pa
symlink you are presumably trying to look for. Use a filename instead.
08−Oct−1996 Version 5.003 237

perldiag Perl Programmers Reference Guide perldiag

 your
ript in

routine
ent is

 value

fathered
 other

 was
mer,

d to
e other,
two
YOU HAVEN‘T DISABLED SET−ID SCRIPTS IN THE KERNEL YET!
(F) And you probably never will, since you probably don‘t have the sources to your kernel, and
vendor probably doesn‘t give a rip about what you want. Your best bet is to use the wrapsuid sc
the eg directory to put a setuid C wrapper around your script.

You need to quote "%s"
(W) You assigned a bareword as a signal handler name. Unfortunately, you already have a sub
of that name declared, which means that Perl 5 will try to call the subroutine when the assignm
executed, which is probably not what you want. (If it IS what you want, put an & in front.)

[gs]etsockopt() on closed fd
(W) You tried to get or set a socket option on a closed socket. Did you forget to check the return
of your socket() call? See getsockopt.

\1 better written as $1
(W) Outside of patterns, backreferences live on as variables. The use of backslashes is grand
on the righthand side of a substitution, but stylistically it‘s better to use the variable form because
Perl programmers will expect it, and it works better if there are more than 9 backreferences.

‘|’ and ‘<’ may not both be specified on command line
(F) An error peculiar to VMS. Perl does its own command line redirection, and found that STDIN
a pipe, and that you also tried to redirect STDIN using ‘<’. Only one STDIN stream to a custo
please.

‘|’ and ‘>’ may not both be specified on command line
(F) An error peculiar to VMS. Perl does its own command line redirection, and thinks you trie
redirect stdout both to a file and into a pipe to another command. You need to choose one or th
though nothing‘s stopping you from piping into a program or Perl script which ‘splits’ output into
streams, such as

 open(OUT,">$ARGV[0]") or die "Can’t write to $ARGV[0]: $!";
 while (<STDIN>) {
 print;
 print OUT;
 }
 close OUT;
238 Version 5.003 08−Oct−1996

perlsec Perl Programmers Reference Guide perlsec

tuid or
on each
ionally,
ssibly

ode
citly by
m

table by
upported
m more

am—at
ked as
 nor in
hat has
ainted
ments of
NAME
perlsec − Perl security

DESCRIPTION
Perl is designed to make it easy to program securely even when running with extra privileges, like se
setgid programs. Unlike most command−line shells, which are based on multiple substitution passes
line of the script, Perl uses a more conventional evaluation scheme with fewer hidden snags. Addit
because the language has more built−in functionality, it can rely less upon external (and po
untrustworthy) programs to accomplish its purposes.

Perl automatically enables a set of special security checks, called taint mode, when it detects its program
running with differing real and effective user or group IDs. The setuid bit in Unix permissions is m
04000, the setgid bit mode 02000; either or both may be set. You can also enable taint mode expli
using the the −T command line flag. This flag is strongly suggested for server programs and any progra
run on behalf of someone else, such as a CGI script.

While in this mode, Perl takes special precautions called taint checks to prevent both obvious and subtle
traps. Some of these checks are reasonably simple, such as verifying that path directories aren‘t wri
others; careful programmers have always used checks like these. Other checks, however, are best s
by the language itself, and it is these checks especially that contribute to making a setuid Perl progra
secure than the corresponding C program.

You may not use data derived from outside your program to affect something else outside your progr
least, not by accident. All command−line arguments, environment variables, and file input are mar
"tainted". Tainted data may not be used directly or indirectly in any command that invokes a subshell,
any command that modifies files, directories, or processes. Any variable set within an expression t
previously referenced a tainted value itself becomes tainted, even if it is logically impossible for the t
value to influence the variable. Because taintedness is associated with each scalar value, some ele
an array can be tainted and others not.

For example:

 $arg = shift; # $arg is tainted
 $hid = $arg, ’bar’; # $hid is also tainted
 $line = <>; # Tainted
 $path = $ENV{’PATH’}; # Tainted, but see below
 $data = ’abc’; # Not tainted

 system "echo $arg"; # Insecure
 system "/bin/echo", $arg; # Secure (doesn’t use sh)
 system "echo $hid"; # Insecure
 system "echo $data"; # Insecure until PATH set

 $path = $ENV{’PATH’}; # $path now tainted

 $ENV{’PATH’} = ’/bin:/usr/bin’;
 $ENV{’IFS’} = ’’ if $ENV{’IFS’} ne ’’;

 $path = $ENV{’PATH’}; # $path now NOT tainted
 system "echo $data"; # Is secure now!

 open(FOO, "< $arg"); # OK − read−only file
 open(FOO, "> $arg"); # Not OK − trying to write

 open(FOO,"echo $arg|"); # Not OK, but...
 open(FOO,"−|")

or exec ’echo’, $arg; # OK

 $shout = ‘echo $arg‘; # Insecure, $shout now tainted
08−Oct−1996 Version 5.003 239

perlsec Perl Programmers Reference Guide perlsec

ency"

ndency"

 renders
nt for
d value

edness.
ression

ng, or
certain
 easy to

ics, and

oing
ets
ust be

 to get

PATH
that the
dent on
 unlink $data, $arg; # Insecure
 umask $arg; # Insecure

 exec "echo $arg"; # Insecure
 exec "echo", $arg; # Secure (doesn’t use the shell)
 exec "sh", ’−c’, $arg; # Considered secure, alas!

If you try to do something insecure, you will get a fatal error saying something like "Insecure depend
or "Insecure PATH". Note that you can still write an insecure system or exec, but only by explicitly doing
something like the last example above.

Laundering and Detecting Tainted Data
To test whether a variable contains tainted data, and whose use would thus trigger an "Insecure depe
message, you can use the following is_tainted() function.

 sub is_tainted {
return ! eval {
 join(’’,@_), kill 0;
 1;
};

 }

This function makes use of the fact that the presence of tainted data anywhere within an expression
the entire expression tainted. It would be inefficient for every operator to test every argume
taintedness. Instead, the slightly more efficient and conservative approach is used that if any tainte
has been accessed within the same expression, the whole expression is considered tainted.

But testing for taintedness only gets you so far. Sometimes you just have to clear your data‘s taint
The only way to bypass the tainting mechanism is by referencing subpatterns from a regular exp
match. Perl presumes that if you reference a substring using $1, $2, etc., that you knew what you were
doing when you wrote the pattern. That means using a bit of thought—don‘t just blindly untaint anythi
you defeat the entire mechanism. It‘s better to verify that the variable has only good characters (for
values of "good") rather than checking whether it has any bad characters. That‘s because it‘s far too
miss bad characters that you never thought of.

Here‘s a test to make sure that the data contains nothing but "word" characters (alphabetics, numer
underscores), a hyphen, an at sign, or a dot.

 if ($data =~ /^([−\@\w.]+)$/) {
$data = $1; # $data now untainted

 } else {
die "Bad data in $data"; # log this somewhere

 }

This is fairly secure since /\w+/ doesn‘t normally match shell metacharacters, nor are dot, dash, or at g
to mean something special to the shell. Use of /.+/ would have been insecure in theory because it l
everything through, but Perl doesn‘t check for that. The lesson is that when untainting, you m
exceedingly careful with your patterns. Laundering data using regular expression is the ONLY mechanism for
untainting dirty data, unless you use the strategy detailed below to fork a child of lesser privilege.

Cleaning Up Your Path
For "Insecure $ENV{PATH}" messages, you need to set $ENV{‘PATH‘} to a known value, and each
directory in the path must be non−writable by others than its owner and group. You may be surprised
this message even if the pathname to your executable is fully qualified. This is not generated because you
didn‘t supply a full path to the program; instead, it‘s generated because you never set your
environment variable, or you didn‘t set it to something that was safe. Because Perl can‘t guarantee
executable in question isn‘t itself going to turn around and execute some other program that is depen
your PATH, it makes sure you set the PATH.
240 Version 5.003 08−Oct−1996

perlsec Perl Programmers Reference Guide perlsec

values.
 opens
ing
ed to

 a child

process
nown

e or pipe
d into

l
es: just
at

 away
g bad.
meone

 evil.
nd says,
 Perl

ystem

pts, on
a race
d when
y have
It‘s also possible to get into trouble with other operations that don‘t care whether they use tainted
Make judicious use of the file tests in dealing with any user−supplied filenames. When possible, do
and such after setting $> = $<. (Remember group IDs, too!) Perl doesn‘t prevent you from open
tainted filenames for reading, so be careful what you print out. The tainting mechanism is intend
prevent stupid mistakes, not to remove the need for thought.

Perl does not call the shell to expand wild cards when you pass system and exec explicit parameter lists
instead of strings with possible shell wildcards in them. Unfortunately, the open, glob, and backtick
functions provide no such alternate calling convention, so more subterfuge will be required.

Perl provides a reasonably safe way to open a file or pipe from a setuid or setgid program: just create
process with reduced privilege who does the dirty work for you. First, fork a child using the specialopen
syntax that connects the parent and child by a pipe. Now the child resets its ID set and any other per−
attributes, like environment variables, umasks, current working directories, back to the originals or k
safe values. Then the child process, which no longer has any special permissions, does the open or other
system call. Finally, the child passes the data it managed to access back to the parent. Since the fil
was opened in the child while running under less privilege than the parent, it‘s not apt to be tricke
doing something it shouldn‘t.

Here‘s a way to do backticks reasonably safely. Notice how the exec is not called with a string that the shel
could expand. This is by far the best way to call something that might be subjected to shell escap
never call the shell at all. By the time we get to the exec, tainting is turned off, however, so be careful wh
you call and what you pass it.

 use English;
 die unless defined $pid = open(KID, "−|");
 if ($pid) { # parent

while (<KID>) {
 # do something
}
close KID;

 } else {
$EUID = $UID;
$EGID = $GID; # XXX: initgroups() not called
$ENV{PATH} = "/bin:/usr/bin";
exec ’myprog’, ’arg1’, ’arg2’;
die "can’t exec myprog: $!";

 }

A similar strategy would work for wildcard expansion via glob .

Taint checking is most useful when although you trust yourself not to have written a program to give
the farm, you don‘t necessarily trust those who end up using it not to try to trick it into doing somethin
This is the kind of security checking that‘s useful for setuid programs and programs launched on so
else‘s behalf, like CGI programs.

This is quite different, however, from not even trusting the writer of the code not to try to do something
That‘s the kind of trust needed when someone hands you a program you‘ve never seen before a
"Here, run this." For that kind of safety, check out the Safe module, included standard in the
distribution. This module allows the programmer to set up special compartments in which all s
operations are trapped and namespace access is carefully controlled.

Security Bugs
Beyond the obvious problems that stem from giving special privileges to systems as flexible as scri
many versions of Unix, setuid scripts are inherently insecure right from the start. The problem is
condition in the kernel. Between the time the kernel opens the file to see which interpreter to run an
the (now−setuid) interpreter turns around and reopens the file to interpret it, the file in question ma
changed, especially if you have symbolic links on your system.
08−Oct−1996 Version 5.003 241

perlsec Perl Programmers Reference Guide perlsec

able it.
it can
hanism
cutable

ipt is
 script.
piled
n in C:

is
 plus a

systems,
athname
hat
d with

s
d BSD

s

Fortunately, sometimes this kernel "feature" can be disabled. Unfortunately, there are two ways to dis
The system can simply outlaw scripts with the setuid bit set, which doesn‘t help much. Alternately,
simply ignore the setuid bit on scripts. If the latter is true, Perl can emulate the setuid and setgid mec
when it notices the otherwise useless setuid/gid bits on Perl scripts. It does this via a special exe
called suidperl that is automatically invoked for you if it‘s needed.

However, if the kernel setuid script feature isn‘t disabled, Perl will complain loudly that your setuid scr
insecure. You‘ll need to either disable the kernel setuid script feature, or put a C wrapper around the
A C wrapper is just a compiled program that does nothing except call your Perl program. Com
programs are not subject to the kernel bug that plagues setuid scripts. Here‘s a simple wrapper, writte

 #define REAL_PATH "/path/to/script"
 main(ac, av)

char **av;
 {

execv(REAL_PATH, av);
 }

Compile this wrapper into a binary executable and then make it rather than your script setuid or setgid.

See the program wrapsuid in the eg directory of your Perl distribution for a convenient way to do th
automatically for all your setuid Perl programs. It moves setuid scripts into files with the same name
leading dot, and then compiles a wrapper like the one above for each of them.

In recent years, vendors have begun to supply systems free of this inherent security bug. On such
when the kernel passes the name of the setuid script to open to the interpreter, rather than using a p
subject to meddling, it instead passes /dev/fd/3. This is a special file already opened on the script, so t
there can be no race condition for evil scripts to exploit. On these systems, Perl should be compile
−DSETUID_SCRIPTS_ARE_SECURE_NOW. The Configure program that builds Perl tries to figure thi
out for itself, so you should never have to specify this yourself. Most modern releases of SysVr4 an
4.4 use this approach to avoid the kernel race condition.

Prior to release 5.003 of Perl, a bug in the code of suidperl could introduce a security hole in system
compiled with strict POSIX compliance.
242 Version 5.003 08−Oct−1996

perltrap Perl Programmers Reference Guide perltrap

g

line is

 the

d.

ould

er is in
the
NAME
perltrap − Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting to use the −w switch; see perlrun. The second biggest trap is not makin
your entire program runnable under use strict .

Awk Traps
Accustomed awk users should take special note of the following:

 The English module, loaded via

 use English;

allows you to refer to special variables (like $RS) as though they were in awk; see perlvar for details.

 Semicolons are required after all simple statements in Perl (except at the end of a block). New
not a statement delimiter.

 Curly brackets are required on if s and while s.

 Variables begin with "$" or "@" in Perl.

 Arrays index from 0. Likewise string positions in substr() and index() .

 You have to decide whether your array has numeric or string indices.

 Associative array values do not spring into existence upon mere reference.

 You have to decide whether you want to use string or numeric comparisons.

 Reading an input line does not split it for you. You get to split it yourself to an array. And
split() operator has different arguments.

 The current input line is normally in $_, not $0. It generally does not have the newline strippe
($0 is the name of the program executed.) See perlvar.

 $<digit > does not refer to fields—it refers to substrings matched by the last match pattern.

 The print() statement does not add field and record separators unless you set $, and $\. You can
set $OFS and $ORS if you‘re using the English module.

 You must open your files before you print to them.

 The range operator is "..", not comma. The comma operator works as in C.

 The match operator is "=~", not "~". ("~" is the one‘s complement operator, as in C.)

 The exponentiation operator is "**", not "^". "^" is the XOR operator, as in C. (You know, one c
get the feeling that awk is basically incompatible with C.)

 The concatenation operator is ".", not the null string. (Using the null string would render /pat/
/pat/ unparsable, since the third slash would be interpreted as a division operator—the token
fact slightly context sensitive for operators like "/", "?", and ">". And in fact, "." itself can be
beginning of a number.)

 The next , exit , and continue keywords work differently.

 The following variables work differently:

 Awk Perl
 ARGC $#ARGV or scalar @ARGV
 ARGV[0] $0
 FILENAME $ARGV
08−Oct−1996 Version 5.003 243

perltrap Perl Programmers Reference Guide perltrap

se

 which

 in the

ution
.
 FNR $. − something
 FS(whatever you like)
 NF$#Fld, or some such
 NR$.
 OFMT $#
 OFS $,
 ORS $\
 RLENGTH length($&)
 RS$/
 RSTART length($‘)
 SUBSEP $;

 You cannot set $RS to a pattern, only a string.

 When in doubt, run the awk construct through a2p and see what it gives you.

C Traps
Cerebral C programmers should take note of the following:

 Curly brackets are required on if ‘s and while ‘s.

 You must use elsif rather than else if .

 The break and continue keywords from C become in Perl last and next , respectively. Unlike
in C, these do NOT work within a do { } while construct.

 There‘s no switch statement. (But it‘s easy to build one on the fly.)

 Variables begin with "$" or "@" in Perl.

 printf() does not implement the "*" format for interpolating field widths, but it‘s trivial to u
interpolation of double−quoted strings to achieve the same effect.

 Comments begin with "#", not "/*".

 You can‘t take the address of anything, although a similar operator in Perl 5 is the backslash,
creates a reference.

 ARGV must be capitalized. $ARGV[0] is C‘s argv[1] , and argv[0] ends up in $0.

 System calls such as link() , unlink() , rename() , etc. return nonzero for success, not 0.

 Signal handlers deal with signal names, not numbers. Use kill −l to find their names on your
system.

Sed Traps
Seasoned sed programmers should take note of the following:

 Backreferences in substitutions use "$" rather than "\".

 The pattern matching metacharacters "(", ")", and "|" do not have backslashes in front.

 The range operator is ... , rather than comma.

Shell Traps
Sharp shell programmers should take note of the following:

 The backtick operator does variable interpolation without regard to the presence of single quotes
command.

 The backtick operator does no translation of the return value, unlike csh.

 Shells (especially csh) do several levels of substitution on each command line. Perl does substit
only in certain constructs such as double quotes, backticks, angle brackets, and search patterns
244 Version 5.003 08−Oct−1996

perltrap Perl Programmers Reference Guide perltrap

ting it

e. See

ether
ls, you

. The

n to

name

 feature
 Shells interpret scripts a little bit at a time. Perl compiles the entire program before execu
(except for BEGIN blocks, which execute at compile time).

 The arguments are available via @ARGV, not $1, $2, etc.

 The environment is not automatically made available as separate scalar variables.

Perl Traps
Practicing Perl Programmers should take note of the following:

 Remember that many operations behave differently in a list context than they do in a scalar on
perldata for details.

 Avoid barewords if you can, especially all lower−case ones. You can‘t tell just by looking at it wh
a bareword is a function or a string. By using quotes on strings and parens on function cal
won‘t ever get them confused.

 You cannot discern from mere inspection which built−ins are unary operators (like chop() and
chdir()) and which are list operators (like print() and unlink()). (User−defined subroutines
can only be list operators, never unary ones.) See perlop.

 People have a hard time remembering that some functions default to $_, or @ARGV, or whatever,
but that others which you might expect to do not.

 The <FH> construct is not the name of the filehandle, it is a readline operation on that handle
data read is only assigned to $_ if the file read is the sole condition in a while loop:

 while (<FH>) { }
 while ($_ = <FH>) { }..
 <FH>; # data discarded!

 Remember not to use "=" when you need "=~"; these two constructs are quite different:

 $x = /foo/;
 $x =~ /foo/;

 The do {} construct isn‘t a real loop that you can use loop control on.

 Use my() for local variables whenever you can get away with it (but see perlform for where you
can‘t). Using local() actually gives a local value to a global variable, which leaves you ope
unforeseen side−effects of dynamic scoping.

 If you localize an exported variable in a module, its exported value will not change. The local
becomes an alias to a new value but the external name is still an alias for the original.

Perl4 to Perl5 Traps
Practicing Perl4 Programmers should take note of the following Perl4−to−Perl5 specific traps.

They‘re crudely ordered according to the following list:

Discontinuance, Deprecation, and BugFix traps
Anything that‘s been fixed as a perl4 bug, removed as a perl4 feature or deprecated as a perl4
with the intent to encourage usage of some other perl5 feature.

Parsing Traps
Traps that appear to stem from the new parser.

Numerical Traps
Traps having to do with numerical or mathematical operators.

General data type traps
Traps involving perl standard data types.
08−Oct−1996 Version 5.003 245

perltrap Perl Programmers Reference Guide perltrap

ng with

leton

ntly in

sed as
Context Traps − scalar, list contexts
Traps related to context within lists, scalar statements/declarations.

Precedence Traps
Traps related to the precedence of parsing, evaluation, and execution of code.

General Regular Expression Traps using s///, etc.
Traps related to the use of pattern matching.

Subroutine, Signal, Sorting Traps
Traps related to the use of signals and signal handlers, general subroutines, and sorting, alo
sorting subroutines.

OS Traps
OS−specific traps.

DBM Traps
Traps specific to the use of dbmopen() , and specific dbm implementations.

Unclassified Traps
Everything else.

If you find an example of a conversion trap that is not listed here, please submit it to Bill Midd
wjm@best.com for inclusion. Also note that at least some of these can be caught with −w.

Discontinuance, Deprecation, and BugFix traps
Anything that has been discontinued, deprecated, or fixed as a bug from perl4.

 Discontinuance
Symbols starting with "_" are no longer forced into package main, except for $_ itself (and @_, etc.).

 package test;
 $_legacy = 1;

 package main;
 print "\$_legacy is ",$_legacy,"\n";

 # perl4 prints: $_legacy is 1
 # perl5 prints: $_legacy is

 Deprecation
Double−colon is now a valid package separator in a variable name. Thus these behave differe
perl4 vs. perl5, since the packages don‘t exist.

 $a=1;$b=2;$c=3;$var=4;
 print "$a::$b::$c ";
 print "$var::abc::xyz\n";

 # perl4 prints: 1::2::3 4::abc::xyz
 # perl5 prints: 3

Given that :: is now the preferred package delimiter, it is debatable whether this should be clas
a bug or not. (The older package delimiter, ’ ,is used here)

 $x = 10 ;
 print "x=${’x}\n" ;

 # perl4 prints: x=10
 # perl5 prints: Can’t find string terminator "’" anywhere before EOF

Also see precedence traps, for parsing $:.
246 Version 5.003 08−Oct−1996

perltrap Perl Programmers Reference Guide perltrap

ys)

for any

fore,
 BugFix
The second and third arguments of splice() are now evaluated in scalar context (as the Camel sa
rather than list context.

 sub sub1{return(0,2) } # return a 2−elem array
 sub sub2{ return(1,2,3)} # return a 3−elem array
 @a1 = ("a","b","c","d","e");
 @a2 = splice(@a1,&sub1,&sub2);
 print join(’ ’,@a2),"\n";

 # perl4 prints: a b
 # perl5 prints: c d e

 Discontinuance
You can‘t do a goto into a block that is optimized away. Darn.

 goto marker1;

 for(1){
 marker1:
 print "Here I is!\n";
 }

 # perl4 prints: Here I is!
 # perl5 dumps core (SEGV)

 Discontinuance
It is no longer syntactically legal to use whitespace as the name of a variable, or as a delimiter
kind of quote construct. Double darn.

 $a = ("foo bar");
 $b = q baz ;
 print "a is $a, b is $b\n";

 # perl4 prints: a is foo bar, b is baz
 # perl5 errors: Bare word found where operator expected

 Discontinuance
The archaic while/if BLOCK BLOCK syntax is no longer supported.

 if { 1 } {
 print "True!";
 }
 else {
 print "False!";
 }

 # perl4 prints: True!
 # perl5 errors: syntax error at test.pl line 1, near "if {"

 BugFix
The ** operator now binds more tightly than unary minus. It was documented to work this way be
but didn‘t.

 print −4**2,"\n";

 # perl4 prints: 16
 # perl5 prints: −16
08−Oct−1996 Version 5.003 247

perltrap Perl Programmers Reference Guide perltrap

ray.
means
to the

iterate

use
 Discontinuance
The meaning of foreach{} has changed slightly when it is iterating over a list which is not an ar
 This used to assign the list to a temporary array, but no longer does so (for efficiency). This
that you‘ll now be iterating over the actual values, not over copies of the values. Modifications
loop variable can change the original values.

 @list = (’ab’,’abc’,’bcd’,’def’);
 foreach $var (grep(/ab/,@list)){
 $var = 1;
 }
 print (join(’:’,@list));

 # perl4 prints: ab:abc:bcd:def
 # perl5 prints: 1:1:bcd:def

To retain Perl4 semantics you need to assign your list explicitly to a temporary array and then
over that. For example, you might need to change

 foreach $var (grep(/ab/,@list)){

to

 foreach $var (@tmp = grep(/ab/,@list)){

Otherwise changing $var will clobber the values of @list. (This most often happens when you
$_ for the loop variable, and call subroutines in the loop that don‘t properly localize $_.)

 Discontinuance
split with no arguments now behaves like split ’ ’ (which doesn‘t return an initial null field if
$_ starts with whitespace), it used to behave like split /\s+/ (which does).

 $_ = ’ hi mom’;
 print join(’:’, split);

 # perl4 prints: :hi:mom
 # perl5 prints: hi:mom

 Deprecation
Some error messages will be different.

 Discontinuance
Some bugs may have been inadvertently removed. :−)

Parsing Traps
Perl4−to−Perl5 traps from having to do with parsing.

 Parsing
Note the space between . and =

 $string . = "more string";
 print $string;

 # perl4 prints: more string
 # perl5 prints: syntax error at − line 1, near ". ="

 Parsing
Better parsing in perl 5

 sub foo {}
 &foo
 print("hello, world\n");
248 Version 5.003 08−Oct−1996

perltrap Perl Programmers Reference Guide perltrap

t catch
using

 test

text.
 # perl4 prints: hello, world
 # perl5 prints: syntax error

 Parsing
"if it looks like a function, it is a function" rule.

 print
 ($foo == 1) ? "is one\n" : "is zero\n";

 # perl4 prints: is zero
 # perl5 warns: "Useless use of a constant in void context" if using −w

Numerical Traps
Perl4−to−Perl5 traps having to do with numerical operators, operands, or output from same.

 Numerical
Formatted output and significant digits

 print 7.373504 − 0, "\n";
 printf "%20.18f\n", 7.373504 − 0;

 # Perl4 prints:
 7.375039999999996141
 7.37503999999999614

 # Perl5 prints:
 7.373504
 7.37503999999999614

 Numerical
This specific item has been deleted. It demonstrated how the autoincrement operator would no
when a number went over the signed int limit. Fixed in 5.003_04. But always be wary when
large ints. If in doubt:

 use Math::BigInt;

 Numerical
Assignment of return values from numeric equality tests does not work in perl5 when the
evaluates to false (0). Logical tests now return an null, instead of 0

 $p = ($test == 1);
 print $p,"\n";

 # perl4 prints: 0
 # perl5 prints:

Also see the General Regular Expression Traps tests for another example of this new feature...

General data type traps
Perl4−to−Perl5 traps involving most data−types, and their usage within certain expressions and/or con

 (Arrays)
Negative array subscripts now count from the end of the array.

 @a = (1, 2, 3, 4, 5);
 print "The third element of the array is $a[3] also expressed as $a[−2] \n";

 # perl4 prints: The third element of the array is 4 also expressed as
 # perl5 prints: The third element of the array is 4 also expressed as 4
08−Oct−1996 Version 5.003 249

perltrap Perl Programmers Reference Guide perltrap

ent to

oes to
 (Arrays)
Setting $#array lower now discards array elements, and makes them impossible to recover.

 @a = (a,b,c,d,e);
 print "Before: ",join(’’,@a);
 $#a =1;
 print ", After: ",join(’’,@a);
 $#a =3;
 print ", Recovered: ",join(’’,@a),"\n";

 # perl4 prints: Before: abcde, After: ab, Recovered: abcd
 # perl5 prints: Before: abcde, After: ab, Recovered: ab

 (Hashes)
Hashes get defined before use

 local($s,@a,%h);
 die "scalar \$s defined" if defined($s);
 die "array \@a defined" if defined(@a);
 die "hash \%h defined" if defined(%h);

 # perl4 prints:
 # perl5 dies: hash %h defined

 (Globs)
glob assignment from variable to variable will fail if the assigned variable is localized subsequ
the assignment

 @a = ("This is Perl 4");
 *b = *a;
 local(@a);
 print @b,"\n";

 # perl4 prints: This is Perl 4
 # perl5 prints:

 # Another example

 *fred = *barney; # fred is aliased to barney
 @barney = (1, 2, 4);
 # @fred;
 print "@fred"; # should print "1, 2, 4"

 # perl4 prints: 1 2 4
 # perl5 prints: Literal @fred now requires backslash

 (Scalar String)
Changes in unary negation (of strings) This change effects both the return value and what it d
auto(magic)increment.

 $x = "aaa";
 print ++$x," : ";
 print −$x," : ";
 print ++$x,"\n";

 # perl4 prints: aab : −0 : 1
 # perl5 prints: aab : −aab : aac

 (Constants)
perl 4 lets you modify constants:
250 Version 5.003 08−Oct−1996

perltrap Perl Programmers Reference Guide perltrap

ior for
 $foo = "x";
 &mod($foo);
 for ($x = 0; $x < 3; $x++) {
 &mod("a");
 }
 sub mod {
 print "before: $_[0]";
 $_[0] = "m";
 print " after: $_[0]\n";
 }

 # perl4:
 # before: x after: m
 # before: a after: m
 # before: m after: m
 # before: m after: m

 # Perl5:
 # before: x after: m
 # Modification of a read−only value attempted at foo.pl line 12.
 # before: a

 (Scalars)
The behavior is slightly different for:

 print "$x", defined $x

 # perl 4: 1
 # perl 5: <no output, $x is not called into existence>

 (Variable Suicide)
Variable suicide behavior is more consistent under Perl 5. Perl5 exhibits the same behav
associative arrays and scalars, that perl4 exhibits only for scalars.

 $aGlobal{ "aKey" } = "global value";
 print "MAIN:", $aGlobal{"aKey"}, "\n";
 $GlobalLevel = 0;
 &test(*aGlobal);

 sub test {
 local(*theArgument) = @_;
 local(%aNewLocal); # perl 4 != 5.001l,m
 $aNewLocal{"aKey"} = "this should never appear";
 print "SUB: ", $theArgument{"aKey"}, "\n";
 $aNewLocal{"aKey"} = "level $GlobalLevel"; # what should print
 $GlobalLevel++;
 if($GlobalLevel<4) {
 &test(*aNewLocal);
 }
 }

 # Perl4:
 # MAIN:global value
 # SUB: global value
 # SUB: level 0
 # SUB: level 1
 # SUB: level 2

 # Perl5:
08−Oct−1996 Version 5.003 251

perltrap Perl Programmers Reference Guide perltrap

u can

 lets

ents.

ded to
 # MAIN:global value
 # SUB: global value
 # SUB: this should never appear
 # SUB: this should never appear
 # SUB: this should never appear

Context Traps − scalar, list contexts

 (list context)
The elements of argument lists for formats are now evaluated in list context. This means yo
interpolate list values now.

 @fmt = ("foo","bar","baz");
 format STDOUT=
 @<<<<< @||||| @>>>>>
 @fmt;
 .
 write;

 # perl4 errors: Please use commas to separate fields in file
 # perl5 prints: foo bar baz

 (scalar context)
The caller() function now returns a false value in a scalar context if there is no caller. This
library files determine if they‘re being required.

 caller() ? (print "You rang?\n") : (print "Got a 0\n");

 # perl4 errors: There is no caller
 # perl5 prints: Got a 0

 (scalar context)
The comma operator in a scalar context is now guaranteed to give a scalar context to its argum

 @y= (’a’,’b’,’c’);
 $x = (1, 2, @y);
 print "x = $x\n";

 # Perl4 prints: x = c # Thinks list context interpolates list
 # Perl5 prints: x = 3 # Knows scalar uses length of list

 (list, builtin)
sprintf() funkiness (array argument converted to scalar array count) This test could be ad
t/op/sprintf.t

 @z = (’%s%s’, ’foo’, ’bar’);
 $x = sprintf(@z);
 if ($x eq ’foobar’) {print "ok 2\n";} else {print "not ok 2 ’$x’\n";}

 # perl4 prints: ok 2
 # perl5 prints: not ok 2

printf() works fine, though:

 printf STDOUT (@z);
 print "\n";

 # perl4 prints: foobar
 # perl5 prints: foobar

Probably a bug.
252 Version 5.003 08−Oct−1996

perltrap Perl Programmers Reference Guide perltrap

t. Perl 4
ize them

t as it‘s
Precedence Traps
Perl4−to−Perl5 traps involving precedence order.

 Precedence
LHS vs. RHS when both sides are getting an op.

 @arr = (’left’, ’right’);
 $a{shift @arr} = shift @arr;
 print join(’ ’, keys %a);

 # perl4 prints: left
 # perl5 prints: right

 Precedence
These are now semantic errors because of precedence:

 @list = (1,2,3,4,5);
 %map = ("a",1,"b",2,"c",3,"d",4);
 $n = shift @list + 2; # first item in list plus 2
 print "n is $n, ";
 $m = keys %map + 2; # number of items in hash plus 2
 print "m is $m\n";

 # perl4 prints: n is 3, m is 6
 # perl5 errors and fails to compile

 Precedence
The precedence of assignment operators is now the same as the precedence of assignmen
mistakenly gave them the precedence of the associated operator. So you now must parenthes
in expressions like

 /foo/ ? ($a += 2) : ($a −= 2);

Otherwise

 /foo/ ? $a += 2 : $a −= 2

would be erroneously parsed as

 (/foo/ ? $a += 2 : $a) −= 2;

On the other hand,

 $a += /foo/ ? 1 : 2;

now works as a C programmer would expect.

 Precedence
 open FOO || die;

is now incorrect. You need parens around the filehandle. Otherwise, perl5 leaves the statemen
default precedence:

 open(FOO || die);

 # perl4 opens or dies
 # perl5 errors: Precedence problem: open FOO should be open(FOO)

 Precedence
perl4 gives the special variable, $: precedence, where perl5 treats $:: as main package

 $a = "x"; print "$::a";
08−Oct−1996 Version 5.003 253

perltrap Perl Programmers Reference Guide perltrap

perator

e scope
 # perl 4 prints: −:a
 # perl 5 prints: x

 Precedence
concatenation precedence over filetest operator?

 −e $foo .= "q"

 # perl4 prints: no output
 # perl5 prints: Can’t modify −e in concatenation

 Precedence
Assignment to value takes precedence over assignment to key in perl5 when using the shift o
on both sides.

 @arr = (’left’, ’right’);
 $a{shift @arr} = shift @arr;
 print join(’ ’, keys %a);

 # perl4 prints: left
 # perl5 prints: right

General Regular Expression Traps using s///, etc.
All types of RE traps.

 Regular Expression
s‘$lhs‘$rhs’ now does no interpolation on either side. It used to interpolate $lhs but not
$rhs. (And still does not match a literal ‘$’ in string)

 $a=1;$b=2;
 $string = ’1 2 $a $b’;
 $string =~ s’$a’$b’;
 print $string,"\n";

 # perl4 prints: $b 2 $a $b
 # perl5 prints: 1 2 $a $b

 Regular Expression
m//g now attaches its state to the searched string rather than the regular expression. (Once th
of a block is left for the sub, the state of the searched string is lost)

 $_ = "ababab";
 while(m/ab/g){
 &doit("blah");
 }
 sub doit{local($_) = shift; print "Got $_ "}

 # perl4 prints: blah blah blah
 # perl5 prints: infinite loop blah...

 Regular Expression
If no parentheses are used in a match, Perl4 sets $+ to the whole match, just like $&. Perl5 does not.

 "abcdef" =~ /b.*e/;
 print "\$+ = $+\n";

 # perl4 prints: bcde
 # perl5 prints:

 Regular Expression
substitution now returns the null string if it fails
254 Version 5.003 08−Oct−1996

perltrap Perl Programmers Reference Guide perltrap

the s‘d

utines,
 $string = "test";
 $value = ($string =~ s/foo//);
 print $value, "\n";

 # perl4 prints: 0
 # perl5 prints:

Also see Numerical Traps for another example of this new feature.

 Regular Expression
s‘lhs‘rhs‘ (using backticks) is now a normal substitution, with no backtick expansion

 $string = "";
 $string =~ s‘^‘hostname‘;
 print $string, "\n";

 # perl4 prints: <the local hostname>
 # perl5 prints: hostname

 Regular Expression
Stricter parsing of variables used in regular expressions

 s/^([^$grpc]*$grpc[optplus$rep]?)//o;

 # perl4: compiles w/o error
 # perl5: with Scalar found where operator expected ..., near "optplus"

an added component of this example, apparently from the same script, is the actual value of
string after the substitution. [$opt] is a character class in perl4 and an array subscript in perl5

 $grpc = ’a’;
 $opt = ’r’;
 $_ = ’bar’;
 s/^([^$grpc]*$grpc[$opt]?)/foo/;
 print ;

 # perl4 prints: foo
 # perl5 prints: foobar

 Regular Expression
Under perl5, m?x? matches only once, like ?x? . Under perl4, it matched repeatedly, like /x/ or
m!x! .

 $test = "once";
 sub match { $test =~ m?once?; }
 &match();
 if(&match()) {
 # m?x? matches more then once
 print "perl4\n";
 } else {
 # m?x? matches only once
 print "perl5\n";
 }

 # perl4 prints: perl4
 # perl5 prints: perl5

Subroutine, Signal, Sorting Traps
The general group of Perl4−to−Perl5 traps having to do with Signals, Sorting, and their related subro
as well as general subroutine traps. Includes some OS−Specific traps.
08−Oct−1996 Version 5.003 255

perltrap Perl Programmers Reference Guide perltrap

e by

signal
 done

write
 (Signals)
Barewords that used to look like strings to Perl will now look like subroutine calls if a subroutin
that name is defined before the compiler sees them.

 sub SeeYa { warn"Hasta la vista, baby!" }
 $SIG{’TERM’} = SeeYa;
 print "SIGTERM is now $SIG{’TERM’}\n";

 # perl4 prints: SIGTERM is main’SeeYa
 # perl5 prints: SIGTERM is now main::1

Use −w to catch this one

 (Sort Subroutine)
reverse is no longer allowed as the name of a sort subroutine.

 sub reverse{ print "yup "; $a <=> $b }
 print sort reverse a,b,c;

 # perl4 prints: yup yup yup yup abc
 # perl5 prints: abc

 warn() specifically implies STDERR
 warn STDERR "Foo!";

 # perl4 prints: Foo!
 # perl5 prints: String found where operator expected

OS Traps

 (SysV)
Under HPUX, and some other SysV OS‘s, one had to reset any signal handler, within the
handler function, each time a signal was handled with perl4. With perl5, the reset is now
correctly. Any code relying on the handler _not_ being reset will have to be reworked.

5.002 and beyond uses sigaction() under SysV

 sub gotit {
 print "Got @_... ";
 }
 $SIG{’INT’} = ’gotit’;

 $| = 1;
 $pid = fork;
 if ($pid) {
 kill(’INT’, $pid);
 sleep(1);
 kill(’INT’, $pid);
 } else {
 while (1) {sleep(10);}
 }

 # perl4 (HPUX) prints: Got INT...
 # perl5 (HPUX) prints: Got INT... Got INT...

 (SysV)
Under SysV OS‘s, seek() on a file opened to append >> now does the right thing w.r.t. the
fopen() man page. e.g. − When a file is opened for append, it is impossible to over
information already in the file.

 open(TEST,">>seek.test");
256 Version 5.003 08−Oct−1996

perltrap Perl Programmers Reference Guide perltrap

ments,

quotes

 to

ed, the
 $start = tell TEST ;
 foreach(1 .. 9){
 print TEST "$_ ";
 }
 $end = tell TEST ;
 seek(TEST,$start,0);
 print TEST "18 characters here";

 # perl4 (solaris) seek.test has: 18 characters here
 # perl5 (solaris) seek.test has: 1 2 3 4 5 6 7 8 9 18 characters here

Interpolation Traps
Perl4−to−Perl5 traps having to do with how things get interpolated within certain expressions, state
contexts, or whatever.

 Interpolation
@ now always interpolates an array in double−quotish strings.

 print "To: someone@somewhere.com\n";

 # perl4 prints: To:someone@somewhere.com
 # perl5 errors : Literal @somewhere now requires backslash

 Interpolation
Double−quoted strings may no longer end with an unescaped $ or @.

 $foo = "foo$";
 $bar = "bar@";
 print "foo is $foo, bar is $bar\n";

 # perl4 prints: foo is foo$, bar is bar@
 # perl5 errors: Final $ should be \$ or $name

Note: perl5 DOES NOT error on the terminating @ in $bar

 Interpolation
Perl now sometimes evaluates arbitrary expressions inside braces that occur within double
(usually when the opening brace is preceded by $ or @).

 @www = "buz";
 $foo = "foo";
 $bar = "bar";
 sub foo { return "bar" };
 print "|@{w.w.w}|${main’foo}|";

 # perl4 prints: |@{w.w.w}|foo|
 # perl5 prints: |buz|bar|

Note that you can use strict; to ward off such trappiness under perl5.

 Interpolation
The construct "this is $$x" used to interpolate the pid at that point, but now apparently tries
dereference $x. $$ by itself still works fine, however.

 print "this is $$x\n";

 # perl4 prints: this is XXXx (XXX is the current pid)
 # perl5 prints: this is

 Interpolation
Creation of hashes on the fly with eval "EXPR" now requires either both $‘s to be protected in
the specification of the hash name, or both curlies to be protected. If both curlies are protect
08−Oct−1996 Version 5.003 257

perltrap Perl Programmers Reference Guide perltrap

ld be
result will be compatible with perl4 and perl5. This is a very common practice, and shou
changed to use the block form of eval{} if possible.

 $hashname = "foobar";
 $key = "baz";
 $value = 1234;
 eval "\$$hashname{’$key’} = q|$value|";
 (defined($foobar{’baz’})) ? (print "Yup") : (print "Nope");

 # perl4 prints: Yup
 # perl5 prints: Nope

Changing

 eval "\$$hashname{’$key’} = q|$value|";

to

 eval "\$\$hashname{’$key’} = q|$value|";

causes the following result:

 # perl4 prints: Nope
 # perl5 prints: Yup

or, changing to

 eval "\$$hashname\{’$key’\} = q|$value|";

causes the following result:

 # perl4 prints: Yup
 # perl5 prints: Yup
 # and is compatible for both versions

 Interpolation
perl4 programs which unconsciously rely on the bugs in earlier perl versions.

 perl −e ’$bar=q/not/; print "This is $foo{$bar} perl5"’

 # perl4 prints: This is not perl5
 # perl5 prints: This is perl5

 Interpolation
You also have to be careful about array references.

 print "$foo{"

 perl 4 prints: {
 perl 5 prints: syntax error

 Interpolation
Similarly, watch out for:

 $foo = "array";
 print "\$$foo{bar}\n";

 # perl4 prints: $array{bar}
 # perl5 prints: $

Perl 5 is looking for $array{bar} which doesn‘t exist, but perl 4 is happy just to expand $foo to
"array" by itself. Watch out for this especially in eval ‘s.
258 Version 5.003 08−Oct−1996

perltrap Perl Programmers Reference Guide perltrap

e script,
as the

e script,
e will
 Interpolation
qq() string passed to eval

 eval qq(
 foreach \$y (keys %\$x\) {
 \$count++;
 }
);

 # perl4 runs this ok
 # perl5 prints: Can’t find string terminator ")"

DBM Traps
General DBM traps.

 DBM Existing dbm databases created under perl4 (or any other dbm/ndbm tool) may cause the sam
run under perl5, to fail. The build of perl5 must have been linked with the same dbm/ndbm
default for dbmopen() to function properly without tie ‘ing to an extension dbm implementation.

 dbmopen (%dbm, "file", undef);
 print "ok\n";

 # perl4 prints: ok
 # perl5 prints: ok (IFF linked with −ldbm or −lndbm)

 DBM Existing dbm databases created under perl4 (or any other dbm/ndbm tool) may cause the sam
run under perl5, to fail. The error generated when exceeding the limit on the key/value siz
cause perl5 to exit immediately.

 dbmopen(DB, "testdb",0600) || die "couldn’t open db! $!";
 $DB{’trap’} = "x" x 1024; # value too large for most dbm/ndbm
 print "YUP\n";

 # perl4 prints:
 dbm store returned −1, errno 28, key "trap" at − line 3.
 YUP

 # perl5 prints:
 dbm store returned −1, errno 28, key "trap" at − line 3.

Unclassified Traps
Everything else.

 Unclassified
require /do trap using returned value

If the file doit.pl has:

 sub foo {
 $rc = do "./do.pl";
 return 8;
 }
 print &foo, "\n";

And the do.pl file has the following single line:

 return 3;

Running doit.pl gives the following:

 # perl 4 prints: 3 (aborts the subroutine early)
 # perl 5 prints: 8
08−Oct−1996 Version 5.003 259

perltrap Perl Programmers Reference Guide perltrap
Same behavior if you replace do with require .

As always, if any of these are ever officially declared as bugs, they‘ll be fixed and removed.
260 Version 5.003 08−Oct−1996

perlstyle Perl Programmers Reference Guide perlstyle

ere are

er

g curly
e has

he same

le one.
NAME
perlstyle − Perl style guide

DESCRIPTION
Each programmer will, of course, have his or her own preferences in regards to formatting, but th
some general guidelines that will make your programs easier to read, understand, and maintain.

The most important thing is to run your programs under the −w flag at all times. You may turn it off
explicitly for particular portions of code via the $^W variable if you must. You should also always run und
use strict or know the reason why not. The use sigtrap and even use diagnostics pragmas
may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is that the closin
brace of a multi−line BLOCK should line up with the keyword that started the construct. Beyond that, h
other preferences that aren‘t so strong:

 4−column indent.

 Opening curly on same line as keyword, if possible, otherwise line up.

 Space before the opening curly of a multiline BLOCK.

 One−line BLOCK may be put on one line, including curlies.

 No space before the semicolon.

 Semicolon omitted in "short" one−line BLOCK.

 Space around most operators.

 Space around a "complex" subscript (inside brackets).

 Blank lines between chunks that do different things.

 Uncuddled elses.

 No space between function name and its opening paren.

 Space after each comma.

 Long lines broken after an operator (except "and" and "or").

 Space after last paren matching on current line.

 Line up corresponding items vertically.

 Omit redundant punctuation as long as clarity doesn‘t suffer.

Larry has his reasons for each of these things, but he doesn‘t claim that everyone else‘s mind works t
as his does.

Here are some other more substantive style issues to think about:

 Just because you CAN do something a particular way doesn‘t mean that you SHOULD do it that way.
Perl is designed to give you several ways to do anything, so consider picking the most readab
For instance

 open(FOO,$foo) || die "Can’t open $foo: $!";

is better than

 die "Can’t open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a modifier. On the other hand

 print "Starting analysis\n" if $verbose;
08−Oct−1996 Version 5.003 261

perlstyle Perl Programmers Reference Guide perlstyle

have to
e−shot

you

key in

 code

level

y
use a

nstruct
was

em.

It is

module
l
tems’

le:
is better than

 $verbose && print "Starting analysis\n";

since the main point isn‘t whether the user typed −v or not.

Similarly, just because an operator lets you assume default arguments doesn‘t mean that you
make use of the defaults. The defaults are there for lazy systems programmers writing on
programs. If you want your program to be readable, consider supplying the argument.

Along the same lines, just because you CAN omit parentheses in many places doesn‘t mean that
ought to:

 return print reverse sort num values %array;
 return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on the %
vi.

Even if you aren‘t in doubt, consider the mental welfare of the person who has to maintain the
after you, and who will probably put parens in the wrong place.

 Don‘t go through silly contortions to exit a loop at the top or the bottom, when Perl provides the last
operator so you can exit in the middle. Just "outdent" it a little to make it more visible:

 LINE:
for (;;) {
 statements;
 last LINE if $foo;
 next LINE if /^#/;
 statements;
}

 Don‘t be afraid to use loop labels—they‘re there to enhance readability as well as to allow multi−
loop breaks. See the previous example.

 Avoid using grep() (or map()) or ‘backticks‘ in a void context, that is, when you just throw awa
their return values. Those functions all have return values, so use them. Otherwise
foreach() loop or the system() function instead.

 For portability, when using features that may not be implemented on every machine, test the co
in an eval to see if it fails. If you know what version or patchlevel a particular feature
implemented, you can test $] ($PERL_VERSION in English) to see if it will be there. The
Config module will also let you interrogate values determined by the Configure program when Perl
was installed.

 Choose mnemonic identifiers. If you can‘t remember what mnemonic means, you‘ve got a probl

 While short identifiers like $gotit are probably ok, use underscores to separate words.
generally easier to read $var_names_like_this than $VarNamesLikeThis, especially for
non−native speakers of English. It‘s also a simple rule that works consistently with
VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally reserves lowercase
names for "pragma" modules like integer and strict . Other modules should begin with a capita
letter and use mixed case, but probably without underscores due to limitations in primitive filesys
representations of module names as files that must fit into a few sparse bites.

 You may find it helpful to use letter case to indicate the scope or nature of a variable. For examp

 $ALL_CAPS_HERE constants only (beware clashes with perl vars!)
 $Some_Caps_Here package−wide global/static
 $no_caps_here function scope my() or local() variables
262 Version 5.003 08−Oct−1996

perlstyle Perl Programmers Reference Guide perlstyle

side the

e
es or

 and to

include
VERY
re‘s a

ething
nsider
.

Function and method names seem to work best as all lowercase. E.g., $obj−>as_string() .

You can use a leading underscore to indicate that a variable or function should not be used out
package that defined it.

 If you have a really hairy regular expression, use the /x modifier and put in some whitespace to mak
it look a little less like line noise. Don‘t use slash as a delimiter when your regexp has slash
backslashes.

 Use the new "and" and "or" operators to avoid having to parenthesize list operators so much,
reduce the incidence of punctuational operators like && and || . Call your subroutines as if they were
functions or list operators to avoid excessive ampersands and parens.

 Use here documents instead of repeated print() statements.

 Line up corresponding things vertically, especially if it‘d be too long to fit on one line anyway.

 $IDX = $ST_MTIME;
 $IDX = $ST_ATIME if $opt_u;
 $IDX = $ST_CTIME if $opt_c;
 $IDX = $ST_SIZE if $opt_s;

 mkdir $tmpdir, 0700 or die "can’t mkdir $tmpdir: $!";
 chdir($tmpdir) or die "can’t chdir $tmpdir: $!";
 mkdir ’tmp’, 0777 or die "can’t mkdir $tmpdir/tmp: $!";

 Always check the return codes of system calls. Good error messages should go to STDERR,
which program caused the problem, what the failed system call and arguments were, and
IMPORTANT) should contain the standard system error message for what went wrong. He
simple but sufficient example:

 opendir(D, $dir) or die "can’t opendir $dir: $!";

 Line up your translations when it makes sense:

 tr [abc]
 [xyz];

 Think about reusability. Why waste brainpower on a one−shot when you might want to do som
like it again? Consider generalizing your code. Consider writing a module or object class. Co
making your code run cleanly with use strict and −w in effect. Consider giving away your code
Consider changing your whole world view. Consider... oh, never mind.

 Be consistent.

 Be nice.
08−Oct−1996 Version 5.003 263

perlpod Perl Programmers Reference Guide perlpod

ropriate

uld be
matting

rary

cut".

raph as

r the
 will
. This
e them
ve_ to
 items
c., to
ullets
e first

f the
 each
NAME
perlpod − plain old documentation

DESCRIPTION
A pod−to−whatever translator reads a pod file paragraph by paragraph, and translates it to the app
output format. There are three kinds of paragraphs:

 A verbatim paragraph, distinguished by being indented (that is, it starts with space or tab). It sho
reproduced exactly, with tabs assumed to be on 8−column boundaries. There are no special for
escapes, so you can‘t italicize or anything like that. A \ means \, and nothing else.

 A command. All command paragraphs start with "=", followed by an identifier, followed by arbit
text that the command can use however it pleases. Currently recognized commands are

 =head1 heading
 =head2 heading
 =item text
 =over N
 =back
 =cut
 =pod

The "=pod" directive does nothing beyond telling the compiler to lay off of through the next "=
It‘s useful for adding another paragraph to the doc if you‘re mixing up code and pod a lot.

Head1 and head2 produce first and second level headings, with the text on the same parag
"=headn" forming the heading description.

Item, over, and back require a little more explanation: Over starts a section specifically fo
generation of a list using =item commands. At the end of your list, use =back to end it. You
probably want to give "4" as the number to =over, as some formatters will use this for indentation
should probably be a default. Note also that there are some basic rules to using =item: don‘t us
outside of an =over/=back block, use at least one inside an =over/=back block, you don‘t _ha
include the =back if the list just runs off the document, and perhaps most importantly, keep the
consistent: either use "=item *" for all of them, to produce bullets, or use "=item 1.", "=item 2.", et
produce numbered lists, or use "=item foo", "=item bar", etc., i.e., things that looks nothing like b
or numbers. If you start with bullets or numbers, stick with them, as many formatters use th
=item type to decide how to format the list.

And don‘t forget, when using any command, that that command lasts up until the end o
paragraph, not the line. Hence in the examples below, you can see the blank lines after
command to end its paragraph.

Some examples of lists include:

 =over 4

 =item *

 First item

 =item *

 Second item

 =back

 =over 4

 =item Foo()

 Description of Foo function
264 Version 5.003 08−Oct−1996

perlpod Perl Programmers Reference Guide perlpod

 are

t), so
 in my
right
 slurp
 in a

n along

 an
tation.

mmand
 library
ND__
 =item Bar()

 Description of Bar function

 =back

 An ordinary block of text. It will be filled, and maybe even justified. Certain interior sequences
recognized both here and in commands:

 I<text> italicize text, used for emphasis or variables
 B<text> embolden text, used for switches and programs
 S<text> text contains non−breaking spaces
 C<code> literal code
 L<name> A link (cross reference) to name

 L<name> manpage
 L<name/ident> item in manpage
 L<name/"sec"> section in other manpage
 L<"sec"> section in this manpage

(the quotes are optional)
 L</"sec"> ditto

 F<file> Used for filenames
 X<index> An index entry
 Z<> A zero−width character

That‘s it. The intent is simplicity, not power. I wanted paragraphs to look like paragraphs (block forma
that they stand out visually, and so that I could run them through fmt easily to reformat them (that‘s F7
version of vi). I wanted the translator (and not me) to worry about whether " or ’ is a left quote or a
quote within filled text, and I wanted it to leave the quotes alone dammit in verbatim mode, so I could
in a working program, shift it over 4 spaces, and have it print out, er, verbatim. And presumably
constant width font.

In particular, you can leave things like this verbatim in your text:

 Perl
 FILEHANDLE
 $variable
 function()
 manpage(3r)

Doubtless a few other commands or sequences will need to be added along the way, but I‘ve gotte
surprisingly well with just these.

Note that I‘m not at all claiming this to be sufficient for producing a book. I‘m just trying to make
idiot−proof common source for nroff, TeX, and other markup languages, as used for online documen
Translators exist for pod2man (that‘s for nroff(1) and troff(1)), pod2html, pod2latex, and pod2fm.

Embedding Pods in Perl Modules
You can embed pod documentation in your Perl scripts. Start your documentation with a =head1 co
at the beg, and end it with an =cut command. Perl will ignore the pod text. See any of the supplied
modules for examples. If you‘re going to put your pods at the end of the file, and you‘re using an __E
or __DATA__ cut mark, make sure to put a blank line there before the first pod directive.

 __END__

 =head1 NAME

 modern − I am a modern module

If you had not had that blank line there, then the translators wouldn‘t have seen it.
08−Oct−1996 Version 5.003 265

perlpod Perl Programmers Reference Guide perlpod
SEE ALSO
pod2man and PODs: Embedded Documentation in perlsyn

AUTHOR
Larry Wall
266 Version 5.003 08−Oct−1996

perlbook Perl Programmers Reference Guide perlbook

829
u‘re

he very
e

NAME
perlbook − Perl book information

DESCRIPTION
You can order Perl books from O‘Reilly & Associates, 1−800−998−9938. Local/overseas is +1 707
0515. If you can locate an O‘Reilly order form, you can also fax to +1 707 829 0104. If yo
web−connected, you can even mosey on over to http://www.ora.com/ for an online order form.

Programming Perl, Second Edition is a reference work that covers nearly all of Perl, while Learning Perl is
a tutorial that covers the most frequently used subset of the language. You might also check out t
handy, inexpensive, and compact Perl 5 Desktop Reference, especially when the thought of lugging th
676−page Camel around doesn‘t make much sense.

 Programming Perl, Second Edition (the Camel Book):
ISBN 1−56592−149−6 (English)

 Learning Perl (the Llama Book):
ISBN 1−56592−042−2 (English)
ISBN 4−89502−678−1 (Japanese)
ISBN 2−84177−005−2 (French)
ISBN 3−930673−08−8 (German)

 Perl 5 Desktop Reference (the reference card):

ISBN 1−56592−187−9 (brief English)
08−Oct−1996 Version 5.003 267

perlembed Perl Programmers Reference Guide perlembed

s that

y you

y (and
NAME
perlembed − how to embed perl in your C program

DESCRIPTION

PREAMBLE
Do you want to:

Use C from Perl?
Read perlcall and perlxs.

Use a UNIX program from Perl?
Read about backquotes and about system and exec in perlfunc.

Use Perl from Perl?
Read about do and eval in perlfunc and use and require in perlmod.

Use C from C?
Rethink your design.

Use Perl from C?
Read on...

ROADMAP
Compiling your C program

There‘s one example in each of the six sections:

Adding a Perl interpreter to your C program

Calling a Perl subroutine from your C program

Evaluating a Perl statement from your C program

Performing Perl pattern matches and substitutions from your C program

Fiddling with the Perl stack from your C program

Using Perl modules, which themselves use C libraries, from your C program

This documentation is UNIX specific.

Compiling your C program
Every C program that uses Perl must link in the perl library.

What‘s that, you ask? Perl is itself written in C; the perl library is the collection of compiled C program
were used to create your perl executable (/usr/bin/perl or equivalent). (Corollary: you can‘t use Perl from
your C program unless Perl has been compiled on your machine, or installed properly—that‘s wh
shouldn‘t blithely copy Perl executables from machine to machine without also copying the lib directory.)

Your C program will—usually—allocate, "run", and deallocate a PerlInterpreter object, which is defined in
the perl library.

If your copy of Perl is recent enough to contain this documentation (5.002 or later), then the perl librar
EXTERN.h and perl.h, which you‘ll also need) will reside in a directory resembling this:

 /usr/local/lib/perl5/your_architecture_here/CORE

or perhaps just

 /usr/local/lib/perl5/CORE

or maybe something like
268 Version 5.003 08−Oct−1996

perlembed Perl Programmers Reference Guide perlembed

:

nstrate
n of

 to
 is
 /usr/opt/perl5/CORE

Execute this statement for a hint about where to find CORE:

 perl −MConfig −e ’print $Config{archlib}’

Here‘s how you might compile the example in the next section,
Adding a Perl interpreter to your C program, on a DEC Alpha running the OSF operating system:

 % cc −o interp interp.c −L/usr/local/lib/perl5/alpha−dec_osf/CORE
 −I/usr/local/lib/perl5/alpha−dec_osf/CORE −lperl −lm

You‘ll have to choose the appropriate compiler (cc, gcc, et al.) and library directory (/usr/local/lib/...) for
your machine. If your compiler complains that certain functions are undefined, or that it can‘t locate −lperl ,
then you need to change the path following the −L. If it complains that it can‘t find EXTERN.h or perl.h,
you need to change the path following the −I.

You may have to add extra libraries as well. Which ones? Perhaps those printed by

 perl −MConfig −e ’print $Config{libs}’

We strongly recommend you use the ExtUtils::Embed module to determine all of this information for you:

 % cc −o interp interp.c ‘perl −MExtUtils::Embed −e ccopts −e ldopts‘

If the ExtUtils::Embed module is not part of your perl kit‘s distribution you can retrieve it from
http://www.perl.com/cgi−bin/cpan_mod?module=ExtUtils::Embed.

Adding a Perl interpreter to your C program
In a sense, perl (the C program) is a good example of embedding Perl (the language), so I‘ll demo
embedding with miniperlmain.c, from the source distribution. Here‘s a bastardized, non−portable versio
miniperlmain.c containing the essentials of embedding:

 #include <stdio.h>
 #include <EXTERN.h> /* from the Perl distribution */
 #include <perl.h> /* from the Perl distribution */

 static PerlInterpreter *my_perl; /*** The Perl interpreter ***/

 int main(int argc, char **argv, char **env)
 {
 my_perl = perl_alloc();
 perl_construct(my_perl);
 perl_parse(my_perl, NULL, argc, argv, (char **)NULL);
 perl_run(my_perl);
 perl_destruct(my_perl);
 perl_free(my_perl);
 }

Note that we do not use the env pointer here or in any of the following examples. Normally handed
perl_parse as it‘s final argument, we hand it a NULL instead, in which case the current environment
used.

Now compile this program (I‘ll call it interp.c) into an executable:

 % cc −o interp interp.c ‘perl −MExtUtils::Embed −e ccopts −e ldopts‘

After a successful compilation, you‘ll be able to use interp just like perl itself:

 % interp
 print "Pretty Good Perl \n";
 print "10890 − 9801 is ", 10890 − 9801;
 <CTRL−D>
 Pretty Good Perl
08−Oct−1996 Version 5.003 269

perlembed Perl Programmers Reference Guide perlembed

lacing

epoch),

, you‘ll

l code.
 10890 − 9801 is 1089

or

 % interp −e ’printf("%x", 3735928559)’
 deadbeef

You can also read and execute Perl statements from a file while in the midst of your C program, by p
the filename in argv[1] before calling perl_run() .

Calling a Perl subroutine from your C program
To call individual Perl subroutines, you‘ll need to remove the call to perl_run() and replace it with a call
to perl_call_argv() .

That‘s shown below, in a program I‘ll call showtime.c.

 #include <stdio.h>
 #include <EXTERN.h>
 #include <perl.h>

 static PerlInterpreter *my_perl;

 int main(int argc, char **argv, char **env)
 {
 my_perl = perl_alloc();
 perl_construct(my_perl);

 perl_parse(my_perl, NULL, argc, argv, NULL);

 /*** This replaces perl_run() ***/
 perl_call_argv("showtime", G_DISCARD | G_NOARGS, argv);
 perl_destruct(my_perl);
 perl_free(my_perl);
 }

where showtime is a Perl subroutine that takes no arguments (that‘s the G_NOARGS) and for which I‘ll
ignore the return value (that‘s the G_DISCARD). Those flags, and others, are discussed in perlcall.

I‘ll define the showtime subroutine in a file called showtime.pl:

 print "I shan’t be printed.";

 sub showtime {
 print time;
 }

Simple enough. Now compile and run:

 % cc −o showtime showtime.c ‘perl −MExtUtils::Embed −e ccopts −e ldopts‘

 % showtime showtime.pl
 818284590

yielding the number of seconds that elapsed between January 1, 1970 (the beginning of the UNIX
and the moment I began writing this sentence.

If you want to pass some arguments to the Perl subroutine, or you want to access the return value
need to manipulate the Perl stack, demonstrated in the last section of this document:
Fiddling with the Perl stack from your C program

Evaluating a Perl statement from your C program
NOTE: This section, and the next, employ some very brittle techniques for evaluating strings of Per
Perl 5.002 contains some nifty features that enable A Better Way (such as with perl_eval_sv). Look for
updates to this document soon.
270 Version 5.003 08−Oct−1996

perlembed Perl Programmers Reference Guide perlembed

ur C

to C

ibed
One way to evaluate a Perl string is to define a function (we‘ll call ours perl_eval()) that wraps around
Perl‘s eval.

Arguably, this is the only routine you‘ll ever need to execute snippets of Perl code from within yo
program. Your string can be as long as you wish; it can contain multiple statements; it can use require or do
to include external Perl files.

Our perl_eval() lets us evaluate individual Perl strings, and then extract variables for coercion in
types. The following program, string.c, executes three Perl strings, extracting an int from the first, a
float from the second, and a char * from the third.

 #include <stdio.h>
 #include <EXTERN.h>
 #include <perl.h>

 static PerlInterpreter *my_perl;

 int perl_eval(char *string)
 {
 char *argv[2];
 argv[0] = string;
 argv[1] = NULL;
 perl_call_argv("_eval_", 0, argv);
 }

 main (int argc, char **argv, char **env)
 {
 char *embedding[] = { "", "−e", "sub _eval_ { eval $_[0] }" };
 STRLEN length;

 my_perl = perl_alloc();
 perl_construct(my_perl);

 perl_parse(my_perl, NULL, 3, embedding, NULL);

 /** Treat $a as an integer **/
 perl_eval("$a = 3; $a **= 2");
 printf("a = %d\n", SvIV(perl_get_sv("a", FALSE)));

 /** Treat $a as a float **/
 perl_eval("$a = 3.14; $a **= 2");
 printf("a = %f\n", SvNV(perl_get_sv("a", FALSE)));

 /** Treat $a as a string **/
 perl_eval("$a = ’rekcaH lreP rehtonA tsuJ’; $a = reverse($a); ");
 printf("a = %s\n", SvPV(perl_get_sv("a", FALSE), length));

 perl_destruct(my_perl);
 perl_free(my_perl);
 }

All of those strange functions with sv in their names help convert Perl scalars to C types. They‘re descr
in perlguts.

If you compile and run string.c, you‘ll see the results of using SvIV() to create an int , SvNV() to create
a float , and SvPV() to create a string:

 a = 9
 a = 9.859600
 a = Just Another Perl Hacker
08−Oct−1996 Version 5.003 271

perlembed Perl Programmers Reference Guide perlembed

e it to

ted as

 the

 the
Performing Perl pattern matches and substitutions from your C program
Our perl_eval() lets us evaluate strings of Perl code, so we can define some functions that us
"specialize" in matches and substitutions: match() , substitute() , and matches() .

 char match(char *string, char *pattern);

Given a string and a pattern (e.g. "m/clasp/" or "/\b\w*\b/", which in your program might be represen
"/\\b\\w*\\b/"), returns 1 if the string matches the pattern and 0 otherwise.

 int substitute(char *string[], char *pattern);

Given a pointer to a string and an "=~" operation (e.g. "s/bob/robert/g" or "tr[A−Z][a−z]"), modifies
string according to the operation, returning the number of substitutions made.

 int matches(char *string, char *pattern, char **matches[]);

Given a string, a pattern, and a pointer to an empty array of strings, evaluates $string =~ $pattern in
an array context, and fills in matches with the array elements (allocating memory as it does so), returning
number of matches found.

Here‘s a sample program, match.c, that uses all three (long lines have been wrapped here):

 #include <stdio.h>
 #include <EXTERN.h>
 #include <perl.h>
 static PerlInterpreter *my_perl;
 int perl_eval(char *string)
 {
 char *argv[2];
 argv[0] = string;
 argv[1] = NULL;
 perl_call_argv("_eval_", 0, argv);
 }
 /** match(string, pattern)
 **
 ** Used for matches in a scalar context.
 **
 ** Returns 1 if the match was successful; 0 otherwise.
 **/
 char match(char *string, char *pattern)
 {
 char *command;
 command = malloc(sizeof(char) * strlen(string) + strlen(pattern) + 37);
 sprintf(command, "$string = ’%s’; $return = $string =~ %s",
 string, pattern);
 perl_eval(command);
 free(command);
 return SvIV(perl_get_sv("return", FALSE));
 }
 /** substitute(string, pattern)
 **
 ** Used for =~ operations that modify their left−hand side (s/// and tr///)
 **
 ** Returns the number of successful matches, and
 ** modifies the input string if there were any.
 **/
 int substitute(char *string[], char *pattern)
 {
272 Version 5.003 08−Oct−1996

perlembed Perl Programmers Reference Guide perlembed
 char *command;
 STRLEN length;
 command = malloc(sizeof(char) * strlen(*string) + strlen(pattern) + 35);
 sprintf(command, "$string = ’%s’; $ret = ($string =~ %s)",
 *string, pattern);
 perl_eval(command);
 free(command);
 *string = SvPV(perl_get_sv("string", FALSE), length);
 return SvIV(perl_get_sv("ret", FALSE));
 }
 /** matches(string, pattern, matches)
 **
 ** Used for matches in an array context.
 **
 ** Returns the number of matches,
 ** and fills in **matches with the matching substrings (allocates memory!)
 **/
 int matches(char *string, char *pattern, char **match_list[])
 {
 char *command;
 SV *current_match;
 AV *array;
 I32 num_matches;
 STRLEN length;
 int i;
 command = malloc(sizeof(char) * strlen(string) + strlen(pattern) + 38);
 sprintf(command, "$string = ’%s’; @array = ($string =~ %s)",
 string, pattern);
 perl_eval(command);
 free(command);
 array = perl_get_av("array", FALSE);
 num_matches = av_len(array) + 1; /** assume $[is 0 **/
 *match_list = (char **) malloc(sizeof(char *) * num_matches);
 for (i = 0; i <= num_matches; i++) {
 current_match = av_shift(array);
 (*match_list)[i] = SvPV(current_match, length);
 }
 return num_matches;
 }
 main (int argc, char **argv, char **env)
 {
 char *embedding[] = { "", "−e", "sub _eval_ { eval $_[0] }" };
 char *text, **match_list;
 int num_matches, i;
 int j;
 my_perl = perl_alloc();
 perl_construct(my_perl);
 perl_parse(my_perl, NULL, 3, embedding, NULL);
 text = (char *) malloc(sizeof(char) * 486); /** A long string follows! **/
 sprintf(text, "%s", "When he is at a convenience store and the bill \
 comes to some amount like 76 cents, Maynard is aware that there is \
 something he *should* do, something that will enable him to get back \
 a quarter, but he has no idea *what*. He fumbles through his red \
 squeezey changepurse and gives the boy three extra pennies with his \
08−Oct−1996 Version 5.003 273

perlembed Perl Programmers Reference Guide perlembed
 dollar, hoping that he might luck into the correct amount. The boy \
 gives him back two of his own pennies and then the big shiny quarter \
 that is his prize. −RICHH");
 if (match(text, "m/quarter/")) /** Does text contain ’quarter’? **/
 printf("match: Text contains the word ’quarter’.\n\n");
 else
 printf("match: Text doesn’t contain the word ’quarter’.\n\n");
 if (match(text, "m/eighth/")) /** Does text contain ’eighth’? **/
 printf("match: Text contains the word ’eighth’.\n\n");
 else
 printf("match: Text doesn’t contain the word ’eighth’.\n\n");
 /** Match all occurrences of /wi../ **/
 num_matches = matches(text, "m/(wi..)/g", &match_list);
 printf("matches: m/(wi..)/g found %d matches...\n", num_matches);
 for (i = 0; i < num_matches; i++)
 printf("match: %s\n", match_list[i]);
 printf("\n");
 for (i = 0; i < num_matches; i++) {
 free(match_list[i]);
 }
 free(match_list);
 /** Remove all vowels from text **/
 num_matches = substitute(&text, "s/[aeiou]//gi");
 if (num_matches) {
 printf("substitute: s/[aeiou]//gi...%d substitutions made.\n",
 num_matches);
 printf("Now text is: %s\n\n", text);
 }
 /** Attempt a substitution **/
 if (!substitute(&text, "s/Perl/C/")) {
 printf("substitute: s/Perl/C...No substitution made.\n\n");
 }
 free(text);
 perl_destruct(my_perl);
 perl_free(my_perl);
 }

which produces the output (again, long lines have been wrapped here)

 perl_match: Text contains the word ’quarter’.

 perl_match: Text doesn’t contain the word ’eighth’.

 perl_matches: m/(wi..)/g found 2 matches...
 match: will
 match: with

 perl_substitute: s/[aeiou]//gi...139 substitutions made.
 Now text is: Whn h s t cnvnnc str nd th bll cms t sm mnt lk 76 cnts,
 Mynrd s wr tht thr s smthng h *shld* d, smthng tht wll nbl hm t gt bck
 qrtr, bt h hs n d *wht*. H fmbls thrgh hs rd sqzy chngprs nd gvs th by
 thr xtr pnns wth hs dllr, hpng tht h mght lck nt th crrct mnt. Th by gvs
 hm bck tw f hs wn pnns nd thn th bg shny qrtr tht s hs prz. −RCHH

 perl_substitute: s/Perl/C...No substitution made.
274 Version 5.003 08−Oct−1996

perlembed Perl Programmers Reference Guide perlembed

loaded
t‘ll do

e some

 (this
Fiddling with the Perl stack from your C program
When trying to explain stacks, most computer science textbooks mumble something about spring−
columns of cafeteria plates: the last thing you pushed on the stack is the first thing you pop off. Tha
for our purposes: your C program will push some arguments onto "the Perl stack", shut its eyes whil
magic happens, and then pop the results—the return value of your Perl subroutine—off the stack.

First you‘ll need to know how to convert between C types and Perl types, with newSViv() and
sv_setnv() and newAV() and all their friends. They‘re described in perlguts.

Then you‘ll need to know how to manipulate the Perl stack. That‘s described in perlcall.

Once you‘ve understood those, embedding Perl in C is easy.

Since C has no built−in function for integer exponentiation, let‘s make Perl‘s ** operator available to it
is less useful than it sounds, since Perl implements ** with C‘s pow() function). First I‘ll create a stub
exponentiation function in power.pl:

 sub expo {
 my ($a, $b) = @_;
 return $a ** $b;
 }

Now I‘ll create a C program, power.c, with a function PerlPower() that contains all the perlguts
necessary to push the two arguments into expo() and to pop the return value out. Take a deep breath...

 #include <stdio.h>
 #include <EXTERN.h>
 #include <perl.h>

 static PerlInterpreter *my_perl;

 static void
 PerlPower(int a, int b)
 {
 dSP; /* initialize stack pointer */
 ENTER; /* everything created after here */
 SAVETMPS; /* ...is a temporary variable. */
 PUSHMARK(sp); /* remember the stack pointer */
 XPUSHs(sv_2mortal(newSViv(a))); /* push the base onto the stack */
 XPUSHs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */
 PUTBACK; /* make local stack pointer global */
 perl_call_pv("expo", G_SCALAR); /* call the function */
 SPAGAIN; /* refresh stack pointer */
 /* pop the return value from stack */
 printf ("%d to the %dth power is %d.\n", a, b, POPi);
 PUTBACK;
 FREETMPS; /* free that return value */
 LEAVE; /* ...and the XPUSHed "mortal" args.*/
 }

 int main (int argc, char **argv, char **env)
 {
 char *my_argv[2];

 my_perl = perl_alloc();
 perl_construct(my_perl);

 my_argv[1] = (char *) malloc(10);
 sprintf(my_argv[1], "power.pl");
08−Oct−1996 Version 5.003 275

perlembed Perl Programmers Reference Guide perlembed

help.

C/C++

ation
te the

r

other
 perl_parse(my_perl, NULL, argc, my_argv, NULL);

 PerlPower(3, 4); /*** Compute 3 ** 4 ***/

 perl_destruct(my_perl);
 perl_free(my_perl);
 }

Compile and run:

 % cc −o power power.c ‘perl −MExtUtils::Embed −e ccopts −e ldopts‘

 % power
 3 to the 4th power is 81.

Using Perl modules, which themselves use C libraries, from your C program
If you‘ve played with the examples above and tried to embed a script that use() s a Perl module (such as
Socket) which itself uses a C or C++ library, this probably happened:

 Can’t load module Socket, dynamic loading not available in this perl.
 (You may need to build a new perl executable which either supports
 dynamic loading or has the Socket module statically linked into it.)

What‘s wrong?

Your interpreter doesn‘t know how to communicate with these extensions on its own. A little glue will
 Up until now you‘ve been calling perl_parse() , handing it NULL for the second argument:

 perl_parse(my_perl, NULL, argc, my_argv, NULL);

That‘s where the glue code can be inserted to create the initial contact between Perl and linked
routines. Let‘s take a look some pieces of perlmain.c to see how Perl does this:

 #ifdef __cplusplus
 # define EXTERN_C extern "C"
 #else
 # define EXTERN_C extern
 #endif

 static void xs_init _((void));

 EXTERN_C void boot_DynaLoader _((CV* cv));
 EXTERN_C void boot_Socket _((CV* cv));

 EXTERN_C void
 xs_init()
 {
 char *file = __FILE__;
 /* DynaLoader is a special case */
 newXS("DynaLoader::boot_DynaLoader", boot_DynaLoader, file);
 newXS("Socket::bootstrap", boot_Socket, file);
 }

Simply put: for each extension linked with your Perl executable (determined during its initial configur
on your computer or when adding a new extension), a Perl subroutine is created to incorpora
extension‘s routines. Normally, that subroutine is named Module::bootstrap() and is invoked when
you say use Module. In turn, this hooks into an XSUB, boot_Module, which creates a Perl counterpart fo
each of the extension‘s XSUBs. Don‘t worry about this part; leave that to the xsubpp and extension authors.
If your extension is dynamically loaded, DynaLoader creates Module::bootstrap() for you on the fly.
In fact, if you have a working DynaLoader then there is rarely any need to statically link in any
extensions.
276 Version 5.003 08−Oct−1996

perlembed Perl Programmers Reference Guide perlembed
Once you have this code, slap it into the second argument of perl_parse() :

 perl_parse(my_perl, xs_init, argc, my_argv, NULL);

Then compile:

 % cc −o interp interp.c ‘perl −MExtUtils::Embed −e ldopts‘

 % interp
 use Socket;
 use SomeDynamicallyLoadedModule;

 print "Now I can use extensions!\n"’

ExtUtils::Embed can also automate writing the xs_init glue code.

 % perl −MExtUtils::Embed −e xsinit −o perlxsi.c
 % cc −c perlxsi.c ‘perl −MExtUtils::Embed −e ccopts‘
 % cc −c interp.c ‘perl −MExtUtils::Embed −e ccopts‘
 % cc −o interp perlxsi.o interp.o ‘perl −MExtUtils::Embed −e ldopts‘

Consult perlxs and perlguts for more details.

MORAL
You can sometimes write faster code in C, but you can always write code faster in Perl. Since you can use
each from the other, combine them as you wish.

AUTHOR
Jon Orwant <orwant@media.mit.edu>, co−authored by Doug MacEachern <dougm@osf.org>, with
contributions from Tim Bunce, Tom Christiansen, Dov Grobgeld, and Ilya Zakharevich.

June 17, 1996

Some of this material is excerpted from my book: Perl 5 Interactive, Waite Group Press, 1996 (ISBN
1−57169−064−6) and appears courtesy of Waite Group Press.
08−Oct−1996 Version 5.003 277

perlapio Perl Programmers Reference Guide perlapio
NAME
perlio − perl‘s IO abstraction interface.

SYNOPSIS
 PerlIO *PerlIO_stdin(void);
 PerlIO *PerlIO_stdout(void);
 PerlIO *PerlIO_stderr(void);

 PerlIO *PerlIO_open(const char *,const char *);
 int PerlIO_close(PerlIO *);

 int PerlIO_stdoutf(const char *,...)
 int PerlIO_puts(PerlIO *,const char *);
 int PerlIO_putc(PerlIO *,int);
 int PerlIO_write(PerlIO *,const void *,size_t);
 int PerlIO_printf(PerlIO *, const char *,...);
 int PerlIO_vprintf(PerlIO *, const char *, va_list);
 int PerlIO_flush(PerlIO *);

 int PerlIO_eof(PerlIO *);
 int PerlIO_error(PerlIO *);
 void PerlIO_clearerr(PerlIO *);

 int PerlIO_getc(PerlIO *);
 int PerlIO_ungetc(PerlIO *,int);
 int PerlIO_read(PerlIO *,void *,size_t);

 int PerlIO_fileno(PerlIO *);
 PerlIO *PerlIO_fdopen(int, const char *);
 PerlIO *PerlIO_importFILE(FILE *);
 FILE *PerlIO_exportFILE(PerlIO *);
 FILE *PerlIO_findFILE(PerlIO *);
 void PerlIO_releaseFILE(PerlIO *,FILE *);

 void PerlIO_setlinebuf(PerlIO *);

 long PerlIO_tell(PerlIO *);
 int PerlIO_seek(PerlIO *,off_t,int);
 int PerlIO_getpos(PerlIO *,Fpos_t *)
 int PerlIO_setpos(PerlIO *,Fpos_t *)
 void PerlIO_rewind(PerlIO *);

 int PerlIO_has_base(PerlIO *);
 int PerlIO_has_cntptr(PerlIO *);
 int PerlIO_fast_gets(PerlIO *);
 int PerlIO_canset_cnt(PerlIO *);

 char *PerlIO_get_ptr(PerlIO *);
 int PerlIO_get_cnt(PerlIO *);
 void PerlIO_set_cnt(PerlIO *,int);
 void PerlIO_set_ptrcnt(PerlIO *,char *,int);
 char *PerlIO_get_base(PerlIO *);
 int PerlIO_get_bufsiz(PerlIO *);

DESCRIPTION
Perl‘s source code should use the above functions instead of those defined in ANSI C‘s stdio.h, perlio.h will
the #define them to the I/O mechanism selected at Configure time.

The functions are modeled on those in stdio.h, but parameter order has been "tidied up a little".
278 Version 5.003 08−Oct−1996

perlapio Perl Programmers Reference Guide perlapio

fe to

r

se

ne

le"

tch

n

PerlIO *
This takes the place of FILE *. Unlike FILE * it should be treated as opaque (it is probably sa
assume it is a pointer to something).

PerlIO_stdin() , PerlIO_stdout() , PerlIO_stderr()
Use these rather than stdin , stdout , stderr . They are written to look like "function calls" rathe
than variables because this makes it easier to make them function calls if platform cannot export data
to loaded modules, or if (say) different "threads" might have different values.

PerlIO_open(path, mode) , PerlIO_fdopen(fd,mode)
These correspond to fopen()/fdopen() arguments are the same.

PerlIO_printf(f,fmt,...) , PerlIO_vprintf(f,fmt,a)
These are is fprintf() /vfprintf equivalents.

PerlIO_stdoutf(fmt,...)
This is printf() equivalent. printf is #defined to this function, so it is (currently) legal to u
printf(fmt,...) in perl sources.

PerlIO_read(f,buf,count) , PerlIO_write(f,buf,count)
These correspond to fread() and fwrite() . Note that arguments are different, there is only o
"count" and order has "file" first.

PerlIO_close(f)
PerlIO_puts(s,f) , PerlIO_putc(c,f)

These correspond to fputs() and fputc() . Note that arguments have been revised to have "fi
first.

PerlIO_ungetc(c,f)
This corresponds to ungetc() . Note that arguments have been revised to have "file" first.

PerlIO_getc(f)
This corresponds to getc() .

PerlIO_eof(f)
This corresponds to feof() .

PerlIO_error(f)
This corresponds to ferror() .

PerlIO_fileno(f)
This corresponds to fileno() , note that on some platforms, the meaning of "fileno" may not ma
UNIX.

PerlIO_clearerr(f)
This corresponds to clearerr() , i.e. clears ‘eof’ and ‘error’ flags for the "stream".

PerlIO_flush(f)
This corresponds to fflush() .

PerlIO_tell(f)
This corresponds to ftell() .

PerlIO_seek(f,o,w)
This corresponds to fseek() .

PerlIO_getpos(f,p) , PerlIO_setpos(f,p)
These correspond to fgetpos() and fsetpos() . If platform does not have the stdio calls the
they are implemented in terms of PerlIO_tell() and PerlIO_seek() .
08−Oct−1996 Version 5.003 279

perlapio Perl Programmers Reference Guide perlapio

be

erms
 must

 and

ations

 list

als of
 This
ting a

ble in

m.
PerlIO_rewind(f)
This corresponds to rewind() . Note may be redefined in terms of PerlIO_seek() at some point.

PerlIO_tmpfile()
This corresponds to tmpfile() , i.e. returns an anonymous PerlIO which will automatically
deleted when closed.

Co−existence with stdio
There is outline support for co−existence of PerlIO with stdio. Obviously if PerlIO is implemented in t
of stdio there is no problem. However if perlio is implemented on top of (say) sfio then mechanisms
exist to create a FILE * which can be passed to library code which is going to use stdio calls.

PerlIO_importFILE(f,flags)
Used to get a PerlIO * from a FILE *. May need additional arguments, interface under review.

PerlIO_exportFILE(f,flags)
Given an PerlIO * return a ‘native’ FILE * suitable for passing to code expecting to be compiled
linked with ANSI C stdio.h.

The fact that such a FILE * has been ‘exported’ is recorded, and may affect future PerlIO oper
on the original PerlIO *.

PerlIO_findFILE(f)
Returns previously ‘exported’ FILE * (if any). Place holder until interface is fully defined.

PerlIO_releaseFILE(p,f)
Calling PerlIO_releaseFILE informs PerlIO that all use of FILE * is complete. It is removed from
of ‘exported’ FILE *s, and associated PerlIO * should revert to original behaviour.

PerlIO_setlinebuf(f)
This corresponds to setlinebuf() . Use is deprecated pending further discussion. (Perl core only
uses it when "dumping" is has nothing to do with $| auto−flush.)

In addition to user API above there is an "implementation" interface which allows perl to get at intern
PerlIO. The following calls correspond to the various FILE_xxx macros determined by Configure.
section is really only of interest to those concerned with detailed perl−core behaviour or implemen
PerlIO mapping.

PerlIO_has_cntptr(f)
Implementation can return pointer to current position in the "buffer" and a count of bytes availa
the buffer.

PerlIO_get_ptr(f)
Return pointer to next readable byte in buffer.

PerlIO_get_cnt(f)
Return count of readable bytes in the buffer.

PerlIO_canset_cnt(f)
Implementation can adjust its idea of number of bytes in the buffer.

PerlIO_fast_gets(f)
Implementation has all the interfaces required to allow perls fast code to handle <FILE mechanis

 PerlIO_fast_gets(f) = PerlIO_has_cntptr(f) && \
 PerlIO_canset_cnt(f) && \
 ‘Can set pointer into buffer’
280 Version 5.003 08−Oct−1996

perlapio Perl Programmers Reference Guide perlapio

ter to

ount <
ount"

r
PerlIO_set_ptrcnt(f,p,c)
Set pointer into buffer, and a count of bytes still in the buffer. Should only be used to set poin
within range implied by previous calls to PerlIO_get_ptr and PerlIO_get_cnt .

PerlIO_set_cnt(f,c)
Obscure − set count of bytes in the buffer. Deprecated. Currently only used in doio.c to force c
−1 to −1. Perhaps should be PerlIO_set_empty or similar. This call may actually do nothing if "c
is deduced from pointer and a "limit".

PerlIO_has_base(f)
Implementation has a buffer, and can return pointer to whole buffer and its size. Used by perl fo−T /
−B tests. Other uses would be very obscure...

PerlIO_get_base(f)
Return start of buffer.

PerlIO_get_bufsiz(f)
Return total size of buffer.
08−Oct−1996 Version 5.003 281

perlxs Perl Programmers Reference Guide perlxs

ishes to
ed to
face.

B,
let Perl
nd
ap must

ONC+
he
n output

ill be

to the
d so
bove.
NAME
perlxs − XS language reference manual

DESCRIPTION

Introduction
XS is a language used to create an extension interface between Perl and some C library which one w
use with Perl. The XS interface is combined with the library to create a new library which can be link
Perl. An XSUB is a function in the XS language and is the core component of the Perl application inter

The XS compiler is called xsubpp. This compiler will embed the constructs necessary to let an XSU
which is really a C function in disguise, manipulate Perl values and creates the glue necessary to
access the XSUB. The compiler uses typemaps to determine how to map C function parameters a
variables to Perl values. The default typemap handles many common C types. A supplement typem
be created to handle special structures and types for the library being linked.

See perlxstut for a tutorial on the whole extension creation process.

On The Road
Many of the examples which follow will concentrate on creating an interface between Perl and the
RPC bind library functions. The rpcb_gettime() function is used to demonstrate many features of t
XS language. This function has two parameters; the first is an input parameter and the second is a
parameter. The function also returns a status value.

bool_t rpcb_gettime(const char *host, time_t *timep);

From C this function will be called with the following statements.

 #include <rpc/rpc.h>
 bool_t status;
 time_t timep;
 status = rpcb_gettime("localhost", &timep);

If an XSUB is created to offer a direct translation between this function and Perl, then this XSUB w
used from Perl with the following code. The $status and $timep variables will contain the output of the
function.

 use RPC;
 $status = rpcb_gettime("localhost", $timep);

The following XS file shows an XS subroutine, or XSUB, which demonstrates one possible interface
rpcb_gettime() function. This XSUB represents a direct translation between C and Perl an
preserves the interface even from Perl. This XSUB will be invoked from Perl with the usage shown a
Note that the first three #include statements, for EXTERN.h, perl.h , and XSUB.h, will always be present
at the beginning of an XS file. This approach and others will be expanded later in this document.

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"
 #include <rpc/rpc.h>

 MODULE = RPC PACKAGE = RPC

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep
282 Version 5.003 08−Oct−1996

perlxs Perl Programmers Reference Guide perlxs

as the
 and

owing
e

 each

is

ess

s.

 body

store the
, each
which

ming

d in the
Any extension to Perl, including those containing XSUBs, should have a Perl module to serve
bootstrap which pulls the extension into Perl. This module will export the extension‘s functions
variables to the Perl program and will cause the extension‘s XSUBs to be linked into Perl. The foll
module will be used for most of the examples in this document and should be used from Perl with thuse
command as shown earlier. Perl modules are explained in more detail later in this document.

 package RPC;

 require Exporter;
 require DynaLoader;
 @ISA = qw(Exporter DynaLoader);
 @EXPORT = qw(rpcb_gettime);

 bootstrap RPC;
 1;

Throughout this document a variety of interfaces to the rpcb_gettime() XSUB will be explored. The
XSUBs will take their parameters in different orders or will take different numbers of parameters. In
case the XSUB is an abstraction between Perl and the real C rpcb_gettime() function, and the XSUB
must always ensure that the real rpcb_gettime() function is called with the correct parameters. Th
abstraction will allow the programmer to create a more Perl−like interface to the C function.

The Anatomy of an XSUB
The following XSUB allows a Perl program to access a C library function called sin() . The XSUB will
imitate the C function which takes a single argument and returns a single value.

 double
 sin(x)
 double x

When using C pointers the indirection operator * should be considered part of the type and the addr
operator & should be considered part of the variable, as is demonstrated in the rpcb_gettime() function
above. See the section on typemaps for more about handling qualifiers and unary operators in C type

The function name and the return type must be placed on separate lines.

 INCORRECT CORRECT

 double sin(x) double
 double x sin(x)

 double x

The function body may be indented or left−adjusted. The following example shows a function with its
left−adjusted. Most examples in this document will indent the body.

 CORRECT

 double
 sin(x)
 double x

The Argument Stack
The argument stack is used to store the values which are sent as parameters to the XSUB and to
XSUB‘s return value. In reality all Perl functions keep their values on this stack at the same time
limited to its own range of positions on the stack. In this document the first position on that stack
belongs to the active function will be referred to as position 0 for that function.

XSUBs refer to their stack arguments with the macro ST(x), where x refers to a position in this XSUB‘s part
of the stack. Position 0 for that function would be known to the XSUB as ST(0). The XSUB‘s inco
parameters and outgoing return values always begin at ST(0). For many simple cases the xsubpp compiler
will generate the code necessary to handle the argument stack by embedding code fragments foun
typemaps. In more complex cases the programmer must supply the code.
08−Oct−1996 Version 5.003 283

perlxs Perl Programmers Reference Guide perlxs

ction.
urn
T(0)

t

ch are
ugh to
SUBs
ement
 file,

uld be
d.

ys be

f the C

FIX

 made
g Perl
y

 not
sed in
The RETVAL Variable
The RETVAL variable is a magic variable which always matches the return type of the C library fun
The xsubpp compiler will supply this variable in each XSUB and by default will use it to hold the ret
value of the C library function being called. In simple cases the value of RETVAL will be placed in S
of the argument stack where it can be received by Perl as the return value of the XSUB.

If the XSUB has a return type of void then the compiler will not supply a RETVAL variable for tha
function. When using the PPCODE: directive the RETVAL variable may not be needed.

The MODULE Keyword
The MODULE keyword is used to start the XS code and to specify the package of the functions whi
being defined. All text preceding the first MODULE keyword is considered C code and is passed thro
the output untouched. Every XS module will have a bootstrap function which is used to hook the X
into Perl. The package name of this bootstrap function will match the value of the last MODULE stat
in the XS source files. The value of MODULE should always remain constant within the same XS
though this is not required.

The following example will start the XS code and will place all functions in a package named RPC.

 MODULE = RPC

The PACKAGE Keyword
When functions within an XS source file must be separated into packages the PACKAGE keyword sho
used. This keyword is used with the MODULE keyword and must follow immediately after it when use

 MODULE = RPC PACKAGE = RPC

 [XS code in package RPC]

 MODULE = RPC PACKAGE = RPCB

 [XS code in package RPCB]

 MODULE = RPC PACKAGE = RPC

 [XS code in package RPC]

Although this keyword is optional and in some cases provides redundant information it should alwa
used. This keyword will ensure that the XSUBs appear in the desired package.

The PREFIX Keyword
The PREFIX keyword designates prefixes which should be removed from the Perl function names. I
function is rpcb_gettime() and the PREFIX value is rpcb_ then Perl will see this function as
gettime() .

This keyword should follow the PACKAGE keyword when used. If PACKAGE is not used then PRE
should follow the MODULE keyword.

 MODULE = RPC PREFIX = rpc_

 MODULE = RPC PACKAGE = RPCB PREFIX = rpcb_

The OUTPUT: Keyword
The OUTPUT: keyword indicates that certain function parameters should be updated (new values
visible to Perl) when the XSUB terminates or that certain values should be returned to the callin
function. For simple functions, such as the sin() function above, the RETVAL variable is automaticall
designated as an output value. In more complex functions the xsubpp compiler will need help to determine
which variables are output variables.

This keyword will normally be used to complement the CODE: keyword. The RETVAL variable is
recognized as an output variable when the CODE: keyword is present. The OUTPUT: keyword is u
this situation to tell the compiler that RETVAL really is an output variable.
284 Version 5.003 08−Oct−1996

perlxs Perl Programmers Reference Guide perlxs

his may
like the

 rather

 The
d.

age is

e call
piler

 value.
 the
The OUTPUT: keyword can also be used to indicate that function parameters are output variables. T
be necessary when a parameter has been modified within the function and the programmer would
update to be seen by Perl.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep

The OUTPUT: keyword will also allow an output parameter to be mapped to a matching piece of code
than to a typemap.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep sv_setnv(ST(1), (double)timep);

The CODE: Keyword
This keyword is used in more complicated XSUBs which require special handling for the C function.
RETVAL variable is available but will not be returned unless it is specified under the OUTPUT: keywor

The following XSUB is for a C function which requires special handling of its parameters. The Perl us
given first.

 $status = rpcb_gettime("localhost", $timep);

The XSUB follows.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t timep
 CODE:
 RETVAL = rpcb_gettime(host, &timep);
 OUTPUT:
 timep
 RETVAL

The INIT: Keyword
The INIT: keyword allows initialization to be inserted into the XSUB before the compiler generates th
to the C function. Unlike the CODE: keyword above, this keyword does not affect the way the com
handles RETVAL.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep

 INIT:
 printf("# Host is %s\n", host);

 OUTPUT:
 timep

The NO_INIT Keyword
The NO_INIT keyword is used to indicate that a function parameter is being used as only an output
The xsubpp compiler will normally generate code to read the values of all function parameters from
08−Oct−1996 Version 5.003 285

perlxs Perl Programmers Reference Guide perlxs

piler
ore the

maps
rammer,

 The
ld be

hen a
ameters

rameter
t−most

uld

eal
argument stack and assign them to C variables upon entry to the function. NO_INIT will tell the com
that some parameters will be used for output rather than for input and that they will be handled bef
function terminates.

The following example shows a variation of the rpcb_gettime() function. This function uses the timep
variable as only an output variable and does not care about its initial contents.

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep = NO_INIT
 OUTPUT:
 timep

Initializing Function Parameters
Function parameters are normally initialized with their values from the argument stack. The type
contain the code segments which are used to transfer the Perl values to the C parameters. The prog
however, is allowed to override the typemaps and supply alternate initialization code.

The following code demonstrates how to supply initialization code for function parameters.
initialization code is eval‘d by the compiler before it is added to the output so anything which shou
interpreted literally, such as double quotes, must be protected with backslashes.

 bool_t
 rpcb_gettime(host,timep)
 char *host = (char *)SvPV(ST(0),na);
 time_t &timep = 0;
 OUTPUT:
 timep

This should not be used to supply default values for parameters. One would normally use this w
function parameter must be processed by another library function before it can be used. Default par
are covered in the next section.

Default Parameter Values
Default values can be specified for function parameters by placing an assignment statement in the pa
list. The default value may be a number or a string. Defaults should always be used on the righ
parameters only.

To allow the XSUB for rpcb_gettime() to have a default host value the parameters to the XSUB co
be rearranged. The XSUB will then call the real rpcb_gettime() function with the parameters in the
correct order. Perl will call this XSUB with either of the following statements.

 $status = rpcb_gettime($timep, $host);

 $status = rpcb_gettime($timep);

The XSUB will look like the code which follows. A CODE: block is used to call the r
rpcb_gettime() function with the parameters in the correct order for that function.

 bool_t
 rpcb_gettime(timep,host="localhost")
 char *host
 time_t timep = NO_INIT
 CODE:
 RETVAL = rpcb_gettime(host, &timep);
 OUTPUT:
 timep
 RETVAL
286 Version 5.003 08−Oct−1996

perlxs Perl Programmers Reference Guide perlxs

. If a
lt in a
: block.

ple is

 will

ment

yword
e used
 used
The PREINIT: Keyword
The PREINIT: keyword allows extra variables to be declared before the typemaps are expanded
variable is declared in a CODE: block then that variable will follow any typemap code. This may resu
C syntax error. To force the variable to be declared before the typemap code, place it into a PREINIT
 The PREINIT: keyword may be used one or more times within an XSUB.

The following examples are equivalent, but if the code is using complex typemaps then the first exam
safer.

 bool_t
 rpcb_gettime(timep)
 time_t timep = NO_INIT

 PREINIT:
 char *host = "localhost";
 CODE:

 RETVAL = rpcb_gettime(host, &timep);
 OUTPUT:
 timep
 RETVAL

A correct, but error−prone example.

 bool_t
 rpcb_gettime(timep)
 time_t timep = NO_INIT

 CODE:
 char *host = "localhost";

 RETVAL = rpcb_gettime(host, &timep);
 OUTPUT:
 timep
 RETVAL

The SCOPE: Keyword
The SCOPE: keyword allows scoping to be enabled for a particular XSUB. If enabled, the XSUB
invoke ENTER and LEAVE automatically.

To support potentially complex type mappings, if a typemap entry used by this XSUB contains a com
like /*scope*/ then scoping will automatically be enabled for that XSUB.

To enable scoping:

 SCOPE: ENABLE

To disable scoping:

 SCOPE: DISABLE

The INPUT: Keyword
The XSUB‘s parameters are usually evaluated immediately after entering the XSUB. The INPUT: ke
can be used to force those parameters to be evaluated a little later. The INPUT: keyword can b
multiple times within an XSUB and can be used to list one or more input variables. This keyword is
with the PREINIT: keyword.

The following example shows how the input parameter timep can be evaluated late, after a PREINIT.

 bool_t
 rpcb_gettime(host,timep)
 char *host

 PREINIT:
 time_t tt;
08−Oct−1996 Version 5.003 287

perlxs Perl Programmers Reference Guide perlxs

ber of

ters of

ate
either
 INPUT:
 time_t timep
 CODE:
 RETVAL = rpcb_gettime(host, &tt);

 timep = tt;
 OUTPUT:
 timep
 RETVAL

The next example shows each input parameter evaluated late.

 bool_t
 rpcb_gettime(host,timep)

 PREINIT:
 time_t tt;
 INPUT:

 char *host
 PREINIT:
 char *h;
 INPUT:

 time_t timep
 CODE:

 h = host;
 RETVAL = rpcb_gettime(h, &tt);
 timep = tt;

 OUTPUT:
 timep
 RETVAL

Variable−length Parameter Lists
XSUBs can have variable−length parameter lists by specifying an ellipsis (...) in the parameter list. This
use of the ellipsis is similar to that found in ANSI C. The programmer is able to determine the num
arguments passed to the XSUB by examining the items variable which the xsubpp compiler supplies for
all XSUBs. By using this mechanism one can create an XSUB which accepts a list of parame
unknown length.

The host parameter for the rpcb_gettime() XSUB can be optional so the ellipsis can be used to indic
that the XSUB will take a variable number of parameters. Perl should be able to call this XSUB with
of the following statements.

 $status = rpcb_gettime($timep, $host);

 $status = rpcb_gettime($timep);

The XS code, with ellipsis, follows.

 bool_t
 rpcb_gettime(timep, ...)
 time_t timep = NO_INIT

 PREINIT:
 char *host = "localhost";
 CODE:

 if(items > 1)
 host = (char *)SvPV(ST(1), na);
 RETVAL = rpcb_gettime(host, &timep);

 OUTPUT:
 timep
 RETVAL
288 Version 5.003 08−Oct−1996

perlxs Perl Programmers Reference Guide perlxs

alues.
es one
ODE:

,

r
ith the

ODE:

In the

ses
e. The
The PPCODE: Keyword
The PPCODE: keyword is an alternate form of the CODE: keyword and is used to tell the xsubpp compiler
that the programmer is supplying the code to control the argument stack for the XSUBs return v
Occasionally one will want an XSUB to return a list of values rather than a single value. In these cas
must use PPCODE: and then explicitly push the list of values on the stack. The PPCODE: and C
keywords are not used together within the same XSUB.

The following XSUB will call the C rpcb_gettime() function and will return its two output values
timep and status, to Perl as a single list.

 void
 rpcb_gettime(host)
 char *host

 PREINIT:
 time_t timep;
 bool_t status;
 PPCODE:
 status = rpcb_gettime(host, &timep);
 EXTEND(sp, 2);
 PUSHs(sv_2mortal(newSViv(status)));
 PUSHs(sv_2mortal(newSViv(timep)));

Notice that the programmer must supply the C code necessary to have the real rpcb_gettime() function
called and to have the return values properly placed on the argument stack.

The void return type for this function tells the xsubpp compiler that the RETVAL variable is not needed o
used and that it should not be created. In most scenarios the void return type should be used w
PPCODE: directive.

The EXTEND() macro is used to make room on the argument stack for 2 return values. The PPC
directive causes the xsubpp compiler to create a stack pointer called sp , and it is this pointer which is being
used in the EXTEND() macro. The values are then pushed onto the stack with the PUSHs() macro.

Now the rpcb_gettime() function can be used from Perl with the following statement.

 ($status, $timep) = rpcb_gettime("localhost");

Returning Undef And Empty Lists
Occasionally the programmer will want to simply return undef or an empty list if a function fails rather
than a separate status value. The rpcb_gettime() function offers just this situation. If the function
succeeds we would like to have it return the time and if it fails we would like to have undef returned.
following Perl code the value of $timep will either be undef or it will be a valid time.

 $timep = rpcb_gettime("localhost");

The following XSUB uses the void return type to disable the generation of the RETVAL variable and u
a CODE: block to indicate to the compiler that the programmer has supplied all the necessary cod
sv_newmortal() call will initialize the return value to undef, making that the default return value.

 void
 rpcb_gettime(host)
 char * host

 PREINIT:
 time_t timep;
 bool_t x;
 CODE:
 ST(0) = sv_newmortal();
 if(rpcb_gettime(host, &timep))
 sv_setnv(ST(0), (double)timep);
08−Oct−1996 Version 5.003 289

perlxs Perl Programmers Reference Guide perlxs

e need

l
e

. When
 are
s in the

tion is
 with
otstrap

 itself.
The next example demonstrates how one would place an explicit undef in the return value, should th
arise.

 void
 rpcb_gettime(host)
 char * host

 PREINIT:
 time_t timep;
 bool_t x;
 CODE:
 ST(0) = sv_newmortal();
 if(rpcb_gettime(host, &timep)){
 sv_setnv(ST(0), (double)timep);
 }
 else{
 ST(0) = &sv_undef;
 }

To return an empty list one must use a PPCODE: block and then not push return values on the stack.

 void
 rpcb_gettime(host)
 char *host

 PREINIT:
 time_t timep;
 PPCODE:
 if(rpcb_gettime(host, &timep))
 PUSHs(sv_2mortal(newSViv(timep)));
 else{
 /* Nothing pushed on stack, so an empty */
 /* list is implicitly returned. */
 }

Some people may be inclined to include an explicit return in the above XSUB, rather than letting contro
fall through to the end. In those situations XSRETURN_EMPTY should be used, instead. This will ensur
that the XSUB stack is properly adjusted. Consult API LISTING in perlguts for other XSRETURN macros.

The REQUIRE: Keyword
The REQUIRE: keyword is used to indicate the minimum version of the xsubpp compiler needed to compile
the XS module. An XS module which contains the following statement will only compile with xsubpp
version 1.922 or greater:

REQUIRE: 1.922

The CLEANUP: Keyword
This keyword can be used when an XSUB requires special cleanup procedures before it terminates
the CLEANUP: keyword is used it must follow any CODE:, PPCODE:, or OUTPUT: blocks which
present in the XSUB. The code specified for the cleanup block will be added as the last statement
XSUB.

The BOOT: Keyword
The BOOT: keyword is used to add code to the extension‘s bootstrap function. The bootstrap func
generated by the xsubpp compiler and normally holds the statements necessary to register any XSUBs
Perl. With the BOOT: keyword the programmer can tell the compiler to add extra statements to the bo
function.

This keyword may be used any time after the first MODULE keyword and should appear on a line by
The first blank line after the keyword will terminate the code block.
290 Version 5.003 08−Oct−1996

perlxs Perl Programmers Reference Guide perlxs

 When
 of the

pes are
ule to

s but

ch of
names.
 BOOT:
 # The following message will be printed when the
 # bootstrap function executes.
 printf("Hello from the bootstrap!\n");

The VERSIONCHECK: Keyword
The VERSIONCHECK: keyword corresponds to xsubpp‘s −versioncheck and −noversioncheck
options. This keyword overrides the commandline options. Version checking is enabled by default.
version checking is enabled the XS module will attempt to verify that its version matches the version
PM module.

To enable version checking:

 VERSIONCHECK: ENABLE

To disable version checking:

 VERSIONCHECK: DISABLE

The PROTOTYPES: Keyword
The PROTOTYPES: keyword corresponds to xsubpp‘s −prototypes and −noprototypes options.
This keyword overrides the commandline options. Prototypes are enabled by default. When prototy
enabled XSUBs will be given Perl prototypes. This keyword may be used multiple times in an XS mod
enable and disable prototypes for different parts of the module.

To enable prototypes:

 PROTOTYPES: ENABLE

To disable prototypes:

 PROTOTYPES: DISABLE

The PROTOTYPE: Keyword
This keyword is similar to the PROTOTYPES: keyword above but can be used to force xsubpp to use a
specific prototype for the XSUB. This keyword overrides all other prototype options and keyword
affects only the current XSUB. Consult Prototypes for information about Perl prototypes.

 bool_t
 rpcb_gettime(timep, ...)
 time_t timep = NO_INIT

 PROTOTYPE: $;$
 PREINIT:

 char *host = "localhost";
 CODE:

 if(items > 1)
 host = (char *)SvPV(ST(1), na);
 RETVAL = rpcb_gettime(host, &timep);

 OUTPUT:
 timep
 RETVAL

The ALIAS: Keyword
The ALIAS: keyword allows an XSUB to have two more more unique Perl names and to know whi
those names was used when it was invoked. The Perl names may be fully−qualified with package
Each alias is given an index. The compiler will setup a variable called ix which contain the index of the
alias which was used. When the XSUB is called with its declared name ix will be 0.

The following example will create aliases FOO::gettime() and BAR::getit() for this function.

 bool_t
08−Oct−1996 Version 5.003 291

perlxs Perl Programmers Reference Guide perlxs

code.

irtual
ASE:.
E: is

ws
 rpcb_gettime(host,timep)
 char *host
 time_t &timep

 ALIAS:
 FOO::gettime = 1
 BAR::getit = 2
 INIT:
 printf("# ix = %d\n", ix);

 OUTPUT:
 timep

The INCLUDE: Keyword
This keyword can be used to pull other files into the XS module. The other files may have XS
INCLUDE: can also be used to run a command to generate the XS code to be pulled into the module.

The file Rpcb1.xsh contains our rpcb_gettime() function:

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep

The XS module can use INCLUDE: to pull that file into it.

 INCLUDE: Rpcb1.xsh

If the parameters to the INCLUDE: keyword are followed by a pipe (|) then the compiler will interpret the
parameters as a command.

 INCLUDE: cat Rpcb1.xsh |

The CASE: Keyword
The CASE: keyword allows an XSUB to have multiple distinct parts with each part acting as a v
XSUB. CASE: is greedy and if it is used then all other XS keywords must be contained within a C
This means nothing may precede the first CASE: in the XSUB and anything following the last CAS
included in that case.

A CASE: might switch via a parameter of the XSUB, via the ix ALIAS: variable (see
"The ALIAS: Keyword"), or maybe via the items variable (see "Variable−length Parameter Lists"). The
last CASE: becomes the default case if it is not associated with a conditional. The following example sho
CASE switched via ix with a function rpcb_gettime() having an alias x_gettime() . When the
function is called as rpcb_gettime() its parameters are the usual (char *host, time_t
*timep) , but when the function is called as x_gettime() its parameters are reversed, (time_t
*timep, char *host) .

 long
 rpcb_gettime(a,b)
 CASE: ix == 1

 ALIAS:
 x_gettime = 1
 INPUT:
 # ’a’ is timep, ’b’ is host

 char *b
 time_t a = NO_INIT
 CODE:
 RETVAL = rpcb_gettime(b, &a);
 OUTPUT:
292 Version 5.003 08−Oct−1996

perlxs Perl Programmers Reference Guide perlxs

 the C
ct is an

hich

ch

UP:
. The

s.

be
h. The
 a
 RETVAL
 CASE:

 # ’a’ is host, ’b’ is timep
 char *a
 time_t &b = NO_INIT
 OUTPUT:
 b
 RETVAL

That function can be called with either of the following statements. Note the different argument lists.

$status = rpcb_gettime($host, $timep);

$status = x_gettime($timep, $host);

The & Unary Operator
The & unary operator is used to tell the compiler that it should dereference the object when it calls
function. This is used when a CODE: block is not used and the object is a not a pointer type (the obje
int or long but not a int* or long*).

The following XSUB will generate incorrect C code. The xsubpp compiler will turn this into code w
calls rpcb_gettime() with parameters (char *host, time_t timep) , but the real
rpcb_gettime() wants the timep parameter to be of type time_t* rather than time_t .

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t timep
 OUTPUT:
 timep

That problem is corrected by using the & operator. The xsubpp compiler will now turn this into code whi
calls rpcb_gettime() correctly with parameters (char *host, time_t *timep) . It does this by
carrying the & through, so the function call looks like rpcb_gettime(host, &timep).

 bool_t
 rpcb_gettime(host,timep)
 char *host
 time_t &timep
 OUTPUT:
 timep

Inserting Comments and C Preprocessor Directives
C preprocessor directives are allowed within BOOT:, PREINIT: INIT:, CODE:, PPCODE: and CLEAN
blocks, as well as outside the functions. Comments are allowed anywhere after the MODULE keyword
compiler will pass the preprocessor directives through untouched and will remove the commented line

Comments can be added to XSUBs by placing a # as the first non−whitespace of a line. Care should
taken to avoid making the comment look like a C preprocessor directive, lest it be interpreted as suc
simplest way to prevent this is to put whitespace in front of the #.

If you use preprocessor directives to choose one of two versions of a function, use

 #if ... version1
 #else /* ... version2 */
 #endif

and not

 #if ... version1
08−Oct−1996 Version 5.003 293

perlxs Perl Programmers Reference Guide perlxs

 blank

 The
ith the

.

eter

e

 #endif
 #if ... version2
 #endif

because otherwise xsubpp will believe that you made a duplicate definition of the function. Also, put a
line before the #else/#endif so it will not be seen as part of the function body.

Using XS With C++
If a function is defined as a C++ method then it will assume its first argument is an object pointer.
object pointer will be stored in a variable called THIS. The object should have been created by C++ w
new() function and should be blessed by Perl with the sv_setref_pv() macro. The blessing of the
object by Perl can be handled by a typemap. An example typemap is shown at the end of this section

If the method is defined as static it will call the C++ function using the class::method() syntax. If the
method is not static the function will be called using the THIS−>method() syntax.

The next examples will use the following C++ class.

 class color {
 public:
 color();
 ~color();
 int blue();
 void set_blue(int);

 private:
 int c_blue;
 };

The XSUBs for the blue() and set_blue() methods are defined with the class name but the param
for the object (THIS, or "self") is implicit and is not listed.

 int
 color::blue()

 void
 color::set_blue(val)
 int val

Both functions will expect an object as the first parameter. The xsubpp compiler will call that object THIS
and will use it to call the specified method. So in the C++ code the blue() and set_blue() methods
will be called in the following manner.

 RETVAL = THIS−>blue();

 THIS−>set_blue(val);

If the function‘s name is DESTROY then the C++ delete function will be called and THIS will be given
as its parameter.

 void
 color::DESTROY()

The C++ code will call delete .

 delete THIS;

If the function‘s name is new then the C++ new function will be called to create a dynamic C++ object. Th
XSUB will expect the class name, which will be kept in a variable called CLASS, to be given as the first
argument.

 color *
 color::new()
294 Version 5.003 08−Oct−1996

perlxs Perl Programmers Reference Guide perlxs

 often
e C
erl−like

ble to

eed to
om C to

d in XS
e type

ROBJ

ject to
one can
f the

own
nsider
ct. A

 word
UB.
The C++ code will call new.

RETVAL = new color();

The following is an example of a typemap that could be used for this C++ example.

 TYPEMAP
 color * O_OBJECT

 OUTPUT
 # The Perl object is blessed into ’CLASS’, which should be a
 # char* having the name of the package for the blessing.
 O_OBJECT
 sv_setref_pv($arg, CLASS, (void*)$var);

 INPUT
 O_OBJECT
 if(sv_isobject($arg) && (SvTYPE(SvRV($arg)) == SVt_PVMG))
 $var = ($type)SvIV((SV*)SvRV($arg));
 else{
 warn(\"${Package}::$func_name() −− $var is not a blessed SV reference
 XSRETURN_UNDEF;
 }

Interface Strategy
When designing an interface between Perl and a C library a straight translation from C to XS is
sufficient. The interface will often be very C−like and occasionally nonintuitive, especially when th
function modifies one of its parameters. In cases where the programmer wishes to create a more P
interface the following strategy may help to identify the more critical parts of the interface.

Identify the C functions which modify their parameters. The XSUBs for these functions may be a
return lists to Perl, or may be candidates to return undef or an empty list in case of failure.

Identify which values are used by only the C and XSUB functions themselves. If Perl does not n
access the contents of the value then it may not be necessary to provide a translation for that value fr
Perl.

Identify the pointers in the C function parameter lists and return values. Some pointers can be handle
with the & unary operator on the variable name while others will require the use of the * operator on th
name. In general it is easier to work with the & operator.

Identify the structures used by the C functions. In many cases it may be helpful to use the T_PT
typemap for these structures so they can be manipulated by Perl as blessed objects.

Perl Objects And C Structures
When dealing with C structures one should select either T_PTROBJ or T_PTRREF for the XS type. Both
types are designed to handle pointers to complex objects. The T_PTRREF type will allow the Perl ob
be unblessed while the T_PTROBJ type requires that the object be blessed. By using T_PTROBJ
achieve a form of type−checking because the XSUB will attempt to verify that the Perl object is o
expected type.

The following XS code shows the getnetconfigent() function which is used with ONC+ TIRPC. The
getnetconfigent() function will return a pointer to a C structure and has the C prototype sh
below. The example will demonstrate how the C pointer will become a Perl reference. Perl will co
this reference to be a pointer to a blessed object and will attempt to call a destructor for the obje
destructor will be provided in the XS source to free the memory used by getnetconfigent() .
Destructors in XS can be created by specifying an XSUB function whose name ends with the
DESTROY. XS destructors can be used to free memory which may have been malloc‘d by another XS

 struct netconfig *getnetconfigent(const char *netid);
08−Oct−1996 Version 5.003 295

perlxs Perl Programmers Reference Guide perlxs

ng
it will
bject and

 about

t a Perl

s of
 types
 and
s of the

used
ectory.

fault

p file.
be
TROBJ

ted
A typedef will be created for struct netconfig . The Perl object will be blessed in a class matchi
the name of the C type, with the tag Ptr appended, and the name should not have embedded spaces if
be a Perl package name. The destructor will be placed in a class corresponding to the class of the o
the PREFIX keyword will be used to trim the name to the word DESTROY as Perl will expect.

 typedef struct netconfig Netconfig;

 MODULE = RPC PACKAGE = RPC

 Netconfig *
 getnetconfigent(netid)
 char *netid

 MODULE = RPC PACKAGE = NetconfigPtr PREFIX = rpcb_

 void
 rpcb_DESTROY(netconf)
 Netconfig *netconf
 CODE:
 printf("Now in NetconfigPtr::DESTROY\n");
 free(netconf);

This example requires the following typemap entry. Consult the typemap section for more information
adding new typemaps for an extension.

 TYPEMAP
 Netconfig * T_PTROBJ

This example will be used with the following Perl statements.

 use RPC;
 $netconf = getnetconfigent("udp");

When Perl destroys the object referenced by $netconf it will send the object to the supplied XSUB
DESTROY function. Perl cannot determine, and does not care, that this object is a C struct and no
object. In this sense, there is no difference between the object created by the getnetconfigent()
XSUB and an object created by a normal Perl subroutine.

The Typemap
The typemap is a collection of code fragments which are used by the xsubpp compiler to map C function
parameters and values to Perl values. The typemap file may consist of three sections labeled TYPEMAP,
INPUT, and OUTPUT. The INPUT section tells the compiler how to translate Perl values into variable
certain C types. The OUTPUT section tells the compiler how to translate the values from certain C
into values Perl can understand. The TYPEMAP section tells the compiler which of the INPUT
OUTPUT code fragments should be used to map a given C type to a Perl value. Each of the section
typemap must be preceded by one of the TYPEMAP, INPUT, or OUTPUT keywords.

The default typemap in the ext directory of the Perl source contains many useful types which can be
by Perl extensions. Some extensions define additional typemaps which they keep in their own dir
These additional typemaps may reference INPUT and OUTPUT maps in the main typemap. The xsubpp
compiler will allow the extension‘s own typemap to override any mappings which are in the de
typemap.

Most extensions which require a custom typemap will need only the TYPEMAP section of the typema
The custom typemap used in the getnetconfigent() example shown earlier demonstrates what may
the typical use of extension typemaps. That typemap is used to equate a C structure with the T_P
typemap. The typemap used by getnetconfigent() is shown here. Note that the C type is separa
from the XS type with a tab and that the C unary operator * is considered to be a part of the C type name.

 TYPEMAP
 Netconfig *<tab>T_PTROBJ
296 Version 5.003 08−Oct−1996

perlxs Perl Programmers Reference Guide perlxs
EXAMPLES
File RPC.xs : Interface to some ONC+ RPC bind library functions.

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 #include <rpc/rpc.h>

 typedef struct netconfig Netconfig;

 MODULE = RPC PACKAGE = RPC

 void
 rpcb_gettime(host="localhost")
 char *host

 PREINIT:
 time_t timep;
 CODE:
 ST(0) = sv_newmortal();
 if(rpcb_gettime(host, &timep))
 sv_setnv(ST(0), (double)timep);

 Netconfig *
 getnetconfigent(netid="udp")
 char *netid

 MODULE = RPC PACKAGE = NetconfigPtr PREFIX = rpcb_

 void
 rpcb_DESTROY(netconf)
 Netconfig *netconf
 CODE:
 printf("NetconfigPtr::DESTROY\n");
 free(netconf);

File typemap : Custom typemap for RPC.xs.

 TYPEMAP
 Netconfig * T_PTROBJ

File RPC.pm: Perl module for the RPC extension.

 package RPC;

 require Exporter;
 require DynaLoader;
 @ISA = qw(Exporter DynaLoader);
 @EXPORT = qw(rpcb_gettime getnetconfigent);

 bootstrap RPC;
 1;

File rpctest.pl : Perl test program for the RPC extension.

 use RPC;

 $netconf = getnetconfigent();
 $a = rpcb_gettime();
 print "time = $a\n";
 print "netconf = $netconf\n";
08−Oct−1996 Version 5.003 297

perlxs Perl Programmers Reference Guide perlxs
 $netconf = getnetconfigent("tcp");
 $a = rpcb_gettime("poplar");
 print "time = $a\n";
 print "netconf = $netconf\n";

XS VERSION
This document covers features supported by xsubpp 1.935.

AUTHOR
Dean Roehrich <roehrich@cray.com> Jul 8, 1996
298 Version 5.003 08−Oct−1996

perlxstut Perl Programmers Reference Guide perlxstut

ssumed

adding
slowly

at it is
might not

erly.

LE"

 h2xs.
owing

e:

ay have

, you
h

m and
new

aries,
un the

st", you
simply

ut a

tory
ding
NAME
perlXStut − Tutorial for XSUBs

DESCRIPTION
This tutorial will educate the reader on the steps involved in creating a Perl extension. The reader is a
to have access to perlguts and perlxs.

This tutorial starts with very simple examples and becomes more complex, with each new example
new features. Certain concepts may not be completely explained until later in the tutorial in order to
ease the reader into building extensions.

VERSION CAVEAT
This tutorial tries hard to keep up with the latest development versions of Perl. This often means th
sometimes in advance of the latest released version of Perl, and that certain features described here
work on earlier versions. This section will keep track of when various features were added to Perl 5.

 In versions of 5.002 prior to the gamma version, the test script in Example 1 will not function prop
 You need to change the "use lib" line to read:

use lib ’./blib’;

 In versions of 5.002 prior to version beta 3, the line in the .xs file about "PROTOTYPES: DISAB
will cause a compiler error. Simply remove that line from the file.

 In versions of 5.002 prior to version 5.002b1h, the test.pl file was not automatically created by
This means that you cannot say "make test" to run the test script. You will need to add the foll
line before the "use extension" statement:

use lib ’./blib’;

 In versions 5.000 and 5.001, instead of using the above line, you will need to use the following lin

BEGIN { unshift(@INC, "./blib") }

 This document assumes that the executable named "perl" is Perl version 5. Some systems m
installed Perl version 5 as "perl5".

DYNAMIC VERSUS STATIC
It is commonly thought that if a system does not have the capability to dynamically load a library
cannot build XSUBs. This is incorrect. You can build them, but you must link the XSUB‘s subroutines wit
the rest of Perl, creating a new executable. This situation is similar to Perl 4.

This tutorial can still be used on such a system. The XSUB build mechanism will check the syste
build a dynamically−loadable library if possible, or else a static library and then, optionally, a
statically−linked executable with that static library linked in.

Should you wish to build a statically−linked executable on a system which can dynamically load libr
you may, in all the following examples, where the command "make" with no arguments is executed, r
command "make perl" instead.

If you have generated such a statically−linked executable by choice, then instead of saying "make te
should say "make test_static". On systems that cannot build dynamically−loadable libraries at all,
saying "make test" is sufficient.

EXAMPLE 1
Our first extension will be very simple. When we call the routine in the extension, it will print o
well−known message and return.

Run h2xs −A −n Mytest . This creates a directory named Mytest, possibly under ext/ if that direc
exists in the current working directory. Several files will be created in the Mytest dir, inclu
MANIFEST, Makefile.PL, Mytest.pm, Mytest.xs, test.pl, and Changes.
08−Oct−1996 Version 5.003 299

perlxstut Perl Programmers Reference Guide perlxstut
The MANIFEST file contains the names of all the files created.

The file Makefile.PL should look something like this:

use ExtUtils::MakeMaker;
See lib/ExtUtils/MakeMaker.pm for details of how to influence
the contents of the Makefile that is written.
WriteMakefile(
 ’NAME’ => ’Mytest’,
 ’VERSION_FROM’ => ’Mytest.pm’, # finds $VERSION
 ’LIBS’ => [’’], # e.g., ’−lm’
 ’DEFINE’ => ’’, # e.g., ’−DHAVE_SOMETHING’
 ’INC’ => ’’, # e.g., ’−I/usr/include/other’
);

The file Mytest.pm should start with something like this:

package Mytest;

require Exporter;
require DynaLoader;

@ISA = qw(Exporter DynaLoader);
Items to export into callers namespace by default. Note: do not export
names by default without a very good reason. Use EXPORT_OK instead.
Do not simply export all your public functions/methods/constants.
@EXPORT = qw(

);
$VERSION = ’0.01’;

bootstrap Mytest $VERSION;

Preloaded methods go here.

Autoload methods go after __END__, and are processed by the autosplit progra

1;
__END__
Below is the stub of documentation for your module. You better edit it!

And the Mytest.xs file should look something like this:

#ifdef __cplusplus
extern "C" {
#endif
#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
#ifdef __cplusplus
}
#endif

PROTOTYPES: DISABLE

MODULE = Mytest PACKAGE = Mytest

Let‘s edit the .xs file by adding this to the end of the file:

void
hello()

CODE:
printf("Hello, world!\n");
300 Version 5.003 08−Oct−1996

perlxstut Perl Programmers Reference Guide perlxstut

oks

d for

special

ent is

oving

t the
hem 8
Now we‘ll run "perl Makefile.PL". This will create a real Makefile, which make needs. Its output lo
something like:

% perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for Mytest
%

Now, running make will produce output that looks something like this (some long lines shortene
clarity):

% make
umask 0 && cp Mytest.pm ./blib/Mytest.pm
perl xsubpp −typemap typemap Mytest.xs >Mytest.tc && mv Mytest.tc Mytest.c
cc −c Mytest.c
Running Mkbootstrap for Mytest ()
chmod 644 Mytest.bs
LD_RUN_PATH="" ld −o ./blib/PA−RISC1.1/auto/Mytest/Mytest.sl −b Mytest.o
chmod 755 ./blib/PA−RISC1.1/auto/Mytest/Mytest.sl
cp Mytest.bs ./blib/PA−RISC1.1/auto/Mytest/Mytest.bs
chmod 644 ./blib/PA−RISC1.1/auto/Mytest/Mytest.bs

Now, although there is already a test.pl template ready for us, for this example only, we‘ll create a
test script. Create a file called hello that looks like this:

#! /opt/perl5/bin/perl

use ExtUtils::testlib;

use Mytest;

Mytest::hello();

Now we run the script and we should see the following output:

% perl hello
Hello, world!
%

EXAMPLE 2
Now let‘s add to our extension a subroutine that will take a single argument and return 1 if the argum
even, 0 if the argument is odd.

Add the following to the end of Mytest.xs:

int
is_even(input)

int input
CODE:
RETVAL = (input % 2 == 0);
OUTPUT:
RETVAL

There does not need to be white space at the start of the "int input" line, but it is useful for impr
readability. The semi−colon at the end of that line is also optional.

Any white space may be between the "int" and "input". It is also okay for the four lines starting a
"CODE:" line to not be indented. However, for readability purposes, it is suggested that you indent t
spaces (or one normal tab stop).

Now re−run make to rebuild our new shared library.
08−Oct−1996 Version 5.003 301

perlxstut Perl Programmers Reference Guide perlxstut

ake.

mitate
tests to
ange

 looks

an use

h will

 the C
nsion.

 the
ave

e

n the

rade to
ot the

 that
ath is

n sets
.

 other
e. The
kage‘s

ything
Now perform the same steps as before, generating a Makefile from the Makefile.PL file, and running m

In order to test that our extension works, we now need to look at the file test.pl. This file is set up to i
the same kind of testing structure that Perl itself has. Within the test script, you perform a number of
confirm the behavior of the extension, printing "ok" when the test is correct, "not ok" when it is not. Ch
the print statement in the BEGIN block to print "1..4", and add the following code to the end of the file:

print &Mytest::is_even(0) == 1 ? "ok 2" : "not ok 2", "\n";
print &Mytest::is_even(1) == 0 ? "ok 3" : "not ok 3", "\n";
print &Mytest::is_even(2) == 1 ? "ok 4" : "not ok 4", "\n";

We will be calling the test script through the command "make test". You should see output that
something like this:

% make test
PERL_DL_NONLAZY=1 /opt/perl5.002b2/bin/perl (lots of −I arguments) test.pl
1..4
ok 1
ok 2
ok 3
ok 4
%

WHAT HAS GONE ON?
The program h2xs is the starting point for creating extensions. In later examples we‘ll see how we c
h2xs to read header files and generate templates to connect to C routines.

h2xs creates a number of files in the extension directory. The file Makefile.PL is a perl script whic
generate a true Makefile to build the extension. We‘ll take a closer look at it later.

The files <extension>.pm and <extension>.xs contain the meat of the extension. The .xs file holds
routines that make up the extension. The .pm file contains routines that tell Perl how to load your exte

Generating and invoking the Makefile created a directory blib (which stands for "build library") in
current working directory. This directory will contain the shared library that we will build. Once we h
tested it, we can install it into its final location.

Invoking the test script via "make test" did something very important. It invoked perl with all thos−I
arguments so that it could find the various files that are part of the extension.

It is very important that while you are still testing extensions that you use "make test". If you try to ru
test script all by itself, you will get a fatal error.

Another reason it is important to use "make test" to run your test script is that if you are testing an upg
an already−existing version, using "make test" insures that you use your new extension, n
already−existing version.

When Perl sees a use extension; , it searches for a file with the same name as the use‘d extension
has a .pm suffix. If that file cannot be found, Perl dies with a fatal error. The default search p
contained in the @INC array.

In our case, Mytest.pm tells perl that it will need the Exporter and Dynamic Loader extensions. It the
the @ISA and @EXPORT arrays and the $VERSION scalar; finally it tells perl to bootstrap the module
Perl will call its dynamic loader routine (if there is one) and load the shared library.

The two arrays that are set in the .pm file are very important. The @ISA array contains a list of
packages in which to search for methods (or subroutines) that do not exist in the current packag
@EXPORT array tells Perl which of the extension‘s routines should be placed into the calling pac
namespace.

It‘s important to select what to export carefully. Do NOT export method names and do NOT export an
else by default without a good reason.
302 Version 5.003 08−Oct−1996

perlxstut Perl Programmers Reference Guide perlxstut

ust a
K.

 each
ble.

w the
ome of

f your
 named
s.

ing to

 test.pl

stants!
As a general rule, if the module is trying to be object−oriented then don‘t export anything. If it‘s j
collection of functions then you can export any of the functions via another array, called @EXPORT_O

See perlmod for more information.

The $VERSION variable is used to ensure that the .pm file and the shared library are "in sync" with
other. Any time you make changes to the .pm or .xs files, you should increment the value of this varia

WRITING GOOD TEST SCRIPTS
The importance of writing good test scripts cannot be overemphasized. You should closely follo
"ok/not ok" style that Perl itself uses, so that it is very easy and unambiguous to determine the outc
each test case. When you find and fix a bug, make sure you add a test case for it.

By running "make test", you ensure that your test.pl script runs and uses the correct version o
extension. If you have many test cases, you might want to copy Perl‘s test style. Create a directory
"t", and ensure all your test files end with the suffix ".t". The Makefile will properly run all these test file

EXAMPLE 3
Our third extension will take one argument as its input, round off that value, and set the argument to the
rounded value.

Add the following to the end of Mytest.xs:

void
round(arg)

double arg
CODE:
if (arg > 0.0) {

arg = floor(arg + 0.5);
} else if (arg < 0.0) {

arg = ceil(arg − 0.5);
} else {

arg = 0.0;
}
OUTPUT:
arg

Edit the Makefile.PL file so that the corresponding line looks like this:

’LIBS’ => [’−lm’], # e.g., ’−lm’

Generate the Makefile and run make. Change the BEGIN block to print out "1..9" and add the follow
test.pl:

$i = −1.5; &Mytest::round($i); print $i == −2.0 ? "ok 5" : "not ok 5", "\n";
$i = −1.1; &Mytest::round($i); print $i == −1.0 ? "ok 6" : "not ok 6", "\n";
$i = 0.0; &Mytest::round($i); print $i == 0.0 ? "ok 7" : "not ok 7", "\n";
$i = 0.5; &Mytest::round($i); print $i == 1.0 ? "ok 8" : "not ok 8", "\n";
$i = 1.2; &Mytest::round($i); print $i == 1.0 ? "ok 9" : "not ok 9", "\n";

Running "make test" should now print out that all nine tests are okay.

You might be wondering if you can round a constant. To see what happens, add the following line to
temporarily:

&Mytest::round(3);

Run "make test" and notice that Perl dies with a fatal error. Perl won‘t let you change the value of con
08−Oct−1996 Version 5.003 303

perlxstut Perl Programmers Reference Guide perlxstut

ified an
ery

ugh the

 value
inating

t you
anted

in the

whose

es (int,

 with the
hird part

see
ed to

 to the
_setnv
WHAT‘S NEW HERE?
Two things are new here. First, we‘ve made some changes to Makefile.PL. In this case, we‘ve spec
extra library to link in, the math library libm. We‘ll talk later about how to write XSUBs that can call ev
routine in a library.

Second, the value of the function is being passed back not as the function‘s return value, but thro
same variable that was passed into the function.

INPUT AND OUTPUT PARAMETERS
You specify the parameters that will be passed into the XSUB just after you declare the function return
and name. Each parameter line starts with optional white space, and may have an optional term
semicolon.

The list of output parameters occurs after the OUTPUT: directive. The use of RETVAL tells Perl tha
wish to send this value back as the return value of the XSUB function. In Example 3, the value we w
returned was contained in the same variable we passed in, so we listed it (and not RETVAL)
OUTPUT: section.

THE XSUBPP COMPILER
The compiler xsubpp takes the XS code in the .xs file and converts it into C code, placing it in a file
suffix is .c. The C code created makes heavy use of the C functions within Perl.

THE TYPEMAP FILE
The xsubpp compiler uses rules to convert from Perl‘s data types (scalar, array, etc.) to C‘s data typ
char *, etc.). These rules are stored in the typemap file ($PERLLIB/ExtUtils/typemap). This file is
split into three parts.

The first part attempts to map various C data types to a coded flag, which has some correspondence
various Perl types. The second part contains C code which xsubpp uses for input parameters. The t
contains C code which xsubpp uses for output parameters. We‘ll talk more about the C code later.

Let‘s now take a look at a portion of the .c file created for our extension.

XS(XS_Mytest_round)
{
 dXSARGS;
 if (items != 1)

croak("Usage: Mytest::round(arg)");
 {

double arg = (double)SvNV(ST(0)); /* XXXXX */
if (arg > 0.0) {

arg = floor(arg + 0.5);
} else if (arg < 0.0) {

arg = ceil(arg − 0.5);
} else {

arg = 0.0;
}
sv_setnv(ST(0), (double)arg); /* XXXXX */

 }
 XSRETURN(1);
}

Notice the two lines marked with "XXXXX". If you check the first section of the typemap file, you‘ll
that doubles are of type T_DOUBLE. In the INPUT section, an argument that is T_DOUBLE is assign
the variable arg by calling the routine SvNV on something, then casting it to double, then assigned
variable arg. Similarly, in the OUTPUT section, once arg has its final value, it is passed to the sv
function to be passed back to the calling subroutine. These two functions are explained in perlguts; we‘ll
talk more later about what that "ST(0)" means in the section on the argument stack.
304 Version 5.003 08−Oct−1996

perlxstut Perl Programmers Reference Guide perlxstut

ple 3.
 input

gin

ectory,

header
t the

n the
WARNING
In general, it‘s not a good idea to write extensions that modify their input parameters, as in Exam
However, in order to better accommodate calling pre−existing C routines, which often do modify their
parameters, this behavior is tolerated. The next example will show how to do this.

EXAMPLE 4
In this example, we‘ll now begin to write XSUB‘s that will interact with pre−defined C libraries. To be
with, we will build a small library of our own, then let h2xs write our .pm and .xs files for us.

Create a new directory called Mytest2 at the same level as the directory Mytest. In the Mytest2 dir
create another directory called mylib, and cd into that directory.

Here we‘ll create some files that will generate a test library. These will include a C source file and a
file. We‘ll also create a Makefile.PL in this directory. Then we‘ll make sure that running make a
Mytest2 level will automatically run this Makefile.PL file and the resulting Makefile.

In the testlib directory, create a file mylib.h that looks like this:

#define TESTVAL 4

extern double foo(int, long, const char*);

Also create a file mylib.c that looks like this:

#include <stdlib.h>
#include "./mylib.h"

double
foo(a, b, c)
int a;
long b;
const char * c;
{

return (a + b + atof(c) + TESTVAL);
}

And finally create a file Makefile.PL that looks like this:

use ExtUtils::MakeMaker;
$Verbose = 1;
WriteMakefile(
 ’NAME’ => ’Mytest2::mylib’,
 ’clean’ => {’FILES’ => ’libmylib.a’},
);

sub MY::postamble {
’

all :: static

static :: libmylib$(LIB_EXT)

libmylib$(LIB_EXT): $(O_FILES)
$(AR) cr libmylib$(LIB_EXT) $(O_FILES)
$(RANLIB) libmylib$(LIB_EXT)

’;
}

We will now create the main top−level Mytest2 files. Change to the directory above Mytest2 and ru
following command:

% h2xs −O −n Mytest2 ./Mytest2/mylib/mylib.h
08−Oct−1996 Version 5.003 305

perlxstut Perl Programmers Reference Guide perlxstut

 in

 it that
 pair

b

e line

ORT to
itself).

st char *

tory.

e end

r the
This will print out a warning about overwriting Mytest2, but that‘s okay. Our files are stored
Mytest2/mylib, and will be untouched.

The normal Makefile.PL that h2xs generates doesn‘t know about the mylib directory. We need to tell
there is a subdirectory and that we will be generating a library in it. Let‘s add the following key−value
to the WriteMakefile call:

’MYEXTLIB’ => ’mylib/libmylib$(LIB_EXT)’,

and a new replacement subroutine too:

sub MY::postamble {
’
$(MYEXTLIB): mylib/Makefile

cd mylib && $(MAKE)
’;
}

(Note: Most makes will require that there be a tab character that indents the line "cd myli&&
$(MAKE)".)

Let‘s also fix the MANIFEST file so that it accurately reflects the contents of our extension. The singl
that says "mylib" should be replaced by the following three lines:

mylib/Makefile.PL
mylib/mylib.c
mylib/mylib.h

To keep our namespace nice and unpolluted, edit the .pm file and change the lines setting @EXP
@EXPORT_OK (there are two: one in the line beginning "use vars" and one setting the array
Finally, in the .xs file, edit the #include line to read:

#include "mylib/mylib.h"

And also add the following function definition to the end of the .xs file:

double
foo(a,b,c)

int a
long b
const char * c
OUTPUT:
RETVAL

Now we also need to create a typemap file because the default Perl doesn‘t currently support the con
type. Create a file called typemap and place the following in it:

const char * T_PV

Now run perl on the top−level Makefile.PL. Notice that it also created a Makefile in the mylib direc
Run make and see that it does cd into the mylib directory and run make in there as well.

Now edit the test.pl script and change the BEGIN block to print "1..4", and add the following lines to th
of the script:

print &Mytest2::foo(1, 2, "Hello, world!") == 7 ? "ok 2\n" : "not ok 2\n";
print &Mytest2::foo(1, 2, "0.0") == 7 ? "ok 3\n" : "not ok 3\n";
print abs(&Mytest2::foo(0, 0, "−3.4") − 0.6) <= 0.01 ? "ok 4\n" : "not ok 4\n

(When dealing with floating−point comparisons, it is often useful to not check for equality, but rathe
difference being below a certain epsilon factor, 0.01 in this case)

Run "make test" and all should be well.
306 Version 5.003 08−Oct−1996

perlxstut Perl Programmers Reference Guide perlxstut

dies to

in this

name
tines

tely, if
 the

ere is

 the
ble

more
n code.
d to a

whose
uments

ch one
cond is
e third

m this
nt

 address
ter and
the

y
 in the
WHAT HAS HAPPENED HERE?
Unlike previous examples, we‘ve now run h2xs on a real include file. This has caused some extra goo
appear in both the .pm and .xs files.

 In the .xs file, there‘s now a #include declaration with the full path to the mylib.h header file.

 There‘s now some new C code that‘s been added to the .xs file. The purpose of the constant
routine is to make the values that are #define‘d in the header file available to the Perl script (
case, by calling &main::TESTVAL). There‘s also some XS code to allow calls to the constant
routine.

 The .pm file has exported the name TESTVAL in the @EXPORT array. This could lead to
clashes. A good rule of thumb is that if the #define is only going to be used by the C rou
themselves, and not by the user, they should be removed from the @EXPORT array. Alterna
you don‘t mind using the "fully qualified name" of a variable, you could remove most or all of
items in the @EXPORT array.

 If our include file contained #include directives, these would not be processed at all by h2xs. Th
no good solution to this right now.

We‘ve also told Perl about the library that we built in the mylib subdirectory. That required only
addition of the MYEXTLIB variable to the WriteMakefile call and the replacement of the postam
subroutine to cd into the subdirectory and run make. The Makefile.PL for the library is a bit
complicated, but not excessively so. Again we replaced the postamble subroutine to insert our ow
This code simply specified that the library to be created here was a static archive (as oppose
dynamically loadable library) and provided the commands to build it.

SPECIFYING ARGUMENTS TO XSUBPP
With the completion of Example 4, we now have an easy way to simulate some real−life libraries
interfaces may not be the cleanest in the world. We shall now continue with a discussion of the arg
passed to the xsubpp compiler.

When you specify arguments in the .xs file, you are really passing three pieces of information for ea
listed. The first piece is the order of that argument relative to the others (first, second, etc). The se
the type of argument, and consists of the type declaration of the argument (e.g., int, char*, etc). Th
piece is the exact way in which the argument should be used in the call to the library function fro
XSUB. This would mean whether or not to place a "&" before the argument or not, meaning the argume
expects to be passed the address of the specified data type.

There is a difference between the two arguments in this hypothetical function:

int
foo(a,b)

char &a
char * b

The first argument to this function would be treated as a char and assigned to the variable a, and its
would be passed into the function foo. The second argument would be treated as a string poin
assigned to the variable b. The value of b would be passed into the function foo. The actual call to
function foo that xsubpp generates would look like this:

foo(&a, b);

Xsubpp will identically parse the following function argument lists:

char &a
char&a
char & a

However, to help ease understanding, it is suggested that you place a "&" next to the variable name and awa
from the variable type), and place a "*" near the variable type, but away from the variable name (as
08−Oct−1996 Version 5.003 307

perlxstut Perl Programmers Reference Guide perlxstut

unction

 It will

number
ent on
ent, and

nds to
ster if

terface
.pm file.
called

m file.
 page

sion is

ethod

 "make
r ask
complete example above). By doing so, it is easy to understand exactly what will be passed to the C f
— it will be whatever is in the "last column".

You should take great pains to try to pass the function the type of variable it wants, when possible.
save you a lot of trouble in the long run.

THE ARGUMENT STACK
If we look at any of the C code generated by any of the examples except example 1, you will notice a
of references to ST(n), where n is usually 0. The "ST" is actually a macro that points to the n‘th argum
the argument stack. ST(0) is thus the first argument passed to the XSUB, ST(1) is the second argum
so on.

When you list the arguments to the XSUB in the .xs file, that tells xsubpp which argument correspo
which of the argument stack (i.e., the first one listed is the first argument, and so on). You invite disa
you do not list them in the same order as the function expects them.

EXTENDING YOUR EXTENSION
Sometimes you might want to provide some extra methods or subroutines to assist in making the in
between Perl and your extension simpler or easier to understand. These routines should live in the
Whether they are automatically loaded when the extension itself is loaded or only loaded when
depends on where in the .pm file the subroutine definition is placed.

DOCUMENTING YOUR EXTENSION
There is absolutely no excuse for not documenting your extension. Documentation belongs in the .p
This file will be fed to pod2man, and the embedded documentation will be converted to the man
format, then placed in the blib directory. It will be copied to Perl‘s man page directory when the exten
installed.

You may intersperse documentation and Perl code within the .pm file. In fact, if you want to use m
autoloading, you must do this, as the comment inside the .pm file explains.

See perlpod for more information about the pod format.

INSTALLING YOUR EXTENSION
Once your extension is complete and passes all its tests, installing it is quite simple: you simply run
install". You will either need to have write permission into the directories where Perl is installed, o
your system administrator to run the make for you.

SEE ALSO
For more information, consult perlguts, perlxs, perlmod, and perlpod.

Author
Jeff Okamoto <okamoto@corp.hp.com>

Reviewed and assisted by Dean Roehrich, Ilya Zakharevich, Andreas Koenig, and Tim Bunce.

Last Changed
1996/7/10
308 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

r from
elow.

s long,

aded: an

ing

d by a
NAME
perlguts − Perl‘s Internal Functions

DESCRIPTION
This document attempts to describe some of the internal functions of the Perl executable. It is fa
complete and probably contains many errors. Please refer any questions or comments to the author b

Datatypes
Perl has three typedefs that handle Perl‘s three main data types:

 SV Scalar Value
 AV Array Value
 HV Hash Value

Each typedef has specific routines that manipulate the various data types.

What is an "IV"?
Perl uses a special typedef IV which is large enough to hold either an integer or a pointer.

Perl also uses two special typedefs, I32 and I16, which will always be at least 32−bits and 16−bit
respectively.

Working with SVs
An SV can be created and loaded with one command. There are four types of values that can be lo
integer value (IV), a double (NV), a string, (PV), and another scalar (SV).

The four routines are:

 SV* newSViv(IV);
 SV* newSVnv(double);
 SV* newSVpv(char*, int);
 SV* newSVsv(SV*);

To change the value of an *already−existing* SV, there are five routines:

 void sv_setiv(SV*, IV);
 void sv_setnv(SV*, double);
 void sv_setpvn(SV*, char*, int)
 void sv_setpv(SV*, char*);
 void sv_setsv(SV*, SV*);

Notice that you can choose to specify the length of the string to be assigned by using sv_setpvn or
newSVpv, or you may allow Perl to calculate the length by using sv_setpv or by specifying 0 as the
second argument to newSVpv. Be warned, though, that Perl will determine the string‘s length by us
strlen , which depends on the string terminating with a NUL character.

To access the actual value that an SV points to, you can use the macros:

 SvIV(SV*)
 SvNV(SV*)
 SvPV(SV*, STRLEN len)

which will automatically coerce the actual scalar type into an IV, double, or string.

In the SvPV macro, the length of the string returned is placed into the variable len (this is a macro, so you
do not use &len). If you do not care what the length of the data is, use the global variable na . Remember,
however, that Perl allows arbitrary strings of data that may both contain NULs and not be terminate
NUL.

If you simply want to know if the scalar value is TRUE, you can use:

 SvTRUE(SV*)
08−Oct−1996 Version 5.003 309

perlguts Perl Programmers Reference Guide perlguts

y for

owing

th the

an

,

 undef
ntation

e

Although Perl will automatically grow strings for you, if you need to force Perl to allocate more memor
your SV, you can use the macro

 SvGROW(SV*, STRLEN newlen)

which will determine if more memory needs to be allocated. If so, it will call the function sv_grow . Note
that SvGROW can only increase, not decrease, the allocated memory of an SV.

If you have an SV and want to know what kind of data Perl thinks is stored in it, you can use the foll
macros to check the type of SV you have.

 SvIOK(SV*)
 SvNOK(SV*)
 SvPOK(SV*)

You can get and set the current length of the string stored in an SV with the following macros:

 SvCUR(SV*)
 SvCUR_set(SV*, I32 val)

You can also get a pointer to the end of the string stored in the SV with the macro:

 SvEND(SV*)

But note that these last three macros are valid only if SvPOK() is true.

If you want to append something to the end of string stored in an SV*, you can use the following functions:

 void sv_catpv(SV*, char*);
 void sv_catpvn(SV*, char*, int);
 void sv_catsv(SV*, SV*);

The first function calculates the length of the string to be appended by using strlen . In the second, you
specify the length of the string yourself. The third function extends the string stored in the first SV wi
string stored in the second SV. It also forces the second SV to be interpreted as a string.

If you know the name of a scalar variable, you can get a pointer to its SV by using the following:

 SV* perl_get_sv("varname", FALSE);

This returns NULL if the variable does not exist.

If you want to know if this variable (or any other SV) is actually defined , you can call:

 SvOK(SV*)

The scalar undef value is stored in an SV instance called sv_undef . Its address can be used whenever
SV* is needed.

There are also the two values sv_yes and sv_no , which contain Boolean TRUE and FALSE values
respectively. Like sv_undef , their addresses can be used whenever an SV* is needed.

Do not be fooled into thinking that (SV *) 0 is the same as &sv_undef. Take this code:

 SV* sv = (SV*) 0;
 if (I−am−to−return−a−real−value) {
 sv = sv_2mortal(newSViv(42));
 }
 sv_setsv(ST(0), sv);

This code tries to return a new SV (which contains the value 42) if it should return a real value, or
otherwise. Instead it has returned a null pointer which, somewhere down the line, will cause a segme
violation, or just weird results. Change the zero to &sv_undef in the first line and all will be well.

To free an SV that you‘ve created, call SvREFCNT_dec(SV*) . Normally this call is not necessary. Se
the section on MORTALITY .
310 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

ing the

e the

tands

an
What‘s Really Stored in an SV?
Recall that the usual method of determining the type of scalar you have is to use Sv*OK macros. Since a
scalar can be both a number and a string, usually these macros will always return TRUE and call
Sv*V macros will do the appropriate conversion of string to integer/double or integer/double to string.

If you really need to know if you have an integer, double, or string pointer in an SV, you can us
following three macros instead:

 SvIOKp(SV*)
 SvNOKp(SV*)
 SvPOKp(SV*)

These will tell you if you truly have an integer, double, or string pointer stored in your SV. The "p" s
for private.

In general, though, it‘s best to just use the Sv*V macros.

Working with AVs
There are two ways to create and load an AV. The first method just creates an empty AV:

 AV* newAV();

The second method both creates the AV and initially populates it with SVs:

 AV* av_make(I32 num, SV **ptr);

The second argument points to an array containing num SV*s. Once the AV has been created, the SVs c
be destroyed, if so desired.

Once the AV has been created, the following operations are possible on AVs:

 void av_push(AV*, SV*);
 SV* av_pop(AV*);
 SV* av_shift(AV*);
 void av_unshift(AV*, I32 num);

These should be familiar operations, with the exception of av_unshift . This routine adds num elements
at the front of the array with the undef value. You must then use av_store (described below) to assign
values to these new elements.

Here are some other functions:

 I32 av_len(AV*); /* Returns highest index value in array */

 SV** av_fetch(AV*, I32 key, I32 lval);
 /* Fetches value at key offset, but it stores an undef value
 at the offset if lval is non−zero */
 SV** av_store(AV*, I32 key, SV* val);
 /* Stores val at offset key */

Take note that av_fetch and av_store return SV** s, not SV*s.

 void av_clear(AV*);
 /* Clear out all elements, but leave the array */
 void av_undef(AV*);
 /* Undefines the array, removing all elements */
 void av_extend(AV*, I32 key);
 /* Extend the array to a total of key elements */

If you know the name of an array variable, you can get a pointer to its AV by using the following:

 AV* perl_get_av("varname", FALSE);
08−Oct−1996 Version 5.003 311

perlguts Perl Programmers Reference Guide perlguts

r
e return

ey and

This returns NULL if the variable does not exist.

Working with HVs
To create an HV, you use the following routine:

 HV* newHV();

Once the HV has been created, the following operations are possible on HVs:

 SV** hv_store(HV*, char* key, U32 klen, SV* val, U32 hash);
 SV** hv_fetch(HV*, char* key, U32 klen, I32 lval);

The klen parameter is the length of the key being passed in. The val argument contains the SV pointer to
the scalar being stored, and hash is the pre−computed hash value (zero if you want hv_store to calculate
it for you). The lval parameter indicates whether this fetch is actually a part of a store operation.

Remember that hv_store and hv_fetch return SV** s and not just SV*. In order to access the scala
value, you must first dereference the return value. However, you should check to make sure that th
value is not NULL before dereferencing it.

These two functions check if a hash table entry exists, and deletes it.

 bool hv_exists(HV*, char* key, U32 klen);
 SV* hv_delete(HV*, char* key, U32 klen, I32 flags);

And more miscellaneous functions:

 void hv_clear(HV*);
 /* Clears all entries in hash table */
 void hv_undef(HV*);
 /* Undefines the hash table */

Perl keeps the actual data in linked list of structures with a typedef of HE. These contain the actual k
value pointers (plus extra administrative overhead). The key is a string pointer; the value is anSV*.
However, once you have an HE*, to get the actual key and value, use the routines specified below.

 I32 hv_iterinit(HV*);
 /* Prepares starting point to traverse hash table */
 HE* hv_iternext(HV*);
 /* Get the next entry, and return a pointer to a
 structure that has both the key and value */
 char* hv_iterkey(HE* entry, I32* retlen);
 /* Get the key from an HE structure and also return
 the length of the key string */
 SV* hv_iterval(HV*, HE* entry);
 /* Return a SV pointer to the value of the HE
 structure */
 SV* hv_iternextsv(HV*, char** key, I32* retlen);
 /* This convenience routine combines hv_iternext,

 hv_iterkey, and hv_iterval. The key and retlen
 arguments are return values for the key and its
 length. The value is returned in the SV* argument */

If you know the name of a hash variable, you can get a pointer to its HV by using the following:

 HV* perl_get_hv("varname", FALSE);

This returns NULL if the variable does not exist.

The hash algorithm, for those who are interested, is:

 i = klen;
 hash = 0;
312 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

the

e value

imply a
w use the

ng

ull, the

. SV is
 s = key;
 while (i−−)

hash = hash * 33 + *s++;

References
References are a special type of scalar that point to other data types (including references).

To create a reference, use the following command:

 SV* newRV((SV*) thing);

The thing argument can be any of an SV*, AV*, or HV*. Once you have a reference, you can use
following macro to dereference the reference:

 SvRV(SV*)

then call the appropriate routines, casting the returned SV* to either an AV* or HV*, if required.

To determine if an SV is a reference, you can use the following macro:

 SvROK(SV*)

To actually discover what the reference refers to, you must use the following macro and then check th
returned.

 SvTYPE(SvRV(SV*))

The most useful types that will be returned are:

 SVt_IV Scalar
 SVt_NV Scalar
 SVt_PV Scalar
 SVt_PVAV Array
 SVt_PVHV Hash
 SVt_PVCV Code
 SVt_PVMG Blessed Scalar

Blessed References and Class Objects
References are also used to support object−oriented programming. In the OO lexicon, an object is s
reference that has been blessed into a package (or class). Once blessed, the programmer may no
reference to access the various methods in the class.

A reference can be blessed into a package with the following function:

 SV* sv_bless(SV* sv, HV* stash);

The sv argument must be a reference. The stash argument specifies which class the reference will belo
to. See the "Stashes" for information on converting class names into stashes.

/* Still under construction */

Upgrades rv to reference if not already one. Creates new SV for rv to point to. If classname is non−n
SV is blessed into the specified class. SV is returned.

SV* newSVrv(SV* rv, char* classname);

Copies integer or double into an SV whose reference is rv. SV is blessed if classname is non−null.

SV* sv_setref_iv(SV* rv, char* classname, IV iv);
SV* sv_setref_nv(SV* rv, char* classname, NV iv);

Copies pointer (not a string!) into an SV whose reference is rv. SV is blessed if classname is non−null.

SV* sv_setref_pv(SV* rv, char* classname, PV iv);

Copies string into an SV whose reference is rv. Set length to 0 to let Perl calculate the string length
08−Oct−1996 Version 5.003 313

perlguts Perl Programmers Reference Guide perlguts

utines,

routines

 Those

e will
erl data

PUT
andle all

he

oubles,
blessed if classname is non−null.

SV* sv_setref_pvn(SV* rv, char* classname, PV iv, int length);

int sv_isa(SV* sv, char* name);
int sv_isobject(SV* sv);

Creating New Variables
To create a new Perl variable, which can be accessed from your Perl script, use the following ro
depending on the variable type.

 SV* perl_get_sv("varname", TRUE);
 AV* perl_get_av("varname", TRUE);
 HV* perl_get_hv("varname", TRUE);

Notice the use of TRUE as the second parameter. The new variable can now be set, using the
appropriate to the data type.

There are additional bits that may be OR‘ed with the TRUE argument to enable certain extra features.
bits are:

 0x02 Marks the variable as multiply defined, thus preventing the
 "Identifier <varname> used only once: possible typo" warning.

 0x04 Issues a "Had to create <varname> unexpectedly" warning if
 the variable didn’t actually exist. This is useful if
 you expected the variable to already exist and want to propagate
 this warning back to the user.

If the varname argument does not contain a package specifier, it is created in the current package.

XSUBs and the Argument Stack
The XSUB mechanism is a simple way for Perl programs to access C subroutines. An XSUB routin
have a stack that contains the arguments from the Perl program, and a way to map from the P
structures to a C equivalent.

The stack arguments are accessible through the ST(n) macro, which returns the n‘th stack argument.
Argument 0 is the first argument passed in the Perl subroutine call. These arguments are SV*, and can be
used anywhere an SV* is used.

Most of the time, output from the C routine can be handled through use of the RETVAL and OUT
directives. However, there are some cases where the argument stack is not already long enough to h
the return values. An example is the POSIX tzname() call, which takes no arguments, but returns two, t
local timezone‘s standard and summer time abbreviations.

To handle this situation, the PPCODE directive is used and the stack is extended using the macro:

 EXTEND(sp, num);

where sp is the stack pointer, and num is the number of elements the stack should be extended by.

Now that there is room on the stack, values can be pushed on it using the macros to push IVs, d
strings, and SV pointers respectively:

 PUSHi(IV)
 PUSHn(double)
 PUSHp(char*, I32)
 PUSHs(SV*)

And now the Perl program calling tzname , the two values will be assigned as in:

 ($standard_abbrev, $summer_abbrev) = POSIX::tzname;

An alternate (and possibly simpler) method to pushing values on the stack is to use the macros:
314 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

e Perl

, that
ey will

nly
V, or

ates a

ss (and

be very
rl stack

uld you

within a
ave the
ntains
 XPUSHi(IV)
 XPUSHn(double)
 XPUSHp(char*, I32)
 XPUSHs(SV*)

These macros automatically adjust the stack for you, if needed.

For more information, consult perlxs.

Mortality
In Perl, values are normally "immortal" — that is, they are not freed unless explicitly done so (via th
undef call or other routines in Perl itself).

Add cruft about reference counts.
int SvREFCNT(SV* sv);
void SvREFCNT_inc(SV* sv);
void SvREFCNT_dec(SV* sv);

In the above example with tzname , we needed to create two new SVs to push onto the argument stack
being the two strings. However, we don‘t want these new SVs to stick around forever because th
eventually be copied into the SVs that hold the two scalar variables.

An SV (or AV or HV) that is "mortal" acts in all ways as a normal "immortal" SV, AV, or HV, but is o
valid in the "current context". When the Perl interpreter leaves the current context, the mortal SV, A
HV is automatically freed. Generally the "current context" means a single Perl statement.

To create a mortal variable, use the functions:

 SV* sv_newmortal()
 SV* sv_2mortal(SV*)
 SV* sv_mortalcopy(SV*)

The first call creates a mortal SV, the second converts an existing SV to a mortal SV, the third cre
mortal copy of an existing SV.

The mortal routines are not just for SVs — AVs and HVs can be made mortal by passing their addre
casting them to SV*) to the sv_2mortal or sv_mortalcopy routines.

From Ilya: Beware that the sv_2mortal() call is eventually equivalent to svREFCNT_dec() . A value
can happily be mortal in two different contexts, and it will be svREFCNT_dec() ed twice, once on exit
from these contexts. It can also be mortal twice in the same context. This means that you should
careful to make a value mortal exactly as many times as it is needed. The value that go to the Pe
should be mortal.

You should be careful about creating mortal variables. It is possible for strange things to happen sho
make the same value mortal within multiple contexts.

Stashes
A stash is a hash table (associative array) that contains all of the different objects that are contained
package. Each key of the stash is a symbol name (shared by all the different types of objects that h
same name), and each value in the hash table is called a GV (for Glob Value). This GV in turn co
references to the various objects of that name, including (but not limited to) the following:

 Scalar Value
 Array Value
 Hash Value
 File Handle
 Directory Handle
 Format
 Subroutine
08−Oct−1996 Version 5.003 315

perlguts Perl Programmers Reference Guide perlguts

 an HV

ariable

 stash is

fault

turned

ted is

ures are

f the
 type of
Perl stores various stashes in a separate GV structure (for global variable) but represents them with
structure. The keys in this larger GV are the various package names; the values are the GV*s which are
stashes. It may help to think of a stash purely as an HV, and that the term "GV" means the global v
hash.

To get the stash pointer for a particular package, use the function:

 HV* gv_stashpv(char* name, I32 create)
 HV* gv_stashsv(SV*, I32 create)

The first function takes a literal string, the second uses the string stored in the SV. Remember that a
just a hash table, so you get back an HV*. The create flag will create a new package if it is set.

The name that gv_stash*v wants is the name of the package whose symbol table you want. The de
package is called main . If you have multiply nested packages, pass their names to gv_stash*v ,
separated by :: as in the Perl language itself.

Alternately, if you have an SV that is a blessed reference, you can find out the stash pointer by using:

 HV* SvSTASH(SvRV(SV*));

then use the following to get the package name itself:

 char* HvNAME(HV* stash);

If you need to return a blessed value to your Perl script, you can use the following function:

 SV* sv_bless(SV*, HV* stash)

where the first argument, an SV*, must be a reference, and the second argument is a stash. The re
SV* can now be used in the same way as any other SV.

For more information on references and blessings, consult perlref.

Magic
[This section still under construction. Ignore everything here. Post no bills. Everything not permit
forbidden.]

Any SV may be magical, that is, it has special features that a normal SV does not have. These feat
stored in the SV structure in a linked list of struct magic s, typedef‘ed to MAGIC.

 struct magic {
 MAGIC* mg_moremagic;
 MGVTBL* mg_virtual;
 U16 mg_private;
 char mg_type;
 U8 mg_flags;
 SV* mg_obj;
 char* mg_ptr;
 I32 mg_len;
 };

Note this is current as of patchlevel 0, and could change at any time.

Assigning Magic
Perl adds magic to an SV using the sv_magic function:

 void sv_magic(SV* sv, SV* obj, int how, char* name, I32 namlen);

The sv argument is a pointer to the SV that is to acquire a new magical feature.

If sv is not already magical, Perl uses the SvUPGRADE macro to set the SVt_PVMG flag for the sv . Perl
then continues by adding it to the beginning of the linked list of magical features. Any prior entry o
same type of magic is deleted. Note that this can be overridden, and multiple instances of the same
316 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

 of a

be

to that

h
erform

d, the
magic can be associated with an SV.

The name and namlem arguments are used to associate a string with the magic, typically the name
variable. namlem is stored in the mg_len field and if name is non−null and namlem >= 0 a malloc‘d copy
of the name is stored in mg_ptr field.

The sv_magic function uses how to determine which, if any, predefined "Magic Virtual Table" should
assigned to the mg_virtual field. See the "Magic Virtual Table" section below. The how argument is
also stored in the mg_type field.

The obj argument is stored in the mg_obj field of the MAGIC structure. If it is not the same as the sv
argument, the reference count of the obj object is incremented. If it is the same, or if the how argument is
"#", or if it is a null pointer, then obj is merely stored, without the reference count being incremented.

There is also a function to add magic to an HV:

 void hv_magic(HV *hv, GV *gv, int how);

This simply calls sv_magic and coerces the gv argument into an SV.

To remove the magic from an SV, call the function sv_unmagic:

 void sv_unmagic(SV *sv, int type);

The type argument should be equal to the how value when the SV was initially made magical.

Magic Virtual Tables
The mg_virtual field in the MAGIC structure is a pointer to a MGVTBL, which is a structure of function
pointers and stands for "Magic Virtual Table" to handle the various operations that might be applied
variable.

The MGVTBL has five pointers to the following routine types:

 int (*svt_get)(SV* sv, MAGIC* mg);
 int (*svt_set)(SV* sv, MAGIC* mg);
 U32 (*svt_len)(SV* sv, MAGIC* mg);
 int (*svt_clear)(SV* sv, MAGIC* mg);
 int (*svt_free)(SV* sv, MAGIC* mg);

This MGVTBL structure is set at compile−time in perl.h and there are currently 19 types (or 21 wit
overloading turned on). These different structures contain pointers to various routines that p
additional actions depending on which function is being called.

 Function pointer Action taken
 −−−−−−−−−−−−−−−− −−−−−−−−−−−−
 svt_get Do something after the value of the SV is retrieved.
 svt_set Do something after the SV is assigned a value.
 svt_len Report on the SV’s length.
 svt_clear Clear something the SV represents.
 svt_free Free any extra storage associated with the SV.

For instance, the MGVTBL structure called vtbl_sv (which corresponds to an mg_type of ‘\0’) contains:

 { magic_get, magic_set, magic_len, 0, 0 }

Thus, when an SV is determined to be magical and of type ‘\0‘, if a get operation is being performe
routine magic_get is called. All the various routines for the various magical types begin with magic_ .

The current kinds of Magic Virtual Tables are:

 mg_type MGVTBL Type of magicalness
 −−−−−−− −−−−−− −−−−−−−−−−−−−−−−−−−
 \0 vtbl_sv Regexp???
08−Oct−1996 Version 5.003 317

perlguts Perl Programmers Reference Guide perlguts

 used to
esent an

ical

the

erl will

. The

e
ll the
 A vtbl_amagic Operator Overloading
 a vtbl_amagicelem Operator Overloading
 c 0 Used in Operator Overloading
 B vtbl_bm Boyer−Moore???
 E vtbl_env %ENV hash
 e vtbl_envelem %ENV hash element
 g vtbl_mglob Regexp /g flag???
 I vtbl_isa @ISA array
 i vtbl_isaelem @ISA array element
 L 0 (but sets RMAGICAL) Perl Module/Debugger???
 l vtbl_dbline Debugger?
 P vtbl_pack Tied Array or Hash
 p vtbl_packelem Tied Array or Hash element
 q vtbl_packelem Tied Scalar or Handle
 S vtbl_sig Signal Hash
 s vtbl_sigelem Signal Hash element
 t vtbl_taint Taintedness
 U vtbl_uvar ???
 v vtbl_vec Vector
 x vtbl_substr Substring???
 * vtbl_glob GV???
 # vtbl_arylen Array Length
 . vtbl_pos $. scalar variable
 ~ Reserved for extensions, but multiple extensions may clash

When an upper−case and lower−case letter both exist in the table, then the upper−case letter is
represent some kind of composite type (a list or a hash), and the lower−case letter is used to repr
element of that composite type.

Finding Magic
 MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type */

This routine returns a pointer to the MAGIC structure stored in the SV. If the SV does not have that mag
feature, NULL is returned. Also, if the SV is not of type SVt_PVMG, Perl may core−dump.

 int mg_copy(SV* sv, SV* nsv, char* key, STRLEN klen);

This routine checks to see what types of magic sv has. If the mg_type field is an upper−case letter, then
mg_obj is copied to nsv , but the mg_type field is changed to be the lower−case letter.

Double−Typed SVs
Scalar variables normally contain only one type of value, an integer, double, pointer, or reference. P
automatically convert the actual scalar data from the stored type into the requested type.

Some scalar variables contain more than one type of scalar data. For example, the variable $! contains
either the numeric value of errno or its string equivalent from either strerror or sys_errlist[] .

To force multiple data values into an SV, you must do two things: use the sv_set*v routines to add the
additional scalar type, then set a flag so that Perl will believe it contains more than one type of data
four macros to set the flags are:

SvIOK_on
SvNOK_on
SvPOK_on
SvROK_on

The particular macro you must use depends on which sv_set*v routine you called first. This is becaus
every sv_set*v routine turns on only the bit for the particular type of data being set, and turns off a
rest.
318 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

criptive

r are:

erl
t control
ts, how

rl

ols of
 some

ver, the
, so this

nts
 The
For example, to create a new Perl variable called "dberror" that contains both the numeric and des
string error values, you could use the following code:

 extern int dberror;
 extern char *dberror_list;

 SV* sv = perl_get_sv("dberror", TRUE);
 sv_setiv(sv, (IV) dberror);
 sv_setpv(sv, dberror_list[dberror]);
 SvIOK_on(sv);

If the order of sv_setiv and sv_setpv had been reversed, then the macro SvPOK_on would need to be
called instead of SvIOK_on .

Calling Perl Routines from within C Programs
There are four routines that can be used to call a Perl subroutine from within a C program. These fou

 I32 perl_call_sv(SV*, I32);
 I32 perl_call_pv(char*, I32);
 I32 perl_call_method(char*, I32);
 I32 perl_call_argv(char*, I32, register char**);

The routine most often used is perl_call_sv . The SV* argument contains either the name of the P
subroutine to be called, or a reference to the subroutine. The second argument consists of flags tha
the context in which the subroutine is called, whether or not the subroutine is being passed argumen
errors should be trapped, and how to treat return values.

All four routines return the number of arguments that the subroutine returned on the Perl stack.

When using any of these routines (except perl_call_argv), the programmer must manipulate the Pe
stack. These include the following macros and functions:

 dSP
 PUSHMARK()
 PUTBACK
 SPAGAIN
 ENTER
 SAVETMPS
 FREETMPS
 LEAVE
 XPUSH*()
 POP*()

For more information, consult perlcall.

Memory Allocation
It is strongly suggested that you use the version of malloc that is distributed with Perl. It keeps po
various sizes of unallocated memory in order to more quickly satisfy allocation requests. However, on
platforms, it may cause spurious malloc or free errors.

 New(x, pointer, number, type);
 Newc(x, pointer, number, type, cast);
 Newz(x, pointer, number, type);

These three macros are used to initially allocate memory. The first argument x was a "magic cookie" that
was used to keep track of who called the macro, to help when debugging memory problems. Howe
current code makes no use of this feature (Larry has switched to using a run−time memory checker)
argument can be any number.

The second argument pointer will point to the newly allocated memory. The third and fourth argume
number and type specify how many of the specified type of data structure should be allocated.
08−Oct−1996 Version 5.003 319

perlguts Perl Programmers Reference Guide perlguts

 needed.

ro out

at may

it to a

o they

te the
argument type is passed to sizeof . The final argument to Newc, cast , should be used if the pointer
argument is different from the type argument.

Unlike the New and Newc macros, the Newz macro calls memzero to zero out all the newly allocated
memory.

 Renew(pointer, number, type);
 Renewc(pointer, number, type, cast);
 Safefree(pointer)

These three macros are used to change a memory buffer size or to free a piece of memory no longer
The arguments to Renew and Renewc match those of New and Newc with the exception of not needing the
"magic cookie" argument.

 Move(source, dest, number, type);
 Copy(source, dest, number, type);
 Zero(dest, number, type);

These three macros are used to move, copy, or zero out previously allocated memory. The source and
dest arguments point to the source and destination starting points. Perl will move, copy, or ze
number instances of the size of the type data structure (using the sizeof function).

API LISTING
This is a listing of functions, macros, flags, and variables that may be useful to extension writers or th
be found while reading other extensions.

AvFILL See av_len .

av_clear Clears an array, making it empty.

void av_clear _((AV* ar));

av_extend
Pre−extend an array. The key is the index to which the array should be extended.

void av_extend _((AV* ar, I32 key));

av_fetch Returns the SV at the specified index in the array. The key is the index. If lval is set then the
fetch will be part of a store. Check that the return value is non−null before dereferencing
SV*.

SV** av_fetch _((AV* ar, I32 key, I32 lval));

av_len Returns the highest index in the array. Returns −1 if the array is empty.

I32 av_len _((AV* ar));

av_make Creates a new AV and populates it with a list of SVs. The SVs are copied into the array, s
may be freed after the call to av_make. The new AV will have a refcount of 1.

AV* av_make _((I32 size, SV** svp));

av_pop Pops an SV off the end of the array. Returns &sv_undef if the array is empty.

SV* av_pop _((AV* ar));

av_push Pushes an SV onto the end of the array. The array will grow automatically to accommoda
addition.

void av_push _((AV* ar, SV* val));

av_shift Shifts an SV off the beginning of the array.

SV* av_shift _((AV* ar));
320 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

 to

 is

u

s
 every

Perl‘s

ndled
e

y by

y by
av_store Stores an SV in an array. The array index is specified as key . The return value will be null if
the operation failed, otherwise it can be dereferenced to get the original SV*.

SV** av_store _((AV* ar, I32 key, SV* val));

av_undef Undefines the array.

void av_undef _((AV* ar));

av_unshift
Unshift an SV onto the beginning of the array. The array will grow automatically
accommodate the addition.

void av_unshift _((AV* ar, I32 num));

CLASS Variable which is setup by xsubpp to indicate the class name for a C++ XS constructor. This
always a char* . See THIS and Using XS With C++ in perlxs.

Copy The XSUB−writer‘s interface to the C memcpy function. The s is the source, d is the
destination, n is the number of items, and t is the type.

(void) Copy(s, d, n, t);

croak This is the XSUB−writer‘s interface to Perl‘s die function. Use this function the same way yo
use the C printf function. See warn .

CvSTASH
Returns the stash of the CV.

HV * CvSTASH(SV* sv)

DBsingle When Perl is run in debugging mode, with the −d switch, this SV is a boolean which indicate
whether subs are being single−stepped. Single−stepping is automatically turned on after
step. This is the C variable which corresponds to Perl‘s $DB::single variable. See DBsub.

DBsub When Perl is run in debugging mode, with the −d switch, this GV contains the SV which holds
the name of the sub being debugged. This is the C variable which corresponds to
$DB::sub variable. See DBsingle . The sub name can be found by

SvPV(GvSV(DBsub), na)

DBtrace Trace variable used when Perl is run in debugging mode, with the −d switch. This is the C
variable which corresponds to Perl‘s $DB::trace variable. See DBsingle .

dMARK Declare a stack marker variable, mark , for the XSUB. See MARK and dORIGMARK.

dORIGMARK
Saves the original stack mark for the XSUB. See ORIGMARK.

dowarn The C variable which corresponds to Perl‘s $^W warning variable.

dSP Declares a stack pointer variable, sp , for the XSUB. See SP.

dXSARGS
Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. This is usually ha
automatically by xsubpp . Declares the items variable to indicate the number of items on th
stack.

dXSI32 Sets up the ix variable for an XSUB which has aliases. This is usually handled automaticall
xsubpp .

dXSI32 Sets up the ix variable for an XSUB which has aliases. This is usually handled automaticall
xsubpp .
08−Oct−1996 Version 5.003 321

perlguts Perl Programmers Reference Guide perlguts

en

 to the
ENTER Opening bracket on a callback. See LEAVE and perlcall.

ENTER;

EXTEND Used to extend the argument stack for an XSUB‘s return values.

EXTEND(sp, int x);

FREETMPS
Closing bracket for temporaries on a callback. See SAVETMPS and perlcall.

FREETMPS;

G_ARRAY
Used to indicate array context. See GIMME and perlcall.

G_DISCARD
Indicates that arguments returned from a callback should be discarded. See perlcall.

G_EVAL Used to force a Perl eval wrapper around a callback. See perlcall.

GIMME The XSUB−writer‘s equivalent to Perl‘s wantarray . Returns G_SCALAR or G_ARRAY for
scalar or array context.

G_NOARGS
Indicates that no arguments are being sent to a callback. See perlcall.

G_SCALAR
Used to indicate scalar context. See GIMME and perlcall.

gv_stashpv
Returns a pointer to the stash for a specified package. If create is set then the package will be
created if it does not already exist. If create is not set and the package does not exist th
NULL is returned.

HV* gv_stashpv _((char* name, I32 create));

gv_stashsv
Returns a pointer to the stash for a specified package. See gv_stashpv .

HV* gv_stashsv _((SV* sv, I32 create));

GvSV Return the SV from the GV.

he_free Releases a hash entry from an iterator. See hv_iternext .

hv_clear Clears a hash, making it empty.

void hv_clear _((HV* tb));

hv_delete
Deletes a key/value pair in the hash. The value SV is removed from the hash and returned
caller. The klen is the length of the key. The flags value will normally be zero; if set to
G_DISCARD then null will be returned.

SV* hv_delete _((HV* tb, char* key, U32 klen, I32 flags));

hv_exists Returns a boolean indicating whether the specified hash key exists. The klen is the length of
the key.

bool hv_exists _((HV* tb, char* key, U32 klen));
322 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

e is

 The
t the
hv_fetch Returns the SV which corresponds to the specified key in the hash. The klen is the length of
the key. If lval is set then the fetch will be part of a store. Check that the return valu
non−null before dereferencing it to a SV*.

SV** hv_fetch _((HV* tb, char* key, U32 klen, I32 lval));

hv_iterinit Prepares a starting point to traverse a hash table.

I32 hv_iterinit _((HV* tb));

hv_iterkey
Returns the key from the current position of the hash iterator. See hv_iterinit .

char* hv_iterkey _((HE* entry, I32* retlen));

hv_iternext
Returns entries from a hash iterator. See hv_iterinit .

HE* hv_iternext _((HV* tb));

hv_iternextsv
Performs an hv_iternext , hv_iterkey , and hv_iterval in one operation.

SV * hv_iternextsv _((HV* hv, char** key, I32* retlen));

hv_iterval Returns the value from the current position of the hash iterator. See hv_iterkey .

SV* hv_iterval _((HV* tb, HE* entry));

hv_magic Adds magic to a hash. See sv_magic .

void hv_magic _((HV* hv, GV* gv, int how));

HvNAME Returns the package name of a stash. See SvSTASH, CvSTASH.

char *HvNAME (HV* stash)

hv_store Stores an SV in a hash. The hash key is specified as key and klen is the length of the key.
The hash parameter is the pre−computed hash value; if it is zero then Perl will compute it.
return value will be null if the operation failed, otherwise it can be dereferenced to ge
original SV*.

SV** hv_store _((HV* tb, char* key, U32 klen, SV* val, U32 hash));

hv_undef Undefines the hash.

void hv_undef _((HV* tb));

isALNUM Returns a boolean indicating whether the C char is an ascii alphanumeric character.

int isALNUM (char c)

isALPHA Returns a boolean indicating whether the C char is an ascii alphabetic character.

int isALPHA (char c)

isDIGIT Returns a boolean indicating whether the C char is an ascii digit.

int isDIGIT (char c)

isLOWER
Returns a boolean indicating whether the C char is a lowercase character.

int isLOWER (char c)
08−Oct−1996 Version 5.003 323

perlguts Perl Programmers Reference Guide perlguts

ee

ke
isSPACE Returns a boolean indicating whether the C char is whitespace.

int isSPACE (char c)

isUPPER Returns a boolean indicating whether the C char is an uppercase character.

int isUPPER (char c)

items Variable which is setup by xsubpp to indicate the number of items on the stack. S
Variable−length Parameter Lists in perlxs.

ix Variable which is setup by xsubpp to indicate which of an XSUB‘s aliases was used to invo
it. See The ALIAS: Keyword in perlxs.

LEAVE Closing bracket on a callback. See ENTER and perlcall.

LEAVE;

MARK Stack marker variable for the XSUB. See dMARK.

mg_clear Clear something magical that the SV represents. See sv_magic .

int mg_clear _((SV* sv));

mg_copy Copies the magic from one SV to another. See sv_magic .

int mg_copy _((SV *, SV *, char *, STRLEN));

mg_find Finds the magic pointer for type matching the SV. See sv_magic .

MAGIC* mg_find _((SV* sv, int type));

mg_free Free any magic storage used by the SV. See sv_magic .

int mg_free _((SV* sv));

mg_get Do magic after a value is retrieved from the SV. See sv_magic .

int mg_get _((SV* sv));

mg_len Report on the SV‘s length. See sv_magic .

U32 mg_len _((SV* sv));

mg_magical
Turns on the magical status of an SV. See sv_magic .

void mg_magical _((SV* sv));

mg_set Do magic after a value is assigned to the SV. See sv_magic .

int mg_set _((SV* sv));

Move The XSUB−writer‘s interface to the C memmove function. The s is the source, d is the
destination, n is the number of items, and t is the type.

(void) Move(s, d, n, t);

na A variable which may be used with SvPV to tell Perl to calculate the string length.

New The XSUB−writer‘s interface to the C malloc function.

void * New(x, void *ptr, int size, type)

Newc The XSUB−writer‘s interface to the C malloc function, with cast.

void * Newc(x, void *ptr, int size, type, cast)
324 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

h

ring

.
 new
Newz The XSUB−writer‘s interface to the C malloc function. The allocated memory is zeroed wit
memzero.

void * Newz(x, void *ptr, int size, type)

newAV Creates a new AV. The refcount is set to 1.

AV* newAV _((void));

newHV Creates a new HV. The refcount is set to 1.

HV* newHV _((void));

newRV Creates an RV wrapper for an SV. The refcount for the original SV is incremented.

SV* newRV _((SV* ref));

newSV Creates a new SV. The len parameter indicates the number of bytes of pre−allocated st
space the SV should have. The refcount for the new SV is set to 1.

SV* newSV _((STRLEN len));

newSViv Creates a new SV and copies an integer into it. The refcount for the SV is set to 1.

SV* newSViv _((IV i));

newSVnv Creates a new SV and copies a double into it. The refcount for the SV is set to 1.

SV* newSVnv _((NV i));

newSVpv Creates a new SV and copies a string into it. The refcount for the SV is set to 1. If len is zero
then Perl will compute the length.

SV* newSVpv _((char* s, STRLEN len));

newSVrv Creates a new SV for the RV, rv , to point to. If rv is not an RV then it will be upgraded to one
 If classname is non−null then the new SV will be blessed in the specified package. The
SV is returned and its refcount is 1.

SV* newSVrv _((SV* rv, char* classname));

newSVsv Creates a new SV which is an exact duplicate of the original SV.

SV* newSVsv _((SV* old));

newXS Used by xsubpp to hook up XSUBs as Perl subs.

newXSproto
Used by xsubpp to hook up XSUBs as Perl subs. Adds Perl prototypes to the subs.

Nullav Null AV pointer.

Nullch Null character pointer.

Nullcv Null CV pointer.

Nullhv Null HV pointer.

Nullsv Null SV pointer.

ORIGMARK
The original stack mark for the XSUB. See dORIGMARK.

perl_alloc Allocates a new Perl interpreter. See perlembed.

perl_call_argv
Performs a callback to the specified Perl sub. See perlcall.
08−Oct−1996 Version 5.003 325

perlguts Perl Programmers Reference Guide perlguts

k. See

st
ed.

st
ed.

st
ed.

st
ed.
I32 perl_call_argv _((char* subname, I32 flags, char** argv));

perl_call_method
Performs a callback to the specified Perl method. The blessed object must be on the stac
perlcall.

I32 perl_call_method _((char* methname, I32 flags));

perl_call_pv
Performs a callback to the specified Perl sub. See perlcall.

I32 perl_call_pv _((char* subname, I32 flags));

perl_call_sv
Performs a callback to the Perl sub whose name is in the SV. See perlcall.

I32 perl_call_sv _((SV* sv, I32 flags));

perl_construct
Initializes a new Perl interpreter. See perlembed.

perl_destruct
Shuts down a Perl interpreter. See perlembed.

perl_eval_sv
Tells Perl to eval the string in the SV.

I32 perl_eval_sv _((SV* sv, I32 flags));

perl_free Releases a Perl interpreter. See perlembed.

perl_get_av
Returns the AV of the specified Perl array. If create is set and the Perl variable does not exi
then it will be created. If create is not set and the variable does not exist then null is return

AV* perl_get_av _((char* name, I32 create));

perl_get_cv
Returns the CV of the specified Perl sub. If create is set and the Perl variable does not exi
then it will be created. If create is not set and the variable does not exist then null is return

CV* perl_get_cv _((char* name, I32 create));

perl_get_hv
Returns the HV of the specified Perl hash. If create is set and the Perl variable does not exi
then it will be created. If create is not set and the variable does not exist then null is return

HV* perl_get_hv _((char* name, I32 create));

perl_get_sv
Returns the SV of the specified Perl scalar. If create is set and the Perl variable does not exi
then it will be created. If create is not set and the variable does not exist then null is return

SV* perl_get_sv _((char* name, I32 create));

perl_parse
Tells a Perl interpreter to parse a Perl script. See perlembed.

perl_require_pv
Tells Perl to require a module.

void perl_require_pv _((char* pv));
326 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

e

perl_run Tells a Perl interpreter to run. See perlembed.

POPi Pops an integer off the stack.

int POPi();

POPl Pops a long off the stack.

long POPl();

POPp Pops a string off the stack.

char * POPp();

POPn Pops a double off the stack.

double POPn();

POPs Pops an SV off the stack.

SV* POPs();

PUSHMARK
Opening bracket for arguments on a callback. See PUTBACK and perlcall.

PUSHMARK(p)

PUSHi Push an integer onto the stack. The stack must have room for this element. See XPUSHi.

PUSHi(int d)

PUSHn Push a double onto the stack. The stack must have room for this element. See XPUSHn.

PUSHn(double d)

PUSHp Push a string onto the stack. The stack must have room for this element. The len indicates the
length of the string. See XPUSHp.

PUSHp(char *c, int len)

PUSHs Push an SV onto the stack. The stack must have room for this element. See XPUSHs.

PUSHs(sv)

PUTBACK
Closing bracket for XSUB arguments. This is usually handled by xsubpp . See PUSHMARK and
perlcall for other uses.

PUTBACK;

Renew The XSUB−writer‘s interface to the C realloc function.

void * Renew(void *ptr, int size, type)

Renewc The XSUB−writer‘s interface to the C realloc function, with cast.

void * Renewc(void *ptr, int size, type, cast)

RETVAL Variable which is setup by xsubpp to hold the return value for an XSUB. This is always th
proper type for the XSUB. See The RETVAL Variable in perlxs.

safefree The XSUB−writer‘s interface to the C free function.

safemalloc
The XSUB−writer‘s interface to the C malloc function.
08−Oct−1996 Version 5.003 327

perlguts Perl Programmers Reference Guide perlguts

 an

to

to
saferealloc
The XSUB−writer‘s interface to the C realloc function.

savepv Copy a string to a safe spot. This does not use an SV.

char* savepv _((char* sv));

savepvn Copy a string to a safe spot. The len indicates number of bytes to copy. This does not use
SV.

char* savepvn _((char* sv, I32 len));

SAVETMPS
Opening bracket for temporaries on a callback. See FREETMPS and perlcall.

SAVETMPS;

SP Stack pointer. This is usually handled by xsubpp . See dSP and SPAGAIN.

SPAGAIN
Refetch the stack pointer. Used after a callback. See perlcall.

SPAGAIN;

ST Used to access elements on the XSUB‘s stack.

SV* ST(int x)

strEQ Test two strings to see if they are equal. Returns true or false.

int strEQ(char *s1, char *s2)

strGE Test two strings to see if the first, s1 , is greater than or equal to the second, s2 . Returns true or
false.

int strGE(char *s1, char *s2)

strGT Test two strings to see if the first, s1 , is greater than the second, s2 . Returns true or false.

int strGT(char *s1, char *s2)

strLE Test two strings to see if the first, s1 , is less than or equal to the second, s2 . Returns true or
false.

int strLE(char *s1, char *s2)

strLT Test two strings to see if the first, s1 , is less than the second, s2 . Returns true or false.

int strLT(char *s1, char *s2)

strNE Test two strings to see if they are different. Returns true or false.

int strNE(char *s1, char *s2)

strnEQ Test two strings to see if they are equal. The len parameter indicates the number of bytes
compare. Returns true or false.

int strnEQ(char *s1, char *s2)

strnNE Test two strings to see if they are different. The len parameter indicates the number of bytes
compare. Returns true or false.

int strnNE(char *s1, char *s2, int len)

sv_2mortal
Marks an SV as mortal. The SV will be destroyed when the current context ends.
328 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

ust be

.

SV* sv_2mortal _((SV* sv));

sv_bless Blesses an SV into a specified package. The SV must be an RV. The package m
designated by its stash (see gv_stashpv()). The refcount of the SV is unaffected.

SV* sv_bless _((SV* sv, HV* stash));

sv_catpv Concatenates the string onto the end of the string which is in the SV.

void sv_catpv _((SV* sv, char* ptr));

sv_catpvn
Concatenates the string onto the end of the string which is in the SV. The len indicates number
of bytes to copy.

void sv_catpvn _((SV* sv, char* ptr, STRLEN len));

sv_catsv Concatenates the string from SV ssv onto the end of the string in SV dsv .

void sv_catsv _((SV* dsv, SV* ssv));

sv_cmp Compares the strings in two SVs. Returns −1, 0, or 1 indicating whether the string in sv1 is less
than, equal to, or greater than the string in sv2 .

I32 sv_cmp _((SV* sv1, SV* sv2));

sv_cmp Compares the strings in two SVs. Returns −1, 0, or 1 indicating whether the string in sv1 is less
than, equal to, or greater than the string in sv2 .

I32 sv_cmp _((SV* sv1, SV* sv2));

SvCUR Returns the length of the string which is in the SV. See SvLEN.

int SvCUR (SV* sv)

SvCUR_set
Set the length of the string which is in the SV. See SvCUR.

SvCUR_set (SV* sv, int val)

sv_dec Autodecrement of the value in the SV.

void sv_dec _((SV* sv));

sv_dec Autodecrement of the value in the SV.

void sv_dec _((SV* sv));

SvEND Returns a pointer to the last character in the string which is in the SV. See SvCUR. Access the
character as

*SvEND(sv)

sv_eq Returns a boolean indicating whether the strings in the two SVs are identical.

I32 sv_eq _((SV* sv1, SV* sv2));

SvGROW
Expands the character buffer in the SV. Calls sv_grow to perform the expansion if necessary
Returns a pointer to the character buffer.

char * SvGROW(SV* sv, int len)

sv_grow Expands the character buffer in the SV. This will use sv_unref and will upgrade the SV to
SVt_PV . Returns a pointer to the character buffer. Use SvGROW.
08−Oct−1996 Version 5.003 329

perlguts Perl Programmers Reference Guide perlguts

es not

SV is
sv_inc Autoincrement of the value in the SV.

void sv_inc _((SV* sv));

SvIOK Returns a boolean indicating whether the SV contains an integer.

int SvIOK (SV* SV)

SvIOK_off
Unsets the IV status of an SV.

SvIOK_off (SV* sv)

SvIOK_on
Tells an SV that it is an integer.

SvIOK_on (SV* sv)

SvIOK_only
Tells an SV that it is an integer and disables all other OK bits.

SvIOK_on (SV* sv)

SvIOK_only
Tells an SV that it is an integer and disables all other OK bits.

SvIOK_on (SV* sv)

SvIOKp Returns a boolean indicating whether the SV contains an integer. Checks the private setting.
Use SvIOK .

int SvIOKp (SV* SV)

sv_isa Returns a boolean indicating whether the SV is blessed into the specified class. This do
know how to check for subtype, so it doesn‘t work in an inheritance relationship.

int sv_isa _((SV* sv, char* name));

SvIV Returns the integer which is in the SV.

int SvIV (SV* sv)

sv_isobject
Returns a boolean indicating whether the SV is an RV pointing to a blessed object. If the
not an RV, or if the object is not blessed, then this will return false.

int sv_isobject _((SV* sv));

SvIVX Returns the integer which is stored in the SV.

int SvIVX (SV* sv);

SvLEN Returns the size of the string buffer in the SV. See SvCUR.

int SvLEN (SV* sv)

sv_len Returns the length of the string in the SV. Use SvCUR.

STRLEN sv_len _((SV* sv));

sv_len Returns the length of the string in the SV. Use SvCUR.

STRLEN sv_len _((SV* sv));

sv_magic Adds magic to an SV.

void sv_magic _((SV* sv, SV* obj, int how, char* name, I32 namlen)
330 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

ks the
sv_mortalcopy
Creates a new SV which is a copy of the original SV. The new SV is marked as mortal.

SV* sv_mortalcopy _((SV* oldsv));

SvOK Returns a boolean indicating whether the value is an SV.

int SvOK (SV* sv)

sv_newmortal
Creates a new SV which is mortal. The refcount of the SV is set to 1.

SV* sv_newmortal _((void));

sv_no This is the false SV. See sv_yes . Always refer to this as &sv_no.

SvNIOK Returns a boolean indicating whether the SV contains a number, integer or double.

int SvNIOK (SV* SV)

SvNIOK_off
Unsets the NV/IV status of an SV.

SvNIOK_off (SV* sv)

SvNIOKp Returns a boolean indicating whether the SV contains a number, integer or double. Chec
private setting. Use SvNIOK.

int SvNIOKp (SV* SV)

SvNOK Returns a boolean indicating whether the SV contains a double.

int SvNOK (SV* SV)

SvNOK_off
Unsets the NV status of an SV.

SvNOK_off (SV* sv)

SvNOK_on
Tells an SV that it is a double.

SvNOK_on (SV* sv)

SvNOK_only
Tells an SV that it is a double and disables all other OK bits.

SvNOK_on (SV* sv)

SvNOK_only
Tells an SV that it is a double and disables all other OK bits.

SvNOK_on (SV* sv)

SvNOKp Returns a boolean indicating whether the SV contains a double. Checks the private setting. Use
SvNOK.

int SvNOKp (SV* SV)

SvNV Returns the double which is stored in the SV.

double SvNV (SV* sv);

SvNVX Returns the double which is stored in the SV.

double SvNVX (SV* sv);
08−Oct−1996 Version 5.003 331

perlguts Perl Programmers Reference Guide perlguts

 not
SvPOK Returns a boolean indicating whether the SV contains a character string.

int SvPOK (SV* SV)

SvPOK_off
Unsets the PV status of an SV.

SvPOK_off (SV* sv)

SvPOK_on
Tells an SV that it is a string.

SvPOK_on (SV* sv)

SvPOK_only
Tells an SV that it is a string and disables all other OK bits.

SvPOK_on (SV* sv)

SvPOK_only
Tells an SV that it is a string and disables all other OK bits.

SvPOK_on (SV* sv)

SvPOKp Returns a boolean indicating whether the SV contains a character string. Checks the private
setting. Use SvPOK.

int SvPOKp (SV* SV)

SvPV Returns a pointer to the string in the SV, or a stringified form of the SV if the SV does
contain a string. If len is na then Perl will handle the length on its own.

char * SvPV (SV* sv, int len)

SvPVX Returns a pointer to the string in the SV. The SV must contain a string.

char * SvPVX (SV* sv)

SvREFCNT
Returns the value of the object‘s refcount.

int SvREFCNT (SV* sv);

SvREFCNT_dec
Decrements the refcount of the given SV.

void SvREFCNT_dec (SV* sv)

SvREFCNT_inc
Increments the refcount of the given SV.

void SvREFCNT_inc (SV* sv)

SvROK Tests if the SV is an RV.

int SvROK (SV* sv)

SvROK_off
Unsets the RV status of an SV.

SvROK_off (SV* sv)

SvROK_on
Tells an SV that it is an RV.
332 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

r
d

come

st be
to
Set
 a
SvROK_on (SV* sv)

SvRV Dereferences an RV to return the SV.

SV* SvRV (SV* sv);

sv_setiv Copies an integer into the given SV.

void sv_setiv _((SV* sv, IV num));

sv_setnv Copies a double into the given SV.

void sv_setnv _((SV* sv, double num));

sv_setpv Copies a string into an SV. The string must be null−terminated.

void sv_setpv _((SV* sv, char* ptr));

sv_setpvn
Copies a string into an SV. The len parameter indicates the number of bytes to be copied.

void sv_setpvn _((SV* sv, char* ptr, STRLEN len));

sv_setref_iv
Copies an integer into a new SV, optionally blessing the SV. The rv argument will be upgraded
to an RV. That RV will be modified to point to the new SV. The classname argument
indicates the package for the blessing. Set classname to Nullch to avoid the blessing. The
new SV will be returned and will have a refcount of 1.

SV* sv_setref_iv _((SV *rv, char *classname, IV iv));

sv_setref_nv
Copies a double into a new SV, optionally blessing the SV. The rv argument will be upgraded
to an RV. That RV will be modified to point to the new SV. The classname argument
indicates the package for the blessing. Set classname to Nullch to avoid the blessing. The
new SV will be returned and will have a refcount of 1.

SV* sv_setref_nv _((SV *rv, char *classname, double nv));

sv_setref_pv
Copies a pointer into a new SV, optionally blessing the SV. The rv argument will be upgraded
to an RV. That RV will be modified to point to the new SV. If the pv argument is NULL then
sv_undef will be placed into the SV. The classname argument indicates the package fo
the blessing. Set classname to Nullch to avoid the blessing. The new SV will be returne
and will have a refcount of 1.

SV* sv_setref_pv _((SV *rv, char *classname, void* pv));

Do not use with integral Perl types such as HV, AV, SV, CV, because those objects will be
corrupted by the pointer copy process.

Note that sv_setref_pvn copies the string while this copies the pointer.

sv_setref_pvn
Copies a string into a new SV, optionally blessing the SV. The length of the string mu
specified with n. The rv argument will be upgraded to an RV. That RV will be modified
point to the new SV. The classname argument indicates the package for the blessing.
classname to Nullch to avoid the blessing. The new SV will be returned and will have
refcount of 1.

SV* sv_setref_pvn _((SV *rv, char *classname, char* pv, I32 n));

Note that sv_setref_pv copies the pointer while this copies the string.
08−Oct−1996 Version 5.003 333

perlguts Perl Programmers Reference Guide perlguts

ed or

renced

ut

after
sv_setsv Copies the contents of the source SV ssv into the destination SV dsv . The source SV may be
destroyed if it is mortal.

void sv_setsv _((SV* dsv, SV* ssv));

SvSTASH
Returns the stash of the SV.

HV * SvSTASH (SV* sv)

SVt_IV Integer type flag for scalars. See svtype .

SVt_PV Pointer type flag for scalars. See svtype .

SVt_PVAV
Type flag for arrays. See svtype .

SVt_PVCV
Type flag for code refs. See svtype .

SVt_PVHV
Type flag for hashes. See svtype .

SVt_PVMG
Type flag for blessed scalars. See svtype .

SVt_NV Double type flag for scalars. See svtype .

SvTRUE Returns a boolean indicating whether Perl would evaluate the SV as true or false, defin
undefined.

int SvTRUE (SV* sv)

SvTYPE Returns the type of the SV. See svtype .

svtype SvTYPE (SV* sv)

svtype An enum of flags for Perl types. These are found in the file sv.h in the svtype enum. Test
these flags with the SvTYPE macro.

SvUPGRADE
Used to upgrade an SV to a more complex form. Uses sv_upgrade to perform the upgrade if
necessary. See svtype .

bool SvUPGRADE _((SV* sv, svtype mt));

sv_upgrade
Upgrade an SV to a more complex form. Use SvUPGRADE. See svtype .

sv_undef This is the undef SV. Always refer to this as &sv_undef.

sv_unref Unsets the RV status of the SV, and decrements the refcount of whatever was being refe
by the RV. This can almost be thought of as a reversal of newSVrv . See SvROK_off .

void sv_unref _((SV* sv));

sv_usepvn
Tells an SV to use ptr to find its string value. Normally the string is stored inside the SV b
sv_usepvn allows the SV to use an outside string. The ptr should point to memory that was
allocated by malloc . The string length, len , must be supplied. This function will realloc the
memory pointed to by ptr , so that pointer should not be freed or used by the programmer
giving it to sv_usepvn.
334 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts

he

y

 by
void sv_usepvn _((SV* sv, char* ptr, STRLEN len));

sv_yes This is the true SV. See sv_no . Always refer to this as &sv_yes.

THIS Variable which is setup by xsubpp to designate the object in a C++ XSUB. This is always t
proper type for the C++ object. See CLASS and Using XS With C++ in perlxs.

toLOWER
Converts the specified character to lowercase.

int toLOWER (char c)

toUPPER Converts the specified character to uppercase.

int toUPPER (char c)

warn This is the XSUB−writer‘s interface to Perl‘s warn function. Use this function the same wa
you use the C printf function. See croak() .

XPUSHi Push an integer onto the stack, extending the stack if necessary. See PUSHi.

XPUSHi(int d)

XPUSHn Push a double onto the stack, extending the stack if necessary. See PUSHn.

XPUSHn(double d)

XPUSHp Push a string onto the stack, extending the stack if necessary. The len indicates the length of
the string. See PUSHp.

XPUSHp(char *c, int len)

XPUSHs Push an SV onto the stack, extending the stack if necessary. See PUSHs.

XPUSHs(sv)

XS Macro to declare an XSUB and its C parameter list. This is handled by xsubpp .

XSRETURN
Return from XSUB, indicating number of items on the stack. This is usually handled
xsubpp .

XSRETURN(int x);

XSRETURN_EMPTY
Return an empty list from an XSUB immediately.

XSRETURN_EMPTY;

XSRETURN_IV
Return an integer from an XSUB immediately. Uses XST_mIV.

XSRETURN_IV(IV v);

XSRETURN_NO
Return &sv_no from an XSUB immediately. Uses XST_mNO.

XSRETURN_NO;

XSRETURN_NV
Return an double from an XSUB immediately. Uses XST_mNV.

XSRETURN_NV(NV v);

XSRETURN_PV
Return a copy of a string from an XSUB immediately. Uses XST_mPV.
08−Oct−1996 Version 5.003 335

perlguts Perl Programmers Reference Guide perlguts

tal

V.

w

by

n, Ilya
XSRETURN_PV(char *v);

XSRETURN_UNDEF
Return &sv_undef from an XSUB immediately. Uses XST_mUNDEF.

XSRETURN_UNDEF;

XSRETURN_YES
Return &sv_yes from an XSUB immediately. Uses XST_mYES.

XSRETURN_YES;

XST_mIV Place an integer into the specified position i on the stack. The value is stored in a new mor
SV.

XST_mIV(int i, IV v);

XST_mNV
Place a double into the specified position i on the stack. The value is stored in a new mortal S

XST_mNV(int i, NV v);

XST_mNO
Place &sv_no into the specified position i on the stack.

XST_mNO(int i);

XST_mPV
Place a copy of a string into the specified position i on the stack. The value is stored in a ne
mortal SV.

XST_mPV(int i, char *v);

XST_mUNDEF
Place &sv_undef into the specified position i on the stack.

XST_mUNDEF(int i);

XST_mYES
Place &sv_yes into the specified position i on the stack.

XST_mYES(int i);

XS_VERSION
The version identifier for an XS module. This is usually handled automatically
ExtUtils::MakeMaker . See XS_VERSION_BOOTCHECK.

XS_VERSION_BOOTCHECK
Macro to verify that a PM module‘s $VERSION variable matches the XS module‘s
XS_VERSION variable. This is usually handled automatically by xsubpp . See
The VERSIONCHECK: Keyword in perlxs.

Zero The XSUB−writer‘s interface to the C memzero function. The d is the destination, n is the
number of items, and t is the type.

(void) Zero(d, n, t);

AUTHOR
Jeff Okamoto <okamoto@corp.hp.com>

With lots of help and suggestions from Dean Roehrich, Malcolm Beattie, Andreas Koenig, Paul Hudso
Zakharevich, Paul Marquess, Neil Bowers, Matthew Green, Tim Bunce, and Spider Boardman.
336 Version 5.003 08−Oct−1996

perlguts Perl Programmers Reference Guide perlguts
API Listing by Dean Roehrich <roehrich@cray.com>.

DATE
Version 22: 1996/9/23
08−Oct−1996 Version 5.003 337

perlcall Perl Programmers Reference Guide perlcall

 write

ries of
oding

lled
e that

 for an
vents
ed.

 not the
bedding

ead the

ortant

r to

erl.
sk are

l
ence to

C

NAME
perlcall − Perl calling conventions from C

DESCRIPTION
The purpose of this document is to show you how to call Perl subroutines directly from C, i.e. how to
callbacks.

Apart from discussing the C interface provided by Perl for writing callbacks the document uses a se
examples to show how the interface actually works in practice. In addition some techniques for c
callbacks are covered.

Examples where callbacks are necessary include

 An Error Handler
You have created an XSUB interface to an application‘s C API.

A fairly common feature in applications is to allow you to define a C function that will be ca
whenever something nasty occurs. What we would like is to be able to specify a Perl subroutin
will be called instead.

 An Event Driven Program
The classic example of where callbacks are used is when writing an event driven program like
X windows application. In this case you register functions to be called whenever specific e
occur, e.g. a mouse button is pressed, the cursor moves into a window or a menu item is select

Although the techniques described here are applicable when embedding Perl in a C program, this is
primary goal of this document. There are other details that must be considered and are specific to em
Perl. For details on embedding Perl in C refer to perlembed.

Before you launch yourself head first into the rest of this document, it would be a good idea to have r
following two documents − perlxs and perlguts.

THE PERL_CALL FUNCTIONS
Although this stuff is easier to explain using examples, you first need be aware of a few imp
definitions.

Perl has a number of C functions that allow you to call Perl subroutines. They are

 I32 perl_call_sv(SV* sv, I32 flags) ;
 I32 perl_call_pv(char *subname, I32 flags) ;
 I32 perl_call_method(char *methname, I32 flags) ;
 I32 perl_call_argv(char *subname, I32 flags, register char **argv) ;

The key function is perl_call_sv. All the other functions are fairly simple wrappers which make it easie
call Perl subroutines in special cases. At the end of the day they will all call perl_call_sv to actually invoke
the Perl subroutine.

All the perl_call_* functions have a flags parameter which is used to pass a bit mask of options to P
This bit mask operates identically for each of the functions. The settings available in the bit ma
discussed in FLAG VALUES.

Each of the functions will now be discussed in turn.

perl_call_sv
perl_call_sv takes two parameters, the first, sv , is an SV*. This allows you to specify the Per
subroutine to be called either as a C string (which has first been converted to an SV) or a refer
a subroutine. The section, Using perl_call_sv, shows how you can make use of perl_call_sv.

perl_call_pv
The function, perl_call_pv, is similar to perl_call_sv except it expects its first parameter to be a
char* which identifies the Perl subroutine you want to call, e.g. perl_call_pv("fred", 0) . If
338 Version 5.003 08−Oct−1996

perlcall Perl Programmers Reference Guide perlcall

ng, e.g.

ngs to is
the class

outine.

ting
meone

 of

cutes

course,
 be

Perl

ection
 many
e where

ill not

cutes
the subroutine you want to call is in another package, just include the package name in the stri
"pkg::fred" .

perl_call_method
The function perl_call_method is used to call a method from a Perl class. The parameter methname
corresponds to the name of the method to be called. Note that the class that the method belo
passed on the Perl stack rather than in the parameter list. This class can be either the name of
(for a static method) or a reference to an object (for a virtual method). See perlobj for more
information on static and virtual methods and Using perl_call_method for an example of using
perl_call_method.

perl_call_argv
perl_call_argv calls the Perl subroutine specified by the C string stored in the subname parameter.
It also takes the usual flags parameter. The final parameter, argv , consists of a NULL terminated
list of C strings to be passed as parameters to the Perl subroutine. See Using perl_call_argv.

All the functions return an integer. This is a count of the number of items returned by the Perl subr
The actual items returned by the subroutine are stored on the Perl stack.

As a general rule you should always check the return value from these functions. Even if you are expec
only a particular number of values to be returned from the Perl subroutine, there is nothing to stop so
from doing something unexpected − don‘t say you haven‘t been warned.

FLAG VALUES
The flags parameter in all the perl_call_* functions is a bit mask which can consist of any combination
the symbols defined below, OR‘ed together.

G_SCALAR
Calls the Perl subroutine in a scalar context. This is the default context flag setting for all the perl_call_*
functions.

This flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in a scalar context (if it exe
wantarray the result will be false).

2. It ensures that only a scalar is actually returned from the subroutine. The subroutine can, of
ignore the wantarray and return a list anyway. If so, then only the last element of the list will
returned.

The value returned by the perl_call_* function indicates how many items have been returned by the
subroutine − in this case it will be either 0 or 1.

If 0, then you have specified the G_DISCARD flag.

If 1, then the item actually returned by the Perl subroutine will be stored on the Perl stack − the s
Returning a Scalar shows how to access this value on the stack. Remember that regardless of how
items the Perl subroutine returns, only the last one will be accessible from the stack − think of the cas
only one value is returned as being a list with only one element. Any other items that were returned w
exist by the time control returns from the perl_call_* function. The section Returning a list in a scalar
context shows an example of this behaviour.

G_ARRAY
Calls the Perl subroutine in a list context.

As with G_SCALAR, this flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in an array context (if it exe
wantarray the result will be true).
08−Oct−1996 Version 5.003 339

perlcall Perl Programmers Reference Guide perlcall

m the

Perl

stored
d

k. If
lly for

AR or

ters
 section

t Perl

t
broutine,

ere is
ARGS

meters.

inate
2. It ensures that all items returned from the subroutine will be accessible when control returns fro
perl_call_* function.

The value returned by the perl_call_* function indicates how many items have been returned by the
subroutine.

If 0, then you have specified the G_DISCARD flag.

If not 0, then it will be a count of the number of items returned by the subroutine. These items will be
on the Perl stack. The section Returning a list of values gives an example of using the G_ARRAY flag an
the mechanics of accessing the returned items from the Perl stack.

G_DISCARD
By default, the perl_call_* functions place the items returned from by the Perl subroutine on the stac
you are not interested in these items, then setting this flag will make Perl get rid of them automatica
you. Note that it is still possible to indicate a context to the Perl subroutine by using either G_SCAL
G_ARRAY.

If you do not set this flag then it is very important that you make sure that any temporaries (i.e. parame
passed to the Perl subroutine and values returned from the subroutine) are disposed of yourself. The
Returning a Scalar gives details of how to explicitly dispose of these temporaries and the section Using Perl
to dispose of temporaries discusses the specific circumstances where you can ignore the problem and le
deal with it for you.

G_NOARGS
Whenever a Perl subroutine is called using one of the perl_call_* functions, it is assumed by default tha
parameters are to be passed to the subroutine. If you are not passing any parameters to the Perl su
you can save a bit of time by setting this flag. It has the effect of not creating the @_ array for the Perl
subroutine.

Although the functionality provided by this flag may seem straightforward, it should be used only if th
a good reason to do so. The reason for being cautious is that even if you have specified the G_NO
flag, it is still possible for the Perl subroutine that has been called to think that you have passed it para

In fact, what can happen is that the Perl subroutine you have called can access the @_ array from a previous
Perl subroutine. This will occur when the code that is executing the perl_call_* function has itself been
called from another Perl subroutine. The code below illustrates this

 sub fred
 { print "@_\n" }

 sub joe
 { &fred }

 &joe(1,2,3) ;

This will print

 1 2 3

What has happened is that fred accesses the @_ array which belongs to joe .

G_EVAL
It is possible for the Perl subroutine you are calling to terminate abnormally, e.g. by calling die explicitly or
by not actually existing. By default, when either of these of events occurs, the process will term
immediately. If though, you want to trap this type of event, specify the G_EVAL flag. It will put an eval { }
around the subroutine call.

Whenever control returns from the perl_call_* function you need to check the $@ variable as you would in a
normal Perl script.
340 Version 5.003 08−Oct−1996

perlcall Perl Programmers Reference Guide perlcall

and

ious

 the

 of

e time
e of

ctors,

 of

up)",

rl with

e

se a
at the

all

ver it
The value returned from the perl_call_* function is dependent on what other flags have been specified
whether an error has occurred. Here are all the different cases that can occur:

 If the perl_call_* function returns normally, then the value returned is as specified in the prev
sections.

 If G_DISCARD is specified, the return value will always be 0.

 If G_ARRAY is specified and an error has occurred, the return value will always be 0.

 If G_SCALAR is specified and an error has occurred, the return value will be 1 and the value on
top of the stack will be undef. This means that if you have already detected the error by checking$@
and you want the program to continue, you must remember to pop the undef from the stack.

See Using G_EVAL for details of using G_EVAL.

G_KEEPERR
You may have noticed that using the G_EVAL flag described above will always clear the $@ variable and
set it to a string describing the error iff there was an error in the called code. This unqualified resetting$@
can be problematic in the reliable identification of errors using the eval {} mechanism, because the
possibility exists that perl will call other code (end of block processing code, for example) between th
the error causes $@ to be set within eval {} , and the subsequent statement which checks for the valu
$@ gets executed in the user‘s script.

This scenario will mostly be applicable to code that is meant to be called from within destru
asynchronous callbacks, signal handlers, __DIE__ or __WARN__ hooks, and tie functions. In such
situations, you will not want to clear $@ at all, but simply to append any new errors to any existing value
$@.

The G_KEEPERR flag is meant to be used in conjunction with G_EVAL in perl_call_* functions that are
used to implement such code. This flag has no effect when G_EVAL is not used.

When G_KEEPERR is used, any errors in the called code will be prefixed with the string "\t(in clean
and appended to the current value of $@.

The G_KEEPERR flag was introduced in Perl version 5.002.

See Using G_KEEPERR for an example of a situation that warrants the use of this flag.

Determining the Context
As mentioned above, you can determine the context of the currently executing subroutine in Pe
wantarray. The equivalent test can be made in C by using the GIMME macro. This will return G_SCALAR if
you have been called in a scalar context and G_ARRAY if in an array context. An example of using th
GIMME macro is shown in section Using GIMME.

KNOWN PROBLEMS
This section outlines all known problems that exist in the perl_call_* functions.

1. If you are intending to make use of both the G_EVAL and G_SCALAR flags in your code, u
version of Perl greater than 5.000. There is a bug in version 5.000 of Perl which means th
combination of these two flags will not work as described in the section FLAG VALUES.

Specifically, if the two flags are used when calling a subroutine and that subroutine does not cdie,
the value returned by perl_call_* will be wrong.

2. In Perl 5.000 and 5.001 there is a problem with using perl_call_* if the Perl sub you are calling
attempts to trap a die.

The symptom of this problem is that the called Perl sub will continue to completion, but whene
attempts to pass control back to the XSUB, the program will immediately terminate.

For example, say you want to call this Perl sub
08−Oct−1996 Version 5.003 341

perlcall Perl Programmers Reference Guide perlcall

EVAL

s should
able to

le, if the
 sub fred
 {
 eval { die "Fatal Error" ; }
 print "Trapped error: $@\n"
 if $@ ;
 }

via this XSUB

 void
 Call_fred()
 CODE:
 PUSHMARK(sp) ;
 perl_call_pv("fred", G_DISCARD|G_NOARGS) ;
 fprintf(stderr, "back in Call_fred\n") ;

When Call_fred is executed it will print

 Trapped error: Fatal Error

As control never returns to Call_fred , the "back in Call_fred" string will not get printed.

To work around this problem, you can either upgrade to Perl 5.002 (or later), or use the G_
flag with perl_call_* as shown below

 void
 Call_fred()
 CODE:
 PUSHMARK(sp) ;
 perl_call_pv("fred", G_EVAL|G_DISCARD|G_NOARGS) ;
 fprintf(stderr, "back in Call_fred\n") ;

EXAMPLES
Enough of the definition talk, let‘s have a few examples.

Perl provides many macros to assist in accessing the Perl stack. Wherever possible, these macro
always be used when interfacing to Perl internals. Hopefully this should make the code less vulner
any changes made to Perl in the future.

Another point worth noting is that in the first series of examples I have made use of only the perl_call_pv
function. This has been done to keep the code simpler and ease you into the topic. Wherever possib
choice is between using perl_call_pv and perl_call_sv, you should always try to use perl_call_sv. See Using
perl_call_sv for details.

No Parameters, Nothing returned
This first trivial example will call a Perl subroutine, PrintUID, to print out the UID of the process.

 sub PrintUID
 {
 print "UID is $<\n" ;
 }

and here is a C function to call it

 static void
 call_PrintUID()
 {
 dSP ;

 PUSHMARK(sp) ;
 perl_call_pv("PrintUID", G_DISCARD|G_NOARGS) ;
 }
342 Version 5.003 08−Oct−1996

perlcall Perl Programmers Reference Guide perlcall

ean

e the

from

tine,

he code

is the

n. In
Simple, eh.

A few points to note about this example.

1. Ignore dSP and PUSHMARK(sp) for now. They will be discussed in the next example.

2. We aren‘t passing any parameters to PrintUID so G_NOARGS can be specified.

3. We aren‘t interested in anything returned from PrintUID, so G_DISCARD is specified. Even if
PrintUID was changed to actually return some value(s), having specified G_DISCARD will m
that they will be wiped by the time control returns from perl_call_pv.

4. As perl_call_pv is being used, the Perl subroutine is specified as a C string. In this cas
subroutine name has been ‘hard−wired’ into the code.

5. Because we specified G_DISCARD, it is not necessary to check the value returned
perl_call_pv. It will always be 0.

Passing Parameters
Now let‘s make a slightly more complex example. This time we want to call a Perl subrou
LeftString , which will take 2 parameters − a string ($s) and an integer ($n). The subroutine will
simply print the first $n characters of the string.

So the Perl subroutine would look like this

 sub LeftString
 {
 my($s, $n) = @_ ;
 print substr($s, 0, $n), "\n" ;
 }

The C function required to call LeftString would look like this.

 static void
 call_LeftString(a, b)
 char * a ;
 int b ;
 {
 dSP ;

 PUSHMARK(sp) ;
 XPUSHs(sv_2mortal(newSVpv(a, 0)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK ;

 perl_call_pv("LeftString", G_DISCARD);
 }

Here are a few notes on the C function call_LeftString.

1. Parameters are passed to the Perl subroutine using the Perl stack. This is the purpose of t
beginning with the line dSP and ending with the line PUTBACK.

2. If you are going to put something onto the Perl stack, you need to know where to put it. This
purpose of the macro dSP − it declares and initializes a local copy of the Perl stack pointer.

All the other macros which will be used in this example require you to have used this macro.

The exception to this rule is if you are calling a Perl subroutine directly from an XSUB functio
this case it is not necessary to explicitly use the dSP macro − it will be declared for you
automatically.
08−Oct−1996 Version 5.003 343

perlcall Perl Programmers Reference Guide perlcall

ber of

 you

. If we
ber

e Perl

 In this

t

3. Any parameters to be pushed onto the stack should be bracketed by the PUSHMARK and PUTBACK
macros. The purpose of these two macros, in this context, is to automatically count the num
parameters you are pushing. Then whenever Perl is creating the @_ array for the subroutine, it knows
how big to make it.

The PUSHMARK macro tells Perl to make a mental note of the current stack pointer. Even if
aren‘t passing any parameters (like the example shown in the section No Parameters, Nothing
returned) you must still call the PUSHMARK macro before you can call any of the perl_call_*
functions − Perl still needs to know that there are no parameters.

The PUTBACK macro sets the global copy of the stack pointer to be the same as our local copy
didn‘t do this perl_call_pv wouldn‘t know where the two parameters we pushed were − remem
that up to now all the stack pointer manipulation we have done is with our local copy, not the global
copy.

4. The only flag specified this time is G_DISCARD. Since we are passing 2 parameters to th
subroutine this time, we have not specified G_NOARGS.

5. Next, we come to XPUSHs. This is where the parameters actually get pushed onto the stack.
case we are pushing a string and an integer.

See the XSUBs and the Argument Stack in perlguts for details on how the XPUSH macros work.

6. Finally, LeftString can now be called via the perl_call_pv function.

Returning a Scalar
Now for an example of dealing with the items returned from a Perl subroutine.

Here is a Perl subroutine, Adder, which takes 2 integer parameters and simply returns their sum.

 sub Adder
 {
 my($a, $b) = @_ ;
 $a + $b ;
 }

Since we are now concerned with the return value from Adder, the C function required to call it is now a bi
more complex.

 static void
 call_Adder(a, b)
 int a ;
 int b ;
 {
 dSP ;
 int count ;

 ENTER ;
 SAVETMPS;

 PUSHMARK(sp) ;
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK ;

 count = perl_call_pv("Adder", G_SCALAR);

 SPAGAIN ;

 if (count != 1)
 croak("Big trouble\n") ;
344 Version 5.003 08−Oct−1996

perlcall Perl Programmers Reference Guide perlcall

s. This

his
 calls.

ill

.

e

is
llocated

r local
l

odified
 Perl

ted an
 printf ("The sum of %d and %d is %d\n", a, b, POPi) ;

 PUTBACK ;
 FREETMPS ;
 LEAVE ;
 }

Points to note this time are

1. The only flag specified this time was G_SCALAR. That means the @_ array will be created and that
the value returned by Adder will still exist after the call to perl_call_pv.

2. Because we are interested in what is returned from Adder we cannot specify G_DISCARD. This
means that we will have to tidy up the Perl stack and dispose of any temporary values ourselve
is the purpose of

 ENTER ;
 SAVETMPS ;

at the start of the function, and

 FREETMPS ;
 LEAVE ;

at the end. The ENTER/SAVETMPS pair creates a boundary for any temporaries we create. T
means that the temporaries we get rid of will be limited to those which were created after these

The FREETMPS/LEAVE pair will get rid of any values returned by the Perl subroutine, plus it w
also dump the mortal SV‘s we have created. Having ENTER/SAVETMPS at the beginning of the
code makes sure that no other mortals are destroyed.

Think of these macros as working a bit like using { and } in Perl to limit the scope of local variables

See the section Using Perl to dispose of temporaries for details of an alternative to using thes
macros.

3. The purpose of the macro SPAGAIN is to refresh the local copy of the stack pointer. This
necessary because it is possible that the memory allocated to the Perl stack has been re−a
whilst in the perl_call_pv call.

If you are making use of the Perl stack pointer in your code you must always refresh the you
copy using SPAGAIN whenever you make use of the perl_call_* functions or any other Perl interna
function.

4. Although only a single value was expected to be returned from Adder, it is still good practice to
check the return code from perl_call_pv anyway.

Expecting a single value is not quite the same as knowing that there will be one. If someone m
Adder to return a list and we didn‘t check for that possibility and take appropriate action the
stack would end up in an inconsistent state. That is something you really don‘t want to ever happen.

5. The POPi macro is used here to pop the return value from the stack. In this case we wan
integer, so POPi was used.

Here is the complete list of POP macros available, along with the types they return.

 POPs SV
 POPp pointer
 POPn double
 POPi integer
 POPl long
08−Oct−1996 Version 5.003 345

perlcall Perl Programmers Reference Guide perlcall

ction.

e

6. The final PUTBACK is used to leave the Perl stack in a consistent state before exiting the fun
This is necessary because when we popped the return value from the stack with POPi it updated only
our local copy of the stack pointer. Remember, PUTBACK sets the global stack pointer to be th
same as our local copy.

Returning a list of values
Now, let‘s extend the previous example to return both the sum of the parameters and the difference.

Here is the Perl subroutine

 sub AddSubtract
 {
 my($a, $b) = @_ ;
 ($a+$b, $a−$b) ;
 }

and this is the C function

 static void
 call_AddSubtract(a, b)
 int a ;
 int b ;
 {
 dSP ;
 int count ;

 ENTER ;
 SAVETMPS;

 PUSHMARK(sp) ;
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK ;

 count = perl_call_pv("AddSubtract", G_ARRAY);

 SPAGAIN ;

 if (count != 2)
 croak("Big trouble\n") ;

 printf ("%d − %d = %d\n", a, b, POPi) ;
 printf ("%d + %d = %d\n", a, b, POPi) ;

 PUTBACK ;
 FREETMPS ;
 LEAVE ;
 }

If call_AddSubtract is called like this

 call_AddSubtract(7, 4) ;

then here is the output

 7 − 4 = 3
 7 + 4 = 11

Notes

1. We wanted array context, so G_ARRAY was used.
346 Version 5.003 08−Oct−1996

perlcall Perl Programmers Reference Guide perlcall

tack.

rl

o it is
2. Not surprisingly POPi is used twice this time because we were retrieving 2 values from the s
The important thing to note is that when using the POP* macros they come off the stack in reverse
order.

Returning a list in a scalar context
Say the Perl subroutine in the previous section was called in a scalar context, like this

 static void
 call_AddSubScalar(a, b)
 int a ;
 int b ;
 {
 dSP ;
 int count ;
 int i ;

 ENTER ;
 SAVETMPS;

 PUSHMARK(sp) ;
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK ;

 count = perl_call_pv("AddSubtract", G_SCALAR);

 SPAGAIN ;

 printf ("Items Returned = %d\n", count) ;

 for (i = 1 ; i <= count ; ++i)
 printf ("Value %d = %d\n", i, POPi) ;

 PUTBACK ;
 FREETMPS ;
 LEAVE ;
 }

The other modification made is that call_AddSubScalar will print the number of items returned from the Pe
subroutine and their value (for simplicity it assumes that they are integer). So if call_AddSubScalar is called

 call_AddSubScalar(7, 4) ;

then the output will be

 Items Returned = 1
 Value 1 = 3

In this case the main point to note is that only the last item in the list returned from the subroutine, Adder
actually made it back to call_AddSubScalar.

Returning Data from Perl via the parameter list
It is also possible to return values directly via the parameter list − whether it is actually desirable to d
another matter entirely.

The Perl subroutine, Inc, below takes 2 parameters and increments each directly.

 sub Inc
 {
 ++ $_[0] ;
 ++ $_[1] ;
08−Oct−1996 Version 5.003 347

perlcall Perl Programmers Reference Guide perlcall

e been

its 2
 }

and here is a C function to call it.

 static void
 call_Inc(a, b)
 int a ;
 int b ;
 {
 dSP ;
 int count ;
 SV * sva ;
 SV * svb ;

 ENTER ;
 SAVETMPS;

 sva = sv_2mortal(newSViv(a)) ;
 svb = sv_2mortal(newSViv(b)) ;

 PUSHMARK(sp) ;
 XPUSHs(sva);
 XPUSHs(svb);
 PUTBACK ;

 count = perl_call_pv("Inc", G_DISCARD);

 if (count != 0)
 croak ("call_Inc: expected 0 values from ’Inc’, got %d\n",
 count) ;

 printf ("%d + 1 = %d\n", a, SvIV(sva)) ;
 printf ("%d + 1 = %d\n", b, SvIV(svb)) ;

 FREETMPS ;
 LEAVE ;
 }

To be able to access the two parameters that were pushed onto the stack after they return from perl_call_pv it
is necessary to make a note of their addresses − thus the two variables sva and svb .

The reason this is necessary is that the area of the Perl stack which held them will very likely hav
overwritten by something else by the time control returns from perl_call_pv.

Using G_EVAL
Now an example using G_EVAL. Below is a Perl subroutine which computes the difference of
parameters. If this would result in a negative result, the subroutine calls die.

 sub Subtract
 {
 my ($a, $b) = @_ ;

 die "death can be fatal\n" if $a < $b ;

 $a − $b ;
 }

and some C to call it

 static void
 call_Subtract(a, b)
 int a ;
 int b ;
348 Version 5.003 08−Oct−1996

perlcall Perl Programmers Reference Guide perlcall

g

or.
 {
 dSP ;
 int count ;

 ENTER ;
 SAVETMPS;

 PUSHMARK(sp) ;
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK ;

 count = perl_call_pv("Subtract", G_EVAL|G_SCALAR);

 SPAGAIN ;

 /* Check the eval first */
 if (SvTRUE(GvSV(errgv)))
 {
 printf ("Uh oh − %s\n", SvPV(GvSV(errgv), na)) ;
 POPs ;
 }
 else
 {
 if (count != 1)
 croak("call_Subtract: wanted 1 value from ’Subtract’, got %d\n",
 count) ;

 printf ("%d − %d = %d\n", a, b, POPi) ;
 }

 PUTBACK ;
 FREETMPS ;
 LEAVE ;
 }

If call_Subtract is called thus

 call_Subtract(4, 5)

the following will be printed

 Uh oh − death can be fatal

Notes

1. We want to be able to catch the die so we have used the G_EVAL flag. Not specifying this fla
would mean that the program would terminate immediately at the die statement in the subroutine
Subtract.

2. The code

 if (SvTRUE(GvSV(errgv)))
 {
 printf ("Uh oh − %s\n", SvPV(GvSV(errgv), na)) ;
 POPs ;
 }

is the direct equivalent of this bit of Perl

 print "Uh oh − $@\n" if $@ ;

errgv is a perl global of type GV * that points to the symbol table entry containing the err
08−Oct−1996 Version 5.003 349

perlcall Perl Programmers Reference Guide perlcall

e

xample

k, and

 Most
within

r Perl 4
is where
GvSV(errgv) therefore refers to the C equivalent of $@.

3. Note that the stack is popped using POPs in the block where SvTRUE(GvSV(errgv)) is true.
This is necessary because whenever a perl_call_* function invoked with G_EVAL|G_SCALAR
returns an error, the top of the stack holds the value undef. Since we want the program to continu
after detecting this error, it is essential that the stack is tidied up by removing the undef.

Using G_KEEPERR
Consider this rather facetious example, where we have used an XS version of the call_Subtract e
above inside a destructor:

 package Foo;
 sub new { bless {}, $_[0] }
 sub Subtract {
 my($a,$b) = @_;
 die "death can be fatal" if $a < $b ;
 $a − $b;
 }
 sub DESTROY { call_Subtract(5, 4); }
 sub foo { die "foo dies"; }

 package main;
 eval { Foo−>new−>foo };
 print "Saw: $@" if $@; # should be, but isn’t

This example will fail to recognize that an error occurred inside the eval {} . Here‘s why: the
call_Subtract code got executed while perl was cleaning up temporaries when exiting the eval bloc
since call_Subtract is implemented with perl_call_pv using the G_EVAL flag, it promptly reset $@. This
results in the failure of the outermost test for $@, and thereby the failure of the error trap.

Appending the G_KEEPERR flag, so that the perl_call_pv call in call_Subtract reads:

 count = perl_call_pv("Subtract", G_EVAL|G_SCALAR|G_KEEPERR);

will preserve the error and restore reliable error handling.

Using perl_call_sv
In all the previous examples I have ‘hard−wired’ the name of the Perl subroutine to be called from C.
of the time though, it is more convenient to be able to specify the name of the Perl subroutine from
the Perl script.

Consider the Perl code below

 sub fred
 {
 print "Hello there\n" ;
 }

 CallSubPV("fred") ;

Here is a snippet of XSUB which defines CallSubPV.

 void
 CallSubPV(name)
 char * name
 CODE:
 PUSHMARK(sp) ;
 perl_call_pv(name, G_DISCARD|G_NOARGS) ;

That is fine as far as it goes. The thing is, the Perl subroutine can be specified only as a string. Fo
this was adequate, but Perl 5 allows references to subroutines and anonymous subroutines. This
perl_call_sv is useful.
350 Version 5.003 08−Oct−1996

perlcall Perl Programmers Reference Guide perlcall

.

he
inter to

ed to
The code below for CallSubSV is identical to CallSubPV except that the name parameter is now defined as
an SV* and we use perl_call_sv instead of perl_call_pv.

 void
 CallSubSV(name)
 SV * name
 CODE:
 PUSHMARK(sp) ;
 perl_call_sv(name, G_DISCARD|G_NOARGS) ;

Since we are using an SV to call fred the following can all be used

 CallSubSV("fred") ;
 CallSubSV(\&fred) ;
 $ref = \&fred ;
 CallSubSV($ref) ;
 CallSubSV(sub { print "Hello there\n" }) ;

As you can see, perl_call_sv gives you much greater flexibility in how you can specify the Perl subroutine

You should note that if it is necessary to store the SV (name in the example above) which corresponds to t
Perl subroutine so that it can be used later in the program, it not enough to just store a copy of the po
the SV. Say the code above had been like this

 static SV * rememberSub ;

 void
 SaveSub1(name)
 SV * name
 CODE:
 rememberSub = name ;

 void
 CallSavedSub1()
 CODE:
 PUSHMARK(sp) ;
 perl_call_sv(rememberSub, G_DISCARD|G_NOARGS) ;

The reason this is wrong is that by the time you come to use the pointer rememberSub in
CallSavedSub1 , it may or may not still refer to the Perl subroutine that was recorded in SaveSub1 .
This is particularly true for these cases

 SaveSub1(\&fred) ;
 CallSavedSub1() ;

 SaveSub1(sub { print "Hello there\n" }) ;
 CallSavedSub1() ;

By the time each of the SaveSub1 statements above have been executed, the SV*‘s which correspond
the parameters will no longer exist. Expect an error message from Perl of the form

 Can’t use an undefined value as a subroutine reference at ...

for each of the CallSavedSub1 lines.

Similarly, with this code

 $ref = \&fred ;
 SaveSub1($ref) ;
 $ref = 47 ;
 CallSavedSub1() ;
08−Oct−1996 Version 5.003 351

perlcall Perl Programmers Reference Guide perlcall

l you are

ced

shows

s
routine,
you can expect one of these messages (which you actually get is dependent on the version of Per
using)

 Not a CODE reference at ...
 Undefined subroutine &main::47 called ...

The variable $ref may have referred to the subroutine fred whenever the call to SaveSub1 was made
but by the time CallSavedSub1 gets called it now holds the number 47 . Since we saved only a pointer to
the original SV in SaveSub1 , any changes to $ref will be tracked by the pointer rememberSub . This
means that whenever CallSavedSub1 gets called, it will attempt to execute the code which is referen
by the SV* rememberSub . In this case though, it now refers to the integer 47 , so expect Perl to complain
loudly.

A similar but more subtle problem is illustrated with this code

 $ref = \&fred ;
 SaveSub1($ref) ;
 $ref = \&joe ;
 CallSavedSub1() ;

This time whenever CallSavedSub1 get called it will execute the Perl subroutine joe (assuming it
exists) rather than fred as was originally requested in the call to SaveSub1 .

To get around these problems it is necessary to take a full copy of the SV. The code below
SaveSub2 modified to do that

 static SV * keepSub = (SV*)NULL ;

 void
 SaveSub2(name)
 SV * name
 CODE:
 /* Take a copy of the callback */
 if (keepSub == (SV*)NULL)
 /* First time, so create a new SV */
 keepSub = newSVsv(name) ;
 else
 /* Been here before, so overwrite */
 SvSetSV(keepSub, name) ;

 void
 CallSavedSub2()
 CODE:
 PUSHMARK(sp) ;
 perl_call_sv(keepSub, G_DISCARD|G_NOARGS) ;

In order to avoid creating a new SV every time SaveSub2 is called, the function first checks to see if it ha
been called before. If not, then space for a new SV is allocated and the reference to the Perl sub
name is copied to the variable keepSub in one operation using newSVsv. Thereafter, whenever
SaveSub2 is called the existing SV, keepSub , is overwritten with the new value using SvSetSV .

Using perl_call_argv
Here is a Perl subroutine which prints whatever parameters are passed to it.

 sub PrintList
 {
 my(@list) = @_ ;

 foreach (@list) { print "$_\n" }
 }
352 Version 5.003 08−Oct−1996

perlcall Perl Programmers Reference Guide perlcall

a
erl
and here is an example of perl_call_argv which will call PrintList.

 static char * words[] = {"alpha", "beta", "gamma", "delta", NULL} ;

 static void
 call_PrintList()
 {
 dSP ;

 perl_call_argv("PrintList", G_DISCARD, words) ;
 }

Note that it is not necessary to call PUSHMARK in this instance. This is because perl_call_argv will do it for
you.

Using perl_call_method
Consider the following Perl code

 {
 package Mine ;

 sub new
 {
 my($type) = shift ;
 bless [@_]
 }

 sub Display
 {
 my ($self, $index) = @_ ;
 print "$index: $$self[$index]\n" ;
 }

 sub PrintID
 {
 my($class) = @_ ;
 print "This is Class $class version 1.0\n" ;
 }
 }

It just implements a very simple class to manage an array. Apart from the constructor, new, it declares
methods, one static and one virtual. The static method, PrintID , simply prints out the class name and
version number. The virtual method, Display , prints out a single element of the array. Here is an all P
example of using it.

 $a = new Mine (’red’, ’green’, ’blue’) ;
 $a−>Display(1) ;
 PrintID Mine;

will print

 1: green
 This is Class Mine version 1.0

Calling a Perl method from C is fairly straightforward. The following things are required

 a reference to the object for a virtual method or the name of the class for a static method.

 the name of the method.

 any other parameters specific to the method.

Here is a simple XSUB which illustrates the mechanics of calling both the PrintID and Display
08−Oct−1996 Version 5.003 353

perlcall Perl Programmers Reference Guide perlcall

 via the

 stack to
methods from C.

 void
 call_Method(ref, method, index)
 SV * ref
 char * method
 int index
 CODE:
 PUSHMARK(sp);
 XPUSHs(ref);
 XPUSHs(sv_2mortal(newSViv(index))) ;
 PUTBACK;

 perl_call_method(method, G_DISCARD) ;

 void
 call_PrintID(class, method)
 char * class
 char * method
 CODE:
 PUSHMARK(sp);
 XPUSHs(sv_2mortal(newSVpv(class, 0))) ;
 PUTBACK;

 perl_call_method(method, G_DISCARD) ;

So the methods PrintID and Display can be invoked like this

 $a = new Mine (’red’, ’green’, ’blue’) ;
 call_Method($a, ’Display’, 1) ;
 call_PrintID(’Mine’, ’PrintID’) ;

The only thing to note is that in both the static and virtual methods, the method name is not passed
stack − it is used as the first parameter to perl_call_method.

Using GIMME
Here is a trivial XSUB which prints the context in which it is currently executing.

 void
 PrintContext()
 CODE:
 if (GIMME == G_SCALAR)
 printf ("Context is Scalar\n") ;
 else
 printf ("Context is Array\n") ;

and here is some Perl to test it

 $a = PrintContext ;
 @a = PrintContext ;

The output from that will be

 Context is Scalar
 Context is Array

Using Perl to dispose of temporaries
In the examples given to date, any temporaries created in the callback (i.e. parameters passed on the
the perl_call_* function or values returned via the stack) have been freed by one of these methods
354 Version 5.003 08−Oct−1996

perlcall Perl Programmers Reference Guide perlcall

ever it

e under
flow of

ypical of
ortant

terface

ck to
o Perl

ss

is back
nd any
 specifying the G_DISCARD flag with perl_call_*.

 explicitly disposed of using the ENTER/SAVETMPS − FREETMPS/LEAVE pairing.

There is another method which can be used, namely letting Perl do it for you automatically when
regains control after the callback has terminated. This is done by simply not using the

 ENTER ;
 SAVETMPS ;
 ...
 FREETMPS ;
 LEAVE ;

sequence in the callback (and not, of course, specifying the G_DISCARD flag).

If you are going to use this method you have to be aware of a possible memory leak which can aris
very specific circumstances. To explain these circumstances you need to know a bit about the
control between Perl and the callback routine.

The examples given at the start of the document (an error handler and an event driven program) are t
the two main sorts of flow control that you are likely to encounter with callbacks. There is a very imp
distinction between them, so pay attention.

In the first example, an error handler, the flow of control could be as follows. You have created an in
to an external library. Control can reach the external library like this

 perl −−> XSUB −−> external library

Whilst control is in the library, an error condition occurs. You have previously set up a Perl callba
handle this situation, so it will get executed. Once the callback has finished, control will drop back t
again. Here is what the flow of control will be like in that situation

 perl −−> XSUB −−> external library
 ...
 error occurs
 ...
 external library −−> perl_call −−> perl
 |
 perl <−− XSUB <−− external library <−− perl_call <−−−−+

After processing of the error using perl_call_* is completed, control reverts back to Perl more or le
immediately.

In the diagram, the further right you go the more deeply nested the scope is. It is only when control
with perl on the extreme left of the diagram that you will have dropped back to the enclosing scope a
temporaries you have left hanging around will be freed.

In the second example, an event driven program, the flow of control will be more like this

 perl −−> XSUB −−> event handler
 ...
 event handler −−> perl_call −−> perl
 |
 event handler <−− perl_call −−<−−+
 ...
 event handler −−> perl_call −−> perl
 |
 event handler <−− perl_call −−<−−+
 ...
 event handler −−> perl_call −−> perl
 |
08−Oct−1996 Version 5.003 355

perlcall Perl Programmers Reference Guide perlcall

 might
to the
at as time
ach of
emory

 fairly
 any
do any

ing out

 all C
 to a
 event handler <−− perl_call −−<−−+

In this case the flow of control can consist of only the repeated sequence

 event handler −−> perl_call −−> perl

for the practically the complete duration of the program. This means that control may never drop back to the
surrounding scope in Perl at the extreme left.

So what is the big problem? Well, if you are expecting Perl to tidy up those temporaries for you, you
be in for a long wait. For Perl to actually dispose of your temporaries, control must drop back
enclosing scope at some stage. In the event driven scenario that may never happen. This means th
goes on, your program will create more and more temporaries, none of which will ever be freed. As e
these temporaries consumes some memory your program will eventually consume all the available m
in your system − kapow!

So here is the bottom line − if you are sure that control will revert back to the enclosing Perl scope
quickly after the end of your callback, then it isn‘t absolutely necessary to explicitly dispose of
temporaries you may have created. Mind you, if you are at all uncertain about what to do, it doesn‘t
harm to tidy up anyway.

Strategies for storing Callback Context Information
Potentially one of the trickiest problems to overcome when designing a callback interface can be figur
how to store the mapping between the C callback function and the Perl equivalent.

To help understand why this can be a real problem first consider how a callback is set up in an
environment. Typically a C API will provide a function to register a callback. This will expect a pointer
function as one of its parameters. Below is a call to a hypothetical function register_fatal which
registers the C function to get called when a fatal error occurs.

 register_fatal(cb1) ;

The single parameter cb1 is a pointer to a function, so you must have defined cb1 in your code, say
something like this

 static void
 cb1()
 {
 printf ("Fatal Error\n") ;
 exit(1) ;
 }

Now change that to call a Perl subroutine instead

 static SV * callback = (SV*)NULL;

 static void
 cb1()
 {
 dSP ;

 PUSHMARK(sp) ;

 /* Call the Perl sub to process the callback */
 perl_call_sv(callback, G_DISCARD) ;
 }

 void
 register_fatal(fn)
 SV * fn
 CODE:
 /* Remember the Perl sub */
356 Version 5.003 08−Oct−1996

perlcall Perl Programmers Reference Guide perlcall

uld be

u may
 be able

e above
ire is a
 for that

andle.

l
 below
 if (callback == (SV*)NULL)
 callback = newSVsv(fn) ;
 else
 SvSetSV(callback, fn) ;

 /* register the callback with the external library */
 register_fatal(cb1) ;

where the Perl equivalent of register_fatal and the callback it registers, pcb1 , might look like this

 # Register the sub pcb1
 register_fatal(\&pcb1) ;

 sub pcb1
 {
 die "I’m dying...\n" ;
 }

The mapping between the C callback and the Perl equivalent is stored in the global variable callback .

This will be adequate if you ever need to have only 1 callback registered at any time. An example co
an error handler like the code sketched out above. Remember though, repeated calls to register_fatal
will replace the previously registered callback function with the new one.

Say for example you want to interface to a library which allows asynchronous file i/o. In this case yo
be able to register a callback whenever a read operation has completed. To be of any use we want to
to call separate Perl subroutines for each file that is opened. As it stands, the error handler exampl
would not be adequate as it allows only a single callback to be defined at any time. What we requ
means of storing the mapping between the opened file and the Perl subroutine we want to be called
file.

Say the i/o library has a function asynch_read which associates a C function ProcessRead with a file
handle fh − this assumes that it has also provided some routine to open the file and so obtain the file h

 asynch_read(fh, ProcessRead)

This may expect the C ProcessRead function of this form

 void
 ProcessRead(fh, buffer)
 int fh ;
 char * buffer ;
 {
 ...
 }

To provide a Perl interface to this library we need to be able to map between the fh parameter and the Per
subroutine we want called. A hash is a convenient mechanism for storing this mapping. The code
shows a possible implementation

 static HV * Mapping = (HV*)NULL ;

 void
 asynch_read(fh, callback)
 int fh
 SV * callback
 CODE:
 /* If the hash doesn’t already exist, create it */
 if (Mapping == (HV*)NULL)
 Mapping = newHV() ;
08−Oct−1996 Version 5.003 357

perlcall Perl Programmers Reference Guide perlcall

dle to
only the
 /* Save the fh −> callback mapping */
 hv_store(Mapping, (char*)&fh, sizeof(fh), newSVsv(callback), 0) ;

 /* Register with the C Library */
 asynch_read(fh, asynch_read_if) ;

and asynch_read_if could look like this

 static void
 asynch_read_if(fh, buffer)
 int fh ;
 char * buffer ;
 {
 dSP ;
 SV ** sv ;

 /* Get the callback associated with fh */
 sv = hv_fetch(Mapping, (char*)&fh , sizeof(fh), FALSE) ;
 if (sv == (SV**)NULL)
 croak("Internal error...\n") ;

 PUSHMARK(sp) ;
 XPUSHs(sv_2mortal(newSViv(fh))) ;
 XPUSHs(sv_2mortal(newSVpv(buffer, 0))) ;
 PUTBACK ;

 /* Call the Perl sub */
 perl_call_sv(*sv, G_DISCARD) ;
 }

For completeness, here is asynch_close . This shows how to remove the entry from the hash Mapping .

 void
 asynch_close(fh)
 int fh
 CODE:
 /* Remove the entry from the hash */
 (void) hv_delete(Mapping, (char*)&fh, sizeof(fh), G_DISCARD) ;

 /* Now call the real asynch_close */
 asynch_close(fh) ;

So the Perl interface would look like this

 sub callback1
 {
 my($handle, $buffer) = @_ ;
 }

 # Register the Perl callback
 asynch_read($fh, \&callback1) ;

 asynch_close($fh) ;

The mapping between the C callback and Perl is stored in the global hash Mapping this time. Using a hash
has the distinct advantage that it allows an unlimited number of callbacks to be registered.

What if the interface provided by the C callback doesn‘t contain a parameter which allows the file han
Perl subroutine mapping? Say in the asynchronous i/o package, the callback function gets passed
buffer parameter like this

 void
358 Version 5.003 08−Oct−1996

perlcall Perl Programmers Reference Guide perlcall

e.

nterface
 ProcessRead(buffer)
 char * buffer ;
 {
 ...
 }

Without the file handle there is no straightforward way to map from the C callback to the Perl subroutin

In this case a possible way around this problem is to pre−define a series of C functions to act as the i
to Perl, thus

 #define MAX_CB 3
 #define NULL_HANDLE −1
 typedef void (*FnMap)() ;

 struct MapStruct {
 FnMap Function ;
 SV * PerlSub ;
 int Handle ;
 } ;

 static void fn1() ;
 static void fn2() ;
 static void fn3() ;

 static struct MapStruct Map [MAX_CB] =
 {
 { fn1, NULL, NULL_HANDLE },
 { fn2, NULL, NULL_HANDLE },
 { fn3, NULL, NULL_HANDLE }
 } ;

 static void
 Pcb(index, buffer)
 int index ;
 char * buffer ;
 {
 dSP ;

 PUSHMARK(sp) ;
 XPUSHs(sv_2mortal(newSVpv(buffer, 0))) ;
 PUTBACK ;

 /* Call the Perl sub */
 perl_call_sv(Map[index].PerlSub, G_DISCARD) ;
 }

 static void
 fn1(buffer)
 char * buffer ;
 {
 Pcb(0, buffer) ;
 }

 static void
 fn2(buffer)
 char * buffer ;
 {
 Pcb(1, buffer) ;
 }
08−Oct−1996 Version 5.003 359

perlcall Perl Programmers Reference Guide perlcall
 static void
 fn3(buffer)
 char * buffer ;
 {
 Pcb(2, buffer) ;
 }

 void
 array_asynch_read(fh, callback)
 int fh
 SV * callback
 CODE:
 int index ;
 int null_index = MAX_CB ;

 /* Find the same handle or an empty entry */
 for (index = 0 ; index < MAX_CB ; ++index)
 {
 if (Map[index].Handle == fh)
 break ;

 if (Map[index].Handle == NULL_HANDLE)
 null_index = index ;
 }

 if (index == MAX_CB && null_index == MAX_CB)
 croak ("Too many callback functions registered\n") ;

 if (index == MAX_CB)
 index = null_index ;

 /* Save the file handle */
 Map[index].Handle = fh ;

 /* Remember the Perl sub */
 if (Map[index].PerlSub == (SV*)NULL)
 Map[index].PerlSub = newSVsv(callback) ;
 else
 SvSetSV(Map[index].PerlSub, callback) ;

 asynch_read(fh, Map[index].Function) ;

 void
 array_asynch_close(fh)
 int fh
 CODE:
 int index ;

 /* Find the file handle */
 for (index = 0; index < MAX_CB ; ++ index)
 if (Map[index].Handle == fh)
 break ;

 if (index == MAX_CB)
 croak ("could not close fh %d\n", fh) ;

 Map[index].Handle = NULL_HANDLE ;
 SvREFCNT_dec(Map[index].PerlSub) ;
 Map[index].PerlSub = (SV*)NULL ;
360 Version 5.003 08−Oct−1996

perlcall Perl Programmers Reference Guide perlcall

h of

exist
d then
 still a

ween C

tion.

ext is,
 to each

it is

ou to
s in some
 asynch_close(fh) ;

In this case the functions fn1 , fn2 and fn3 are used to remember the Perl subroutine to be called. Eac
the functions holds a separate hard−wired index which is used in the function Pcb to access the Map array
and actually call the Perl subroutine.

There are some obvious disadvantages with this technique.

Firstly, the code is considerably more complex than with the previous example.

Secondly, there is a hard−wired limit (in this case 3) to the number of callbacks that can
simultaneously. The only way to increase the limit is by modifying the code to add more functions an
re−compiling. None the less, as long as the number of functions is chosen with some care, it is
workable solution and in some cases is the only one available.

To summarize, here are a number of possible methods for you to consider for storing the mapping bet
and the Perl callback

1. Ignore the problem − Allow only 1 callback
For a lot of situations, like interfacing to an error handler, this may be a perfectly adequate solu

2. Create a sequence of callbacks − hard wired limit
If it is impossible to tell from the parameters passed back from the C callback what the cont
then you may need to create a sequence of C callback interface functions, and store pointers
in an array.

3. Use a parameter to map to the Perl callback
A hash is an ideal mechanism to store the mapping between C and Perl.

Alternate Stack Manipulation
Although I have made use of only the POP* macros to access values returned from Perl subroutines,
also possible to bypass these macros and read the stack using the ST macro (See perlxs for a full description
of the ST macro).

Most of the time the POP* macros should be adequate, the main problem with them is that they force y
process the returned values in sequence. This may not be the most suitable way to process the value
cases. What we want is to be able to access the stack in a random order. The ST macro as used when coding
an XSUB is ideal for this purpose.

The code below is the example given in the section Returning a list of values recoded to use ST instead of
POP*.

 static void
 call_AddSubtract2(a, b)
 int a ;
 int b ;
 {
 dSP ;
 I32 ax ;
 int count ;

 ENTER ;
 SAVETMPS;

 PUSHMARK(sp) ;
 XPUSHs(sv_2mortal(newSViv(a)));
 XPUSHs(sv_2mortal(newSViv(b)));
 PUTBACK ;

 count = perl_call_pv("AddSubtract", G_ARRAY);
08−Oct−1996 Version 5.003 361

perlcall Perl Programmers Reference Guide perlcall

er. So
 SPAGAIN ;
 sp −= count ;
 ax = (sp − stack_base) + 1 ;

 if (count != 2)
 croak("Big trouble\n") ;

 printf ("%d + %d = %d\n", a, b, SvIV(ST(0))) ;
 printf ("%d − %d = %d\n", a, b, SvIV(ST(1))) ;

 PUTBACK ;
 FREETMPS ;
 LEAVE ;
 }

Notes

1. Notice that it was necessary to define the variable ax . This is because the ST macro expects it to
exist. If we were in an XSUB it would not be necessary to define ax as it is already defined for you.

2. The code

 SPAGAIN ;
 sp −= count ;
 ax = (sp − stack_base) + 1 ;

sets the stack up so that we can use the ST macro.

3. Unlike the original coding of this example, the returned values are not accessed in reverse ord
ST(0) refers to the first value returned by the Perl subroutine and ST(count−1) refers to the last.

SEE ALSO
perlxs, perlguts, perlembed

AUTHOR
Paul Marquess <pmarquess@bfsec.bt.co.uk>

Special thanks to the following people who assisted in the creation of the document.

Jeff Okamoto, Tim Bunce, Nick Gianniotis, Steve Kelem, Gurusamy Sarathy and Larry Wall.

DATE
Version 1.2, 16th Jan 1996
362 Version 5.003 08−Oct−1996

AnyDBM_File Perl Programmers Reference Guide AnyDBM_File

of the
 (See
ld
NAME
AnyDBM_File − provide framework for multiple DBMs

NDBM_File, ODBM_File, SDBM_File, GDBM_File − various DBM implementations

SYNOPSIS
 use AnyDBM_File;

DESCRIPTION
This module is a "pure virtual base class"—it has nothing of its own. It‘s just there to inherit from one
various DBM packages. It prefers ndbm for compatibility reasons with Perl 4, then Berkeley DB
DB_File), GDBM, SDBM (which is always there—it comes with Perl), and finally ODBM. This way o
programs that used to use NDBM via dbmopen() can still do so, but new ones can reorder @ISA:

 @AnyDBM_File::ISA = qw(DB_File GDBM_File NDBM_File);

Note, however, that an explicit use overrides the specified order:

 use GDBM_File;
 @AnyDBM_File::ISA = qw(DB_File GDBM_File NDBM_File);

will only find GDBM_File.

Having multiple DBM implementations makes it trivial to copy database formats:

 use POSIX; use NDBM_File; use DB_File;
 tie %newhash, ’DB_File’, $new_filename, O_CREAT|O_RDWR;
 tie %oldhash, ’NDBM_File’, $old_filename, 1, 0;
 %newhash = %oldhash;

DBM Comparisons
Here‘s a partial table of features the different packages offer:

 odbm ndbm sdbm gdbm bsd−db
 −−−− −−−− −−−− −−−− −−−−−−

 Linkage comes w/ perl yes yes yes yes yes
 Src comes w/ perl no no yes no no
 Comes w/ many unix os yes yes[0] no no no
 Builds ok on !unix ? ? yes yes ?
 Code Size ? ? small big big
 Database Size ? ? small big? ok[1]
 Speed ? ? slow ok fast
 FTPable no no yes yes yes
 Easy to build N/A N/A yes yes ok[2]
 Size limits 1k 4k 1k[3] none none
 Byte−order independent no no no no yes
 Licensing restrictions ? ? no yes no

[0] on mixed universe machines, may be in the bsd compat library, which is often shunned.

[1] Can be trimmed if you compile for one access method.

[2] See DB_File. Requires symbolic links.

[3] By default, but can be redefined.

SEE ALSO
dbm(3), ndbm(3), DB_File(3)
08−Oct−1996 Version 5.003 363

AutoLoader Perl Programmers Reference Guide AutoLoader

from

. At the

in

es.

f.

rom

itly
visible

he

.

NAME
AutoLoader − load functions only on demand

SYNOPSIS
 package FOOBAR;
 use Exporter;
 use AutoLoader;
 @ISA = qw(Exporter AutoLoader);

DESCRIPTION
This module tells its users that functions in the FOOBAR package are to be autoloaded
auto/$AUTOLOAD.al . See Autoloading in perlsub and AutoSplit.

__END__
The module using the autoloader should have the special marker __END__ prior to the actual subroutine
declarations. All code that is before the marker will be loaded and compiled when the module is used
marker, perl will cease reading and parsing. See also the AutoSplit module, a utility that automatically splits
a module into a collection of files for autoloading.

When a subroutine not yet in memory is called, the AUTOLOAD function attempts to locate it in a directory
relative to the location of the module file itself. As an example, assume POSIX.pm is located in
/usr/local/lib/perl5/POSIX.pm. The autoloader will look for perl subroutines for this package
/usr/local/lib/perl5/auto/POSIX/*.al. The .al file is named using the subroutine name, sans package.

Loading Stubs
The AutoLoader module provide a special import() method that will load the stubs (from autosplit.ix
file) of the calling module. These stubs are needed to make inheritance work correctly for class modul

Modules that inherit from AutoLoader should always ensure that they override the AutoLoader− import()
method. If the module inherit from Exporter like shown in the synopis section this is already taken care o
For class methods an empty import() would do nicely:

 package MyClass;
 use AutoLoader; # load stubs
 @ISA=qw(AutoLoader);
 sub import {} # hide AutoLoader::import

You can also set up autoloading by importing the AUTOLOAD function instead of inheriting f
AutoLoader:

 package MyClass;
 use AutoLoader; # load stubs
 *AUTOLOAD = \&AutoLoader::AUTOLOAD;

Package Lexicals
Package lexicals declared with my in the main block of a package using the AutoLoader will not be visible
to auto−loaded functions, due to the fact that the given scope ends at the __END__ marker. A module using
such variables as package globals will not work properly under the AutoLoader.

The vars pragma (see vars in perlmod) may be used in such situations as an alternative to explic
qualifying all globals with the package namespace. Variables pre−declared with this pragma will be
to any autoloaded routines (but will not be invisible outside the package, unfortunately).

AutoLoader vs. SelfLoader
The AutoLoader is a counterpart to the SelfLoader module. Both delay the loading of subroutines, but t
SelfLoader accomplishes the goal via the __DATA__ marker rather than __END__. While this avoids the
use of a hierarchy of disk files and the associated open/close for each routine loaded, the SelfLoader suffers
a disadvantage in the one−time parsing of the lines after __DATA__, after which routines are cached
SelfLoader can also handle multiple packages in a file.
364 Version 5.003 08−Oct−1996

AutoLoader Perl Programmers Reference Guide AutoLoader

chanism

shorter

D

AutoLoader only reads code as it is requested, and in many cases should be faster, but requires a ma
like AutoSplit be used to create the individual files. The ExtUtils::MakeMaker will invoke AutoSplit
automatically if the AutoLoader is used in a module source file.

CAVEAT
On systems with restrictions on file name length, the file corresponding to a subroutine may have a
name that the routine itself. This can lead to conflicting file names. The AutoSplit package warns of these
potential conflicts when used to split a module.

Calling foo($1) for the autoloaded function foo() might not work as expected, because the AUTOLOA
function of AutoLoader clobbers the regexp variables. Invoking it as foo("$1") avoids this problem.
08−Oct−1996 Version 5.003 365

AutoSplit Perl Programmers Reference Guide AutoSplit

 both
ding.

d
re

rm (the

es
e

ediate

the

orrect

ts on
used as
NAME
AutoSplit − split a package for autoloading

SYNOPSIS
 perl −e ’use AutoSplit; autosplit_lib_modules(@ARGV)’ ...

 use AutoSplit; autosplit($file, $dir, $keep, $check, $modtime);

for perl versions 5.002 and later:

 perl −MAutoSplit −e ’autosplit($ARGV[0], $ARGV[1], $k, $chk, $modtime)’ ...

DESCRIPTION
This function will split up your program into files that the AutoLoader module can handle. It is used by
the standard perl libraries and by the MakeMaker utility, to automatically configure libraries for autoloa

The autosplit interface splits the specified file into a hierarchy rooted at the directory $dir. It creates
directories as needed to reflect class hierarchy, and creates the file autosplit.ix. This file acts as both forward
declaration of all package routines, and as timestamp for the last update of the hierarchy.

The remaining three arguments to autosplit govern other options to the autosplitter. If the thir
argument, $keep , is false, then any pre−existing .al files in the autoload directory are removed if they a
no longer part of the module (obsoleted functions). The fourth argument, $check , instructs autosplit to
check the module currently being split to ensure that it does include a use specification for the AutoLoader
module, and skips the module if AutoLoader is not detected. Lastly, the $modtime argument specifies that
autosplit is to check the modification time of the module against that of the autosplit.ix file, and
only split the module if it is newer.

Typical use of AutoSplit in the perl MakeMaker utility is via the command−line with:

 perl −e ’use AutoSplit; autosplit($ARGV[0], $ARGV[1], 0, 1, 1)’

Defined as a Make macro, it is invoked with file and directory arguments; autosplit will split the
specified file into the specified directory and delete obsolete .al files, after checking first that the module
does use the AutoLoader, and ensuring that the module is not already currently split in its current fo
modtime test).

The autosplit_lib_modules form is used in the building of perl. It takes as input a list of fil
(modules) that are assumed to reside in a directory lib relative to the current directory. Each file is sent to th
 autosplitter one at a time, to be split into the directory lib/auto.

In both usages of the autosplitter, only subroutines defined following the perl special marker __END__ are
split out into separate files. Some routines may be placed prior to this marker to force their imm
loading and parsing.

CAVEATS
Currently, AutoSplit cannot handle multiple package specifications within one file.

DIAGNOSTICS
AutoSplit will inform the user if it is necessary to create the top−level directory specified in
invocation. It is preferred that the script or installation process that invokes AutoSplit have created the
full directory path ahead of time. This warning may indicate that the module is being split into an inc
path.

AutoSplit will warn the user of all subroutines whose name causes potential file naming conflic
machines with drastically limited (8 characters or less) file name length. Since the subroutine name is
the file name, these warnings can aid in portability to such systems.

Warnings are issued and the file skipped if AutoSplit cannot locate either the __END__ marker or a
"package Name;"−style specification.
366 Version 5.003 08−Oct−1996

AutoSplit Perl Programmers Reference Guide AutoSplit
AutoSplit will also emit general diagnostics for inability to create directories or files.
08−Oct−1996 Version 5.003 367

Benchmark Perl Programmers Reference Guide Benchmark

kes to

o run.
rence

d:
NAME
Benchmark − benchmark running times of code

timethis − run a chunk of code several times

timethese − run several chunks of code several times

timeit − run a chunk of code and see how long it goes

SYNOPSIS
 timethis ($count, "code");

 timethese($count, {
’Name1’ => ’...code1...’,
’Name2’ => ’...code2...’,

 });

 $t = timeit($count, ’...other code...’)
 print "$count loops of other code took:",timestr($t),"\n";

DESCRIPTION
The Benchmark module encapsulates a number of routines to help you figure out how long it ta
execute some code.

Methods

new Returns the current time. Example:

 use Benchmark;
 $t0 = new Benchmark;
 # ... your code here ...
 $t1 = new Benchmark;
 $td = timediff($t1, $t0);
 print "the code took:",timestr($td),"\n";

debug Enables or disable debugging by setting the $Benchmark::Debug flag:

 debug Benchmark 1;
 $t = timeit(10, ’ 5 ** $Global ’);
 debug Benchmark 0;

Standard Exports
The following routines will be exported into your namespace if you use the Benchmark module:

timeit(COUNT, CODE)
Arguments: COUNT is the number of time to run the loop, and the second is the code t
CODE may be a string containing the code, a reference to the function to run, or a refe
to a hash containing keys which are names and values which are more CODE specs.

Side−effects: prints out noise to standard out.

Returns: a Benchmark object.

timethis
timethese
timediff
timestr

Optional Exports
The following routines will be exported into your namespace if you specifically ask that they be importe

clearcache
368 Version 5.003 08−Oct−1996

Benchmark Perl Programmers Reference Guide Benchmark

 from

d using

pty loop

l code
clearallcache

disablecache

enablecache

NOTES
The data is stored as a list of values from the time and times functions:

 ($real, $user, $system, $children_user, $children_system)

in seconds for the whole loop (not divided by the number of rounds).

The timing is done using time(3) and times(3).

Code is executed in the caller‘s package.

Enable debugging by:

 $Benchmark::debug = 1;

The time of the null loop (a loop with the same number of rounds but empty loop body) is subtracted
the time of the real loop.

The null loop times are cached, the key being the number of rounds. The caching can be controlle
calls like these:

 clearcache($key);
 clearallcache();

 disablecache();
 enablecache();

INHERITANCE
Benchmark inherits from no other class, except of course for Exporter.

CAVEATS
The real time timing is done using time(2) and the granularity is therefore only one second.

Short tests may produce negative figures because perl can appear to take longer to execute the em
than a short test; try:

 timethis(100,’1’);

The system time of the null loop might be slightly more than the system time of the loop with the actua
and therefore the difference might end up being < 0.

More documentation is needed :−(especially for styles and formats.

AUTHORS
Jarkko Hietaniemi <Jarkko.Hietaniemi@hut.fi>, Tim Bunce <Tim.Bunce@ig.co.uk>

MODIFICATION HISTORY
September 8th, 1994; by Tim Bunce.
08−Oct−1996 Version 5.003 369

Carp Perl Programmers Reference Guide Carp
NAME
carp − warn of errors (from perspective of caller)

croak − die of errors (from perspective of caller)

confess − die of errors with stack backtrace

SYNOPSIS
 use Carp;
 croak "We’re outta here!";

DESCRIPTION
The Carp routines are useful in your own modules because they act like die() or warn() , but report
where the error was in the code they were called from. Thus if you have a routine Foo() that has a
carp() in it, then the carp() will report the error as occurring where Foo() was called, not where
carp() was called.
370 Version 5.003 08−Oct−1996

Cwd Perl Programmers Reference Guide Cwd

se

atural
ailing

pt
h

NAME
getcwd − get pathname of current working directory

SYNOPSIS
 use Cwd;
 $dir = cwd;

 use Cwd;
 $dir = getcwd;

 use Cwd;
 $dir = fastgetcwd;

 use Cwd ’chdir’;
 chdir "/tmp";
 print $ENV{’PWD’};

DESCRIPTION
The getcwd() function re−implements the getcwd(3) (or getwd(3)) functions in Perl.

The fastcwd() function looks the same as getcwd() , but runs faster. It‘s also more dangerous becau
you might conceivably chdir() out of a directory that you can‘t chdir() back into.

The cwd() function looks the same as getcwd and fastgetcwd but is implemented using the most n
and safe form for the current architecture. For most systems it is identical to ‘pwd‘ (but without the tr
line terminator). It is recommended that cwd (or another *cwd() function) is used in all code to ensure
portability.

If you ask to override your chdir() built−in function, then your PWD environment variable will be ke
up to date. (See Overriding builtin functions.) Note that it will only be kept up to date if all packages whic
use chdir import it from Cwd.
08−Oct−1996 Version 5.003 371

SelfStubber Perl Programmers Reference Guide SelfStubber

 or

u can
lled, it

ss A,
t to be
t finds
 B, then

re stubs

ad
ooner
fore the
s.

 future
fLoader
NAME
Devel::SelfStubber − generate stubs for a SelfLoading module

SYNOPSIS
To generate just the stubs:

 use Devel::SelfStubber;
 Devel::SelfStubber−>stub(’MODULENAME’,’MY_LIB_DIR’);

or to generate the whole module with stubs inserted correctly

 use Devel::SelfStubber;
 $Devel::SelfStubber::JUST_STUBS=0;
 Devel::SelfStubber−>stub(’MODULENAME’,’MY_LIB_DIR’);

MODULENAME is the Perl module name, e.g. Devel::SelfStubber, NOT ‘Devel/SelfStubber’
‘Devel/SelfStubber.pm’.

MY_LIB_DIR defaults to ’.’ if not present.

DESCRIPTION
Devel::SelfStubber prints the stubs you need to put in the module before the __DATA__ token (or yo
get it to print the entire module with stubs correctly placed). The stubs ensure that if a method is ca
will get loaded. They are needed specifically for inherited autoloaded methods.

This is best explained using the following example:

Assume four classes, A,B,C & D.

A is the root class, B is a subclass of A, C is a subclass of B, and D is another subclass of A.

 A
 / \
 B D
 /
 C

If D calls an autoloaded method ‘foo’ which is defined in class A, then the method is loaded into cla
then executed. If C then calls method ‘foo‘, and that method was reimplemented in class B, but se
autoloaded, then the lookup mechanism never gets to the AUTOLOAD mechanism in B because it firs
the method already loaded in A, and so erroneously uses that. If the method foo had been stubbed in
the lookup mechanism would have found the stub, and correctly loaded and used the sub from B.

So, for classes and subclasses to have inheritance correctly work with autoloading, you need to ensu
are loaded.

The SelfLoader can load stubs automatically at module initialization with the statement
‘SelfLoader−>load_stubs() ‘;, but you may wish to avoid having the stub loading overhe
associated with your initialization (though note that the SelfLoader::load_stubs method will be called s
or later − at latest when the first sub is being autoloaded). In this case, you can put the sub stubs be
__DATA__ token. This can be done manually, but this module allows automatic generation of the stub

By default it just prints the stubs, but you can set the global $Devel::SelfStubber::JUST_STUBS to
0 and it will print out the entire module with the stubs positioned correctly.

At the very least, this is useful to see what the SelfLoader thinks are stubs − in order to ensure
versions of the SelfStubber remain in step with the SelfLoader, the SelfStubber actually uses the Sel
to determine which stubs are needed.
372 Version 5.003 08−Oct−1996

DirHandle Perl Programmers Reference Guide DirHandle

 to
NAME
DirHandle − supply object methods for directory handles

SYNOPSIS
 use DirHandle;
 $d = new DirHandle ".";
 if (defined $d) {
 while (defined($_ = $d−>read)) { something($_); }
 $d−>rewind;
 while (defined($_ = $d−>read)) { something_else($_); }
 undef $d;
 }

DESCRIPTION
The DirHandle method provide an alternative interface to the opendir() , closedir() ,
readdir() , and rewinddir() functions.

The only objective benefit to using DirHandle is that it avoids namespace pollution by creating globs
hold directory handles.
08−Oct−1996 Version 5.003 373

DynaLoader Perl Programmers Reference Guide DynaLoader

r

n many

 a new

er the

namic

ibraries
library
will be

of

m the

shift
rch
NAME
DynaLoader − Dynamically load C libraries into Perl code

dl_error() , dl_findfile() , dl_expandspec() , dl_load_file() , dl_find_symbol() ,
dl_undef_symbols() , dl_install_xsub() , bootstrap() − routines used by DynaLoade
modules

SYNOPSIS
 package YourPackage;
 require DynaLoader;
 @ISA = qw(... DynaLoader ...);
 bootstrap YourPackage;

DESCRIPTION
This document defines a standard generic interface to the dynamic linking mechanisms available o
platforms. Its primary purpose is to implement automatic dynamic loading of Perl modules.

This document serves as both a specification for anyone wishing to implement the DynaLoader for
platform and as a guide for anyone wishing to use the DynaLoader directly in an application.

The DynaLoader is designed to be a very simple high−level interface that is sufficiently general to cov
requirements of SunOS, HP−UX, NeXT, Linux, VMS and other platforms.

It is also hoped that the interface will cover the needs of OS/2, NT etc and also allow pseudo−dy
linking (using ld −A at runtime).

It must be stressed that the DynaLoader, by itself, is practically useless for accessing non−Perl l
because it provides almost no Perl−to−C ‘glue’. There is, for example, no mechanism for calling a C
function or supplying arguments. It is anticipated that any glue that may be developed in the future
implemented in a separate dynamically loaded module.

DynaLoader Interface Summary

 @dl_library_path
 @dl_resolve_using
 @dl_require_symbols
 $dl_debug
 Implemented in:
 bootstrap($modulename) Perl
 @filepaths = dl_findfile(@names) Perl

 $libref = dl_load_file($filename) C
 $symref = dl_find_symbol($libref, $symbol) C
 @symbols = dl_undef_symbols() C
 dl_install_xsub($name, $symref [, $filename]) C
 $message = dl_error C

@dl_library_path
The standard/default list of directories in which dl_findfile() will search for libraries etc.
Directories are searched in order: $dl_library_path[0], [1], ... etc

@dl_library_path is initialised to hold the list of ‘normal’ directories (/usr/lib, etc) determined by
Configure ($Config{‘libpth‘}). This should ensure portability across a wide range
platforms.

@dl_library_path should also be initialised with any other directories that can be determined fro
environment at runtime (such as LD_LIBRARY_PATH for SunOS).

After initialisation @dl_library_path can be manipulated by an application using push and un
before calling dl_findfile() . Unshift can be used to add directories to the front of the sea
374 Version 5.003 08−Oct−1996

DynaLoader Perl Programmers Reference Guide DynaLoader

ories.

he
olute

efined

. For
t
here

his is

ix, a

ave the
ch as

ication

e (see

mes
lt and

ill be
order either to save search time or to override libraries with the same name in the ‘normal’ direct

The load function that dl_load_file() calls may require an absolute pathname. T
dl_findfile() function and @dl_library_path can be used to search for and return the abs
pathname for the library/object that you wish to load.

@dl_resolve_using
A list of additional libraries or other shared objects which can be used to resolve any und
symbols that might be generated by a later call to load_file() .

This is only required on some platforms which do not handle dependent libraries automatically
example the Socket Perl extension library (auto/Socket/Socket.so) contains references to many socke
functions which need to be resolved when it‘s loaded. Most platforms will automatically know w
to find the ‘dependent’ library (e.g., /usr/lib/libsocket.so). A few platforms need to to be told the
location of the dependent library explicitly. Use @dl_resolve_using for this.

Example usage:

 @dl_resolve_using = dl_findfile(’−lsocket’);

@dl_require_symbols
A list of one or more symbol names that are in the library/object file to be dynamically loaded. T
only required on some platforms.

dl_error()
Syntax:

 $message = dl_error();

Error message text from the last failed DynaLoader function. Note that, similar to errno in un
successful function call does not reset this message.

Implementations should detect the error as soon as it occurs in any of the other functions and s
corresponding message for later retrieval. This will avoid problems on some platforms (su
SunOS) where the error message is very temporary (e.g., dlerror()).

$dl_debug
Internal debugging messages are enabled when $dl_debug is set true. Currently setting
$dl_debug only affects the Perl side of the DynaLoader. These messages should help an appl
developer to resolve any DynaLoader usage problems.

$dl_debug is set to $ENV{‘PERL_DL_DEBUG‘} if defined.

For the DynaLoader developer/porter there is a similar debugging variable added to the C cod
dlutils.c) and enabled if Perl was built with the −DDEBUGGING flag. This can also be set via the
PERL_DL_DEBUG environment variable. Set to 1 for minimal information or higher for more.

dl_findfile()
Syntax:

 @filepaths = dl_findfile(@names)

Determine the full paths (including file suffix) of one or more loadable files given their generic na
and optionally one or more directories. Searches directories in @dl_library_path by defau
returns an empty list if no files were found.

Names can be specified in a variety of platform independent forms. Any names in the form −lname
are converted into libname.*, where .* is an appropriate suffix for the platform.

If a name does not already have a suitable prefix and/or suffix then the corresponding file w
searched for by trying combinations of prefix and suffix appropriate to the platform: "$name.o",
"lib$name.*" and "$name".
08−Oct−1996 Version 5.003 375

DynaLoader Perl Programmers Reference Guide DynaLoader

s may

mbolic

que

ls and

te
If any directories are included in @names they are searched before @dl_library_path. Directorie
be specified as −Ldir . Any other names are treated as filenames to be searched for.

Using arguments of the form −Ldir and −lname is recommended.

Example:

 @dl_resolve_using = dl_findfile(qw(−L/usr/5lib −lposix));

dl_expandspec()
Syntax:

 $filepath = dl_expandspec($spec)

Some unusual systems, such as VMS, require special filename handling in order to deal with sy
names for files (i.e., VMS‘s Logical Names).

To support these systems a dl_expandspec() function can be implemented either in the dl_*.xs
file or code can be added to the autoloadable dl_expandspec() function in DynaLoader.pm. See
DynaLoader.pm for more information.

dl_load_file()
Syntax:

 $libref = dl_load_file($filename)

Dynamically load $filename, which must be the path to a shared object or library. An opa
‘library reference’ is returned as a handle for the loaded object. Returns undef on error.

(On systems that provide a handle for the loaded object such as SunOS and HPUX, $libref will be
that handle. On other systems $libref will typically be $filename or a pointer to a buffer
containing $filename. The application should not examine or alter $libref in any way.)

This is function that does the real work. It should use the current values of @dl_require_symbo
@dl_resolve_using if required.

 SunOS: dlopen($filename)
 HP−UX: shl_load($filename)
 Linux: dld_create_reference(@dl_require_symbols); dld_link($filename)
 NeXT: rld_load($filename, @dl_resolve_using)
 VMS: lib$find_image_symbol($filename,$dl_require_symbols[0])

dl_find_symbol()
Syntax:

 $symref = dl_find_symbol($libref, $symbol)

Return the address of the symbol $symbol or undef if not found. If the target system has separa
functions to search for symbols of different types then dl_find_symbol() should search for
function symbols first and then other types.

The exact manner in which the address is returned in $symref is not currently defined. The only
initial requirement is that $symref can be passed to, and understood by, dl_install_xsub() .

 SunOS: dlsym($libref, $symbol)
 HP−UX: shl_findsym($libref, $symbol)
 Linux: dld_get_func($symbol) and/or dld_get_symbol($symbol)
 NeXT: rld_lookup("_$symbol")
 VMS: lib$find_image_symbol($libref,$symbol)

dl_undef_symbols()
Example
376 Version 5.003 08−Oct−1996

DynaLoader Perl Programmers Reference Guide DynaLoader

t and

 by

rrent

e

nders,
elf and

ynamic
 @symbols = dl_undef_symbols()

Return a list of symbol names which remain undefined after load_file() . Returns () if not
known. Don‘t worry if your platform does not provide a mechanism for this. Most do not need i
hence do not provide it, they just return an empty list.

dl_install_xsub()
Syntax:

 dl_install_xsub($perl_name, $symref [, $filename])

Create a new Perl external subroutine named $perl_name using $symref as a pointer to the
function which implements the routine. This is simply a direct call to newXSUB() . Returns a
reference to the installed function.

The $filename parameter is used by Perl to identify the source file for the function if required
die() , caller() or the debugger. If $filename is not defined then "DynaLoader" will be used.

bootstrap()
Syntax:

bootstrap($module)

This is the normal entry point for automatic dynamic loading in Perl.

It performs the following actions:

 locates an auto/$module directory by searching @INC

 uses dl_findfile() to determine the filename to load

 sets @dl_require_symbols to ("boot_$module")

 executes an auto/$module/$module.bs file if it exists (typically used to add to
@dl_resolve_using any files which are required to load the module on the cu
platform)

 calls dl_load_file() to load the file

 calls dl_undef_symbols() and warns if any symbols are undefined

 calls dl_find_symbol() for "boot_$module"

 calls dl_install_xsub() to install it as "${module}::bootstrap"

 calls &{"${module}::bootstrap"} to bootstrap the module (actually it uses th
function reference returned by dl_install_xsub for speed)

AUTHOR
Tim Bunce, 11 August 1994.

This interface is based on the work and comments of (in no particular order): Larry Wall, Robert Sa
Dean Roehrich, Jeff Okamoto, Anno Siegel, Thomas Neumann, Paul Marquess, Charles Bailey, mys
others.

Larry Wall designed the elegant inherited bootstrap mechanism and implemented the first Perl 5 d
loader using it.
08−Oct−1996 Version 5.003 377

English Perl Programmers Reference Guide English

ariables

For
NAME
English − use nice English (or awk) names for ugly punctuation variables

SYNOPSIS
 use English;
 ...
 if ($ERRNO =~ /denied/) { ... }

DESCRIPTION
This module provides aliases for the built−in variables whose names no one seems to like to read. V
with side−effects which get triggered just by accessing them (like $0) will still be affected.

For those variables that have an awk version, both long and short English alternatives are provided.
example, the $/ variable can be referred to either $RS or $INPUT_RECORD_SEPARATOR if you are
using the English module.

See perlvar for a complete list of these.
378 Version 5.003 08−Oct−1996

Env Perl Programmers Reference Guide Env

 access
es.

 with

 don‘t

efined
NAME
Env − perl module that imports environment variables

SYNOPSIS
 use Env;
 use Env qw(PATH HOME TERM);

DESCRIPTION
Perl maintains environment variables in a pseudo−associative−array named %ENV. For when this
method is inconvenient, the Perl module Env allows environment variables to be treated as simple variabl

The Env::import() function ties environment variables with suitable names to global Perl variables
the same names. By default it does so with all existing environment variables (keys %ENV). If the import
function receives arguments, it takes them to be a list of environment variables to tie; it‘s okay if they
yet exist.

After an environment variable is tied, merely use it like a normal variable. You may access its value

 @path = split(/:/, $PATH);

or modify it

 $PATH .= ":.";

however you‘d like. To remove a tied environment variable from the environment, assign it the und
value

 undef $PATH;

AUTHOR
Chip Salzenberg <chip@fin.uucp>
08−Oct−1996 Version 5.003 379

Exporter Perl Programmers Reference Guide Exporter

an

d

OK in
es.

g

able.)

ion of

which
 are in
NAME
Exporter − Implements default import method for modules

SYNOPSIS
In module ModuleName.pm:

 package ModuleName;
 require Exporter;
 @ISA = qw(Exporter);

 @EXPORT = qw(...); # symbols to export by default
 @EXPORT_OK = qw(...); # symbols to export on request
 %EXPORT_TAGS = tag => [...]; # define names for sets of symbols

In other files which wish to use ModuleName:

 use ModuleName; # import default symbols into my package

 use ModuleName qw(...); # import listed symbols into my package

 use ModuleName (); # do not import any symbols

DESCRIPTION
The Exporter module implements a default import method which many modules choose inherit rather th
implement their own.

Perl automatically calls the import method when processing a use statement for a module. Modules an
use are documented in perlfunc and perlmod. Understanding the concept of modules and how the use
statement operates is important to understanding the Exporter.

Selecting What To Export
Do not export method names!

Do not export anything else by default without a good reason!

Exports pollute the namespace of the module user. If you must export try to use @EXPORT_
preference to @EXPORT and avoid short or common symbol names to reduce the risk of name clash

Generally anything not exported is still accessible from outside the module using the
ModuleName::item_name (or $blessed_ref−>method) syntax. By convention you can use a leadin
underscore on names to informally indicate that they are ‘internal’ and not for public use.

(It is actually possible to get private functions by saying:

 my $subref = sub { ... };
 &$subref;

But there‘s no way to call that directly as a method, since a method must have a name in the symbol t

As a general rule, if the module is trying to be object oriented then export nothing. If it‘s just a collect
functions then @EXPORT_OK anything but use @EXPORT with caution.

Other module design guidelines can be found in perlmod.

Specialised Import Lists
If the first entry in an import list begins with !, : or / then the list is treated as a series of specifications
either add to or delete from the list of names to import. They are processed left to right. Specifications
the form:

 [!]name This name only
 [!]:DEFAULT All names in @EXPORT
 [!]:tag All names in $EXPORT_TAGS{tag} anonymous list
 [!]/pattern/ All names in @EXPORT and @EXPORT_OK which match
380 Version 5.003 08−Oct−1996

Exporter Perl Programmers Reference Guide Exporter

e first
extra

ed

ll to
he

l
ers with

lies to

ity to
of the

ols are
ils. The

ng lazy
eone

ols to
A leading ! indicates that matching names should be deleted from the list of names to import. If th
specification is a deletion it is treated as though preceded by :DEFAULT. If you just want to import
names in addition to the default set you will still need to include :DEFAULT explicitly.

e.g., Module.pm defines:

 @EXPORT = qw(A1 A2 A3 A4 A5);
 @EXPORT_OK = qw(B1 B2 B3 B4 B5);
 %EXPORT_TAGS = (T1 => [qw(A1 A2 B1 B2)], T2 => [qw(A1 A2 B3 B4)]);

 Note that you cannot use tags in @EXPORT or @EXPORT_OK.
 Names in EXPORT_TAGS must also appear in @EXPORT or @EXPORT_OK.

An application using Module can say something like:

 use Module qw(:DEFAULT :T2 !B3 A3);

Other examples include:

 use Socket qw(!/^[AP]F_/ !SOMAXCONN !SOL_SOCKET);
 use POSIX qw(:errno_h :termios_h !TCSADRAIN !/^EXIT/);

Remember that most patterns (using //) will need to be anchored with a leading ^, e.g., /^EXIT/ rather than
/EXIT/ .

You can say BEGIN { $Exporter::Verbose=1 } to see how the specifications are being process
and what is actually being imported into modules.

Module Version Checking
The Exporter module will convert an attempt to import a number from a module into a ca
$module_name−>require_version($value). This can be used to validate that the version of t
module being used is greater than or equal to the required version.

The Exporter module supplies a default require_version method which checks the value of $VERSION in the
exporting module.

Since the default require_version method treats the $VERSION number as a simple numeric value it wil
regard version 1.10 as lower than 1.9. For this reason it is strongly recommended that you use numb
at least two decimal places, e.g., 1.09.

Managing Unknown Symbols
In some situations you may want to prevent certain symbols from being exported. Typically this app
extensions which have functions or constants that may not exist on some systems.

The names of any symbols that cannot be exported should be listed in the @EXPORT_FAIL array.

If a module attempts to import any of these symbols the Exporter will will give the module an opportun
handle the situation before generating an error. The Exporter will call an export_fail method with a list
failed symbols:

 @failed_symbols = $module_name−>export_fail(@failed_symbols);

If the export_fail method returns an empty list then no error is recorded and all the requested symb
exported. If the returned list is not empty then an error is generated for each symbol and the export fa
Exporter provides a default export_fail method which simply returns the list unchanged.

Uses for the export_fail method include giving better error messages for some symbols and performi
architectural checks (put more symbols into @EXPORT_FAIL by default and then take them out if som
actually tries to use them and an expensive check shows that they are usable on that platform).

Tag Handling Utility Functions
Since the symbols listed within %EXPORT_TAGS must also appear in either @EXPORT or
@EXPORT_OK, two utility functions are provided which allow you to easily add tagged sets of symb
08−Oct−1996 Version 5.003 381

Exporter Perl Programmers Reference Guide Exporter

ger a
OK.
@EXPORT or @EXPORT_OK:

 %EXPORT_TAGS = (foo => [qw(aa bb cc)], bar => [qw(aa cc dd)]);

 Exporter::export_tags(’foo’); # add aa, bb and cc to @EXPORT
 Exporter::export_ok_tags(’bar’); # add aa, cc and dd to @EXPORT_OK

Any names which are not tags are added to @EXPORT or @EXPORT_OK unchanged but will trig
warning (with −w) to avoid misspelt tags names being silently added to @EXPORT or @EXPORT_
Future versions may make this a fatal error.
382 Version 5.003 08−Oct−1996

Embed Perl Programmers Reference Guide Embed

/C++

.
NAME
ExtUtils::Embed − Utilities for embedding Perl in C/C++ applications

SYNOPSIS
 perl −MExtUtils::Embed −e xsinit
 perl −MExtUtils::Embed −e ldopts

DESCRIPTION
ExtUtils::Embed provides utility functions for embedding a Perl interpreter and extensions in your C
applications. Typically, an application Makefile will invoke ExtUtils::Embed functions while building your
application.

@EXPORT
ExtUtils::Embed exports the following functions:

xsinit() , ldopts() , ccopts() , perl_inc() , ccflags() , ccdlflags() , xsi_header() ,
xsi_protos() , xsi_body()

FUNCTIONS

xsinit()
Generate C/C++ code for the XS initializer function.

When invoked as ‘perl −MExtUtils::Embed −e xsinit —‘ the following options are
recognized:

−o <output filename> (Defaults to perlxsi.c)

−o STDOUT will print to STDOUT.

−std (Write code for extensions that are linked with the current Perl.)

Any additional arguments are expected to be names of modules to generate code for.

When invoked with parameters the following are accepted and optional:

xsinit($filename,$std,[@modules])

Where,

$filename is equivalent to the −o option.

$std is boolean, equivalent to the −std option.

[@modules] is an array ref, same as additional arguments mentioned above.

Examples
 perl −MExtUtils::Embed −e xsinit −− −o xsinit.c Socket

This will generate code with an xs_init function that glues the perl Socket::bootstrap function to the C
boot_Socket function and writes it to a file named "xsinit.c".

Note that DynaLoader is a special case where it must call boot_DynaLoader directly.

 perl −MExtUtils::Embed −e xsinit

This will generate code for linking with DynaLoader and each static extension found in
$Config{static_ext} . The code is written to the default file name perlxsi.c.

 perl −MExtUtils::Embed −e xsinit −− −o xsinit.c −std DBI DBD::Oracle

Here, code is written for all the currently linked extensions along with code for DBI and DBD::Oracle.

If you have a working DynaLoader then there is rarely any need to statically link in any other extensions
08−Oct−1996 Version 5.003 383

Embed Perl Programmers Reference Guide Embed

d

code

t it to

 the

h the

d for
ldopts()
Output arguments for linking the Perl library and extensions to your application.

When invoked as ‘perl −MExtUtils::Embed −e ldopts —‘ the following options are
recognized:

−std

Output arguments for linking the Perl library and any extensions linked with the current Perl.

−I <path1:path2>

Search path for ModuleName.a archives. Default path is @INC. Library archives are expected to be foun
as /some/path/auto/ModuleName/ModuleName.a For example, when looking for Socket.a relative to a
search path, we should find auto/Socket/Socket.a

When looking for DBD::Oracle relative to a search path, we should find auto/DBD/Oracle/Oracle.a

Keep in mind, you can always supply /my/own/path/ModuleName.a as an additional linker argument.

— <list of linker args>

Additional linker arguments to be considered.

Any additional arguments found before the — token are expected to be names of modules to generate
for.

When invoked with parameters the following are accepted and optional:

ldopts($std,[@modules],[@link_args],$path)

Where,

$std is boolean, equivalent to the −std option.

[@modules] is equivalent to additional arguments found before the — token.

[@link_args] is equivalent to arguments found after the — token.

$path is equivalent to the −I option.

In addition, when ldopts is called with parameters, it will return the argument string rather than prin
STDOUT.

Examples
 perl −MExtUtils::Embed −e ldopts

This will print arguments for linking with libperl.a, DynaLoader and extensions found in
$Config{static_ext} . This includes libraries found in $Config{libs} and the first
ModuleName.a library for each extension that is found by searching @INC or the path specifed by the −I
option. In addition, when ModuleName.a is found, additional linker arguments are picked up from
extralibs.ld file in the same directory.

 perl −MExtUtils::Embed −e ldopts −− −std Socket

This will do the same as the above example, along with printing additional arguments for linking wit
Socket extension.

 perl −MExtUtils::Embed −e ldopts −− DynaLoader

This will print arguments for linking with just the DynaLoader extension and libperl.a.

 perl −MExtUtils::Embed −e ldopts −− −std Msql −− −L/usr/msql/lib −lmsql

Any arguments after the second ‘—’ token are additional linker arguments that will be examine
potential conflict. If there is no conflict, the additional arguments will be part of the output.
384 Version 5.003 08−Oct−1996

Embed Perl Programmers Reference Guide Embed

he
perl_inc()
For including perl header files this function simply prints:

 −I$Config{archlib}/CORE

So, rather than having to say:

 perl −MConfig −e ’print "−I$Config{archlib}/CORE"’

Just say:

 perl −MExtUtils::Embed −e perl_inc

ccflags() , ccdlflags()
These functions simply print $Config{ccflags} and $Config{ccdlflags}

ccopts()
This function combines perl_inc() , ccflags() and ccdlflags() into one.

xsi_header()
This function simply returns a string defining the same EXTERN_C macro as perlmain.c along with
#including perl.h and EXTERN.h.

xsi_protos(@modules)
This function returns a string of boot_$ModuleName prototypes for each @modules.

xsi_body(@modules)
This function returns a string of calls to newXS() that glue the module bootstrap function to
boot_ModuleName for each @modules.

xsinit() uses the xsi_* functions to generate most of it‘s code.

EXAMPLES
For examples on how to use ExtUtils::Embed for building C/C++ applications with embedded perl, see t
eg/ directory and perlembed.

SEE ALSO
perlembed

AUTHOR
Doug MacEachern <dougm@osf.org>

Based on ideas from Tim Bunce <Tim.Bunce@ig.co.uk> and minimod.pl by Andreas Koenig
<k@anna.in−berlin.de> and Tim Bunce.
08−Oct−1996 Version 5.003 385

Install Perl Programmers Reference Guide Install

e

−do−it
ries to
from"

 install

the
than

nt is a

onding
ctory.
NAME
ExtUtils::Install − install files from here to there

SYNOPSIS
use ExtUtils::Install;

install($hashref,$verbose,$nonono);

uninstall($packlistfile,$verbose,$nonono);

pm_to_blib($hashref);

DESCRIPTION
Both install() and uninstall() are specific to the way ExtUtils::MakeMaker handles th
installation and deinstallation of perl modules. They are not designed as general purpose tools.

install() takes three arguments. A reference to a hash, a verbose switch and a don‘t−really
switch. The hash ref contains a mapping of directories: each key/value pair is a combination of directo
be copied. Key is a directory to copy from, value is a directory to copy to. The whole tree below the "
directory will be copied preserving timestamps and permissions.

There are two keys with a special meaning in the hash: "read" and "write". After the copying is done,
will write the list of target files to the file named by $hashref−>{write}. If there is another file named
by $hashref−>{read}, the contents of this file will be merged into the written file. The read and
written file may be identical, but on AFS it is quite likely, people are installing to a different directory
the one where the files later appear.

uninstall() takes as first argument a file containing filenames to be unlinked. The second argume
verbose switch, the third is a no−don‘t−really−do−it−now switch.

pm_to_blib() takes a hashref as the first argument and copies all keys of the hash to the corresp
values efficiently. Filenames with the extension pm are autosplit. Second argument is the autosplit dire
386 Version 5.003 08−Oct−1996

Liblist Perl Programmers Reference Guide Liblist

.

Only

e may
s in

tform.
object
NAME
ExtUtils::Liblist − determine libraries to use and how to use them

SYNOPSIS
require ExtUtils::Liblist;

ExtUtils::Liblist::ext($potential_libs, $Verbose);

DESCRIPTION
This utility takes a list of libraries in the form −llib1 −llib2 −llib3 and prints out lines suitable for
inclusion in an extension Makefile. Extra library paths may be included with the form
−L/another/path this will affect the searches for all subsequent libraries.

It returns an array of four scalar values: EXTRALIBS, BSLOADLIBS, LDLOADLIBS, and
LD_RUN_PATH.

Dependent libraries can be linked in one of three ways:

 For static extensions
by the ld command when the perl binary is linked with the extension library. See EXTRALIBS below

 For dynamic extensions
by the ld command when the shared object is built/linked. See LDLOADLIBS below.

 For dynamic extensions
by the DynaLoader when the shared object is loaded. See BSLOADLIBS below.

EXTRALIBS
List of libraries that need to be linked with when linking a perl binary which includes this extension
those libraries that actually exist are included. These are written to a file and used when linking perl.

LDLOADLIBS and LD_RUN_PATH
List of those libraries which can or must be linked into the shared library when created using ld. Thes
be static or dynamic libraries. LD_RUN_PATH is a colon separated list of the directorie
LDLOADLIBS. It is passed as an environment variable to the process that links the shared library.

BSLOADLIBS
List of those libraries that are needed but can be linked in dynamically at run time on this pla
SunOS/Solaris does not need this because ld records the information (from LDLOADLIBS) into the
file. This list is used to create a .bs (bootstrap) file.

PORTABILITY
This module deals with a lot of system dependencies and has quite a few architecture specific ifs in the code.

SEE ALSO
ExtUtils::MakeMaker
08−Oct−1996 Version 5.003 387

ExtUtils::MakeMaker

MM_OS2 Perl Programmers Reference Guide MM_OS2

s the
NAME
ExtUtils::MM_OS2 − methods to override UN*X behaviour in ExtUtils::MakeMaker

SYNOPSIS
 use ExtUtils::MM_OS2; # Done internally by ExtUtils::MakeMaker if needed

DESCRIPTION
See ExtUtils::MM_Unix for a documentation of the methods provided there. This package override
implementation of these methods, not the semantics.
388 Version 5.003 08−Oct−1996

MM_Unix Perl Programmers Reference Guide MM_Unix

aker.
ackage
e of
. We
within

es to

to the
 driven

itably

o). All

ssive

emove
nfuses

name

mpiler
tion of
NAME
ExtUtils::MM_Unix − methods used by ExtUtils::MakeMaker

SYNOPSIS
require ExtUtils::MM_Unix;

DESCRIPTION
The methods provided by this package are designed to be used in conjunction with ExtUtils::MakeM
When MakeMaker writes a Makefile, it creates one or more objects that inherit their methods from a p
MM. MM itself doesn‘t provide any methods, but it ISA ExtUtils::MM_Unix class. The inheritance tre
MM lets operating specific packages take the responsibility for all the methods provided by MM_Unix
are trying to reduce the number of the necessary overrides by defining rather primitive operations
ExtUtils::MM_Unix.

If you are going to write a platform specific MM package, please try to limit the necessary overrid
primitive methods, and if it is not possible to do so, let‘s work out how to achieve that gain.

If you are overriding any of these methods in your Makefile.PL (in the MY class), please report that
makemaker mailing list. We are trying to minimize the necessary method overrides and switch to data
Makefile.PLs wherever possible. In the long run less methods will be overridable via the MY class.

METHODS
The following description of methods is still under development. Please refer to the code for not su
documented sections and complain loudly to the makemaker mailing list.

Not all of the methods below are overridable in a Makefile.PL. Overridable methods are marked as (
methods are overridable by a platform specific MM_*.pm file (See ExtUtils::MM_VMS and
ExtUtils::MM_OS2).

Preloaded methods

canonpath
No physical check on the filesystem, but a logical cleanup of a path. On UNIX eliminated succe
slashes and successive "/.".

catdir
Concatenate two or more directory names to form a complete path ending with a directory. But r
the trailing slash from the resulting string, because it doesn‘t look good, isn‘t necessary and co
OS2. Of course, if this is the root directory, don‘t cut off the trailing slash :−)

catfile
Concatenate one or more directory names and a filename to form a complete path ending with a file

curdir
Returns a string representing of the current directory. "." on UNIX.

rootdir
Returns a string representing of the root directory. "/" on UNIX.

updir
Returns a string representing of the parent directory. ".." on UNIX.

SelfLoaded methods

c_o (o)
Defines the suffix rules to compile different flavors of C files to object files.

cflags (o)
Does very much the same as the cflags script in the perl distribution. It doesn‘t return the whole co
command line, but initializes all of its parts. The const_cccmd method then actually returns the defini
08−Oct−1996 Version 5.003 389

ExtUtils::MM_VMS
ExtUtils::MM_OS2

MM_Unix Perl Programmers Reference Guide MM_Unix

 these
e same

make
the CCCMD macro which uses these parts.

clean (o)
Defines the clean target.

const_cccmd (o)
Returns the full compiler call for C programs and stores the definition in CONST_CCCMD.

const_config (o)
Defines a couple of constants in the Makefile that are imported from %Config.

const_loadlibs (o)
Defines EXTRALIBS, LDLOADLIBS, BSLOADLIBS, LD_RUN_PATH. See ExtUtils::Liblist for details.

constants (o)
Initializes lots of constants and .SUFFIXES and .PHONY

depend (o)
Same as macro for the depend attribute.

dir_target (o)
Takes an array of directories that need to exist and returns a Makefile entry for a .exists file in
directories. Returns nothing, if the entry has already been processed. We‘re helpless though, if th
directory comes as $(FOO) _and_ as "bar". Both of them get an entry, that‘s why we use "::".

dist (o)
Defines a lot of macros for distribution support.

dist_basics (o)
Defines the targets distclean, distcheck, skipcheck, manifest.

dist_ci (o)
Defines a check in target for RCS.

dist_core (o)
Defeines the targets dist, tardist, zipdist, uutardist, shdist

dist_dir (o)
Defines the scratch directory target that will hold the distribution before tar−ing (or shar−ing).

dist_test (o)
Defines a target that produces the distribution in the scratchdirectory, and runs ‘perl Makefile.PL;
;make test’ in that subdirectory.

dlsyms (o)
Used by AIX and VMS to define DL_FUNCS and DL_VARS and write the *.exp files.

dynamic (o)
Defines the dynamic target.

dynamic_bs (o)
Defines targets for bootstrap files.

dynamic_lib (o)
Defines how to produce the *.so (or equivalent) files.

exescan
Deprecated method. Use libscan instead.
390 Version 5.003 08−Oct−1996

ExtUtils::Liblist

MM_Unix Perl Programmers Reference Guide MM_Unix

npage

only if

 not

,

in the

at match
extliblist
Called by init_others, and calls ext ExtUtils::Liblist. See ExtUtils::Liblist for details.

file_name_is_absolute
Takes as argument a path and returns true, if it is an absolute path.

find_perl
Finds the executables PERL and FULLPERL

Methods to actually produce chunks of text for the Makefile
The methods here are called in the order specified by @ExtUtils::MakeMaker::MM_Sections. This ma
reflects the order as well as possible. Some methods call each other, so in doubt refer to the code.

force (o)
Just writes FORCE:

guess_name
Guess the name of this package by examining the working directory‘s name. MakeMaker calls this
the developer has not supplied a NAME attribute.

has_link_code
Returns true if C, XS, MYEXTLIB or similar objects exist within this object that need a compiler. Does
descend into subdirectories as needs_linking() does.

init_dirscan
Initializes DIR, XS, PM, C, O_FILES, H, PL_FILES, MAN*PODS, EXE_FILES.

init_main
Initializes NAME, FULLEXT, BASEEXT, PARENT_NAME, DLBASE, PERL_SRC, PERL_LIB,
PERL_ARCHLIB, PERL_INC, INSTALLDIRS, INST_*, INSTALL*, PREFIX, CONFIG, AR,
AR_STATIC_ARGS, LD, OBJ_EXT, LIB_EXT, MAP_TARGET, LIBPERL_A, VERSION_FROM
VERSION, DISTNAME, VERSION_SYM.

init_others
Initializes EXTRALIBS, BSLOADLIBS, LDLOADLIBS, LIBS, LD_RUN_PATH, OBJECT, BOOTDEP,
PERLMAINCC, LDFROM, LINKTYPE, NOOP, FIRST_MAKEFILE, MAKEFILE, NOECHO, RM_F,
RM_RF, TOUCH, CP, MV, CHMOD, UMASK_NULL

install (o)
Defines the install target.

installbin (o)
Defines targets to install EXE_FILES.

libscan (o)
Takes a path to a file that is found by init_dirscan and returns false if we don‘t want to include this file
library. Mainly used to exclude RCS, CVS, and SCCS directories from installation.

linkext (o)
Defines the linkext target which in turn defines the LINKTYPE.

lsdir
Takes as arguments a directory name and a regular expression. Returns all entries in the directory th
the regular expression.

macro (o)
Simple subroutine to insert the macros defined by the macro attribute into the Makefile.
08−Oct−1996 Version 5.003 391

ExtUtils::Liblist

MM_Unix Perl Programmers Reference Guide MM_Unix

ries.

ithout

‘t need
rt of a

ript. On

. See

 have

e after
makeaperl (o)
Called by staticmake. Defines how to write the Makefile to produce a static new perl.

makefile (o)
Defines how to rewrite the Makefile.

manifypods (o)
Defines targets and routines to translate the pods into manpages and put them into the INST_* directo

maybe_command
Returns true, if the argument is likely to be a command.

maybe_command_in_dirs
method under development. Not yet used. Ask Ilya :−)

needs_linking (o)
Does this module need linking? Looks into subdirectory objects (see also has_link_code())

nicetext
misnamed method (will have to be changed). The MM_Unix method just returns the argument w
further processing.

On VMS used to insure that colons marking targets are preceded by space − most Unix Makes don
this, but it‘s necessary under VMS to distinguish the target delimiter from a colon appearing as pa
filespec.

parse_version
parse a file and return what you think is $VERSION in this file set to

pasthru (o)
Defines the string that is passed to recursive make calls in subdirectories.

path
Takes no argument, returns the environment variable PATH as an array.

perl_script
Takes one argument, a file name, and returns the file name, if the argument is likely to be a perl sc
MM_Unix this is true for any ordinary, readable file.

perldepend (o)
Defines the dependency from all *.h files that come with the perl distribution.

pm_to_blib
Defines target that copies all files in the hash PM to their destination and autosplits them
ExtUtils::Install/pm_to_blib

post_constants (o)
Returns an empty string per default. Dedicated to overrides from within Makefile.PL after all constants
been defined.

post_initialize (o)
Returns an empty string per default. Used in Makefile.PLs to add some chunk of text to the Makefil
the object is initialized.

postamble (o)
Returns an empty string. Can be used in Makefile.PLs to write some text to the Makefile at the end.
392 Version 5.003 08−Oct−1996

ExtUtils::Install/pm_to_blib

MM_Unix Perl Programmers Reference Guide MM_Unix

ute in the

the slash

o
,

prefixify
Check a path variable in $self from %Config, if it contains a prefix, and replace it with another one.

Takes as arguments an attribute name, a search prefix and a replacement prefix. Changes the attrib
object.

processPL (o)
Defines targets to run *.PL files.

realclean (o)
Defines the realclean target.

replace_manpage_separator
Takes the name of a package, which may be a nested package, in the form Foo/Bar and replaces
with :: . Returns the replacement.

static (o)
Defines the static target.

static_lib (o)
Defines how to produce the *.a (or equivalent) files.

staticmake (o)
Calls makeaperl.

subdir_x (o)
Helper subroutine for subdirs

subdirs (o)
Defines targets to process subdirectories.

test (o)
Defines the test targets.

test_via_harness (o)
Helper method to write the test targets

test_via_script (o)
Other helper method for test.

tool_autosplit (o)
Defines a simple perl call that runs autosplit. May be deprecated by pm_to_blib soon.

tools_other (o)
Defines SHELL, LD, TOUCH, CP, MV, RM_F, RM_RF, CHMOD, UMASK_NULL in the Makefile. Als
defines the perl programs MKPATH, WARN_IF_OLD_PACKLIST, MOD_INSTALL. DOC_INSTALL
and UNINSTALL.

tool_xsubpp (o)
Determines typemaps, xsubpp version, prototype behaviour.

top_targets (o)
Defines the targets all, subdirs, config, and O_FILES

writedoc
Obsolete, depecated method. Not used since Version 5.21.
08−Oct−1996 Version 5.003 393

MM_Unix Perl Programmers Reference Guide MM_Unix

ake
xs_c (o)
Defines the suffix rules to compile XS files to C.

xs_o (o)
Defines suffix rules to go from XS to object files directly. This is only intended for broken m
implementations.

SEE ALSO
ExtUtils::MakeMaker
394 Version 5.003 08−Oct−1996

ExtUtils::MakeMaker

MM_VMS Perl Programmers Reference Guide MM_VMS

s the

ts of

ctory
lso
 avoid

ctory

n.

n.

ue to
on of
ore

 Since
e

NAME
ExtUtils::MM_VMS − methods to override UN*X behaviour in ExtUtils::MakeMaker

SYNOPSIS
 use ExtUtils::MM_VMS; # Done internally by ExtUtils::MakeMaker if needed

DESCRIPTION
See ExtUtils::MM_Unix for a documentation of the methods provided there. This package override
implementation of these methods, not the semantics.

Methods always loaded

eliminate_macros
Expands MM[KS]/Make macros in a text string, using the contents of identically named elemen
%$self, and returns the result as a file specification in Unix syntax.

fixpath
Catchall routine to clean up problem MM[SK]/Make macros. Expands macros in any dire
specification, in order to avoid juxtaposing two VMS−syntax directories when MM[SK] is run. A
expands expressions which are all macro, so that we can tell how long the expansion is, and
overrunning DCL‘s command buffer when MM[KS] is running.

If optional second argument has a TRUE value, then the return string is a VMS−syntax dire
specification, otherwise it is a VMS−syntax file specification.

catdir
Concatenates a list of file specifications, and returns the result as a VMS−syntax directory specificatio

catfile
Concatenates a list of file specifications, and returns the result as a VMS−syntax directory specificatio

curdir (override)
Returns a string representing of the current directory.

rootdir (override)
Returns a string representing of the root directory.

updir (override)
Returns a string representing of the parent directory.

SelfLoaded methods
Those methods which override default MM_Unix methods are marked "(override)", while methods uniq
MM_VMS are marked "(specific)". For overridden methods, documentation is limited to an explanati
why this method overrides the MM_Unix method; see the ExtUtils::MM_Unix documentation for m
details.

guess_name (override)
Try to determine name of extension being built. We begin with the name of the current directory.
VMS filenames are case−insensitive, however, we look for a .pm file whose name matches that of th
current directory (presumably the ‘main’ .pm file for this extension), and try to find a package statement
from which to obtain the Mixed::Case package name.

find_perl (override)
Use VMS file specification syntax and CLI commands to find and invoke Perl images.

path (override)
Translate logical name DCL$PATH as a searchlist, rather than trying to split string value of
$ENV{‘PATH‘}.
08−Oct−1996 Version 5.003 395

MM_VMS Perl Programmers Reference Guide MM_VMS

tch an

le

d.

adds a

ted or

nsion
of this

ctives.

 list of

DCL‘s
one

rget file
maybe_command (override)
Follows VMS naming conventions for executable files. If the name passed in doesn‘t exactly ma
executable file, appends .Exe to check for executable image, and .Com to check for DCL procedure. If this
fails, checks Sys$Share: for an executable file having the name specified. Finally, appends .Exe and
checks again.

maybe_command_in_dirs (override)
Uses DCL argument quoting on test command line.

perl_script (override)
If name passed in doesn‘t specify a readable file, appends .pl and tries again, since it‘s customary to have fi
types on all files under VMS.

file_name_is_absolute (override)
Checks for VMS directory spec as well as Unix separators.

replace_manpage_separator
Use as separator a character which is legal in a VMS−syntax file name.

init_others (override)
Provide VMS−specific forms of various utility commands, then hand off to the default MM_Unix metho

constants (override)
Fixes up numerous file and directory macros to insure VMS syntax regardless of input syntax. Also
few VMS−specific macros and makes lists of files comma−separated.

const_loadlibs (override)
Basically a stub which passes through library specfications provided by the caller. Will be upda
removed when VMS support is added to ExtUtils::Liblist.

cflags (override)
Bypass shell script and produce qualifiers for CC directly (but warn user if a shell script for this exte
exists). Fold multiple /Defines into one, since some C compilers pay attention to only one instance
qualifier on the command line.

const_cccmd (override)
Adds directives to point C preprocessor to the right place when handling #include <sys/foo.h> dire
Also constructs CC command line a bit differently than MM_Unix method.

pm_to_blib (override)
DCL still accepts a maximum of 255 characters on a command line, so we write the (potentially) long
file names to a temp file, then persuade Perl to read it instead of the command line to find args.

tool_autosplit (override)
Use VMS−style quoting on command line.

tool_sxubpp (override)
Use VMS−style quoting on xsubpp command line.

xsubpp_version (override)
Test xsubpp exit status according to VMS rules ($sts & 1 ==> good) rather than Unix rules ($sts == 0
==> good).

tools_other (override)
Adds a few MM[SK] macros, and shortens some the installatin commands, in order to stay under
255−character limit. Also changes EQUALIZE_TIMESTAMP to set revision date of target file to
second later than source file, since MMK interprets precisely equal revision dates for a source and ta
as a sign that the target needs to be updated.
396 Version 5.003 08−Oct−1996

MM_VMS Perl Programmers Reference Guide MM_VMS

, and

 time

files

d line
dist (override)
Provide VMSish defaults for some values, then hand off to default MM_Unix method.

c_o (override)
Use VMS syntax on command line. In particular, $(DEFINE) and $(PERL_INC) have been pulled into
$(CCCMD). Also use MM[SK] macros.

xs_c (override)
Use MM[SK] macros.

xs_o (override)
Use MM[SK] macros, and VMS command line for C compiler.

top_targets (override)
Use VMS quoting on command line for Version_check.

dlsyms (override)
Create VMS linker options files specifying universal symbols for this extension‘s shareable image
listing other shareable images or libraries to which it should be linked.

dynamic_lib (override)
Use VMS Link command.

dynamic_bs (override)
Use VMS−style quoting on Mkbootstrap command line.

static_lib (override)
Use VMS commands to manipulate object library.

manifypods (override)
Use VMS−style quoting on command line, and VMS logical name to specify fallback location at build
if we can‘t find pod2man.

processPL (override)
Use VMS−style quoting on command line.

installbin (override)
Stay under DCL‘s 255 character command line limit once again by splitting potentially long list of
across multiple lines in realclean target.

subdir_x (override)
Use VMS commands to change default directory.

clean (override)
Split potentially long list of files across multiple commands (in order to stay under the magic comman
limit). Also use MM[SK] commands for handling subdirectories.

realclean (override)
Guess what we‘re working around? Also, use MM[SK] for subdirectories.

dist_basics (override)
Use VMS−style quoting on command line.

dist_core (override)
Syntax for invoking VMS_Share differs from that for Unix shar, so shdist target actions are
VMS−specific.
08−Oct−1996 Version 5.003 397

MM_VMS Perl Programmers Reference Guide MM_VMS

a few

thod
on is
SK]

ng, it‘s
 path.

 from a
dist_dir (override)
Use VMS−style quoting on command line.

dist_test (override)
Use VMS commands to change default directory, and use VMS−style quoting on command line.

install (override)
Work around DCL‘s 255 character limit several times,and use VMS−style command line quoting in
cases.

perldepend (override)
Use VMS−style syntax for files; it‘s cheaper to just do it directly here than to have the MM_Unix me
call catfile repeatedly. Also use config.vms as source of original config data if the Perl distributi
available; config.sh is an ancillary file under VMS. Finally, if we have to rebuild Config.pm, use MM[
to do it.

makefile (override)
Use VMS commands and quoting.

test (override)
Use VMS commands for handling subdirectories.

test_via_harness (override)
Use VMS−style quoting on command line.

test_via_script (override)
Use VMS−style quoting on command line.

makeaperl (override)
Undertake to build a new set of Perl images using VMS commands. Since VMS does dynamic loadi
not necessary to statically link each extension into the Perl image, so this isn‘t the normal build
Consequently, it hasn‘t really been tested, and may well be incomplete.

ext (specific)
Stub routine standing in for ExtUtils::LibList::ext until VMS support is added to that package.

nicetext (override)
Insure that colons marking targets are preceded by space, in order to distinguish the target delimiter
colon appearing as part of a filespec.
398 Version 5.003 08−Oct−1996

MakeMaker Perl Programmers Reference Guide MakeMaker

n the

idden.

L. Is
 single

called

t adds
 of perl

f the
NAME
ExtUtils::MakeMaker − create an extension Makefile

SYNOPSIS
use ExtUtils::MakeMaker;

WriteMakefile(ATTRIBUTE => VALUE [, ...]);

which is really

MM−>new(\%att)−>flush;

DESCRIPTION
This utility is designed to write a Makefile for an extension module from a Makefile.PL. It is based o
Makefile.SH model provided by Andy Dougherty and the perl5−porters.

It splits the task of generating the Makefile into several subroutines that can be individually overr
Each subroutine returns the text it wishes to have written to the Makefile.

MakeMaker is object oriented. Each directory below the current directory that contains a Makefile.P
treated as a separate object. This makes it possible to write an unlimited number of Makefiles with a
invocation of WriteMakefile() .

How To Write A Makefile.PL
The short answer is: Don‘t. Run h2xs(1) before you start thinking about writing a module. For so
pm−only modules that consist of *.pm files only, h2xs has the very useful −X switch. This will generate
dummy files of all kinds that are useful for the module developer.

The medium answer is:

 use ExtUtils::MakeMaker;
 WriteMakefile(NAME => "Foo::Bar");

The long answer is below.

Default Makefile Behaviour
The generated Makefile enables the user of the extension to invoke

 perl Makefile.PL # optionally "perl Makefile.PL verbose"
 make
 make test # optionally set TEST_VERBOSE=1
 make install # See below

The Makefile to be produced may be altered by adding arguments of the form KEY=VALUE. E.g.

 perl Makefile.PL PREFIX=/tmp/myperl5

Other interesting targets in the generated Makefile are

 make config # to check if the Makefile is up−to−date
 make clean # delete local temp files (Makefile gets renamed)
 make realclean # delete derived files (including ./blib)
 make ci # check in all the files in the MANIFEST file
 make dist # see below the Distribution Support section

make test
MakeMaker checks for the existence of a file named "test.pl" in the current directory and if it exists i
commands to the test target of the generated Makefile that will execute the script with the proper set
−I options.

MakeMaker also checks for any files matching glob("t/*.t"). It will add commands to the test target o
generated Makefile that execute all matching files via the Test::Harness module with the −I switches set
08−Oct−1996 Version 5.003 399

Test::Harness

MakeMaker Perl Programmers Reference Guide MakeMaker

g

ies to
DIRS

stall a

en the
s

l.

as been
correctly.

make install
make alone puts all relevant files into directories that are named by the macros INST_LIB,
INST_ARCHLIB, INST_SCRIPT, INST_MAN1DIR, and INST_MAN3DIR. All these default to somethin
below ./blib if you are not building below the perl source directory. If you are building below the perl
source, INST_LIB and INST_ARCHLIB default to
 ../../lib, and INST_SCRIPT is not defined.

The install target of the generated Makefile copies the files found below each of the INST_* director
their INSTALL* counterparts. Which counterparts are chosen depends on the setting of INSTALL
according to the following table:

 INSTALLDIRS set to
 perl site

 INST_ARCHLIB INSTALLARCHLIB INSTALLSITEARCH
 INST_LIB INSTALLPRIVLIB INSTALLSITELIB
 INST_BIN INSTALLBIN
 INST_SCRIPT INSTALLSCRIPT
 INST_MAN1DIR INSTALLMAN1DIR
 INST_MAN3DIR INSTALLMAN3DIR

The INSTALL... macros in turn default to their %Config ($Config{installprivlib},
$Config{installarchlib}, etc.) counterparts.

You can check the values of these variables on your system with

 perl −MConfig −le ’print join $/, map
 sprintf("%20s: %s", $_, $Config{$_}),
 grep /^install/, keys %Config’

And to check the sequence in which the library directories are searched by perl, run

 perl −le ’print join $/, @INC’

PREFIX attribute
The PREFIX attribute can be used to set the INSTALL* attributes in one go. The quickest way to in
module in a non−standard place

 perl Makefile.PL PREFIX=~

This will replace the string specified by $Config{prefix} in all $Config{install*} values.

Note, that the tilde expansion is done by MakeMaker, not by perl by default, nor by make.

If the user has superuser privileges, and is not working on AFS (Andrew File System) or relatives, th
defaults for INSTALLPRIVLIB, INSTALLARCHLIB, INSTALLSCRIPT, etc. will be appropriate, and thi
incantation will be the best:

 perl Makefile.PL; make; make test
 make install

make install per default writes some documentation of what has been done into the file
$(INSTALLARCHLIB)/perllocal.pod. This feature can be bypassed by calling make pure_instal

AFS users
will have to specify the installation directories as these most probably have changed since perl itself h
installed. They will have to do this by calling

 perl Makefile.PL INSTALLSITELIB=/afs/here/today \
INSTALLSCRIPT=/afs/there/now INSTALLMAN3DIR=/afs/for/manpages

 make
400 Version 5.003 08−Oct−1996

MakeMaker Perl Programmers Reference Guide MakeMaker

he AFS

ing. On
with the
akefile

und in
 on
 new
gh for

ading.

B and
ere

ed perl
u can
nsions

perl.

t
s a
Be careful to repeat this procedure every time you recompile an extension, unless you are sure t
installation directories are still valid.

Static Linking of a new Perl Binary
An extension that is built with the above steps is ready to use on systems supporting dynamic load
systems that do not support dynamic loading, any newly created extension has to be linked together
available resources. MakeMaker supports the linking process by creating appropriate targets in the M
whenever an extension is built. You can invoke the corresponding section of the makefile with

 make perl

That produces a new perl binary in the current directory with all extensions linked in that can be fo
INST_ARCHLIB , SITELIBEXP, and PERL_ARCHLIB. To do that, MakeMaker writes a new Makefile,
UNIX, this is called Makefile.aperl (may be system dependent). If you want to force the creation of a
perl, it is recommended, that you delete this Makefile.aperl, so the directories are searched−throu
linkable libraries again.

The binary can be installed into the directory where perl normally resides on your machine with

 make inst_perl

To produce a perl binary with a different name than perl , either say

 perl Makefile.PL MAP_TARGET=myperl
 make myperl
 make inst_perl

or say

 perl Makefile.PL
 make myperl MAP_TARGET=myperl
 make inst_perl MAP_TARGET=myperl

In any case you will be prompted with the correct invocation of the inst_perl target that installs the new
binary into INSTALLBIN.

make inst_perl per default writes some documentation of what has been done into the file
$(INSTALLARCHLIB)/perllocal.pod. This can be bypassed by calling make pure_inst_perl.

Warning: the inst_perl: target will most probably overwrite your existing perl binary. Use with care!

Sometimes you might want to build a statically linked perl although your system supports dynamic lo
In this case you may explicitly set the linktype with the invocation of the Makefile.PL or make:

 perl Makefile.PL LINKTYPE=static # recommended

or

 make LINKTYPE=static # works on most systems

Determination of Perl Library and Installation Locations
MakeMaker needs to know, or to guess, where certain things are located. Especially INST_LI
INST_ARCHLIB (where to put the files during the make(1) run), PERL_LIB and PERL_ARCHLIB (wh
to read existing modules from), and PERL_INC (header files and libperl*.*).

Extensions may be built either using the contents of the perl source directory tree or from the install
library. The recommended way is to build extensions after you have run ‘make install’ on perl itself. Yo
do that in any directory on your hard disk that is not below the perl source tree. The support for exte
below the ext directory of the perl distribution is only good for the standard extensions that come with

If an extension is being built below the ext/ directory of the perl source then MakeMaker will se
PERL_SRC automatically (e.g., ../..). If PERL_SRC is defined and the extension is recognized a
standard extension, then other variables default to the following:
08−Oct−1996 Version 5.003 401

MakeMaker Perl Programmers Reference Guide MakeMaker

fined

 in the

 the
ed
. If
me
e it

ifferent
d in the
uthor

ribute

ags

tributes,
 PERL_INC = PERL_SRC
 PERL_LIB = PERL_SRC/lib
 PERL_ARCHLIB = PERL_SRC/lib
 INST_LIB = PERL_LIB
 INST_ARCHLIB = PERL_ARCHLIB

If an extension is being built away from the perl source then MakeMaker will leave PERL_SRC unde
and default to using the installed copy of the perl library. The other variables default to the following:

 PERL_INC = $archlibexp/CORE
 PERL_LIB = $privlibexp
 PERL_ARCHLIB = $archlibexp
 INST_LIB = ./blib/lib
 INST_ARCHLIB = ./blib/arch

If perl has not yet been installed then PERL_SRC can be defined on the command line as shown
previous section.

Which architecture dependent directory?
If you don‘t want to keep the defaults for the INSTALL* macros, MakeMaker helps you to minimize
typing needed: the usual relationship between INSTALLPRIVLIB and INSTALLARCHLIB is determin
by Configure at perl compilation time. MakeMaker supports the user who sets INSTALLPRIVLIB
INSTALLPRIVLIB is set, but INSTALLARCHLIB not, then MakeMaker defaults the latter to be the sa
subdirectory of INSTALLPRIVLIB as Configure decided for the counterparts in %Config , otherwis
defaults to INSTALLPRIVLIB. The same relationship holds for INSTALLSITELIB and
INSTALLSITEARCH.

MakeMaker gives you much more freedom than needed to configure internal variables and get d
results. It is worth to mention, that make(1) also lets you configure most of the variables that are use
Makefile. But in the majority of situations this will not be necessary, and should only be done, if the a
of a package recommends it (or you know what you‘re doing).

Using Attributes and Parameters
The following attributes can be specified as arguments to WriteMakefile() or as NAME=VALUE pairs
on the command line:

C Ref to array of *.c file names. Initialised from a directory scan and the values portion of the XS att
hash. This is not currently used by MakeMaker but may be handy in Makefile.PLs.

CONFIG
Arrayref. E.g. [qw(archname manext)] defines ARCHNAME & MANEXT from config.sh. MakeMaker
will add to CONFIG the following values anyway: ar cc cccdlflags ccdlflags dlext dlsrc ld lddlfl
ldflags libc lib_ext obj_ext ranlib sitelibexp sitearchexp so

CONFIGURE
CODE reference. The subroutine should return a hash reference. The hash may contain further at
e.g. {LIBS => ...}, that have to be determined by some evaluation method.

DEFINE
Something like "−DHAVE_UNISTD_H"

DIR
Ref to array of subdirectories containing Makefile.PLs e.g. [‘sdbm’] in ext/SDBM_File

DISTNAME
Your name for distributing the package (by tar file). This defaults to NAME above.
402 Version 5.003 08−Oct−1996

MakeMaker Perl Programmers Reference Guide MakeMaker

ue pair
er AIX
in the

er AIX
sion

T is

ile.PL

clean

on the
your

idden.

 with
or. If
itly

. If
ill be

ile.PL
DL_FUNCS
Hashref of symbol names for routines to be made available as universal symbols. Each key/val
consists of the package name and an array of routine names in that package. Used only und
(export lists) and VMS (linker options) at present. The routine names supplied will be expanded
same way as XSUB names are expanded by the XS() macro. Defaults to

 {"$(NAME)" => ["boot_$(NAME)"] }

e.g.

 {"RPC" => [qw(boot_rpcb rpcb_gettime getnetconfigent)],
 "NetconfigPtr" => [’DESTROY’] }

DL_VARS
Array of symbol names for variables to be made available as universal symbols. Used only und
(export lists) and VMS (linker options) at present. Defaults to []. (e.g. [qw(Foo_ver
Foo_numstreams Foo_tree)])

EXCLUDE_EXT
Array of extension names to exclude when doing a static build. This is ignored if INCLUDE_EX
present. Consult INCLUDE_EXT for more details. (e.g. [qw(Socket POSIX)])

This attribute may be most useful when specified as a string on the commandline: perl Makef
EXCLUDE_EXT=‘Socket Safe’

EXE_FILES
Ref to array of executable files. The files will be copied to the INST_SCRIPT directory. Make real
will delete them from there again.

NO_VC
In general any generated Makefile checks for the current version of MakeMaker and the versi
Makefile was built under. If NO_VC is set, the version check is neglected. Do not write this into
Makefile.PL, use it interactively instead.

FIRST_MAKEFILE
The name of the Makefile to be produced. Defaults to the contents of MAKEFILE, but can be overr
This is used for the second Makefile that will be produced for the MAP_TARGET.

FULLPERL
Perl binary able to run this extension.

H Ref to array of *.h file names. Similar to C.

INC
Include file dirs eg: "−I/usr/5include −I/path/to/inc"

INCLUDE_EXT
Array of extension names to be included when doing a static build. MakeMaker will normally build
all of the installed extensions when doing a static build, and that is usually the desired behavi
INCLUDE_EXT is present then MakeMaker will build only with those extensions which are explic
mentioned. (e.g. [qw(Socket POSIX)])

It is not necessary to mention DynaLoader or the current extension when filling in INCLUDE_EXT
the INCLUDE_EXT is mentioned but is empty then only DynaLoader and the current extension w
included in the build.

This attribute may be most useful when specified as a string on the commandline: perl Makef
INCLUDE_EXT=‘POSIX Socket Devel::Peek’
08−Oct−1996 Version 5.003 403

MakeMaker Perl Programmers Reference Guide MakeMaker

is

chlib
 with

to

to

is

ke

ve a
.

 see
INSTALLARCHLIB
Used by ‘make install‘, which copies files from INST_ARCHLIB to this directory if INSTALLDIRS
set to perl.

INSTALLBIN
Directory to install binary files (e.g. tkperl) into.

INSTALLDIRS
Determines which of the two sets of installation directories to choose: installprivlib and installar
versus installsitelib and installsitearch. The first pair is chosen with INSTALLDIRS=perl, the second
INSTALLDIRS=site. Default is site.

INSTALLMAN1DIR
This directory gets the man pages at ‘make install’ time. Defaults to $Config{installman1dir}.

INSTALLMAN3DIR
This directory gets the man pages at ‘make install’ time. Defaults to $Config{installman3dir}.

INSTALLPRIVLIB
Used by ‘make install‘, which copies files from INST_LIB to this directory if INSTALLDIRS is set
perl.

INSTALLSCRIPT
Used by ‘make install’ which copies files from INST_SCRIPT to this directory.

INSTALLSITELIB
Used by ‘make install‘, which copies files from INST_LIB to this directory if INSTALLDIRS is set
site (default).

INSTALLSITEARCH
Used by ‘make install‘, which copies files from INST_ARCHLIB to this directory if INSTALLDIRS
set to site (default).

INST_ARCHLIB
Same as INST_LIB for architecture dependent files.

INST_BIN
Directory to put real binary files during ‘make’. These will be copied to INSTALLBIN during ‘ma
install’

INST_EXE
Old name for INST_SCRIPT. Deprecated. Please use INST_SCRIPT if you need to use it.

INST_LIB
Directory where we put library files of this extension while building it.

INST_MAN1DIR
Directory to hold the man pages at ‘make’ time

INST_MAN3DIR
Directory to hold the man pages at ‘make’ time

INST_SCRIPT
Directory, where executable files should be installed during ‘make’. Defaults to "./blib/bin", just to ha
dummy location during testing. make install will copy the files in INST_SCRIPT to INSTALLSCRIPT

LDFROM
defaults to "$(OBJECT)" and is used in the ld command to specify what files to link/load from (also
dynamic_lib below for how to specify ld flags)
404 Version 5.003 08−Oct−1996

MakeMaker Perl Programmers Reference Guide MakeMaker

st one

 do not

king

ndled

OD
sted at

inary.

ld be

, and
lean

ands.
LIBPERL_A
The filename of the perllibrary that will be used together with this extension. Defaults to libperl.a.

LIBS
An anonymous array of alternative library specifications to be searched for (in order) until at lea
library is found. E.g.

 ’LIBS’ => ["−lgdbm", "−ldbm −lfoo", "−L/path −ldbm.nfs"]

Mind, that any element of the array contains a complete set of arguments for the ld command. So
specify

 ’LIBS’ => ["−ltcl", "−ltk", "−lX11"]

See ODBM_File/Makefile.PL for an example, where an array is needed. If you specify a scalar as in

 ’LIBS’ => "−ltcl −ltk −lX11"

MakeMaker will turn it into an array with one element.

LINKTYPE
‘static’ or ‘dynamic’ (default unless usedl=undef in config.sh). Should only be used to force static lin
(also see linkext below).

MAKEAPERL
Boolean which tells MakeMaker, that it should include the rules to make a perl. This is ha
automatically as a switch by MakeMaker. The user normally does not need it.

MAKEFILE
The name of the Makefile to be produced.

MAN1PODS
Hashref of pod−containing files. MakeMaker will default this to all EXE_FILES files that include P
directives. The files listed here will be converted to man pages and installed as was reque
Configure time.

MAN3PODS
Hashref of .pm and .pod files. MakeMaker will default this to all
 .pod and any .pm files that include POD directives. The files listed
here will be converted to man pages and installed as was requested at Configure time.

MAP_TARGET
If it is intended, that a new perl binary be produced, this variable may hold a name for that b
Defaults to perl

MYEXTLIB
If the extension links to a library that it builds set this to the name of the library (see SDBM_File)

NAME
Perl module name for this extension (DBD::Oracle). This will default to the directory name but shou
explicitly defined in the Makefile.PL.

NEEDS_LINKING
MakeMaker will figure out, if an extension contains linkable code anywhere down the directory tree
will set this variable accordingly, but you can speed it up a very little bit, if you define this boo
variable yourself.

NOECHO
Defaults to @. By setting it to an empty string you can generate a Makefile that echos all comm
Mainly used in debugging MakeMaker itself.
08−Oct−1996 Version 5.003 405

MakeMaker Perl Programmers Reference Guide MakeMaker

ll

L file

hen
will

ry. A
ride

, if
 and
 of

ile) are
e only
NORECURS
Boolean. Attribute to inhibit descending into subdirectories.

OBJECT
List of object files, defaults to ‘$(BASEEXT)$(OBJ_EXT)‘, but can be a long string containing a
object files, e.g. "tkpBind.o tkpButton.o tkpCanvas.o"

OPTIMIZE
Defaults to −O. Set it to −g to turn debugging on. The flag is passed to subdirectory makes.

PERL
Perl binary for tasks that can be done by miniperl

PERLMAINCC
The call to the program that is able to compile perlmain.c. Defaults to $(CC).

PERL_ARCHLIB
Same as above for architecture dependent files

PERL_LIB
Directory containing the Perl library to use.

PERL_SRC
Directory containing the Perl source code (use of this should be avoided, it may be undefined)

PL_FILES
Ref to hash of files to be processed as perl programs. MakeMaker will default to any found *.P
(except Makefile.PL) being keys and the basename of the file being the value. E.g.

 {’foobar.PL’ => ’foobar’}

The *.PL files are expected to produce output to the target files themselves.

PM
Hashref of .pm files and *.pl files to be installed. e.g.

 {’name_of_file.pm’ => ’$(INST_LIBDIR)/install_as.pm’}

By default this will include *.pm and *.pl. If a lib directory exists and is not listed in DIR (above) t
any *.pm and *.pl files it contains will also be included by default. Defining PM in the Makefile.PL
override PMLIBDIRS.

PMLIBDIRS
Ref to array of subdirectories containing library files. Defaults to [‘lib‘, $(BASEEXT)]. The directories
will be scanned and any files they contain will be installed in the corresponding location in the libra
libscan() method can be used to alter the behaviour. Defining PM in the Makefile.PL will over
PMLIBDIRS.

PREFIX
Can be used to set the three INSTALL* attributes in one go (except for probably INSTALLMAN1DIR
it is not below PREFIX according to %Config). They will have PREFIX as a common directory node
will branch from that node into lib/, lib/ARCHNAME or whatever Configure decided at the build time
your perl (unless you override one of them, of course).

PREREQ_PM
Hashref: Names of modules that need to be available to run this extension (e.g. Fcntl for SDBM_F
the keys of the hash and the desired version is the value. If the required version number is 0, w
check if any version is installed already.
406 Version 5.003 08−Oct−1996

MakeMaker Perl Programmers Reference Guide MakeMaker

e the
e it, if

an the
 A
 The

mine
s one

on

at the

ibute.
SKIP
Arryref. E.g. [qw(name1 name2)] skip (do not write) sections of the Makefile. Caution! Do not us
SKIP attribute for the neglectible speedup. It may seriously damage the resulting Makefile. Only us
you really need it.

TYPEMAPS
Ref to array of typemap file names. Use this when the typemaps are in some directory other th
current directory or when they are not named typemap. The last typemap in the list takes precedence.
typemap in the current directory has highest precedence, even if it isn‘t listed in TYPEMAPS.
default system typemap has lowest precedence.

VERSION
Your version number for distributing the package. This defaults to 0.1.

VERSION_FROM
Instead of specifying the VERSION in the Makefile.PL you can let MakeMaker parse a file to deter
the version number. The parsing routine requires that the file named by VERSION_FROM contain
single line to compute the version number. The first line in the file that contains the regular expressi

 /\$(([\w\:\’]*)\bVERSION)\b.*\=/

will be evaluated with eval() and the value of the named variable after the eval() will be assigned to
the VERSION attribute of the MakeMaker object. The following lines will be parsed o.k.:

 $VERSION = ’1.00’;
 ($VERSION) = ’$Revision: 1.207 $ ’ =~ /\$Revision:\s+([^\s]+)/;
 $FOO::VERSION = ’1.10’;

but these will fail:

 my $VERSION = ’1.01’;
 local $VERSION = ’1.02’;
 local $FOO::VERSION = ’1.30’;

The file named in VERSION_FROM is added as a dependency to Makefile to guarantee, th
Makefile contains the correct VERSION macro after a change of the file.

XS
Hashref of .xs files. MakeMaker will default this. e.g.

 {’name_of_file.xs’ => ’name_of_file.c’}

The .c files will automatically be included in the list of files deleted by a make clean.

XSOPT
String of options to pass to xsubpp. This might include −C++ or −extern . Do not include typemaps
here; the TYPEMAP parameter exists for that purpose.

XSPROTOARG
May be set to an empty string, which is identical to −prototypes , or −noprototypes . See the
xsubpp documentation for details. MakeMaker defaults to the empty string.

XS_VERSION
Your version number for the .xs file of this package. This defaults to the value of the VERSION attr

Additional lowercase attributes
can be used to pass parameters to the methods which implement that part of the Makefile.
08−Oct−1996 Version 5.003 407

MakeMaker Perl Programmers Reference Guide MakeMaker

get file
on your
ich

afely.

rivate
kefile.

 find
 for

it the
clean
 {FILES => "*.xyz foo"}

depend
 {ANY_TARGET => ANY_DEPENDECY, ...}

dist
 {TARFLAGS => ’cvfF’, COMPRESS => ’gzip’, SUFFIX => ’gz’,
 SHAR => ’shar −m’, DIST_CP => ’ln’, ZIP => ’/bin/zip’,
 ZIPFLAGS => ’−rl’, DIST_DEFAULT => ’private tardist’ }

If you specify COMPRESS, then SUFFIX should also be altered, as it is needed to tell make the tar
of the compression. Setting DIST_CP to ln can be useful, if you need to preserve the timestamps
files. DIST_CP can take the values ‘cp‘, which copies the file, ‘ln‘, which links the file, and ‘best’ wh
copies symbolic links and links the rest. Default is ‘best’.

dynamic_lib
 {ARMAYBE => ’ar’, OTHERLDFLAGS => ’...’, INST_DYNAMIC_DEP => ’...’}

installpm
Deprecated as of MakeMaker 5.23. See ExtUtils::MM_Unix/pm_to_blib.

linkext
 {LINKTYPE => ’static’, ’dynamic’ or ’’}

NB: Extensions that have nothing but *.pm files had to say

 {LINKTYPE => ’’}

with Pre−5.0 MakeMakers. Since version 5.00 of MakeMaker such a line can be deleted s
MakeMaker recognizes, when there‘s nothing to be linked.

macro
 {ANY_MACRO => ANY_VALUE, ...}

realclean
 {FILES => ’$(INST_ARCHAUTODIR)/*.xyz’}

tool_autosplit
 {MAXLEN =E<gt> 8}

Overriding MakeMaker Methods
If you cannot achieve the desired Makefile behaviour by specifying attributes you may define p
subroutines in the Makefile.PL. Each subroutines returns the text it wishes to have written to the Ma
To override a section of the Makefile you can either say:

sub MY::c_o { "new literal text" }

or you can edit the default by saying something like:

sub MY::c_o {
 my($inherited) = shift−>SUPER::c_o(@_);

 $inherited =~ s/old text/new text/;
 $inherited;
}

If you running experiments with embedding perl as a library into other applications, you might
MakeMaker not sufficient. You‘d better have a look at ExtUtils::embed which is a collection of utilities
embedding.

If you still need a different solution, try to develop another subroutine, that fits your needs and subm
408 Version 5.003 08−Oct−1996

ExtUtils::MM_Unix/pm_to_blib

MakeMaker Perl Programmers Reference Guide MakeMaker

ates
eir

te
e as in

ash
erride

om the

(See

tion as

ame

on
e

diffs to perl5−porters@nicoh.com or comp.lang.perl.misc as appropriate.

For a complete description of all MakeMaker methods see ExtUtils::MM_Unix.

Here is a simple example of how to add a new target to the generated Makefile:

 sub MY::postamble {
’

 $(MYEXTLIB): sdbm/Makefile
 cd sdbm && $(MAKE) all

 ’;
 }

Hintsfile support
MakeMaker.pm uses the architecture specific information from Config.pm. In addition it evalu
architecture specific hints files in a hints/ directory. The hints files are expected to be named like th
counterparts in PERL_SRC/hints , but with an .pl file name extension (eg. next_3_2.pl). They are
simply eval ed by MakeMaker within the WriteMakefile() subroutine, and can be used to execu
commands as well as to include special variables. The rules which hintsfile is chosen are the sam
Configure.

The hintsfile is eval() ed immediately after the arguments given to WriteMakefile are stuffed into a h
reference $self but before this reference becomes blessed. So if you want to do the equivalent to ov
or create an attribute you would say something like

 $self−>{LIBS} = [’−ldbm −lucb −lc’];

Distribution Support
For authors of extensions MakeMaker provides several Makefile targets. Most of the support comes fr
ExtUtils::Manifest module, where additional documentation can be found.

make distcheck
reports which files are below the build directory but not in the MANIFEST file and vice versa.
ExtUtils::Manifest::fullcheck() for details)

make skipcheck
reports which files are skipped due to the entries in the MANIFEST.SKIP file (See
ExtUtils::Manifest::skipcheck() for details)

make distclean
does a realclean first and then the distcheck. Note that this is not needed to build a new distribu
long as you are sure, that the MANIFEST file is ok.

make manifest
rewrites the MANIFEST file, adding all remaining files found (See
ExtUtils::Manifest::mkmanifest() for details)

make distdir
Copies all the files that are in the MANIFEST file to a newly created directory with the n
$(DISTNAME)−$(VERSION). If that directory exists, it will be removed first.

make disttest
Makes a distdir first, and runs a perl Makefile.PL , a make, and a make test in that directory.

make tardist
First does a distdir. Then a command $(PREOP) which defaults to a null command, followed by
$(TOUNIX), which defaults to a null command under UNIX, and will convert files in distributi
directory to UNIX format otherwise. Next it runs tar on that directory into a tarfile and deletes th
directory. Finishes with a command $(POSTOP) which defaults to a null command.
08−Oct−1996 Version 5.003 409

ExtUtils::MM_Unix

MakeMaker Perl Programmers Reference Guide MakeMaker

s
ith a

and

 of the
make dist
Defaults to $(DIST_DEFAULT) which in turn defaults to tardist.

make uutardist
Runs a tardist first and uuencodes the tarfile.

make shdist
First does a distdir. Then a command $(PREOP) which defaults to a null command. Next it run
shar on that directory into a sharfile and deletes the intermediate directory again. Finishes w
command $(POSTOP) which defaults to a null command. Note: For shdist to work properly a shar
program that can handle directories is mandatory.

make zipdist
First does a distdir. Then a command $(PREOP) which defaults to a null command. Runs $(ZIP)
$(ZIPFLAGS) on that directory into a zipfile. Then deletes that directory. Finishes with a comm
$(POSTOP) which defaults to a null command.

make ci
Does a $(CI) and a $(RCS_LABEL) on all files in the MANIFEST file.

Customization of the dist targets can be done by specifying a hash reference to the dist attribute
WriteMakefile call. The following parameters are recognized:

 CI (’ci −u’)
 COMPRESS (’compress’)
 POSTOP (’@ :’)
 PREOP (’@ :’)
 TO_UNIX (depends on the system)
 RCS_LABEL (’rcs −q −Nv$(VERSION_SYM):’)
 SHAR (’shar’)
 SUFFIX (’Z’)
 TAR (’tar’)
 TARFLAGS (’cvf’)
 ZIP (’zip’)
 ZIPFLAGS (’−r’)

An example:

 WriteMakefile(’dist’ => { COMPRESS=>"gzip", SUFFIX=>"gz" })

SEE ALSO
ExtUtils::MM_Unix, ExtUtils::Manifest, ExtUtils::testlib, ExtUtils::Install, ExtUtils::embed

AUTHORS
Andy Dougherty <doughera@lafcol.lafayette.edu>, Andreas König
<A.Koenig@franz.ww.TU−Berlin.DE>, Tim Bunce <Tim.Bunce@ig.co.uk>. VMS support by Charles
Bailey <bailey@genetics.upenn.edu>. OS/2 support by Ilya Zakharevich <ilya@math.ohio−state.edu>.
Contact the makemaker mailing list mailto:makemaker@franz.ww.tu−berlin.de , if you have
any questions.
410 Version 5.003 08−Oct−1996

Manifest Perl Programmers Reference Guide Manifest

ble

in
in a
re TAB

nc.

ill

ctory.

third

 by
ical
NAME
ExtUtils::Manifest − utilities to write and check a MANIFEST file

SYNOPSIS
require ExtUtils::Manifest;

ExtUtils::Manifest::mkmanifest;

ExtUtils::Manifest::manicheck;

ExtUtils::Manifest::filecheck;

ExtUtils::Manifest::fullcheck;

ExtUtils::Manifest::skipcheck;

ExtUtild::Manifest::manifind();

ExtUtils::Manifest::maniread($file);

ExtUtils::Manifest::manicopy($read,$target,$how);

DESCRIPTION
Mkmanifest() writes all files in and below the current directory to a file named in the global varia
$ExtUtils::Manifest::MANIFEST (which defaults to MANIFEST) in the current directory. It works
similar to

 find . −print

but in doing so checks each line in an existing MANIFEST file and includes any comments that are found
the existing MANIFEST file in the new one. Anything between white space and an end of line with
MANIFEST file is considered to be a comment. Filenames and comments are seperated by one or mo
characters in the output. All files that match any regular expression in a file MANIFEST.SKIP (if such a file
exists) are ignored.

Manicheck() checks if all the files within a MANIFEST in the current directory really do exist. It only
reports discrepancies and exits silently if MANIFEST and the tree below the current directory are in sy

Filecheck() finds files below the current directory that are not mentioned in the MANIFEST file. An
optional file MANIFEST.SKIP will be consulted. Any file matching a regular expression in such a file w
not be reported as missing in the MANIFEST file.

Fullcheck() does both a manicheck() and a filecheck() .

Skipcheck() lists all the files that are skipped due to your MANIFEST.SKIP file.

Manifind() retruns a hash reference. The keys of the hash are the files found below the current dire

Maniread($file) reads a named MANIFEST file (defaults to MANIFEST in the current directory) and
returns a HASH reference with files being the keys and comments being the values of the HASH.

Manicopy($read,$target,$how) copies the files that are the keys in the HASH %$read to the named
target directory. The HASH reference $read is typically returned by the maniread() function. This
function is useful for producing a directory tree identical to the intended distribution tree. The
parameter $how can be used to specify a different methods of "copying". Valid values are cp , which
actually copies the files, ln which creates hard links, and best which mostly links the files but copies any
symbolic link to make a tree without any symbolic link. Best is the default.

MANIFEST.SKIP
The file MANIFEST.SKIP may contain regular expressions of files that should be ignored
mkmanifest() and filecheck() . The regular expressions should appear one on each line. A typ
example:
08−Oct−1996 Version 5.003 411

Manifest Perl Programmers Reference Guide Manifest

t
t

 \bRCS\b
 ^MANIFEST\.
 ^Makefile$
 ~$
 \.html$
 \.old$
 ^blib/
 ^MakeMaker−\d

EXPORT_OK
&mkmanifest, &manicheck, &filecheck, &fullcheck, &maniread, and &manicopy are
exportable.

GLOBAL VARIABLES
$ExtUtils::Manifest::MANIFEST defaults to MANIFEST. Changing it results in both a differen
MANIFEST and a different MANIFEST.SKIP file. This is useful if you want to maintain differen
distributions for different audiences (say a user version and a developer version including RCS).

$ExtUtils::Manifest::Quiet defaults to 0. If set to a true value, all functions act silently.

DIAGNOSTICS
All diagnostic output is sent to STDERR.

Not in MANIFEST: file
is reported if a file is found, that is missing in the MANIFEST file which is excluded by a regular
expression in the file MANIFEST.SKIP .

No such file: file
is reported if a file mentioned in a MANIFEST file does not exist.

MANIFEST: $!
is reported if MANIFEST could not be opened.

Added to MANIFEST: file
is reported by mkmanifest() if $Verbose is set and a file is added to MANIFEST. $Verbose is
set to 1 by default.

SEE ALSO
ExtUtils::MakeMaker which has handy targets for most of the functionality.

AUTHOR
Andreas Koenig <koenig@franz.ww.TU−Berlin.DE>
412 Version 5.003 08−Oct−1996

ExtUtils::MakeMaker

Miniperl Perl Programmers Reference Guide Miniperl

nt to

dules
t is a
ailable

rmal
NAME
ExtUtils::Miniperl, writemain − write the C code for perlmain.c

SYNOPSIS
use ExtUtils::Miniperl;

writemain(@directories);

DESCRIPTION
This whole module is written when perl itself is built from a script called minimod.PL. In case you wa
patch it, please patch minimod.PL in the perl distribution instead.

writemain() takes an argument list of directories containing archive libraries that relate to perl mo
and should be linked into a new perl binary. It writes to STDOUT a corresponding perlmain.c file tha
plain C file containing all the bootstrap code to make the modules associated with the libraries av
from within perl.

The typical usage is from within a Makefile generated by ExtUtils::MakeMaker. So under no
circumstances you won‘t have to deal with this module directly.

SEE ALSO
ExtUtils::MakeMaker
08−Oct−1996 Version 5.003 413

ExtUtils::MakeMaker

Mkbootstrap Perl Programmers Reference Guide Mkbootstrap

s,

ith

a

NAME
ExtUtils::Mkbootstrap − make a bootstrap file for use by DynaLoader

SYNOPSIS
mkbootstrap

DESCRIPTION
Mkbootstrap typically gets called from an extension Makefile.

There is no *.bs file supplied with the extension. Instead a *_BS file which has code for the special case
like posix for berkeley db on the NeXT.

This file will get parsed, and produce a maybe empty @DynaLoader::dl_resolve_using array for
the current architecture. That will be extended by $BSLOADLIBS, which was computed by
ExtUtils::Liblist::ext() . If this array still is empty, we do nothing, else we write a .bs file w
an @DynaLoader::dl_resolve_using array.

The *_BS file can put some code into the generated *.bs file by placing it in $bscode. This is a handy
‘escape’ mechanism that may prove useful in complex situations.

If @DynaLoader::dl_resolve_using contains −L* or −l* entries then Mkbootstrap will automatically add
dl_findfile() call to the generated *.bs file.
414 Version 5.003 08−Oct−1996

Mksymlists Perl Programmers Reference Guide Mksymlists

hared
n the

in

. Its
lue is an

ce, one

g

ults to

ally
rted by

, if for

lue is a
 through

 name
is not

at‘s
dditional
NAME
ExtUtils::Mksymlists − write linker options files for dynamic extension

SYNOPSIS
 use ExtUtils::Mksymlists;
 Mksymlists({ NAME => $name ,
 DL_VARS => [$var1, $var2, $var3],
 DL_FUNCS => { $pkg1 => [$func1, $func2],
 $pkg2 => [$func3] });

DESCRIPTION
ExtUtils::Mksymlists produces files used by the linker under some OSs during the creation of s
libraries for dynamic extensions. It is normally called from a MakeMaker−generated Makefile whe
extension is built. The linker option file is generated by calling the function Mksymlists , which is
exported by default from ExtUtils::Mksymlists . It takes one argument, a list of key−value pairs,
which the following keys are recognized:

NAME
This gives the name of the extension (e.g. Tk::Canvas) for which the linker option file will be produced.

DL_FUNCS
This is identical to the DL_FUNCS attribute available via MakeMaker, from which it is usually taken
value is a reference to an associative array, in which each key is the name of a package, and each va
a reference to an array of function names which should be exported by the extension. For instan
might say DL_FUNCS => { Homer::Iliad => [qw(trojans greeks)],
Homer::Odyssey => [qw(travellers family suitors)] } . The function names should
be identical to those in the XSUB code; Mksymlists will alter the names written to the linker option file
to match the changes made by xsubpp. In addition, if none of the functions in a list begin with the strin
boot_, Mksymlists will add a bootstrap function for that package, just as xsubpp does. (If a boot_<pkg>
function is present in the list, it is passed through unchanged.) If DL_FUNCS is not specified, it defa
the bootstrap function for the extension specified in NAME.

DL_VARS
This is identical to the DL_VARS attribute available via MakeMaker, and, like DL_FUNCS, it is usu
specified via MakeMaker. Its value is a reference to an array of variable names which should be expo
the extension.

FILE
This key can be used to specify the name of the linker option file (minus the OS−specific extension)
some reason you do not want to use the default value, which is the last word of the NAME attribute (e.g. for
Tk::Canvas, FILE defaults to ‘Canvas’).

FUNCLIST
This provides an alternate means to specify function names to be exported from the extension. Its va
reference to an array of function names to be exported by the extension. These names are passed
unaltered to the linker options file.

DLBASE
This item specifies the name by which the linker knows the extension, which may be different from the
of the extension itself (for instance, some linkers add an ‘_’ to the name of the extension). If it
specified, it is derived from the NAME attribute. It is presently used only by OS2.

When calling Mksymlists , one should always specify the NAME attribute. In most cases, this is all th
necessary. In the case of unusual extensions, however, the other attributes can be used to provide a
information to the linker.
08−Oct−1996 Version 5.003 415

Mksymlists Perl Programmers Reference Guide Mksymlists
AUTHOR
Charles Bailey <bailey@genetics.upenn.edu>

REVISION
Last revised 14−Feb−1996, for Perl 5.002.
416 Version 5.003 08−Oct−1996

testlib Perl Programmers Reference Guide testlib
NAME
ExtUtils::testlib − add blib/* directories to @INC

SYNOPSIS
use ExtUtils::testlib;

DESCRIPTION
After an extension has been built and before it is installed it may be desirable to test it bypassing make
test . By adding

 use ExtUtils::testlib;

to a test program the intermediate directories used by make are added to @INC.
08−Oct−1996 Version 5.003 417

xsubpp Perl Programmers Reference Guide xsubpp

tions
piler uses

. This

ble
NAME
xsubpp − compiler to convert Perl XS code into C code

SYNOPSIS
xsubpp [−v] [−C++] [−except] [−s pattern] [−prototypes] [−noversioncheck] [−typemap typemap]...
file.xs

DESCRIPTION
xsubpp will compile XS code into C code by embedding the constructs necessary to let C func
manipulate Perl values and creates the glue necessary to let Perl access those functions. The com
typemaps to determine how to map C function parameters and variables to Perl values.

The compiler will search for typemap files called typemap. It will use the following search path to find
default typemaps, with the rightmost typemap taking precedence.

../../../typemap:../../typemap:../typemap:typemap

OPTIONS

−C++ Adds ‘‘extern "C"‘’ to the C code.

−except
Adds exception handling stubs to the C code.

−typemap typemap
Indicates that a user−supplied typemap should take precedence over the default typemaps
option may be used multiple times, with the last typemap having the highest precedence.

−v Prints the xsubpp version number to standard output, then exits.

−prototypes
By default xsubpp will not automatically generate prototype code for all xsubs. This flag will ena
prototypes.

−noversioncheck
Disables the run time test that determines if the object file (derived from the .xs file) and the .pm
files have the same version number.

ENVIRONMENT
No environment variables are used.

AUTHOR
Larry Wall

MODIFICATION HISTORY
See the file changes.pod.

SEE ALSO
perl(1), perlxs(1), perlxstut(1), perlxs(1)
418 Version 5.003 08−Oct−1996

Fatal Perl Programmers Reference Guide Fatal

y fail
ithout

e
.
NAME
Fatal − replace functions with equivalents which succeed or die

SYNOPSIS
 use Fatal qw(open print close);

 sub juggle { . . . }
 import Fatal ’juggle’;

DESCRIPTION
Fatal provides a way to conveniently replace functions which normally return a false value when the
with equivalents which halt execution if they are not successful. This lets you use these functions w
having to test their return values explicitly on each call. Errors are reported via die , so you can trap them
using $SIG{__DIE__} if you wish to take some action before the program exits.

The do−or−die equivalents are set up simply by calling Fatal‘s import routine, passing it the names of th
functions to be replaced. You may wrap both user−defined functions and CORE operators in this way

AUTHOR
Lionel.Cons@cern.ch
08−Oct−1996 Version 5.003 419

Fcntl Perl Programmers Reference Guide Fcntl

d
This

s args
NAME
Fcntl − load the C Fcntl.h defines

SYNOPSIS
 use Fcntl;

DESCRIPTION
This module is just a translation of the C fnctl.h file. Unlike the old mechanism of requiring a translate
fnctl.ph file, this uses the h2xs program (see the Perl source distribution) and your native C compiler.
means that it has a far more likely chance of getting the numbers right.

NOTE
Only #define symbols get translated; you must still correctly pack up your own arguments to pass a
for locking functions, etc.
420 Version 5.003 08−Oct−1996

Basename Perl Programmers Reference Guide Basename

erating

that

tive. If
s a "/",
ction

n

nput

n

t

NAME
Basename − parse file specifications

fileparse − split a pathname into pieces

basename − extract just the filename from a path

dirname − extract just the directory from a path

SYNOPSIS
 use File::Basename;

 ($name,$path,$suffix) = fileparse($fullname,@suffixlist)
 fileparse_set_fstype($os_string);
 $basename = basename($fullname,@suffixlist);
 $dirname = dirname($fullname);

 ($name,$path,$suffix) = fileparse("lib/File/Basename.pm","\.pm");
 fileparse_set_fstype("VMS");
 $basename = basename("lib/File/Basename.pm",".pm");
 $dirname = dirname("lib/File/Basename.pm");

DESCRIPTION
These routines allow you to parse file specifications into useful pieces using the syntax of different op
systems.

fileparse_set_fstype
You select the syntax via the routine fileparse_set_fstype() . If the argument passed to it
contains one of the substrings "VMS", "MSDOS", or "MacOS", the file specification syntax of
operating system is used in future calls to fileparse() , basename() , and dirname() . If it
contains none of these substrings, UNIX syntax is used. This pattern matching is case−insensi
you‘ve selected VMS syntax, and the file specification you pass to one of these routines contain
they assume you are using UNIX emulation and apply the UNIX syntax rules instead, for that fun
call only.

If you haven‘t called fileparse_set_fstype() , the syntax is chosen by examining the builti
variable $^O according to these rules.

fileparse
The fileparse() routine divides a file specification into three parts: a leading path, a file name,
and a suffix. The path contains everything up to and including the last directory separator in the i
file specification. The remainder of the input file specification is then divided into name and suffix
based on the optional patterns you specify in @suffixlist . Each element of this list is interpreted
as a regular expression, and is matched against the end of name. If this succeeds, the matching portio
of name is removed and prepended to suffix. By proper use of @suffixlist , you can remove file
types or versions for examination.

You are guaranteed that if you concatenate path, name, and suffix together in that order, the resul
will denote the same file as the input file specification.

EXAMPLES
Using UNIX file syntax:

 ($base,$path,$type) = fileparse(’/virgil/aeneid/draft.book7’,
 ’\.book\d+’);

would yield

 $base eq ’draft’
 $path eq ’/virgil/aeneid/’,
08−Oct−1996 Version 5.003 421

Basename Perl Programmers Reference Guide Basename

 or

file
DOS

sually
ile
 $type eq ’.book7’

Similarly, using VMS syntax:

 ($name,$dir,$type) = fileparse(’Doc_Root:[Help]Rhetoric.Rnh’,
 ’\..*’);

would yield

 $name eq ’Rhetoric’
 $dir eq ’Doc_Root:[Help]’
 $type eq ’.Rnh’

basename
The basename() routine returns the first element of the list produced by calling fileparse() with the
same arguments. It is provided for compatibility with the UNIX shell command basename(1).

dirname
The dirname() routine returns the directory portion of the input file specification. When using VMS
MacOS syntax, this is identical to the second element of the list produced by calling fileparse() with
the same input file specification. (Under VMS, if there is no directory information in the input
specification, then the current default device and directory are returned.) When using UNIX or MS
syntax, the return value conforms to the behavior of the UNIX shell command dirname(1). This is u
the same as the behavior of fileparse() , but differs in some cases. For example, for the input f
specification lib/, fileparse() considers the directory name to be lib/, while dirname() considers the
directory name to be .).
422 Version 5.003 08−Oct−1996

CheckTree Perl Programmers Reference Guide CheckTree

 file
rpreted
.
tion.
lity. If
NAME
validate − run many filetest checks on a tree

SYNOPSIS
 use File::CheckTree;

 $warnings += validate(q{
/vmunix −e || die
/boot −e || die
/bin cd
 csh −ex
 csh !−ug
 sh −ex
 sh !−ug
/usr −d || warn "What happened to $file?\n"

 });

DESCRIPTION
The validate() routine takes a single multiline string consisting of lines containing a filename plus a
test to try on it. (The file test may also be a "cd", causing subsequent relative filenames to be inte
relative to that directory.) After the file test you may put || die to make it a fatal error if the file test fails
The default is || warn . The file test may optionally have a "!’ prepended to test for the opposite condi
 If you do a cd and then list some relative filenames, you may want to indent them slightly for readabi
you supply your own die() or warn() message, you can use $file to interpolate the filename.

Filetests may be bunched: "−rwx" tests for all of −r , −w, and −x . Only the first failed test of the bunch will
produce a warning.

The routine returns the number of warnings issued.
08−Oct−1996 Version 5.003 423

Copy Perl Programmers Reference Guide Copy

d
usly, if

sing in
s; it is

ber of
d file.
k for

is

the
 Unix

,
n
.

all cases
 used

of the
 input

an old

f
ask: if
revision
Y

NAME
File::Copy − Copy files or filehandles

SYNOPSIS
 use File::Copy;

copy("file1","file2");
 copy("Copy.pm",*STDOUT);’

 use POSIX;
use File::Copy cp;

$n=FileHandle−>new("/dev/null","r");
cp($n,"x");’

DESCRIPTION
The File::Copy module provides a basic function copy which takes two parameters: a file to copy from an
a file to copy to. Either argument may be a string, a FileHandle reference or a FileHandle glob. Obvio
the first argument is a filehandle of some sort, it will be read from, and if it is a file name it will be opened
for reading. Likewise, the second argument will be written to (and created if need be). Note that pas
files as handles instead of names may lead to loss of information on some operating system
recommended that you use file names whenever possible.

An optional third parameter can be used to specify the buffer size used for copying. This is the num
bytes from the first file, that wil be held in memory at any given time, before being written to the secon
The default buffer size depends upon the file, but will generally be the whole file (up to 2Mb), or 1
filehandles that do not reference files (eg. sockets).

You may use the syntax use File::Copy "cp" to get at the "cp" alias for this function. The syntax
exactly the same.

File::Copy also provides the syscopy routine, which copies the file specified in the first parameter to
file specified in the second parameter, preserving OS−specific attributes and file structure. For
systems, this is equivalent to the simple copy routine. For VMS systems, this calls the rmscopy routine
(see below). For OS/2 systems, this calls the syscopy XSUB directly.

Special behavior under VMS
If the second argument to copy is not a file handle for an already opened file, then copy will perform an
RMS copy of the input file to a new output file, in order to preserve file attributes, indexed file structureetc.
The buffer size parameter is ignored. If the second argument to copy is a Perl handle to an opened file, the
data is copied using Perl operators, and no effort is made to preserve file attributes or record structure

The RMS copy routine may also be called directly under VMS as File::Copy::rmscopy (or
File::Copy::syscopy , which is just an alias for this routine).

rmscopy($from,$to[,$date_flag])
The first and second arguments may be strings, typeglobs, or typeglob references; they are used in
to obtain the filespec of the input and output files, respectively. The name and type of the input file are
as defaults for the output file, if necessary.

A new version of the output file is always created, which inherits the structure and RMS attributes
input file, except for owner and protections (and possibly timestamps; see below). All data from the
file is copied to the output file; if either of the first two parameters to rmscopy is a file handle, its position
is unchanged. (Note that this means a file handle pointing to the output file will be associated with
version of that file after rmscopy returns, not the newly created version.)

The third parameter is an integer flag, which tells rmscopy how to handle timestamps. If it is < 0, none o
the input file‘s timestamps are propagated to the output file. If it is > 0, then it is interpreted as a bitm
bit 0 (the LSB) is set, then timestamps other than the revision date are propagated; if bit 1 is set, the
date is propagated. If the third parameter to rmscopy is 0, then it behaves much like the DCL COP
424 Version 5.003 08−Oct−1996

Copy Perl Programmers Reference Guide Copy

gated,
te are

y

command: if the name or type of the output file was explicitly specified, then no timestamps are propa
but if they were taken implicitly from the input filespec, then all timestamps other than the revision da
propagated. If this parameter is not supplied, it defaults to 0.

Like copy , rmscopy returns 1 on success. If an error occurs, it sets $!, deletes the output file, and
returns 0.

RETURN
Returns 1 on success, 0 on failure. $! will be set if an error was encountered.

AUTHOR
File::Copy was written by Aaron Sherman <ajs@ajs.com> in 1995. The VMS−specific code was added b
Charles Bailey <bailey@genetics.upenn.edu> in March 1996.
08−Oct−1996 Version 5.003 425

Find Perl Programmers Reference Guide Find

al
NAME
find − traverse a file tree

finddepth − traverse a directory structure depth−first

SYNOPSIS
 use File::Find;
 find(\&wanted, ’/foo’,’/bar’);
 sub wanted { ... }

 use File::Find;
 finddepth(\&wanted, ’/foo’,’/bar’);
 sub wanted { ... }

DESCRIPTION
The wanted() function does whatever verifications you want. $File::Find::dir contains the current
directory name, and $_ the current filename within that directory. $File::Find::name contains
"$File::Find::dir/$_". You are chdir() ‘d to $File::Find::dir when the function is
called. The function may set $File::Find::prune to prune the tree.

File::Find assumes that you don‘t alter the $_ variable. If you do then make sure you return it to its origin
value before exiting your function.

This library is primarily for the find2perl tool, which when fed,

 find2perl / −name .nfs* −mtime +7 \
−exec rm −f {} \; −o −fstype nfs −prune

produces something like:

 sub wanted {
 /^\.nfs.*$/ &&
 (($dev,$ino,$mode,$nlink,$uid,$gid) = lstat($_)) &&
 int(−M _) > 7 &&
 unlink($_)
 ||
 ($nlink || (($dev,$ino,$mode,$nlink,$uid,$gid) = lstat($_))) &&
 $dev < 0 &&
 ($File::Find::prune = 1);
 }

Set the variable $File::Find::dont_use_nlink if you‘re using AFS, since AFS cheats.

finddepth is just like find , except that it does a depth−first search.

Here‘s another interesting wanted function. It will find all symlinks that don‘t resolve:

 sub wanted {
−l && !−e && print "bogus link: $File::Find::name\n";

 }
426 Version 5.003 08−Oct−1996

Path Perl Programmers Reference Guide Path

ed

ed.

ture,

below

le,

e
in the
lts to
NAME
File::Path − create or remove a series of directories

SYNOPSIS
use File::Path

mkpath([‘/foo/bar/baz‘, ‘blurfl/quux‘], 1, 0711);

rmtree([‘foo/bar/baz‘, ‘blurfl/quux‘], 1, 1);

DESCRIPTION
The mkpath function provides a convenient way to create directories, even if your mkdir kernel call won‘t
create more than one level of directory at a time. mkpath takes three arguments:

 the name of the path to create, or a reference to a list of paths to create,

 a boolean value, which if TRUE will cause mkpath to print the name of each directory as it is creat
(defaults to FALSE), and

 the numeric mode to use when creating the directories (defaults to 0777)

It returns a list of all directories (including intermediates, determined using the Unix ‘/’ separator) creat

Similarly, the rmtree function provides a convenient way to delete a subtree from the directory struc
much like the Unix command rm −r . rmtree takes three arguments:

 the root of the subtree to delete, or a reference to a list of roots. All of the files and directories
each root, as well as the roots themselves, will be deleted.

 a boolean value, which if TRUE will cause rmtree to print a message each time it examines a fi
giving the name of the file, and indicating whether it‘s using rmdir or unlink to remove it, or that
it‘s skipping it. (defaults to FALSE)

 a boolean value, which if TRUE will cause rmtree to skip any files to which you do not have delet
access (if running under VMS) or write access (if running under another OS). This will change
future when a criterion for ‘delete permission’ under OSs other than VMS is settled. (defau
FALSE)

It returns the number of files successfully deleted. Symlinks are treated as ordinary files.

AUTHORS
Tim Bunce <Tim.Bunce@ig.co.uk> Charles Bailey <bailey@genetics.upenn.edu>

REVISION
This module was last revised 14−Feb−1996, for perl 5.002. $VERSION is 1.01.
08−Oct−1996 Version 5.003 427

FileCache Perl Programmers Reference Guide FileCache

ame
um.
NAME
FileCache − keep more files open than the system permits

SYNOPSIS
 cacheout $path;
 print $path @data;

DESCRIPTION
The cacheout function will make sure that there‘s a filehandle open for writing available as the pathn
you give it. It automatically closes and re−opens files if you exceed your system file descriptor maxim

BUGS
sys/param.h lies with its NOFILE define on some systems, so you may have to set
$cacheout::maxopen yourself.
428 Version 5.003 08−Oct−1996

FileHandle Perl Programmers Reference Guide FileHandle

the

h

r the
pace
 a file

value

st of
NAME
FileHandle − supply object methods for filehandles

SYNOPSIS
 use FileHandle;

 $fh = new FileHandle;
 if ($fh−>open "< file") {
 print <$fh>;
 $fh−>close;
 }

 $fh = new FileHandle "> FOO";
 if (defined $fh) {
 print $fh "bar\n";
 $fh−>close;
 }

 $fh = new FileHandle "file", "r";
 if (defined $fh) {
 print <$fh>;
 undef $fh; # automatically closes the file
 }

 $fh = new FileHandle "file", O_WRONLY|O_APPEND;
 if (defined $fh) {
 print $fh "corge\n";
 undef $fh; # automatically closes the file
 }

 $pos = $fh−>getpos;
 $fh−>setpos $pos;

 $fh−>setvbuf($buffer_var, _IOLBF, 1024);

 ($readfh, $writefh) = FileHandle::pipe;

 autoflush STDOUT 1;

DESCRIPTION
FileHandle::new creates a FileHandle , which is a reference to a newly created symbol (see
Symbol package). If it receives any parameters, they are passed to FileHandle::open ; if the open
fails, the FileHandle object is destroyed. Otherwise, it is returned to the caller.

FileHandle::new_from_fd creates a FileHandle like new does. It requires two parameters, whic
are passed to FileHandle::fdopen ; if the fdopen fails, the FileHandle object is destroyed.
Otherwise, it is returned to the caller.

FileHandle::open accepts one parameter or two. With one parameter, it is just a front end fo
built−in open function. With two parameters, the first parameter is a filename that may include whites
or other special characters, and the second parameter is the open mode, optionally followed by
permission value.

If FileHandle::open receives a Perl mode string (">", "+<", etc.) or a POSIX fopen() mode string
("w", "r+", etc.), it uses the basic Perl open operator.

If FileHandle::open is given a numeric mode, it passes that mode and the optional permissions
to the Perl sysopen operator. For convenience, FileHandle::import tries to import the O_XXX
constants from the Fcntl module. If dynamic loading is not available, this may fail, but the re
FileHandle will still work.
08−Oct−1996 Version 5.003 429

FileHandle Perl Programmers Reference Guide FileHandle

file

macros
 as a

e

cept
FileHandle::fdopen is like open except that its first parameter is not a filename but rather a
handle name, a FileHandle object, or a file descriptor number.

If the C functions fgetpos() and fsetpos() are available, then FileHandle::getpos returns an
opaque value that represents the current position of the FileHandle, and FileHandle::setpos uses that
value to return to a previously visited position.

If the C function setvbuf() is available, then FileHandle::setvbuf sets the buffering policy for the
FileHandle. The calling sequence for the Perl function is the same as its C counterpart, including the
_IOFBF , _IOLBF , and _IONBF, except that the buffer parameter specifies a scalar variable to use
buffer. WARNING: A variable used as a buffer by FileHandle::setvbuf must not be modified in any
way until the FileHandle is closed or until FileHandle::setvbuf is called again, or memory corruption
may result!

See perlfunc for complete descriptions of each of the following supported FileHandle methods, which are
just front ends for the corresponding built−in functions:

 close
 fileno
 getc
 gets
 eof
 clearerr
 seek
 tell

See perlvar for complete descriptions of each of the following supported FileHandle methods:

 autoflush
 output_field_separator
 output_record_separator
 input_record_separator
 input_line_number
 format_page_number
 format_lines_per_page
 format_lines_left
 format_name
 format_top_name
 format_line_break_characters
 format_formfeed

Furthermore, for doing normal I/O you might need these:

$fh−>print
See print.

$fh−>printf
See printf.

$fh−>getline
This works like <$fh> described in I/O Operators in perlop except that it‘s more readable and can b
safely called in an array context but still returns just one line.

$fh−>getlines
This works like <$fh> when called in an array context to read all the remaining lines in a file, ex
that it‘s more readable. It will also croak() if accidentally called in a scalar context.
430 Version 5.003 08−Oct−1996

FileHandle Perl Programmers Reference Guide FileHandle

 from
SEE ALSO
perlfunc, I/O Operators in perlop, FileHandle in POSIX

BUGS
Due to backwards compatibility, all filehandles resemble objects of class FileHandle , or actually classes
derived from that class. They actually aren‘t. Which means you can‘t derive your own class
FileHandle and inherit those methods.
08−Oct−1996 Version 5.003 431

FindBin Perl Programmers Reference Guide FindBin

ib and
 the

e

re;
NAME
FindBin − Locate directory of original perl script

SYNOPSIS
 use FindBin;
 BEGIN { unshift(@INC,"$FindBin::Bin/../lib") }

 or

 use FindBin qw($Bin);
 BEGIN { unshift(@INC,"$Bin/../lib") }

DESCRIPTION
Locates the full path to the script bin directory to allow the use of paths relative to the bin directory.

This allows a user to setup a directory tree for some software with directories <root>/bin and <root>/l
then the above example will allow the use of modules in the lib directory without knowing where
software tree is installed.

If perl is invoked using the −e option or the perl script is read from STDIN then FindBin sets both $Bin and
$RealBin to the current directory.

EXPORTABLE VARIABLES
 $Bin − path to bin directory from where script was invoked
 $Script − basename of script from which perl was invoked
 $RealBin − $Bin with all links resolved
 $RealScript − $Script with all links resolved

KNOWN BUGS
if perl is invoked as

 perl filename

and filename does not have executable rights and a program called filename exists in the users
$ENV{PATH} which satisfies both −x and −T then FindBin assumes that it was invoked via th
$ENV{PATH}.

Workaround is to invoke perl as

 perl ./filename

AUTHORS
Graham Barr <bodg@tiuk.ti.com> Nick Ing−Simmons <nik@tiuk.ti.com>

COPYRIGHT
Copyright (c) 1995 Graham Barr & Nick Ing−Simmons. All rights reserved. This program is free softwa
you can redistribute it and/or modify it under the same terms as Perl itself.

REVISION
$Revision: 1.4 $
432 Version 5.003 08−Oct−1996

Long Perl Programmers Reference Guide Long

ns that
port for
ch, is

nd line

option
ly, the
tion is

—size

for the

ent list

 will

cifier.

" will
if

iable.
NAME
GetOptions − extended processing of command line options

SYNOPSIS
 use Getopt::Long;
 $result = GetOptions (...option−descriptions...);

DESCRIPTION
The Getopt::Long module implements an extended getopt function called GetOptions() . This function
adheres to the POSIX syntax for command line options, with GNU extensions. In general, this mea
options have long names instead of single letters, and are introduced with a double dash "—". Sup
bundling of command line options, as was the case with the more traditional single−letter approa
provided but not enabled by default. For example, the UNIX "ps" command can be given the comma
"option"

 −vax

which means the combination of −v, −a and −x. With the new syntax —vax would be a single option,
probably indicating a computer architecture.

Command line options can be used to set values. These values can be specified in one of two ways:

 −−size 24
 −−size=24

GetOptions is called with a list of option−descriptions, each of which consists of two elements: the
specifier and the option linkage. The option specifier defines the name of the option and, optional
value it can take. The option linkage is usually a reference to a variable that will be set when the op
used. For example, the following call to GetOptions:

 &GetOptions("size=i" => \$offset);

will accept a command line option "size" that must have an integer value. With a command line of "
24" this will cause the variable $offset to get the value 24.

Alternatively, the first argument to GetOptions may be a reference to a HASH describing the linkage
options. The following call is equivalent to the example above:

 %optctl = ("size" => \$offset);
 &GetOptions(\%optctl, "size=i");

Linkage may be specified using either of the above methods, or both. Linkage specified in the argum
takes precedence over the linkage specified in the HASH.

The command line options are taken from array @ARGV. Upon completion of GetOptions, @ARGV
contain the rest (i.e. the non−options) of the command line.

Each option specifier designates the name of the option, optionally followed by an argument spe
Values for argument specifiers are:

<none> Option does not take an argument. The option variable will be set to 1.

! Option does not take an argument and may be negated, i.e. prefixed by "no". E.g. "foo!
allow —foo (with value 1) and −nofoo (with value 0). The option variable will be set to 1, or 0
negated.

=s Option takes a mandatory string argument. This string will be assigned to the option var
Note that even if the string argument starts with − or —, it will not be considered an option on
itself.
08−Oct−1996 Version 5.003 433

Long Perl Programmers Reference Guide Long

le. If

riable.

ble. If

option

ption

tions

lobal
are not
set the
ling

tine.

 more

and the
:s Option takes an optional string argument. This string will be assigned to the option variab
omitted, it will be assigned "" (an empty string). If the string argument starts with − or —, it will
be considered an option on itself.

=i Option takes a mandatory integer argument. This value will be assigned to the option va
Note that the value may start with − to indicate a negative value.

:i Option takes an optional integer argument. This value will be assigned to the option varia
omitted, the value 0 will be assigned. Note that the value may start with − to indicate a negative
value.

=f Option takes a mandatory real number argument. This value will be assigned to the
variable. Note that the value may start with − to indicate a negative value.

:f Option takes an optional real number argument. This value will be assigned to the o
variable. If omitted, the value 0 will be assigned.

A lone dash − is considered an option, the corresponding option name is the empty string.

A double dash on itself — signals end of the options list.

Linkage specification
The linkage specifier is optional. If no linkage is explicitly specified but a ref HASH is passed, GetOp
will place the value in the HASH. For example:

 %optctl = ();
 &GetOptions (\%optctl, "size=i");

will perform the equivalent of the assignment

 $optctl{"size"} = 24;

For array options, a reference to an array is used, e.g.:

 %optctl = ();
 &GetOptions (\%optctl, "sizes=i@");

with command line "−sizes 24 −sizes 48" will perform the equivalent of the assignment

 $optctl{"sizes"} = [24, 48];

If no linkage is explicitly specified and no ref HASH is passed, GetOptions will put the value in a g
variable named after the option, prefixed by "opt_". To yield a usable Perl variable, characters that
part of the syntax for variables are translated to underscores. For example, "—fpp−struct−return" will
variable $opt_fpp_struct_return. Note that this variable resides in the namespace of the cal
program, not necessarily main. For example:

 &GetOptions ("size=i", "sizes=i@");

with command line "−size 10 −sizes 24 −sizes 48" will perform the equivalent of the assignments

 $opt_size = 10;
 @opt_sizes = (24, 48);

A lone dash − is considered an option, the corresponding Perl identifier is $opt_ .

The linkage specifier can be a reference to a scalar, a reference to an array or a reference to a subrou

If a REF SCALAR is supplied, the new value is stored in the referenced variable. If the option occurs
than once, the previous value is overwritten.

If a REF ARRAY is supplied, the new value is appended (pushed) to the referenced array.

If a REF CODE is supplied, the referenced subroutine is called with two arguments: the option name
option value. The option name is always the true name, not an abbreviation or alias.
434 Version 5.003 08−Oct−1996

Long Perl Programmers Reference Guide Long

 In this
h" all

ments.
 This

 not set,

t
lder

ken to
 will be

s are
Aliases and abbreviations
The option name may actually be a list of option names, separated by "|"s, e.g. "foo|bar|blech=s".
example, "foo" is the true name of this option. If no linkage is specified, options "foo", "bar" and "blec
will set $opt_foo.

Option names may be abbreviated to uniqueness, depending on configuration variable
$Getopt::Long::autoabbrev.

Non−option call−back routine
A special option specifier, <>, can be used to designate a subroutine to handle non−option argu
GetOptions will immediately call this subroutine for every non−option it encounters in the options list.
subroutine gets the name of the non−option passed. This feature requires $Getopt::Long::order to
have the value $PERMUTE. See also the examples.

Option starters
On the command line, options can start with − (traditional), — (POSIX) and + (GNU, now being phased
out). The latter is not allowed if the environment variable POSIXLY_CORRECT has been defined.

Options that start with "—" may have an argument appended, separated with an "=", e.g. "—foo=bar".

Return value
A return status of 0 (false) indicates that the function detected one or more errors.

COMPATIBILITY
Getopt::Long::GetOptions() is the successor of newgetopt.pl that came with Perl 4. It is fully
upward compatible. In fact, the Perl 5 version of newgetopt.pl is just a wrapper around the module.

If an "@" sign is appended to the argument specifier, the option is treated as an array. Value(s) are
but pushed into array @opt_name. This only applies if no linkage is supplied.

If configuration variable $Getopt::Long::getopt_compat is set to a non−zero value, options tha
start with "+" may also include their arguments, e.g. "+foo=bar". This is for compatiblity with o
implementations of the GNU "getopt" routine.

If the first argument to GetOptions is a string consisting of only non−alphanumeric characters, it is ta
specify the option starter characters. Everything starting with one of these characters from the starter
considered an option. Using a starter argument is strongly deprecated.

For convenience, option specifiers may have a leading − or —, so it is possible to write:

 GetOptions qw(−foo=s −−bar=i −−ar=s);

EXAMPLES
If the option specifier is "one:i" (i.e. takes an optional integer argument), then the following situation
handled:

 −one −two −> $opt_one = ’’, −two is next option
 −one −2 −> $opt_one = −2

Also, assume specifiers "foo=s" and "bar:s" :

 −bar −xxx −> $opt_bar = ’’, ’−xxx’ is next option
 −foo −bar −> $opt_foo = ’−bar’
 −foo −− −> $opt_foo = ’−−’

In GNU or POSIX format, option names and values can be combined:

 +foo=blech −> $opt_foo = ’blech’
 −−bar= −> $opt_bar = ’’
 −−bar=−− −> $opt_bar = ’−−’
08−Oct−1996 Version 5.003 435

Long Perl Programmers Reference Guide Long

ment

CT

on

.
Example of using variable references:

 $ret = &GetOptions (’foo=s’, \$foo, ’bar=i’, ’ar=s’, \@ar);

With command line options "−foo blech −bar 24 −ar xx −ar yy" this will result in:

 $foo = ’blech’
 $opt_bar = 24
 @ar = (’xx’,’yy’)

Example of using the <> option specifier:

 @ARGV = qw(−foo 1 bar −foo 2 blech);
 &GetOptions("foo=i", \$myfoo, "<>", \&mysub);

Results:

 &mysub("bar") will be called (with $myfoo being 1)
 &mysub("blech") will be called (with $myfoo being 2)

Compare this with:

 @ARGV = qw(−foo 1 bar −foo 2 blech);
 &GetOptions("foo=i", \$myfoo);

This will leave the non−options in @ARGV:

 $myfoo −> 2
 @ARGV −> qw(bar blech)

CONFIGURATION VARIABLES
The following variables can be set to change the default behaviour of GetOptions() :

$Getopt::Long::autoabbrev
Allow option names to be abbreviated to uniqueness. Default is 1 unless environ
variable POSIXLY_CORRECT has been set.

$Getopt::Long::getopt_compat
Allow ‘+’ to start options. Default is 1 unless environment variable POSIXLY_CORRE
has been set.

$Getopt::Long::order
Whether non−options are allowed to be mixed with options. Default is
$REQUIRE_ORDER if environment variable POSIXLY_CORRECT has been set,
$PERMUTE otherwise.

$PERMUTE means that

 −foo arg1 −bar arg2 arg3

is equivalent to

 −foo −bar arg1 arg2 arg3

If a non−option call−back routine is specified, @ARGV will always be empty up
succesful return of GetOptions since all options have been processed, except when— is
used:

 −foo arg1 −bar arg2 −− arg3

will call the call−back routine for arg1 and arg2, and terminate leaving arg2 in @ARGV

If $Getopt::Long::order is $REQUIRE_ORDER, options processing terminates
when the first non−option is encountered.
436 Version 5.003 08−Oct−1996

Long Perl Programmers Reference Guide Long

dled.
h

art of

ixing

se is

rsing
 −foo arg1 −bar arg2 arg3

is equivalent to

 −foo −− arg1 −bar arg2 arg3

$RETURN_IN_ORDER is not supported by GetOptions() .

$Getopt::Long::bundling
Setting this variable to a non−zero value will allow single−character options to be bun
To distinguish bundles from long option names, long options must be introduced wit—
and single−character options (and bundles) with −. For example,

 ps −vax −−vax

would be equivalent to

 ps −v −a −x −−vax

provided "vax", "v", "a" and "x" have been defined to be valid options.

Bundled options can also include a value in the bundle; this value has to be the last p
the bundle, e.g.

 scale −h24 −w80

is equivalent to

 scale −h 24 −w 80

Note: Using option bundling can easily lead to unexpected results, especially when m
long options and bundles. Caveat emptor.

$Getopt::Long::ignorecase
Ignore case when matching options. Default is 1. When bundling is in effect, ca
ignored on single−character options only if $Getopt::Long::ignorecase is greater
than 1.

$Getopt::Long::VERSION
The version number of this Getopt::Long implementation in the format major .minor .
This can be used to have Exporter check the version, e.g.

 use Getopt::Long 2.00;

You can inspect $Getopt::Long::major_version and
$Getopt::Long::minor_version for the individual components.

$Getopt::Long::error
Internal error flag. May be incremented from a call−back routine to cause options pa
to fail.

$Getopt::Long::debug
Enable copious debugging output. Default is 0.
08−Oct−1996 Version 5.003 437

Std Perl Programmers Reference Guide Std

ument

ument
NAME
getopt − Process single−character switches with switch clustering

getopts − Process single−character switches with switch clustering

SYNOPSIS
 use Getopt::Std;
 getopt(’oDI’); # −o, −D & −I take arg. Sets opt_* as a side effect.
 getopts(’oif:’); # −o & −i are boolean flags, −f takes an argument

 # Sets opt_* as a side effect.

DESCRIPTION
The getopt() functions processes single−character switches with switch clustering. Pass one arg
which is a string containing all switches that take an argument. For each switch found, sets $opt_x (where
x is the switch name) to the value of the argument, or 1 if no argument. Switches which take an arg
don‘t care whether there is a space between the switch and the argument.
438 Version 5.003 08−Oct−1996

Collate Perl Programmers Reference Guide Collate

vided

r

entation

1)
NAME
I18N::Collate − compare 8−bit scalar data according to the current locale

SYNOPSIS
 use I18N::Collate;
 setlocale(LC_COLLATE, ’locale−of−your−choice’);
 $s1 = new I18N::Collate "scalar_data_1";
 $s2 = new I18N::Collate "scalar_data_2";

DESCRIPTION
This module provides you with objects that will collate according to your national character set, pro
that the POSIX setlocale() function is supported on your system.

You can compare $s1 and $s2 above with

 $s1 le $s2

to extract the data itself, you‘ll need a dereference: $$s1

This uses POSIX::setlocale() . The basic collation conversion is done by strxfrm() which
terminates at NUL characters being a decent C routine. collate_xfrm() handles embedded NUL
characters gracefully. Due to cmp and overload magic, lt , le , eq , ge , and gt work also. The available
locales depend on your operating system; try whether locale −a shows them or man pages for "locale" o
"nlsinfo" or the direct approach ls /usr/lib/nls/loc or ls /usr/lib/nls . Not all the locales
that your vendor supports are necessarily installed: please consult your operating system‘s docum
and possibly your local system administration.

The locale names are probably something like "xx_XX.(ISO)?8859−N" or "xx_XX.(ISO)?8859N" ,
for example "fr_CH.ISO8859−1" is the Swiss (CH) variant of French (fr), ISO Latin (8859) 1 (−
which is the Western European character set.
08−Oct−1996 Version 5.003 439

File Perl Programmers Reference Guide File

at

uilt−in
ce or

y a file

sions

t the
NAME
IO::File − supply object methods for filehandles

SYNOPSIS
 use IO::File;

 $fh = new IO::File;
 if ($fh−>open "< file") {
 print <$fh>;
 $fh−>close;
 }

 $fh = new IO::File "> FOO";
 if (defined $fh) {
 print $fh "bar\n";
 $fh−>close;
 }

 $fh = new IO::File "file", "r";
 if (defined $fh) {
 print <$fh>;
 undef $fh; # automatically closes the file
 }

 $fh = new IO::File "file", O_WRONLY|O_APPEND;
 if (defined $fh) {
 print $fh "corge\n";
 undef $fh; # automatically closes the file
 }

 $pos = $fh−>getpos;
 $fh−>setpos $pos;

 $fh−>setvbuf($buffer_var, _IOLBF, 1024);

 autoflush STDOUT 1;

DESCRIPTION
IO::File is inherits from IO::Handle ans IO::Seekable . It extends these classes with methods th
are specific to file handles.

CONSTRUCTOR

new ([ARGS])
Creates a IO::File . If it receives any parameters, they are passed to the method open ; if the open
fails, the object is destroyed. Otherwise, it is returned to the caller.

METHODS

open(FILENAME [,MODE [,PERMS]])
open accepts one, two or three parameters. With one parameter, it is just a front end for the b
open function. With two parameters, the first parameter is a filename that may include whitespa
other special characters, and the second parameter is the open mode, optionally followed b
permission value.

If IO::File::open receives a Perl mode string (">", "+<", etc.) or a POSIX fopen() mode
string ("w", "r+", etc.), it uses the basic Perl open operator.

If IO::File::open is given a numeric mode, it passes that mode and the optional permis
value to the Perl sysopen operator. For convenience, IO::File::import tries to import the
O_XXX constants from the Fcntl module. If dynamic loading is not available, this may fail, bu
440 Version 5.003 08−Oct−1996

File Perl Programmers Reference Guide File
rest of IO::File will still work.

SEE ALSO
perlfunc, I/O Operators in perlop, IO::Handle IO::Seekable

HISTORY
Derived from FileHandle.pm by Graham Barr <bodg@tiuk.ti.com>.

REVISION
$Revision: 1.5 $
08−Oct−1996 Version 5.003 441

IO::Handle
IO::Seekable

Handle Perl Programmers Reference Guide Handle

thod

macros
 as a
NAME
IO::Handle − supply object methods for I/O handles

SYNOPSIS
 use IO::Handle;

 $fh = new IO::Handle;
 if ($fh−>open "< file") {
 print <$fh>;
 $fh−>close;
 }

 $fh = new IO::Handle "> FOO";
 if (defined $fh) {
 print $fh "bar\n";
 $fh−>close;
 }

 $fh = new IO::Handle "file", "r";
 if (defined $fh) {
 print <$fh>;
 undef $fh; # automatically closes the file
 }

 $fh = new IO::Handle "file", O_WRONLY|O_APPEND;
 if (defined $fh) {
 print $fh "corge\n";
 undef $fh; # automatically closes the file
 }

 $pos = $fh−>getpos;
 $fh−>setpos $pos;

 $fh−>setvbuf($buffer_var, _IOLBF, 1024);

 autoflush STDOUT 1;

DESCRIPTION
IO::Handle is the base class for all other IO handle classes. A IO::Handle object is a reference to a
symbol (see the Symbol package)

CONSTRUCTOR

new ()
Creates a new IO::Handle object.

new_from_fd (FD, MODE)
Creates a IO::Handle like new does. It requires two parameters, which are passed to the me
fdopen ; if the fdopen fails, the object is destroyed. Otherwise, it is returned to the caller.

METHODS
If the C function setvbuf() is available, then IO::Handle::setvbuf sets the buffering policy for the
IO::Handle. The calling sequence for the Perl function is the same as its C counterpart, including the
_IOFBF , _IOLBF , and _IONBF, except that the buffer parameter specifies a scalar variable to use
buffer. WARNING: A variable used as a buffer by IO::Handle::setvbuf must not be modified in any
way until the IO::Handle is closed or until IO::Handle::setvbuf is called again, or memory
corruption may result!

See perlfunc for complete descriptions of each of the following supported IO::Handle methods, which are
just front ends for the corresponding built−in functions:
442 Version 5.003 08−Oct−1996

Handle Perl Programmers Reference Guide Handle

e

cept

file

mpling
rated by
 close
 fileno
 getc
 gets
 eof
 read
 truncate
 stat
 print
 printf
 sysread
 syswrite

See perlvar for complete descriptions of each of the following supported IO::Handle methods:

 autoflush
 output_field_separator
 output_record_separator
 input_record_separator
 input_line_number
 format_page_number
 format_lines_per_page
 format_lines_left
 format_name
 format_top_name
 format_line_break_characters
 format_formfeed
 format_write

Furthermore, for doing normal I/O you might need these:

$fh− getline
This works like <$fh described in I/O Operators in perlop except that it‘s more readable and can b
safely called in an array context but still returns just one line.

$fh− getlines
This works like <$fh when called in an array context to read all the remaining lines in a file, ex
that it‘s more readable. It will also croak() if accidentally called in a scalar context.

$fh− fdopen (FD, MODE)
fdopen is like an ordinary open except that its first parameter is not a filename but rather a
handle name, a IO::Handle object, or a file descriptor number.

$fh− write (BUF, LEN [, OFFSET }\])
write is like write found in C, that is it is the opposite of read. The wrapper for the perl write
function is called format_write .

$fh− opened
Returns true if the object is currently a valid file descriptor.

NOTE
A IO::Handle object is a GLOB reference. Some modules that inherit from IO::Handle may want to
keep object related variables in the hash table part of the GLOB. In an attempt to prevent modules tra
on each other I propose the that any such module should prefix its variables with its own name sepa
_‘s. For example the IO::Socket module keeps a timeout variable in ‘io_socket_timeout’.
08−Oct−1996 Version 5.003 443

Handle Perl Programmers Reference Guide Handle

 from
SEE ALSO
perlfunc, I/O Operators in perlop, FileHandle in POSIX

BUGS
Due to backwards compatibility, all filehandles resemble objects of class IO::Handle , or actually classes
derived from that class. They actually aren‘t. Which means you can‘t derive your own class
IO::Handle and inherit those methods.

HISTORY
Derived from FileHandle.pm by Graham Barr <bodg@tiuk.ti.com>
444 Version 5.003 08−Oct−1996

Pipe Perl Programmers Reference Guide Pipe

nd

of
NAME
IO::pipe − supply object methods for pipes

SYNOPSIS
use IO::Pipe;

$pipe = new IO::Pipe;

if($pid = fork()) { # Parent
 $pipe−>reader();

 while(<$pipe> {
....

 }

}
elsif(defined $pid) { # Child
 $pipe−>writer();

 print $pipe
}

or

$pipe = new IO::Pipe;

$pipe−>reader(qw(ls −l));

while(<$pipe>) {

}

DESCRIPTION
IO::Pipe provides an interface to createing pipes between processes.

CONSTRCUTOR

new ([READER, WRITER])
Creates a IO::Pipe , which is a reference to a newly created symbol (see the Symbol package).
IO::Pipe::new optionally takes two arguments, which should be objects blessed into
IO::Handle , or a subclass thereof. These two objects will be used for the system call to pipe . If no
arguments are given then then method handles is called on the new IO::Pipe object.

These two handles are held in the array part of the GLOB until either reader or writer is called.

METHODS

reader ([ARGS])
The object is re−blessed into a sub−class of IO::Handle , and becomes a handle at the reading e
of the pipe. If ARGS are given then fork is called and ARGS are passed to exec.

writer ([ARGS])
The object is re−blessed into a sub−class of IO::Handle , and becomes a handle at the writing end
the pipe. If ARGS are given then fork is called and ARGS are passed to exec.

handles ()
This method is called during construction by IO::Pipe::new on the newly created IO::Pipe
object. It returns an array of two objects blessed into IO::Handle , or a subclass thereof.
08−Oct−1996 Version 5.003 445

Pipe Perl Programmers Reference Guide Pipe

ute it
SEE ALSO
IO::Handle

AUTHOR
Graham Barr <bodg@tiuk.ti.com>

REVISION
$Revision: 1.7 $

COPYRIGHT
Copyright (c) 1995 Graham Barr. All rights reserved. This program is free software; you can redistrib
and/or modify it under the same terms as Perl itself.
446 Version 5.003 08−Oct−1996

IO::Handle

Seekable Perl Programmers Reference Guide Seekable

other
NAME
IO::Seekable − supply seek based methods for I/O objects

SYNOPSIS
 use IO::Seekable;
 package IO::Something;
 @ISA = qw(IO::Seekable);

DESCRIPTION
IO::Seekable does not have a constuctor of its own as is intended to be inherited by
IO::Handle based objects. It provides methods which allow seeking of the file descriptors.

If the C functions fgetpos() and fsetpos() are available, then IO::File::getpos returns an
opaque value that represents the current position of the IO::File, and IO::File::setpos uses that value
to return to a previously visited position.

See perlfunc for complete descriptions of each of the following supported IO::Seekable methods, which
are just front ends for the corresponding built−in functions:

 clearerr
 seek
 tell

SEE ALSO
perlfunc, I/O Operators in perlop, IO::Handle IO::File

HISTORY
Derived from FileHandle.pm by Graham Barr <bodg@tiuk.ti.com>

REVISION
$Revision: 1.5 $
08−Oct−1996 Version 5.003 447

IO::Handle
IO::File

Select Perl Programmers Reference Guide Select

n

an

d.

s

es that
ray is
NAME
IO::Select − OO interface to the select system call

SYNOPSIS
 use IO::Select;

 $s = IO::Select−>new();

 $s−>add(*STDIN);
 $s−>add($some_handle);

 @ready = $s−>can_read($timeout);

 @ready = IO::Select−>new(@handles)−>read(0);

DESCRIPTION
The IO::Select package implements an object approach to the system select function call. It allows
the user to see what IO handles, see IO::Handle, are ready for reading, writing or have an error conditio
pending.

CONSTRUCTOR

new ([HANDLES])
The constructor creates a new object and optionally initialises it with a set of handles.

METHODS

add (HANDLES)
Add the list of handles to the IO::Select object. It is these values that will be returned when
event occurs. IO::Select keeps these values in a cache which is indexed by the fileno of the
handle, so if more than one handle with the same fileno is specified then only the last one is cache

remove (HANDLES)
Remove all the given handles from the object. This method also works by the fileno of the handles.
So the exact handles that were added need not be passed, just handles that have an equivalent fileno

can_read ([TIMEOUT])
Return an array of handles that are ready for reading. TIMEOUT is the maximum amount of time to
wait before returning an empty list. If TIMEOUT is not given then the call will block.

can_write ([TIMEOUT])
Same as can_read except check for handles that can be written to.

has_error ([TIMEOUT])
Same as can_read except check for handles that have an error condition, for example EOF.

count ()
Returns the number of handles that the object will check for when one of the can_ methods is called
or the object is passed to the select static method.

select (READ, WRITE, ERROR [, TIMEOUT])
select is a static method, that is you call it with the package name like new. READ, WRITE and
ERROR are either undef or IO::Select objects. TIMEOUT is optional and has the same effect a
before.

The result will be an array of 3 elements, each a reference to an array which will hold the handl
are ready for reading, writing and have error conditions respectively. Upon error an empty ar
returned.
448 Version 5.003 08−Oct−1996

IO::Handle

Select Perl Programmers Reference Guide Select

h

ute it
EXAMPLE
Here is a short example which shows how IO::Select could be used to write a server whic
communicates with several sockets while also listening for more connections on a listen socket

 use IO::Select;
 use IO::Socket;

 $lsn = new IO::Socket::INET(Listen => 1, LocalPort => 8080);
 $sel = new IO::Select($lsn);

 while(@ready = $sel−>can_read) {
 foreach $fh (@ready) {
 if($fh == $lsn) {
 # Create a new socket
 $new = $lsn−>accept;
 $sel−>add($new);
 }
 else {
 # Process socket

 # Maybe we have finished with the socket
 $sel−>remove($fh);
 $fh−>close;
 }
 }
 }

AUTHOR
Graham Barr <Graham.Barr@tiuk.ti.com>

REVISION
$Revision: 1.9 $

COPYRIGHT
Copyright (c) 1995 Graham Barr. All rights reserved. This program is free software; you can redistrib
and/or modify it under the same terms as Perl itself.
08−Oct−1996 Version 5.003 449

Socket Perl Programmers Reference Guide Socket

cket.
sses of

 the

ated
te
f upon
e peer

en the
evious

ment
NAME
IO::Socket − Object interface to socket communications

SYNOPSIS
 use IO::Socket;

DESCRIPTION
IO::Socket provides an object interface to creating and using sockets. It is built upon the IO::Handle
interface and inherits all the methods defined by IO::Handle.

IO::Socket only defines methods for those operations which are common to all types of so
Operations which are specified to a socket in a particular domain have methods defined in sub cla
IO::Socket

CONSTRUCTOR

new ([ARGS])
Creates a IO::Pipe , which is a reference to a newly created symbol (see the Symbol package). new
optionally takes arguments, these arguments are in key−value pairs. new only looks for one key
Domain which tells new which domain the socket it will be. All other arguments will be passed to
configuration method of the package for that domain, See below.

METHODS
See perlfunc for complete descriptions of each of the following supported IO::Seekable methods, which
are just front ends for the corresponding built−in functions:

 socket
 socketpair
 bind
 listen
 accept
 send
 recv
 peername (getpeername)
 sockname (getsockname)

Some methods take slightly different arguments to those defined in perlfunc in attempt to make the interface
more flexible. These are

accept([PKG])
perform the system call accept on the socket and return a new object. The new object will be cre
in the same class as the listen socket, unless PKG is specified. This object can be used to communica
with the client that was trying to connect. In a scalar context the new socket is returned, or unde
failure. In an array context a two−element array is returned containing the new socket and th
address, the list will be empty upon failure.

Additional methods that are provided are

timeout([VAL])
Set or get the timeout value associated with this socket. If called without any arguments th
current setting is returned. If called with an argument the current setting is changed and the pr
value returned.

sockopt(OPT [, VAL])
Unified method to both set and get options in the SOL_SOCKET level. If called with one argu
then getsockopt is called, otherwise setsockopt is called.
450 Version 5.003 08−Oct−1996

IO::Handle
IO::Handle

Socket Perl Programmers Reference Guide Socket

et the

et the

col is

lated

otocol,

t form

lated
sockdomain
Returns the numerical number for the socket domain type. For example, fir a AF_INET sock
value of &AF_INET will be returned.

socktype
Returns the numerical number for the socket type. For example, fir a SOCK_STREAM sock
value of &SOCK_STREAM will be returned.

protocol
Returns the numerical number for the protocol being used on the socket, if known. If the proto
unknown, as with an AF_UNIX socket, zero is returned.

SUB−CLASSES

IO::Socket::INET
IO::Socket::INET provides a constructor to create an AF_INET domain socket and some re
methods. The constructor can take the following options

 PeerAddr Remote host address
 PeerPort Remote port or service
 LocalPort Local host bind port
 LocalAddr Local host bind address
 Proto Protocol name (eg tcp udp etc)
 Type Socket type (SOCK_STREAM etc)
 Listen Queue size for listen
 Timeout Timeout value for various operations

If Listen is defined then a listen socket is created, else if the socket type, which is derived from the pr
is SOCK_STREAM then a connect is called.

Only one of Type or Proto needs to be specified, one will be assumed from the other.

METHODS

sockaddr ()
Return the address part of the sockaddr structure for the socket

sockport ()
Return the port number that the socket is using on the local host

sockhost ()
Return the address part of the sockaddr structure for the socket in a text form xx.xx.xx.xx

peeraddr ()
Return the address part of the sockaddr structure for the socket on the peer host

peerport ()
Return the port number for the socket on the peer host.

peerhost ()
Return the address part of the sockaddr structure for the socket on the peer host in a tex
xx.xx.xx.xx

IO::Socket::UNIX
IO::Socket::UNIX provides a constructor to create an AF_UNIX domain socket and some re
methods. The constructor can take the following options

 Type Type of socket (eg SOCK_STREAM or SOCK_DGRAM)
 Local Path to local fifo
 Peer Path to peer fifo
08−Oct−1996 Version 5.003 451

Socket Perl Programmers Reference Guide Socket

 so

ute it
 Listen Create a listen socket

METHODS

hostpath()
Returns the pathname to the fifo at the local end.

peerpath()
Returns the pathanme to the fifo at the peer end.

AUTHOR
Graham Barr <Graham.Barr@tiuk.ti.com>

REVISION
$Revision: 1.13 $

The VERSION is derived from the revision turning each number after the first dot into a 2 digit number

Revision 1.8 => VERSION 1.08
Revision 1.2.3 => VERSION 1.0203

COPYRIGHT
Copyright (c) 1995 Graham Barr. All rights reserved. This program is free software; you can redistrib
and/or modify it under the same terms as Perl itself.
452 Version 5.003 08−Oct−1996

Open2 Perl Programmers Reference Guide Open2

eption

iables

g like
s like

he the

NAME
IPC::Open2, open2 − open a process for both reading and writing

SYNOPSIS
 use IPC::Open2;
 $pid = open2(*RDR, *WTR, ’some cmd and args’);
 # or
 $pid = open2(*RDR, *WTR, ’some’, ’cmd’, ’and’, ’args’);

DESCRIPTION
The open2() function spawns the given $cmd and connects $rdr for reading and $wtr for writing. It‘s
what you think should work when you try

 open(HANDLE, "|cmd args|");

open2() returns the process ID of the child process. It doesn‘t return on failure: it just raises an exc
matching /^open2:/ .

WARNING
It will not create these file handles for you. You have to do this yourself. So don‘t pass it empty var
expecting them to get filled in for you.

Additionally, this is very dangerous as you may block forever. It assumes it‘s going to talk to somethin
bc, both writing to it and reading from it. This is presumably safe because you "know" that command
bc will read a line at a time and output a line at a time. Programs like sort that read their entire input stream
first, however, are quite apt to cause deadlock.

The big problem with this approach is that if you don‘t have control over source code being run in t
child process, you can‘t control what it does with pipe buffering. Thus you can‘t just open a pipe tocat
−v and continually read and write a line from it.

SEE ALSO
See open3 for an alternative that handles STDERR as well.
08−Oct−1996 Version 5.003 453

Open3 Perl Programmers Reference Guide Open3

,
 and

 it
.

ing,
NAME
IPC::Open3, open3 − open a process for reading, writing, and error handling

SYNOPSIS
 $pid = open3(*WTRFH, *RDRFH, *ERRFH

 ’some cmd and args’, ’optarg’, ...);

DESCRIPTION
Extremely similar to open2() , open3() spawns the given $cmd and connects RDRFH for reading
WTRFH for writing, and ERRFH for errors. If ERRFH is ‘’, or the same as RDRFH, then STDOUT
STDERR of the child are on the same file handle.

If WTRFH begins with "<&", then WTRFH will be closed in the parent, and the child will read from
directly. If RDRFH or ERRFH begins with ">&", then the child will send output directly to that file handle
 In both cases, there will be a dup(2) instead of a pipe(2) made.

If you try to read from the child‘s stdout writer and their stderr writer, you‘ll have problems with block
which means you‘ll want to use select() , which means you‘ll have to use sysread() instead of normal
stuff.

All caveats from open2() continue to apply. See open2 for details.
454 Version 5.003 08−Oct−1996

BigFloat Perl Programmers Reference Guide BigFloat

.002)
NAME
Math::BigFloat − Arbitrary length float math package

SYNOPSIS
 use Math::BogFloat;
 $f = Math::BigFloat−>new($string);

 $f−>fadd(NSTR) return NSTR addition
 $f−>fsub(NSTR) return NSTR subtraction
 $f−>fmul(NSTR) return NSTR multiplication
 $f−>fdiv(NSTR[,SCALE]) returns NSTR division to SCALE places
 $f−>fneg() return NSTR negation
 $f−>fabs() return NSTR absolute value
 $f−>fcmp(NSTR) return CODE compare undef,<0,=0,>0
 $f−>fround(SCALE) return NSTR round to SCALE digits
 $f−>ffround(SCALE) return NSTR round at SCALEth place
 $f−>fnorm() return (NSTR) normalize
 $f−>fsqrt([SCALE]) return NSTR sqrt to SCALE places

DESCRIPTION
All basic math operations are overloaded if you declare your big floats as

 $float = new Math::BigFloat "2.123123123123123123123123123123123";

number format
canonical strings have the form /[+−]\d+E[+−]\d+/ . Input values can have inbedded whitespace.

Error returns ‘NaN’
An input parameter was "Not a Number" or divide by zero or sqrt of negative number.

Division is computed to
max($div_scale,length(dividend)+length(divisor)) digits by default. Also used for
default sqrt scale.

BUGS
The current version of this module is a preliminary version of the real thing that is currently (as of perl5
under development.

AUTHOR
Mark Biggar
08−Oct−1996 Version 5.003 455

BigInt Perl Programmers Reference Guide BigInt

]
 ‘NaN’
iding by

.002)
NAME
Math::BigInt − Arbitrary size integer math package

SYNOPSIS
 use Math::BigInt;
 $i = Math::BigInt−>new($string);

 $i−>bneg return BINT negation
 $i−>babs return BINT absolute value
 $i−>bcmp(BINT) return CODE compare numbers (undef,<0,=0,>0)
 $i−>badd(BINT) return BINT addition
 $i−>bsub(BINT) return BINT subtraction
 $i−>bmul(BINT) return BINT multiplication
 $i−>bdiv(BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
 $i−>bmod(BINT) return BINT modulus
 $i−>bgcd(BINT) return BINT greatest common divisor
 $i−>bnorm return BINT normalization

DESCRIPTION
All basic math operations are overloaded if you declare your big integers as

 $i = new Math::BigInt ’123 456 789 123 456 789’;

Canonical notation
Big integer value are strings of the form /^[+−]\d+$/ with leading zeros suppressed.

Input
Input values to these routines may be strings of the form /^\s*[+−]?[\d\s]+$/.

Output
Output values always always in canonical form

Actual math is done in an internal format consisting of an array whose first element is the sign (/^[+−$/)
and whose remaining elements are base 100000 digits with the least significant digit first. The string
is used to represent the result when input arguments are not numbers, as well as the result of div
zero.

EXAMPLES
 ’+0’ canonical zero value
 ’ −123 123 123’ canonical value ’−123123123’
 ’1 23 456 7890’ canonical value ’+1234567890’

BUGS
The current version of this module is a preliminary version of the real thing that is currently (as of perl5
under development.

AUTHOR
Mark Biggar, overloaded interface by Ilya Zakharevich.
456 Version 5.003 08−Oct−1996

Complex Perl Programmers Reference Guide Complex

ions

n:

e

.. you

d:

s
sed for

 b). It

 unique
NAME
Math::Complex − complex numbers and associated mathematical functions

SYNOPSIS
use Math::Complex;
$z = Math::Complex−>make(5, 6);
$t = 4 − 3*i + $z;
$j = cplxe(1, 2*pi/3);

DESCRIPTION
This package lets you create and manipulate complex numbers. By default, Perl limits itself to real numbers,
but an extra use statement brings full complex support, along with a full set of mathematical funct
typically associated with and/or extended to complex numbers.

If you wonder what complex numbers are, they were invented to be able to solve the following equatio

x*x = −1

and by definition, the solution is noted i (engineers use j instead since i usually denotes an intensity, but th
name does not matter). The number i is a pure imaginary number.

The arithmetics with pure imaginary numbers works just like you would expect it with real numbers.
just have to remember that

i*i = −1

so you have:

5i + 7i = i * (5 + 7) = 12i
4i − 3i = i * (4 − 3) = i
4i * 2i = −8
6i / 2i = 3
1 / i = −i

Complex numbers are numbers that have both a real part and an imaginary part, and are usually note

a + bi

where a is the real part and b is the imaginary part. The arithmetic with complex numbers i
straightforward. You have to keep track of the real and the imaginary parts, but otherwise the rules u
real numbers just apply:

(4 + 3i) + (5 − 2i) = (4 + 5) + i(3 − 2) = 9 + i
(2 + i) * (4 − i) = 2*4 + 4i −2i −i*i = 8 + 2i + 1 = 9 + 2i

A graphical representation of complex numbers is possible in a plane (also called the complex plane, but it‘s
really a 2D plane). The number

z = a + bi

is the point whose coordinates are (a, b). Actually, it would be the vector originating from (0, 0) to (a,
follows that the addition of two complex numbers is a vectorial addition.

Since there is a bijection between a point in the 2D plane and a complex number (i.e. the mapping is
and reciprocal), a complex number can also be uniquely identified with polar coordinates:

[rho, theta]

where rho is the distance to the origin, and theta the angle between the vector and the x axis. There is a
notation for this using the exponential form, which is:

rho * exp(i * theta)
08−Oct−1996 Version 5.003 457

Complex Perl Programmers Reference Guide Complex

rtesian

rming
itions

omplex
eep
t.

itive

mbers
be

s:
where i is the famous imaginary number introduced above. Conversion between this form and the ca
form a + bi is immediate:

a = rho * cos(theta)
b = rho * sin(theta)

which is also expressed by this formula:

z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)

In other words, it‘s the projection of the vector onto the x and y axes. Mathematicians call rho the norm or
modulus and theta the argument of the complex number. The norm of z will be noted abs(z) .

The polar notation (also known as the trigonometric representation) is much more handy for perfo
multiplications and divisions of complex numbers, whilst the cartesian notation is better suited for add
and substractions. Real numbers are on the x axis, and therefore theta is zero.

All the common operations that can be performed on a real number have been defined to work on c
numbers as well, and are merely extensions of the operations defined on real numbers. This means they k
their natural meaning when there is no imaginary part, provided the number is within their definition se

For instance, the sqrt routine which computes the square root of its argument is only defined for pos
real numbers and yields a positive real number (it is an application from R+ to R+). If we allow it to return a
complex number, then it can be extended to negative real numbers to become an application from R to C
(the set of complex numbers):

sqrt(x) = x >= 0 ? sqrt(x) : sqrt(−x)*i

It can also be extended to be an application from C to C, whilst its restriction to R behaves as defined above
by using the following definition:

sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)

Indeed, a negative real number can be noted [x,pi] (the modulus x is always positive, so [x,pi] is really
−x , a negative number) and the above definition states that

sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i

which is exactly what we had defined for negative real numbers above.

All the common mathematical functions defined on real numbers that are extended to complex nu
share that same property of working as usual when the imaginary part is zero (otherwise, it would not
called an extension, would it?).

A new operation possible on a complex number that is the identity for real numbers is called the conjugate,
and is noted with an horizontal bar above the number, or ~z here.

 z = a + bi
~z = a − bi

Simple... Now look:

z * ~z = (a + bi) * (a − bi) = a*a + b*b

We saw that the norm of z was noted abs(z) and was defined as the distance to the origin, also known a

rho = abs(z) = sqrt(a*a + b*b)

so

z * ~z = abs(z) ** 2

If z is a pure real number (i.e. b == 0), then the above yields:

a * a = abs(a) ** 2
458 Version 5.003 08−Oct−1996

Complex Perl Programmers Reference Guide Complex

ample
which is true (abs has the regular meaning for real number, i.e. stands for the absolute value). This ex
explains why the norm of z is noted abs(z) : it extends the abs function to complex numbers, yet is the
regular abs we know when the complex number actually has no imaginary part... This justifies a posteriori
our use of the abs notation for the norm.

OPERATIONS
Given the following notations:

z1 = a + bi = r1 * exp(i * t1)
z2 = c + di = r2 * exp(i * t2)
z = <any complex or real number>

the following (overloaded) operations are supported on complex numbers:

z1 + z2 = (a + c) + i(b + d)
z1 − z2 = (a − c) + i(b − d)
z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
z1 / z2 = (r1 / r2) * exp(i * (t1 − t2))
z1 ** z2 = exp(z2 * log z1)
~z1 = a − bi
abs(z1) = r1 = sqrt(a*a + b*b)
sqrt(z1) = sqrt(r1) * exp(i * t1/2)
exp(z1) = exp(a) * exp(i * b)
log(z1) = log(r1) + i*t1
sin(z1) = 1/2i (exp(i * z1) − exp(−i * z1))
cos(z1) = 1/2 (exp(i * z1) + exp(−i * z1))
abs(z1) = r1
atan2(z1, z2) = atan(z1/z2)

The following extra operations are supported on both real and complex numbers:

Re(z) = a
Im(z) = b
arg(z) = t

cbrt(z) = z ** (1/3)
log10(z) = log(z) / log(10)
logn(z, n) = log(z) / log(n)

tan(z) = sin(z) / cos(z)
cotan(z) = 1 / tan(z)

asin(z) = −i * log(i*z + sqrt(1−z*z))
acos(z) = −i * log(z + sqrt(z*z−1))
atan(z) = i/2 * log((i+z) / (i−z))
acotan(z) = −i/2 * log((i+z) / (z−i))

sinh(z) = 1/2 (exp(z) − exp(−z))
cosh(z) = 1/2 (exp(z) + exp(−z))
tanh(z) = sinh(z) / cosh(z)
cotanh(z) = 1 / tanh(z)

asinh(z) = log(z + sqrt(z*z+1))
acosh(z) = log(z + sqrt(z*z−1))
atanh(z) = 1/2 * log((1+z) / (1−z))
acotanh(z) = 1/2 * log((1+z) / (z−1))

The root function is available to compute all the nth roots of some complex, where n is a strictly positive
integer. There are exactly n such roots, returned as a list. Getting the number mathematicians call j such
that:
08−Oct−1996 Version 5.003 459

Complex Perl Programmers Reference Guide Complex

 what
y parts

the

rwise
1 + j + j*j = 0;

is a simple matter of writing:

$j = ((root(1, 3))[1];

The kth root for z = [r,t] is given by:

(root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)

The spaceshift operation is also defined. In order to ensure its restriction to real numbers is conform to
you would expect, the comparison is run on the real part of the complex number first, and imaginar
are compared only when the real parts match.

CREATION
To create a complex number, use either:

$z = Math::Complex−>make(3, 4);
$z = cplx(3, 4);

if you know the cartesian form of the number, or

$z = 3 + 4*i;

if you like. To create a number using the trigonometric form, use either:

$z = Math::Complex−>emake(5, pi/3);
$x = cplxe(5, pi/3);

instead. The first argument is the modulus, the second is the angle (in radians). (Mnmemonic: e is used as a
notation for complex numbers in the trigonometric form).

It is possible to write:

$x = cplxe(−3, pi/4);

but that will be silently converted into [3,−3pi/4] , since the modulus must be positive (it represents
distance to the origin in the complex plane).

STRINGIFICATION
When printed, a complex number is usually shown under its cartesian form a+bi, but there are legitimate
cases where the polar format [r,t] is more appropriate.

By calling the routine Math::Complex::display_format and supplying either "polar" or
"cartesian" , you override the default display format, which is "cartesian" . Not supplying any
argument returns the current setting.

This default can be overridden on a per−number basis by calling the display_format method instead.
As before, not supplying any argument returns the current display format for this number. Othe
whatever you specify will be the new display format for this particular number.

For instance:

use Math::Complex;

Math::Complex::display_format(’polar’);
$j = ((root(1, 3))[1];
print "j = $j\n"; # Prints "j = [1,2pi/3]
$j−>display_format(’cartesian’);
print "j = $j\n"; # Prints "j = −0.5+0.866025403784439i"

The polar format attempts to emphasize arguments like k*pi/n (where n is a positive integer and k an integer
within [−9,+9]).
460 Version 5.003 08−Oct−1996

Complex Perl Programmers Reference Guide Complex

rent.

s is

rators

d by

rl has
USAGE
Thanks to overloading, the handling of arithmetics with complex numbers is simple and almost transpa

Here are some examples:

use Math::Complex;

$j = cplxe(1, 2*pi/3); # $j ** 3 == 1
print "j = $j, j**3 = ", $j ** 3, "\n";
print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";

$z = −16 + 0*i; # Force it to be a complex
print "sqrt($z) = ", sqrt($z), "\n";

$k = exp(i * 2*pi/3);
print "$j − $k = ", $j − $k, "\n";

BUGS
Saying use Math::Complex; exports many mathematical routines in the caller environment. Thi
construed as a feature by the Author, actually... ;−)

The code is not optimized for speed, although we try to use the cartesian form for addition−like ope
and the trigonometric form for all multiplication−like operators.

The arg() routine does not ensure the angle is within the range [−pi,+pi] (a side effect cause
multiplication and division using the trigonometric representation).

All routines expect to be given real or complex numbers. Don‘t attempt to use BigFloat, since Pe
currently no rule to disambiguate a ‘+’ operation (for instance) between two overloaded entities.

AUTHOR
Raphael Manfredi <Raphael_Manfredi@grenoble.hp.com
08−Oct−1996 Version 5.003 461

NDBM_File Perl Programmers Reference Guide NDBM_File
NAME
NDBM_File − Tied access to ndbm files

SYNOPSIS
 use NDBM_File;

 tie(%h, ’NDBM_File’, ’Op.dbmx’, O_RDWR|O_CREAT, 0640);

 untie %h;

DESCRIPTION
See tie
462 Version 5.003 08−Oct−1996

Ping Perl Programmers Reference Guide Ping

utine

s is
NAME
Net::Ping, pingecho − check a host for upness

SYNOPSIS
 use Net::Ping;
 print "’jimmy’ is alive and kicking\n" if pingecho(’jimmy’, 10) ;

DESCRIPTION
This module contains routines to test for the reachability of remote hosts. Currently the only ro
implemented is pingecho() .

pingecho() uses a TCP echo (not an ICMP one) to determine if the remote host is reachable. Thi
usually adequate to tell that a remote host is available to rsh(1), ftp(1), or telnet(1) onto.

Parameters

hostname
The remote host to check, specified either as a hostname or as an IP address.

timeout
The timeout in seconds. If not specified it will default to 5 seconds.

WARNING
pingecho() uses alarm to implement the timeout, so don‘t set another alarm while you are using it.
08−Oct−1996 Version 5.003 463

ODBM_File Perl Programmers Reference Guide ODBM_File
NAME
ODBM_File − Tied access to odbm files

SYNOPSIS
 use ODBM_File;

 tie(%h, ’ODBM_File’, ’Op.dbmx’, O_RDWR|O_CREAT, 0640);

 untie %h;

DESCRIPTION
See tie
464 Version 5.003 08−Oct−1996

Opcode Perl Programmers Reference Guide Opcode

rmat
n many

 error.

cal uses.

or

similar

 in file

ame. The

lists can

, redo

ing with
ing the

g an
 at that

ore
NAME
Opcode − Disable named opcodes when compiling perl code

SYNOPSIS
 use Opcode;

DESCRIPTION
Perl code is always compiled into an internal format before execution.

Evaluating perl code (e.g. via "eval" or "do ‘file‘") causes the code to be compiled into an internal fo
and then, provided there was no error in the compilation, executed. The internal format is based o
distinct opcodes.

By default no opmask is in effect and any code can be compiled.

The Opcode module allow you to define an operator mask to be in effect when perl next compiles any code.
Attempting to compile code which contains a masked opcode will cause the compilation to fail with an
The code will not be executed.

NOTE
The Opcode module is not usually used directly. See the ops pragma and Safe modules for more typi

WARNING
The authors make no warranty, implied or otherwise, about the suitability of this software for safety
security purposes.

The authors shall not in any case be liable for special, incidental, consequential, indirect or other
damages arising from the use of this software.

Your mileage will vary. If in any doubt do not use it.

Operator Names and Operator Lists
The canonical list of operator names is the contents of the array op_name defined and initialised
opcode.h of the Perl source distribution (and installed into the perl library).

Each operator has both a terse name (its opname) and a more verbose or recognisable descriptive n
opdesc function can be used to return a list of descriptions for a list of operators.

Many of the functions and methods listed below take a list of operators as parameters. Most operator
be made up of several types of element. Each element can be one of

an operator name (opname)
Operator names are typically small lowercase words like enterloop, leaveloop, last, next
etc. Sometimes they are rather cryptic like gv2cv, i_ncmp and ftsvtx.

an operator tag name (optag)
Operator tags can be used to refer to groups (or sets) of operators. Tag names always be
a colon. The Opcode module defines several optags and the user can define others us
define_optag function.

a negated opname or optag
An opname or optag can be prefixed with an exclamation mark, e.g., !mkdir. Negatin
opname or optag means remove the corresponding ops from the accumulated set of ops
point.

an operator set (opset)
An opset as a binary string of approximately 43 bytes which holds a set or zero or m
operators.
08−Oct−1996 Version 5.003 465

Opcode Perl Programmers Reference Guide Opcode

n opset

ulating

lable for

40 for

mes =

ise it
valid

 an

eady
ered or

tter on
If using
le to

ns.
The opset and opset_to_ops functions can be used to convert from a list of operators to a
and vice versa.

Wherever a list of operators can be given you can use one or more opsets. See also Manip
Opsets below.

Opcode Functions
The Opcode package contains functions for manipulating operator names tags and sets. All are avai
export by the package.

opcodes In a scalar context opcodes returns the number of opcodes in this version of perl (around 3
perl5.002).

In a list context it returns a list of all the operator names. (Not yet implemented, use @na
opset_to_ops(full_opset).)

opset (OP, ...)
Returns an opset containing the listed operators.

opset_to_ops (OPSET)
Returns a list of operator names corresponding to those operators in the set.

opset_to_hex (OPSET)
Returns a string representation of an opset. Can be handy for debugging.

full_opset Returns an opset which includes all operators.

empty_opset
Returns an opset which contains no operators.

invert_opset (OPSET)
Returns an opset which is the inverse set of the one supplied.

verify_opset (OPSET, ...)
Returns true if the supplied opset looks like a valid opset (is the right length etc) otherw
returns false. If an optional second parameter is true then verify_opset will croak on an in
opset instead of returning false.

Most of the other Opcode functions call verify_opset automatically and will croak if given
invalid opset.

define_optag (OPTAG, OPSET)
Define OPTAG as a symbolic name for OPSET. Optag names always start with a colon : .

The optag name used must not be defined already (define_optag will croak if it is alr
defined). Optag names are global to the perl process and optag definitions cannot be alt
deleted once defined.

It is strongly recommended that applications using Opcode should use a leading capital le
their tag names since lowercase names are reserved for use by the Opcode module.
Opcode within a module you should prefix your tags names with the name of your modu
ensure uniqueness and thus avoid clashes with other modules.

opmask_add (OPSET)
Adds the supplied opset to the current opmask. Note that there is currently no mechanism for
unmasking ops once they have been masked. This is intentional.

opmask Returns an opset corresponding to the current opmask.

opdesc (OP, ...)
This takes a list of operator names and returns the corresponding list of operator descriptio
466 Version 5.003 08−Oct−1996

Opcode Perl Programmers Reference Guide Opcode

rn is

words

 eight,
unctions
 same
opdump (PAT)
Dumps to STDOUT a two column list of op names and op descriptions. If an optional patte
given then only lines which match the (case insensitive) pattern will be output.

It‘s designed to be used as a handy command line utility:

perl −MOpcode=opdump −e opdump
perl −MOpcode=opdump −e ’opdump Eval’

Manipulating Opsets
Opsets may be manipulated using the perl bit vector operators & (and), | (or), ^ (xor) and ~ (negate/invert).

However you should never rely on the numerical position of any opcode within the opset. In other
both sides of a bit vector operator should be opsets returned from Opcode functions.

Also, since the number of opcodes in your current version of perl might not be an exact multiple of
there may be unused bits in the last byte of an upset. This should not cause any problems (Opcode f
ignore those extra bits) but it does mean that using the ~ operator will typically not produce the
‘physical’ opset ‘string’ as the invert_opset function.

TO DO (maybe)
 $bool = opset_eq($opset1, $opset2) true if opsets are logically eqiv

 $yes = opset_can($opset, @ops) true if $opset has all @ops set

 @diff = opset_diff($opset1, $opset2) => (’foo’, ’!bar’, ...)

Predefined Opcode Tags

:base_core
 null stub scalar pushmark wantarray const defined undef

 rv2sv sassign

 rv2av aassign aelem aelemfast aslice av2arylen

 rv2hv helem hslice each values keys exists delete

 preinc i_preinc predec i_predec postinc i_postinc postdec i_postdec
 int hex oct abs pow multiply i_multiply divide i_divide
 modulo i_modulo add i_add subtract i_subtract

 left_shift right_shift bit_and bit_xor bit_or negate i_negate
 not complement

 lt i_lt gt i_gt le i_le ge i_ge eq i_eq ne i_ne ncmp i_ncmp
 slt sgt sle sge seq sne scmp

 substr vec stringify study pos length index rindex ord chr

 ucfirst lcfirst uc lc quotemeta trans chop schop chomp schomp

 match split

 list lslice splice push pop shift unshift reverse

 cond_expr flip flop andassign orassign and or xor

 warn die lineseq nextstate unstack scope enter leave

 rv2cv anoncode prototype

 entersub leavesub return method −− XXX loops via recursion?

 leaveeval −− needed for Safe to operate, is safe without entereval
08−Oct−1996 Version 5.003 467

Opcode Perl Programmers Reference Guide Opcode

used to

 using

. It‘s

ment a

 the
 other
:base_mem
These memory related ops are not included in :base_core because they can easily be
implement a resource attack (e.g., consume all available memory).

 concat repeat join range

 anonlist anonhash

Note that despite the existance of this optag a memory resource attack may still be possible
only :base_core ops.

Disabling these ops is a very heavy handed way to attempt to prevent a memory resource attack
probable that a specific memory limit mechanism will be added to perl in the near future.

:base_loop
These loop ops are not included in :base_core because they can easily be used to imple
resource attack (e.g., consume all available CPU time).

 grepstart grepwhile
 mapstart mapwhile
 enteriter iter
 enterloop leaveloop
 last next redo
 goto

:base_io
These ops enable filehandle (rather than filename) based input and output. These are safe on
assumption that only pre−existing filehandles are available for use. To create new filehandles
ops such as open would need to be enabled.

 readline rcatline getc read

 formline enterwrite leavewrite

 print sysread syswrite send recv eof tell seek

 readdir telldir seekdir rewinddir

:base_orig
These are a hotchpotch of opcodes still waiting to be considered

 gvsv gv gelem

 padsv padav padhv padany

 rv2gv refgen srefgen ref

 bless −− could be used to change ownership of objects (reblessing)

 pushre regcmaybe regcomp subst substcont

 sprintf prtf −− can core dump

 crypt

 tie untie

 dbmopen dbmclose
 sselect select
 pipe_op sockpair

 getppid getpgrp setpgrp getpriority setpriority localtime gmtime

 entertry leavetry −− can be used to ’hide’ fatal errors
468 Version 5.003 08−Oct−1996

Opcode Perl Programmers Reference Guide Opcode

 floating

e of the

hile

uld not

nd
t will

nd adds
sitive)
:base_math
These ops are not included in :base_core because of the risk of them being used to generate
point exceptions (which would have to be caught using a $SIG{FPE} handler).

 atan2 sin cos exp log sqrt

These ops are not included in :base_core because they have an effect beyond the scop
compartment.

 rand srand

:default
A handy tag name for a reasonable default set of ops. (The current ops allowed are unstable w
development continues. It will change.)

 :base_core :base_mem :base_loop :base_io :base_orig

If safety matters to you (and why else would you be using the Opcode module?) then you sho
rely on the definition of this, or indeed any other, optag!

:filesys_read
 stat lstat readlink

 ftatime ftblk ftchr ftctime ftdir fteexec fteowned fteread
 ftewrite ftfile ftis ftlink ftmtime ftpipe ftrexec ftrowned
 ftrread ftsgid ftsize ftsock ftsuid fttty ftzero ftrwrite ftsvtx

 fttext ftbinary

 fileno

:sys_db
 ghbyname ghbyaddr ghostent shostent ehostent −− hosts
 gnbyname gnbyaddr gnetent snetent enetent −− networks
 gpbyname gpbynumber gprotoent sprotoent eprotoent −− protocols
 gsbyname gsbyport gservent sservent eservent −− services

 gpwnam gpwuid gpwent spwent epwent getlogin −− users
 ggrnam ggrgid ggrent sgrent egrent −− groups

:browse
A handy tag name for a reasonable default set of ops beyond the :default optag. Like :default (a
indeed all the other optags) its current definition is unstable while development continues. I
change.

The :browse tag represents the next step beyond :default. It it a superset of the :default ops a
:filesys_read the :sys_db. The intent being that scripts can access more (possibly sen
information about your system but not be able to change it.

 :default :filesys_read :sys_db

:filesys_open
 sysopen open close
 umask binmode

 open_dir closedir −− other dir ops are in :base_io

:filesys_write
 link unlink rename symlink truncate

 mkdir rmdir
08−Oct−1996 Version 5.003 469

Opcode Perl Programmers Reference Guide Opcode

ed for

d to be
 utime chmod chown

 fcntl −− not strictly filesys related, but possibly as dangerous?

:subprocess
 backtick system

 fork

 wait waitpid

 glob −− access to Cshell via <‘rm *‘>

:ownprocess
 exec exit kill

 time tms −− could be used for timing attacks (paranoid?)

:others
This tag holds groups of assorted specialist opcodes that don‘t warrant having optags defin
them.

SystemV Interprocess Communications:

 msgctl msgget msgrcv msgsnd

 semctl semget semop

 shmctl shmget shmread shmwrite

:still_to_be_decided
 chdir
 flock ioctl

 socket getpeername ssockopt
 bind connect listen accept shutdown gsockopt getsockname

 sleep alarm −− changes global timer state and signal handling
 sort −− assorted problems including core dumps
 tied −− can be used to access object implementing a tie
 pack unpack −− can be used to create/use memory pointers

 entereval −− can be used to hide code from initial compile
 require dofile

 caller −− get info about calling environment and args

 reset

 dbstate −− perl −d version of nextstate(ment) opcode

:dangerous
This tag is simply a bucket for opcodes that are unlikely to be used via a tag name but nee
tagged for completness and documentation.

 syscall dump chroot

SEE ALSO
ops(3) — perl pragma interface to Opcode module.

Safe(3) — Opcode and namespace limited execution compartments
470 Version 5.003 08−Oct−1996

Opcode Perl Programmers Reference Guide Opcode

version

Bunce
AUTHORS
Originally designed and implemented by Malcolm Beattie, mbeattie@sable.ox.ac.uk as part of Safe
1.

Split out from Safe module version 1, named opcode tags and other changes added by Tim
<Tim.Bunce@ig.co.uk>.
08−Oct−1996 Version 5.003 471

POSIX Perl Programmers Reference Guide POSIX

any of

 ask

erating

scribes
ions list

on. It
. It‘s a

ill print
ne exist.

ss the
r the
POSIX
rogram
ld be
NAME
POSIX − Perl interface to IEEE Std 1003.1

SYNOPSIS
 use POSIX;
 use POSIX qw(setsid);
 use POSIX qw(:errno_h :fcntl_h);

 printf "EINTR is %d\n", EINTR;

 $sess_id = POSIX::setsid();

 $fd = POSIX::open($path, O_CREAT|O_EXCL|O_WRONLY, 0644);
note: that’s a filedescriptor, *NOT* a filehandle

DESCRIPTION
The POSIX module permits you to access all (or nearly all) the standard POSIX 1003.1 identifiers. M
these identifiers have been given Perl−ish interfaces. Things which are #defines in C, like EINTR or
O_NDELAY, are automatically exported into your namespace. All functions are only exported if you
for them explicitly. Most likely people will prefer to use the fully−qualified function names.

This document gives a condensed list of the features available in the POSIX module. Consult your op
system‘s manpages for general information on most features. Consult perlfunc for functions which are noted
as being identical to Perl‘s builtin functions.

The first section describes POSIX functions from the 1003.1 specification. The second section de
some classes for signal objects, TTY objects, and other miscellaneous objects. The remaining sect
various constants and macros in an organization which roughly follows IEEE Std 1003.1b−1993.

NOTE
The POSIX module is probably the most complex Perl module supplied with the standard distributi
incorporates autoloading, namespace games, and dynamic loading of code that‘s in Perl, C, or both
great source of wisdom.

CAVEATS
A few functions are not implemented because they are C specific. If you attempt to call these, they w
a message telling you that they aren‘t implemented, and suggest using the Perl equivalent should o
For example, trying to access the setjmp() call will elicit the message "setjmp() is C−specific: use
eval {} instead".

Furthermore, some evil vendors will claim 1003.1 compliance, but in fact are not so: they will not pa
PCTS (POSIX Compliance Test Suites). For example, one vendor may not define EDEADLK, o
semantics of the errno values set by open(2) might not be quite right. Perl does not attempt to verify
compliance. That means you can currently successfully say "use POSIX", and then later in your p
you find that your vendor has been lax and there‘s no usable ICANON macro after all. This cou
construed to be a bug.

FUNCTIONS

_exit This is identical to the C function _exit() .

abort This is identical to the C function abort() .

abs This is identical to Perl‘s builtin abs() function.

access Determines the accessibility of a file.

if(POSIX::access("/", &POSIX::R_OK)){
print "have read permission\n";

}
472 Version 5.003 08−Oct−1996

POSIX Perl Programmers Reference Guide POSIX
Returns undef on failure.

acos This is identical to the C function acos() .

alarm This is identical to Perl‘s builtin alarm() function.

asctime This is identical to the C function asctime() .

asin This is identical to the C function asin() .

assert Unimplemented.

atan This is identical to the C function atan() .

atan2 This is identical to Perl‘s builtin atan2() function.

atexit atexit() is C−specific: use END {} instead.

atof atof() is C−specific.

atoi atoi() is C−specific.

atol atol() is C−specific.

bsearch bsearch() not supplied.

calloc calloc() is C−specific.

ceil This is identical to the C function ceil() .

chdir This is identical to Perl‘s builtin chdir() function.

chmod This is identical to Perl‘s builtin chmod() function.

chown This is identical to Perl‘s builtin chown() function.

clearerr Use method FileHandle::clearerr() instead.

clock This is identical to the C function clock() .

close Close the file. This uses file descriptors such as those obtained by calling POSIX::open .

$fd = POSIX::open("foo", &POSIX::O_RDONLY);
POSIX::close($fd);

Returns undef on failure.

closedir This is identical to Perl‘s builtin closedir() function.

cos This is identical to Perl‘s builtin cos() function.

cosh This is identical to the C function cosh() .

creat Create a new file. This returns a file descriptor like the ones returned by POSIX::open . Use
POSIX::close to close the file.

$fd = POSIX::creat("foo", 0611);
POSIX::close($fd);

ctermid Generates the path name for the controlling terminal.

$path = POSIX::ctermid();

ctime This is identical to the C function ctime() .

cuserid Get the character login name of the user.

$name = POSIX::cuserid();
08−Oct−1996 Version 5.003 473

POSIX Perl Programmers Reference Guide POSIX

such

 the
difftime This is identical to the C function difftime() .

div div() is C−specific.

dup This is similar to the C function dup() .

This uses file descriptors such as those obtained by calling POSIX::open .

Returns undef on failure.

dup2 This is similar to the C function dup2() .

This uses file descriptors such as those obtained by calling POSIX::open .

Returns undef on failure.

errno Returns the value of errno.

$errno = POSIX::errno();

execl execl() is C−specific.

execle execle() is C−specific.

execlp execlp() is C−specific.

execv execv() is C−specific.

execve execve() is C−specific.

execvp execvp() is C−specific.

exit This is identical to Perl‘s builtin exit() function.

exp This is identical to Perl‘s builtin exp() function.

fabs This is identical to Perl‘s builtin abs() function.

fclose Use method FileHandle::close() instead.

fcntl This is identical to Perl‘s builtin fcntl() function.

fdopen Use method FileHandle::new_from_fd() instead.

feof Use method FileHandle::eof() instead.

ferror Use method FileHandle::error() instead.

fflush Use method FileHandle::flush() instead.

fgetc Use method FileHandle::getc() instead.

fgetpos Use method FileHandle::getpos() instead.

fgets Use method FileHandle::gets() instead.

fileno Use method FileHandle::fileno() instead.

floor This is identical to the C function floor() .

fmod This is identical to the C function fmod() .

fopen Use method FileHandle::open() instead.

fork This is identical to Perl‘s builtin fork() function.

fpathconf Retrieves the value of a configurable limit on a file or directory. This uses file descriptors
as those obtained by calling POSIX::open .

The following will determine the maximum length of the longest allowable pathname on
filesystem which holds /tmp/foo .
474 Version 5.003 08−Oct−1996

POSIX Perl Programmers Reference Guide POSIX
$fd = POSIX::open("/tmp/foo", &POSIX::O_RDONLY);
$path_max = POSIX::fpathconf($fd, &POSIX::_PC_PATH_MAX);

Returns undef on failure.

fprintf fprintf() is C−specific—use printf instead.

fputc fputc() is C−specific—use print instead.

fputs fputs() is C−specific—use print instead.

fread fread() is C−specific—use read instead.

free free() is C−specific.

freopen freopen() is C−specific—use open instead.

frexp Return the mantissa and exponent of a floating−point number.

($mantissa, $exponent) = POSIX::frexp(3.14);

fscanf fscanf() is C−specific—use < and regular expressions instead.

fseek Use method FileHandle::seek() instead.

fsetpos Use method FileHandle::setpos() instead.

fstat Get file status. This uses file descriptors such as those obtained by calling POSIX::open . The
data returned is identical to the data from Perl‘s builtin stat function.

$fd = POSIX::open("foo", &POSIX::O_RDONLY);
@stats = POSIX::fstat($fd);

ftell Use method FileHandle::tell() instead.

fwrite fwrite() is C−specific—use print instead.

getc This is identical to Perl‘s builtin getc() function.

getchar Returns one character from STDIN.

getcwd Returns the name of the current working directory.

getegid Returns the effective group id.

getenv Returns the value of the specified enironment variable.

geteuid Returns the effective user id.

getgid Returns the user‘s real group id.

getgrgid This is identical to Perl‘s builtin getgrgid() function.

getgrnam This is identical to Perl‘s builtin getgrnam() function.

getgroups
Returns the ids of the user‘s supplementary groups.

getlogin This is identical to Perl‘s builtin getlogin() function.

getpgrp This is identical to Perl‘s builtin getpgrp() function.

getpid Returns the process‘s id.

getppid This is identical to Perl‘s builtin getppid() function.

getpwnam
This is identical to Perl‘s builtin getpwnam() function.
08−Oct−1996 Version 5.003 475

POSIX Perl Programmers Reference Guide POSIX

hole

hole

hole

hole

hole

hole

hole

hole

hole

hole

hole

locale
getpwuid
This is identical to Perl‘s builtin getpwuid() function.

gets Returns one line from STDIN.

getuid Returns the user‘s id.

gmtime This is identical to Perl‘s builtin gmtime() function.

isalnum This is identical to the C function, except that it can apply to a single character or to a w
string.

isalpha This is identical to the C function, except that it can apply to a single character or to a w
string.

isatty Returns a boolean indicating whether the specified filehandle is connected to a tty.

iscntrl This is identical to the C function, except that it can apply to a single character or to a w
string.

isdigit This is identical to the C function, except that it can apply to a single character or to a w
string.

isgraph This is identical to the C function, except that it can apply to a single character or to a w
string.

islower This is identical to the C function, except that it can apply to a single character or to a w
string.

isprint This is identical to the C function, except that it can apply to a single character or to a w
string.

ispunct This is identical to the C function, except that it can apply to a single character or to a w
string.

isspace This is identical to the C function, except that it can apply to a single character or to a w
string.

isupper This is identical to the C function, except that it can apply to a single character or to a w
string.

isxdigit This is identical to the C function, except that it can apply to a single character or to a w
string.

kill This is identical to Perl‘s builtin kill() function.

labs labs() is C−specific, use abs instead.

ldexp This is identical to the C function ldexp() .

ldiv ldiv() is C−specific, use / and int instead.

link This is identical to Perl‘s builtin link() function.

localeconv
Get numeric formatting information. Returns a reference to a hash containing the current
formatting values.

The database for the de (Deutsch or German) locale.

$loc = POSIX::setlocale(&POSIX::LC_ALL, "de");
print "Locale = $loc\n";
$lconv = POSIX::localeconv();
print "decimal_point = ", $lconv−>{decimal_point}, "\n";
print "thousands_sep = ", $lconv−>{thousands_sep}, "\n";
476 Version 5.003 08−Oct−1996

POSIX Perl Programmers Reference Guide POSIX

alling
print "grouping = ", $lconv−>{grouping},"\n";
print "int_curr_symbol = ", $lconv−>{int_curr_symbol}, "\n";
print "currency_symbol = ", $lconv−>{currency_symbol}, "\n";
print "mon_decimal_point = ", $lconv−>{mon_decimal_point}, "\n";
print "mon_thousands_sep = ", $lconv−>{mon_thousands_sep}, "\n";
print "mon_grouping = ", $lconv−>{mon_grouping}, "\n";
print "positive_sign = ", $lconv−>{positive_sign}, "\n";
print "negative_sign = ", $lconv−>{negative_sign}, "\n";
print "int_frac_digits = ", $lconv−>{int_frac_digits}, "\n";
print "frac_digits = ", $lconv−>{frac_digits}, "\n";
print "p_cs_precedes = ", $lconv−>{p_cs_precedes}, "\n";
print "p_sep_by_space = ", $lconv−>{p_sep_by_space}, "\n";
print "n_cs_precedes = ", $lconv−>{n_cs_precedes}, "\n";
print "n_sep_by_space = ", $lconv−>{n_sep_by_space}, "\n";
print "p_sign_posn = ", $lconv−>{p_sign_posn}, "\n";
print "n_sign_posn = ", $lconv−>{n_sign_posn}, "\n";

localtime This is identical to Perl‘s builtin localtime() function.

log This is identical to Perl‘s builtin log() function.

log10 This is identical to the C function log10() .

longjmp longjmp() is C−specific: use die instead.

lseek Move the read/write file pointer. This uses file descriptors such as those obtained by c
POSIX::open .

$fd = POSIX::open("foo", &POSIX::O_RDONLY);
$off_t = POSIX::lseek($fd, 0, &POSIX::SEEK_SET);

Returns undef on failure.

malloc malloc() is C−specific.

mblen This is identical to the C function mblen() .

mbstowcs
This is identical to the C function mbstowcs() .

mbtowc This is identical to the C function mbtowc() .

memchr memchr() is C−specific, use index() instead.

memcmp memcmp() is C−specific, use eq instead.

memcpy memcpy() is C−specific, use = instead.

memmove
memmove() is C−specific, use = instead.

memset memset() is C−specific, use x instead.

mkdir This is identical to Perl‘s builtin mkdir() function.

mkfifo This is similar to the C function mkfifo() .

Returns undef on failure.

mktime Convert date/time info to a calendar time.

Synopsis:

mktime(sec, min, hour, mday, mon, year, wday = 0, yday = 0, isdst = 0
08−Oct−1996 Version 5.003 477

POSIX Perl Programmers Reference Guide POSIX

;
.

Use

 the
The month (mon), weekday (wday), and yearday (yday) begin at zero. I.e. January is 0, not 1
Sunday is 0, not 1; January 1st is 0, not 1. The year (year) is given in years since 1900. I.e
The year 1995 is 95; the year 2001 is 101. Consult your system‘s mktime() manpage for
details about these and the other arguments.

Calendar time for December 12, 1995, at 10:30 am.

$time_t = POSIX::mktime(0, 30, 10, 12, 11, 95);
print "Date = ", POSIX::ctime($time_t);

Returns undef on failure.

modf Return the integral and fractional parts of a floating−point number.

($fractional, $integral) = POSIX::modf(3.14);

nice This is similar to the C function nice() .

Returns undef on failure.

offsetof offsetof() is C−specific.

open Open a file for reading for writing. This returns file descriptors, not Perl filehandles.
POSIX::close to close the file.

Open a file read−only with mode 0666.

$fd = POSIX::open("foo");

Open a file for read and write.

$fd = POSIX::open("foo", &POSIX::O_RDWR);

Open a file for write, with truncation.

$fd = POSIX::open("foo", &POSIX::O_WRONLY | &POSIX::O_TRUNC);

Create a new file with mode 0640. Set up the file for writing.

$fd = POSIX::open("foo", &POSIX::O_CREAT | &POSIX::O_WRONLY, 0640);

Returns undef on failure.

opendir Open a directory for reading.

$dir = POSIX::opendir("/tmp");
@files = POSIX::readdir($dir);
POSIX::closedir($dir);

Returns undef on failure.

pathconf Retrieves the value of a configurable limit on a file or directory.

The following will determine the maximum length of the longest allowable pathname on
filesystem which holds /tmp .

$path_max = POSIX::pathconf("/tmp", &POSIX::_PC_PATH_MAX);

Returns undef on failure.

pause This is similar to the C function pause() .

Returns undef on failure.

perror This is identical to the C function perror() .

pipe Create an interprocess channel. This returns file descriptors like those returned by
POSIX::open .
478 Version 5.003 08−Oct−1996

POSIX Perl Programmers Reference Guide POSIX

 the

bles
($fd0, $fd1) = POSIX::pipe();
POSIX::write($fd0, "hello", 5);
POSIX::read($fd1, $buf, 5);

pow Computes $x raised to the power $exponent.

$ret = POSIX::pow($x, $exponent);

printf Prints the specified arguments to STDOUT.

putc putc() is C−specific—use print instead.

putchar putchar() is C−specific—use print instead.

puts puts() is C−specific—use print instead.

qsort qsort() is C−specific, use sort instead.

raise Sends the specified signal to the current process.

rand rand() is non−portable, use Perl‘s rand instead.

read Read from a file. This uses file descriptors such as those obtained by calling POSIX::open . If
the buffer $buf is not large enough for the read then Perl will extend it to make room for
request.

$fd = POSIX::open("foo", &POSIX::O_RDONLY);
$bytes = POSIX::read($fd, $buf, 3);

Returns undef on failure.

readdir This is identical to Perl‘s builtin readdir() function.

realloc realloc() is C−specific.

remove This is identical to Perl‘s builtin unlink() function.

rename This is identical to Perl‘s builtin rename() function.

rewind Seeks to the beginning of the file.

rewinddir This is identical to Perl‘s builtin rewinddir() function.

rmdir This is identical to Perl‘s builtin rmdir() function.

scanf scanf() is C−specific—use < and regular expressions instead.

setgid Sets the real group id for this process.

setjmp setjmp() is C−specific: use eval {} instead.

setlocale Modifies and queries program‘s locale.

The following will set the traditional UNIX system locale behavior (the second argument "C").

$loc = POSIX::setlocale(&POSIX::LC_ALL, "C");

The following will query (the missing second argument) the current LC_CTYPE category.

$loc = POSIX::setlocale(&POSIX::LC_CTYPE);

The following will set the LC_CTYPE behaviour according to the locale environment varia
(the second argument ""). Please see your systems setlocale(3) documentation for the locale
environment variables’ meaning or consult perli18n.

$loc = POSIX::setlocale(&POSIX::LC_CTYPE, "");

The following will set the LC_COLLATE behaviour to Argentinian Spanish. NOTE: The
naming and availability of locales depends on your operating system. Please consult perli18n for
08−Oct−1996 Version 5.003 479

POSIX Perl Programmers Reference Guide POSIX
how to find out which locales are available in your system.

$loc = POSIX::setlocale(&POSIX::LC_ALL, "es_AR.ISO8859−1");

setpgid This is similar to the C function setpgid() .

Returns undef on failure.

setsid This is identical to the C function setsid() .

setuid Sets the real user id for this process.

sigaction Detailed signal management. This uses POSIX::SigAction objects for the action and
oldaction arguments. Consult your system‘s sigaction manpage for details.

Synopsis:

sigaction(sig, action, oldaction = 0)

Returns undef on failure.

siglongjmp
siglongjmp() is C−specific: use die instead.

sigpending
Examine signals that are blocked and pending. This uses POSIX::SigSet objects for the
sigset argument. Consult your system‘s sigpending manpage for details.

Synopsis:

sigpending(sigset)

Returns undef on failure.

sigprocmask
Change and/or examine calling process‘s signal mask. This uses POSIX::SigSet objects for
the sigset and oldsigset arguments. Consult your system‘s sigprocmask manpage for
details.

Synopsis:

sigprocmask(how, sigset, oldsigset = 0)

Returns undef on failure.

sigsetjmp sigsetjmp() is C−specific: use eval {} instead.

sigsuspend
Install a signal mask and suspend process until signal arrives. This uses POSIX::SigSet
objects for the signal_mask argument. Consult your system‘s sigsuspend manpage for
details.

Synopsis:

sigsuspend(signal_mask)

Returns undef on failure.

sin This is identical to Perl‘s builtin sin() function.

sinh This is identical to the C function sinh() .

sleep This is identical to Perl‘s builtin sleep() function.

sprintf This is identical to Perl‘s builtin sprintf() function.
480 Version 5.003 08−Oct−1996

POSIX Perl Programmers Reference Guide POSIX

;
.

sqrt This is identical to Perl‘s builtin sqrt() function.

srand srand() .

sscanf sscanf() is C−specific—use regular expressions instead.

stat This is identical to Perl‘s builtin stat() function.

strcat strcat() is C−specific, use .= instead.

strchr strchr() is C−specific, use index() instead.

strcmp strcmp() is C−specific, use eq instead.

strcoll This is identical to the C function strcoll() .

strcpy strcpy() is C−specific, use = instead.

strcspn strcspn() is C−specific, use regular expressions instead.

strerror Returns the error string for the specified errno.

strftime Convert date and time information to string. Returns the string.

Synopsis:

strftime(fmt, sec, min, hour, mday, mon, year, wday = 0, yday = 0, isd

The month (mon), weekday (wday), and yearday (yday) begin at zero. I.e. January is 0, not 1
Sunday is 0, not 1; January 1st is 0, not 1. The year (year) is given in years since 1900. I.e
The year 1995 is 95; the year 2001 is 101. Consult your system‘s strftime() manpage for
details about these and the other arguments.

The string for Tuesday, December 12, 1995.

$str = POSIX::strftime("%A, %B %d, %Y", 0, 0, 0, 12, 11, 95, 2);
print "$str\n";

strlen strlen() is C−specific, use length instead.

strncat strncat() is C−specific, use .= instead.

strncmp strncmp() is C−specific, use eq instead.

strncpy strncpy() is C−specific, use = instead.

stroul stroul() is C−specific.

strpbrk strpbrk() is C−specific.

strrchr strrchr() is C−specific, use rindex() instead.

strspn strspn() is C−specific.

strstr This is identical to Perl‘s builtin index() function.

strtod strtod() is C−specific.

strtok strtok() is C−specific.

strtol strtol() is C−specific.

strxfrm String transformation. Returns the transformed string.

$dst = POSIX::strxfrm($src);

sysconf Retrieves values of system configurable variables.

The following will get the machine‘s clock speed.
08−Oct−1996 Version 5.003 481

POSIX Perl Programmers Reference Guide POSIX

ystem
y child
$clock_ticks = POSIX::sysconf(&POSIX::_SC_CLK_TCK);

Returns undef on failure.

system This is identical to Perl‘s builtin system() function.

tan This is identical to the C function tan() .

tanh This is identical to the C function tanh() .

tcdrain This is similar to the C function tcdrain() .

Returns undef on failure.

tcflow This is similar to the C function tcflow() .

Returns undef on failure.

tcflush This is similar to the C function tcflush() .

Returns undef on failure.

tcgetpgrp This is identical to the C function tcgetpgrp() .

tcsendbreak
This is similar to the C function tcsendbreak() .

Returns undef on failure.

tcsetpgrp This is similar to the C function tcsetpgrp() .

Returns undef on failure.

time This is identical to Perl‘s builtin time() function.

times The times() function returns elapsed realtime since some point in the past (such as s
startup), user and system times for this process, and user and system times used b
processes. All times are returned in clock ticks.

 ($realtime, $user, $system, $cuser, $csystem) = POSIX::times();

Note: Perl‘s builtin times() function returns four values, measured in seconds.

tmpfile Use method FileHandle::new_tmpfile() instead.

tmpnam Returns a name for a temporary file.

$tmpfile = POSIX::tmpnam();

tolower This is identical to Perl‘s builtin lc() function.

toupper This is identical to Perl‘s builtin uc() function.

ttyname This is identical to the C function ttyname() .

tzname Retrieves the time conversion information from the tzname variable.

POSIX::tzset();
($std, $dst) = POSIX::tzname();

tzset This is identical to the C function tzset() .

umask This is identical to Perl‘s builtin umask() function.

uname Get name of current operating system.

($sysname, $nodename, $release, $version, $machine) = POSIX::uname()
482 Version 5.003 08−Oct−1996

POSIX Perl Programmers Reference Guide POSIX

 first
meter

nger
ungetc Use method FileHandle::ungetc() instead.

unlink This is identical to Perl‘s builtin unlink() function.

utime This is identical to Perl‘s builtin utime() function.

vfprintf vfprintf() is C−specific.

vprintf vprintf() is C−specific.

vsprintf vsprintf() is C−specific.

wait This is identical to Perl‘s builtin wait() function.

waitpid Wait for a child process to change state. This is identical to Perl‘s builtin waitpid() function.

$pid = POSIX::waitpid(−1, &POSIX::WNOHANG);
print "status = ", ($? / 256), "\n";

wcstombs
This is identical to the C function wcstombs() .

wctomb This is identical to the C function wctomb() .

write Write to a file. This uses file descriptors such as those obtained by calling POSIX::open .

$fd = POSIX::open("foo", &POSIX::O_WRONLY);
$buf = "hello";
$bytes = POSIX::write($b, $buf, 5);

Returns undef on failure.

CLASSES

POSIX::SigAction

new Creates a new POSIX::SigAction object which corresponds to the C struct
sigaction . This object will be destroyed automatically when it is no longer needed. The
parameter is the fully−qualified name of a sub which is a signal−handler. The second para
is a POSIX::SigSet object. The third parameter contains the sa_flags .

$sigset = POSIX::SigSet−>new;
$sigaction = POSIX::SigAction−>new(’main::handler’, $sigset, &POSIX:

This POSIX::SigAction object should be used with the POSIX::sigaction() function.

POSIX::SigSet

new Create a new SigSet object. This object will be destroyed automatically when it is no lo
needed. Arguments may be supplied to initialize the set.

Create an empty set.

$sigset = POSIX::SigSet−>new;

Create a set with SIGUSR1.

$sigset = POSIX::SigSet−>new(&POSIX::SIGUSR1);

addset Add a signal to a SigSet object.

$sigset−>addset(&POSIX::SIGUSR2);

Returns undef on failure.
08−Oct−1996 Version 5.003 483

POSIX Perl Programmers Reference Guide POSIX

nger

index
delset Remove a signal from the SigSet object.

$sigset−>delset(&POSIX::SIGUSR2);

Returns undef on failure.

emptyset Initialize the SigSet object to be empty.

$sigset−>emptyset();

Returns undef on failure.

fillset Initialize the SigSet object to include all signals.

$sigset−>fillset();

Returns undef on failure.

ismember
Tests the SigSet object to see if it contains a specific signal.

if($sigset−>ismember(&POSIX::SIGUSR1)){
print "contains SIGUSR1\n";

}

POSIX::Termios

new Create a new Termios object. This object will be destroyed automatically when it is no lo
needed.

$termios = POSIX::Termios−>new;

getattr Get terminal control attributes.

Obtain the attributes for stdin.

$termios−>getattr()

Obtain the attributes for stdout.

$termios−>getattr(1)

Returns undef on failure.

getcc Retrieve a value from the c_cc field of a termios object. The c_cc field is an array so an
must be specified.

$c_cc[1] = $termios−>getcc(1);

getcflag Retrieve the c_cflag field of a termios object.

$c_cflag = $termios−>getcflag;

getiflag Retrieve the c_iflag field of a termios object.

$c_iflag = $termios−>getiflag;

getispeed
Retrieve the input baud rate.

$ispeed = $termios−>getispeed;

getlflag Retrieve the c_lflag field of a termios object.

$c_lflag = $termios−>getlflag;
484 Version 5.003 08−Oct−1996

POSIX Perl Programmers Reference Guide POSIX

ust be

400
getoflag Retrieve the c_oflag field of a termios object.

$c_oflag = $termios−>getoflag;

getospeed
Retrieve the output baud rate.

$ospeed = $termios−>getospeed;

setattr Set terminal control attributes.

Set attributes immediately for stdout.

$termios−>setattr(1, &POSIX::TCSANOW);

Returns undef on failure.

setcc Set a value in the c_cc field of a termios object. The c_cc field is an array so an index m
specified.

$termios−>setcc(&POSIX::VEOF, 1);

setcflag Set the c_cflag field of a termios object.

$termios−>setcflag(&POSIX::CLOCAL);

setiflag Set the c_iflag field of a termios object.

$termios−>setiflag(&POSIX::BRKINT);

setispeed Set the input baud rate.

$termios−>setispeed(&POSIX::B9600);

Returns undef on failure.

setlflag Set the c_lflag field of a termios object.

$termios−>setlflag(&POSIX::ECHO);

setoflag Set the c_oflag field of a termios object.

$termios−>setoflag(&POSIX::OPOST);

setospeed
Set the output baud rate.

$termios−>setospeed(&POSIX::B9600);

Returns undef on failure.

Baud rate values
B38400 B75 B200 B134 B300 B1800 B150 B0 B19200 B1200 B9600 B600 B4800 B50 B2
B110

Terminal interface values
TCSADRAIN TCSANOW TCOON TCIOFLUSH TCOFLUSH TCION TCIFLUSH
TCSAFLUSH TCIOFF TCOOFF

c_cc field values
VEOF VEOL VERASE VINTR VKILL VQUIT VSUSP VSTART VSTOP VMIN VTIME
NCCS

c_cflag field values
CLOCAL CREAD CSIZE CS5 CS6 CS7 CS8 CSTOPB HUPCL PARENB PARODD
08−Oct−1996 Version 5.003 485

POSIX Perl Programmers Reference Guide POSIX

D

c_iflag field values
BRKINT ICRNL IGNBRK IGNCR IGNPAR INLCR INPCK ISTRIP IXOFF IXON PARMRK

c_lflag field values
ECHO ECHOE ECHOK ECHONL ICANON IEXTEN ISIG NOFLSH TOSTOP

c_oflag field values
OPOST

PATHNAME CONSTANTS

Constants
_PC_CHOWN_RESTRICTED _PC_LINK_MAX _PC_MAX_CANON _PC_MAX_INPUT
_PC_NAME_MAX _PC_NO_TRUNC _PC_PATH_MAX _PC_PIPE_BUF _PC_VDISABLE

POSIX CONSTANTS

Constants
_POSIX_ARG_MAX _POSIX_CHILD_MAX _POSIX_CHOWN_RESTRICTED
_POSIX_JOB_CONTROL _POSIX_LINK_MAX _POSIX_MAX_CANON
_POSIX_MAX_INPUT _POSIX_NAME_MAX _POSIX_NGROUPS_MAX
_POSIX_NO_TRUNC _POSIX_OPEN_MAX _POSIX_PATH_MAX _POSIX_PIPE_BUF
_POSIX_SAVED_IDS _POSIX_SSIZE_MAX _POSIX_STREAM_MAX
_POSIX_TZNAME_MAX _POSIX_VDISABLE _POSIX_VERSION

SYSTEM CONFIGURATION

Constants
_SC_ARG_MAX _SC_CHILD_MAX _SC_CLK_TCK _SC_JOB_CONTROL
_SC_NGROUPS_MAX _SC_OPEN_MAX _SC_SAVED_IDS _SC_STREAM_MAX
_SC_TZNAME_MAX _SC_VERSION

ERRNO

Constants
E2BIG EACCES EAGAIN EBADF EBUSY ECHILD EDEADLK EDOM EEXIST EFAULT
EFBIG EINTR EINVAL EIO EISDIR EMFILE EMLINK ENAMETOOLONG ENFILE
ENODEV ENOENT ENOEXEC ENOLCK ENOMEM ENOSPC ENOSYS ENOTDIR
ENOTEMPTY ENOTTY ENXIO EPERM EPIPE ERANGE EROFS ESPIPE ESRCH EXDEV

FCNTL

Constants
FD_CLOEXEC F_DUPFD F_GETFD F_GETFL F_GETLK F_OK F_RDLCK F_SETF
F_SETFL F_SETLK F_SETLKW F_UNLCK F_WRLCK O_ACCMODE O_APPEND
O_CREAT O_EXCL O_NOCTTY O_NONBLOCK O_RDONLY O_RDWR O_TRUNC
O_WRONLY

FLOAT

Constants
DBL_DIG DBL_EPSILON DBL_MANT_DIG DBL_MAX DBL_MAX_10_EXP
DBL_MAX_EXP DBL_MIN DBL_MIN_10_EXP DBL_MIN_EXP FLT_DIG FLT_EPSILON
FLT_MANT_DIG FLT_MAX FLT_MAX_10_EXP FLT_MAX_EXP FLT_MIN
FLT_MIN_10_EXP FLT_MIN_EXP FLT_RADIX FLT_ROUNDS LDBL_DIG
LDBL_EPSILON LDBL_MANT_DIG LDBL_MAX LDBL_MAX_10_EXP
LDBL_MAX_EXP LDBL_MIN LDBL_MIN_10_EXP LDBL_MIN_EXP
486 Version 5.003 08−Oct−1996

POSIX Perl Programmers Reference Guide POSIX

L
N
K

LIMITS

Constants
ARG_MAX CHAR_BIT CHAR_MAX CHAR_MIN CHILD_MAX INT_MAX INT_MIN
LINK_MAX LONG_MAX LONG_MIN MAX_CANON MAX_INPUT MB_LEN_MAX
NAME_MAX NGROUPS_MAX OPEN_MAX PATH_MAX PIPE_BUF SCHAR_MAX
SCHAR_MIN SHRT_MAX SHRT_MIN SSIZE_MAX STREAM_MAX TZNAME_MAX
UCHAR_MAX UINT_MAX ULONG_MAX USHRT_MAX

LOCALE

Constants
LC_ALL LC_COLLATE LC_CTYPE LC_MONETARY LC_NUMERIC LC_TIME

MATH

Constants
HUGE_VAL

SIGNAL

Constants
SA_NOCLDSTOP SIGABRT SIGALRM SIGCHLD SIGCONT SIGFPE SIGHUP SIGIL
SIGINT SIGKILL SIGPIPE SIGQUIT SIGSEGV SIGSTOP SIGTERM SIGTSTP SIGTTI
SIGTTOU SIGUSR1 SIGUSR2 SIG_BLOCK SIG_DFL SIG_ERR SIG_IGN SIG_SETMAS
SIG_UNBLOCK

STAT

Constants
S_IRGRP S_IROTH S_IRUSR S_IRWXG S_IRWXO S_IRWXU S_ISGID S_ISUID
S_IWGRP S_IWOTH S_IWUSR S_IXGRP S_IXOTH S_IXUSR

Macros S_ISBLK S_ISCHR S_ISDIR S_ISFIFO S_ISREG

STDLIB

Constants
EXIT_FAILURE EXIT_SUCCESS MB_CUR_MAX RAND_MAX

STDIO

Constants
BUFSIZ EOF FILENAME_MAX L_ctermid L_cuserid L_tmpname TMP_MAX

TIME

Constants
CLK_TCK CLOCKS_PER_SEC

UNISTD

Constants
R_OK SEEK_CUR SEEK_END SEEK_SET STDIN_FILENO STDOUT_FILENO
STRERR_FILENO W_OK X_OK

WAIT

Constants
WNOHANG WUNTRACED
08−Oct−1996 Version 5.003 487

POSIX Perl Programmers Reference Guide POSIX
Macros WIFEXITED WEXITSTATUS WIFSIGNALED WTERMSIG WIFSTOPPED WSTOPSIG

CREATION
This document generated by ./mkposixman.PL version 19960129.
488 Version 5.003 08−Oct−1996

SDBM_File Perl Programmers Reference Guide SDBM_File
NAME
SDBM_File − Tied access to sdbm files

SYNOPSIS
 use SDBM_File;

 tie(%h, ’SDBM_File’, ’Op.dbmx’, O_RDWR|O_CREAT, 0640);

 untie %h;

DESCRIPTION
See tie
08−Oct−1996 Version 5.003 489

Safe Perl Programmers Reference Guide Safe

d. Each

luated
e glob

luated

cause
f

into an
 the
n the
ment‘s
perator

tion,

ess to
outine

or

similar
NAME
Safe − Compile and execute code in restricted compartments

SYNOPSIS
 use Safe;

 $compartment = new Safe;

 $compartment−>permit(qw(time sort :browse));

 $result = $compartment−>reval($unsafe_code);

DESCRIPTION
The Safe extension module allows the creation of compartments in which perl code can be evaluate
compartment has

a new namespace
The "root" of the namespace (i.e. "main::") is changed to a different package and code eva
in the compartment cannot refer to variables outside this namespace, even with run−tim
lookups and other tricks.

Code which is compiled outside the compartment can choose to place variables into (orshare
variables with) the compartment‘s namespace and only that data will be visible to code eva
in the compartment.

By default, the only variables shared with compartments are the "underscore" variables $_ and
@_ (and, technically, the less frequently used %_, the _ filehandle and so on). This is be
otherwise perl operators which default to $_ will not work and neither will the assignment o
arguments to @_ on subroutine entry.

an operator mask
Each compartment has an associated "operator mask". Recall that perl code is compiled
internal format before execution. Evaluating perl code (e.g. via "eval" or "do ‘file‘") causes
code to be compiled into an internal format and then, provided there was no error i
compilation, executed. Code evaulated in a compartment compiles subject to the compart
operator mask. Attempting to evaulate code in a compartment which contains a masked o
will cause the compilation to fail with an error. The code will not be executed.

The default operator mask for a newly created compartment is the ‘:default’ optag.

It is important that you read the Opcode(3) module documentation for more informa
especially for detailed definitions of opnames, optags and opsets.

Since it is only at the compilation stage that the operator mask applies, controlled acc
potentially unsafe operations can be achieved by having a handle to a wrapper subr
(written outside the compartment) placed into the compartment. For example,

 $cpt = new Safe;
 sub wrapper {
 # vet arguments and perform potentially unsafe operations
 }
 $cpt−>share(’&wrapper’);

WARNING
The authors make no warranty, implied or otherwise, about the suitability of this software for safety
security purposes.

The authors shall not in any case be liable for special, incidental, consequential, indirect or other
damages arising from the use of this software.
490 Version 5.003 08−Oct−1996

Safe Perl Programmers Reference Guide Safe

l5.002).
 makes

r the

ionality
.

tor. The

(other

t (

ical to

.

,
ted

ethod

ls
n array
Your mileage will vary. If in any doubt do not use it.

RECENT CHANGES
The interface to the Safe module has changed quite dramatically since version 1 (as supplied with Per
Study these pages carefully if you have code written to use Safe version 1 because you will need to
changes.

Methods in class Safe
To create a new compartment, use

 $cpt = new Safe;

Optional argument is (NAMESPACE), where NAMESPACE is the root namespace to use fo
compartment (defaults to "Safe::Root0", incremented for each new compartment).

Note that version 1.00 of the Safe module supported a second optional parameter, MASK. That funct
has been withdrawn pending deeper consideration. Use the permit and deny methods described below

The following methods can then be used on the compartment object returned by the above construc
object argument is implicit in each case.

permit (OP, ...)
Permit the listed operators to be used when compiling code in the compartment (in addition to
any operators already permitted).

permit_only (OP, ...)
Permit only the listed operators to be used when compiling code in the compartment (no other
operators are permitted).

deny (OP, ...)
Deny the listed operators from being used when compiling code in the compartment
operators may still be permitted).

deny_only (OP, ...)
Deny only the listed operators from being used when compiling code in the compartmenall
other operators will be permitted).

trap (OP, ...)
untrap (OP, ...)

The trap and untrap methods are synonyms for deny and permit respectfully.

share (NAME, ...)
This shares the variable(s) in the argument list with the compartment. This is almost ident
exporting variables using the Exporter(3) module.

Each NAME must be the name of a variable, typically with the leading type identifier included
A bareword is treated as a function name.

Examples of legal names are ‘$foo’ for a scalar, ‘@foo’ for an array, ‘%foo’ for a hash
‘&foo’ or ‘foo’ for a subroutine and ‘*foo’ for a glob (i.e. all symbol table entries associa
with "foo", including scalar, array, hash, sub and filehandle).

Each NAME is assumed to be in the calling package. See share_from for an alternative m
(which share uses).

share_from (PACKAGE, ARRAYREF)
This method is similar to share() but allows you to explicitly name the package that symbo
should be shared from. The symbol names (including type characters) are supplied as a
reference.

 $safe−>share_from(’main’, [’$foo’, ’%bar’, ’func’]);
08−Oct−1996 Version 5.003 491

Safe Perl Programmers Reference Guide Safe

f the
r

e

 the
r the

ch a

 return

ns of

t use
ill fail

ssibly

 from
his is

h it.
t

es eval
 and
in the
t, then

f the
 of the

not
varglob (VARNAME)
This returns a glob reference for the symbol table entry of VARNAME in the package o
compartment. VARNAME must be the name of a variable without any leading type marker. Fo
example,

 $cpt = new Safe ’Root’;
 $Root::foo = "Hello world";
 # Equivalent version which doesn’t need to know $cpt’s package name:
 ${$cpt−>varglob(’foo’)} = "Hello world";

reval (STRING)
This evaluates STRING as perl code inside the compartment.

The code can only see the compartment‘s namespace (as returned by the root method). The
compartment‘s root package appears to be the main:: package to the code inside th
compartment.

Any attempt by the code in STRING to use an operator which is not permitted by
compartment will cause an error (at run−time of the main program but at compile−time fo
code in STRING). The error is of the form "%s trapped by operation mask operation...".

If an operation is trapped in this way, then the code in STRING will not be executed. If su
trapped operation occurs or any other compile−time or return error, then $@ is set to the error
message, just as with an eval() .

If there is no error, then the method returns the value of the last expression evaluated, or a
statement may be used, just as with subroutines and eval() . The context (list or scalar) is
determined by the caller as usual.

This behaviour differs from the beta distribution of the Safe extension where earlier versio
perl made it hard to mimic the return behaviour of the eval() command and the context was
always scalar.

Some points to note:

If the entereval op is permitted then the code can use eval "..." to ‘hide’ code which migh
denied ops. This is not a major problem since when the code tries to execute the eval it w
because the opmask is still in effect. However this technique would allow clever, and po
harmful, code to ‘probe’ the boundaries of what is possible.

Any string eval which is executed by code executing in a compartment, or by code called
code executing in a compartment, will be eval‘d in the namespace of the compartment. T
potentially a serious problem.

Consider a function foo() in package pkg compiled outside a compartment but shared wit
Assume the compartment has a root package called ‘Root’. If foo() contains an eval statemen
like eval ‘$foo = 1’ then, normally, $pkg::foo will be set to 1. If foo() is called from the
compartment (by whatever means) then instead of setting $pkg::foo, the eval will actually
set $Root::pkg::foo.

This can easily be demonstrated by using a module, such as the Socket module, which us
"..." as part of an AUTOLOAD function. You can ‘use’ the module outside the compartment
share an (autoloaded) function with the compartment. If an autoload is triggered by code
compartment, or by any code anywhere that is called by any means from the compartmen
the eval in the Socket module‘s AUTOLOAD function happens in the namespace o
compartment. Any variables created or used by the eval‘d code are now under the control
code in the compartment.

A similar effect applies to all runtime symbol lookups in code called from a compartment but
compiled within it.
492 Version 5.003 08−Oct−1996

Safe Perl Programmers Reference Guide Safe

ace.

odule
 deeper

ent to

onally

me is
bles

k is in
et an
stated

or the

in the
rdo (FILENAME)
This evaluates the contents of file FILENAME inside the compartment. See above
documentation on the reval method for further details.

root (NAMESPACE)
This method returns the name of the package that is the root of the compartment‘s namesp

Note that this behaviour differs from version 1.00 of the Safe module where the root m
could be used to change the namespace. That functionality has been withdrawn pending
consideration.

mask (MASK)
This is a get−or−set method for the compartment‘s operator mask.

With no MASK argument present, it returns the current operator mask of the compartment.

With the MASK argument present, it sets the operator mask for the compartment (equival
calling the deny_only method).

Some Safety Issues
This section is currently just an outline of some of the things code in a compartment might do (intenti
or unintentionally) which can have an effect outside the compartment.

Memory Consuming all (or nearly all) available memory.

CPU Causing infinite loops etc.

Snooping Copying private information out of your system. Even something as simple as your user na
of value to others. Much useful information could be gleaned from your environment varia
for example.

Signals Causing signals (especially SIGFPE and SIGALARM) to affect your process.

Setting up a signal handler will need to be carefully considered and controlled. What mas
effect when a signal handler gets called? If a user can get an imported function to g
exception and call the user‘s signal handler, does that user‘s restricted mask get re−in
before the handler is called? Does an imported handler get called with its original mask
user‘s one?

State Changes
Ops such as chdir obviously effect the process as a whole and not just the code
compartment. Ops such as rand and srand have a similar but more subtle effect.

AUTHOR
Originally designed and implemented by Malcolm Beattie, mbeattie@sable.ox.ac.uk.

Reworked to use the Opcode module and other changes added by Tim Bunce <Tim.Bunce@ig.co.uk>.
08−Oct−1996 Version 5.003 493

Dict Perl Programmers Reference Guide Dict
NAME
Search::Dict, look − search for key in dictionary file

SYNOPSIS
 use Search::Dict;
 look *FILEHANDLE, $key, $dict, $fold;

DESCRIPTION
Sets file position in FILEHANDLE to be first line greater than or equal (stringwise) to $key . Returns the
new file position, or −1 if an error occurs.

The flags specify dictionary order and case folding:

If $dict is true, search by dictionary order (ignore anything but word characters and whitespace).

If $fold is true, ignore case.
494 Version 5.003 08−Oct−1996

SelectSaver Perl Programmers Reference Guide SelectSaver

. If its
 handle

.
NAME
SelectSaver − save and restore selected file handle

SYNOPSIS
 use SelectSaver;

 {
 my $saver = new SelectSaver(FILEHANDLE);
 # FILEHANDLE is selected
 }
 # previous handle is selected

 {
 my $saver = new SelectSaver;
 # new handle may be selected, or not
 }
 # previous handle is selected

DESCRIPTION
A SelectSaver object contains a reference to the file handle that was selected when it was created
new method gets an extra parameter, then that parameter is selected; otherwise, the selected file
remains unchanged.

When a SelectSaver is destroyed, it re−selects the file handle that was selected when it was created
08−Oct−1996 Version 5.003 495

SelfLoader Perl Programmers Reference Guide SelfLoader

ter the

after
the

s

last
by the

y an

file

d
ause

ed up

s if you

l be
NAME
SelfLoader − load functions only on demand

SYNOPSIS
 package FOOBAR;
 use SelfLoader;

 ... (initializing code)

 __DATA__
 sub {....

DESCRIPTION
This module tells its users that functions in the FOOBAR package are to be autoloaded from af
__DATA__ token. See also Autoloading in perlsub.

The __DATA__ token
The __DATA__ token tells the perl compiler that the perl code for compilation is finished. Everything
the __DATA__ token is available for reading via the filehandle FOOBAR::DATA, where FOOBAR is
name of the current package when the __DATA__ token is reached. This works just the same as __END__
does in package ‘main‘, but for other modules data after __END__ is not automatically retreivable , wherea
data after __DATA__ is. The __DATA__ token is not recognized in versions of perl prior to 5.001m.

Note that it is possible to have __DATA__ tokens in the same package in multiple files, and that the
__DATA__ token in a given package that is encountered by the compiler is the one accessible
filehandle. This also applies to __END__ and main, i.e. if the ‘main’ program has an __END__, but a
module ‘require‘d (_not_ ‘use‘d) by that program has a ‘package main;’ declaration followed b
‘__DATA__‘, then the DATA filehandle is set to access the data after the __DATA__ in the module, _not_
the data after the __END__ token in the ‘main’ program, since the compiler encounters the ‘require‘d
later.

SelfLoader autoloading
The SelfLoader works by the user placing the __DATA__ token after perl code which needs to be compile
and run at ‘require’ time, but before subroutine declarations that can be loaded in later − usually bec
they may never be called.

The SelfLoader will read from the FOOBAR::DATA filehandle to load in the data after __DATA__, and
load in any subroutine when it is called. The costs are the one−time parsing of the data after __DATA__, and
a load delay for the _first_ call of any autoloaded function. The benefits (hopefully) are a speed
compilation phase, with no need to load functions which are never used.

The SelfLoader will stop reading from __DATA__ if it encounters the __END__ token − just as you would
expect. If the __END__ token is present, and is followed by the token DATA, then the SelfLoader leaves
the FOOBAR::DATA filehandle open on the line after that token.

The SelfLoader exports the AUTOLOAD subroutine to the package using the SelfLoader, and this loads the
called subroutine when it is first called.

There is no advantage to putting subroutines which will _always_ be called after the __DATA__ token.

Autoloading and package lexicals
A ‘my $pack_lexical’ statement makes the variable $pack_lexical local _only_ to the file up to
the __DATA__ token. Subroutines declared elsewhere _cannot_ see these types of variables, just a
declared subroutines in the package but in another file, they cannot see these variables.

So specifically, autoloaded functions cannot see package lexicals (this applies to both the SelfLoader and
the Autoloader). The vars pragma provides an alternative to defining package−level globals that wil
visible to autoloaded routines. See the documentation on vars in the pragma section of perlmod.
496 Version 5.003 08−Oct−1996

SelfLoader Perl Programmers Reference Guide SelfLoader

ough
d

p to

ule at
re is a

d

you

r
lso

irst

u have

s, there

e that the
e, by

r
p of
FORE
SelfLoader and AutoLoader
The SelfLoader can replace the AutoLoader − just change ‘use AutoLoader’ to ‘use SelfLoader’ (th
note that the SelfLoader exports the AUTOLOAD function − but if you have your own AUTOLOAD an
are using the AutoLoader too, you probably know what you‘re doing), and the __END__ token to
__DATA__. You will need perl version 5.001m or later to use this (version 5.001 with all patches u
patch m).

There is no need to inherit from the SelfLoader.

The SelfLoader works similarly to the AutoLoader, but picks up the subs from after the __DATA__ instead
of in the ‘lib/auto’ directory. There is a maintainance gain in not needing to run AutoSplit on the mod
installation, and a runtime gain in not needing to keep opening and closing files to load subs. The
runtime loss in needing to parse the code after the __DATA__. Details of the AutoLoader and another view
of these distinctions can be found in that module‘s documentation.

__DATA__, __END__, and the FOOBAR::DATA filehandle.
This section is only relevant if you want to use the FOOBAR::DATA together with the SelfLoader.

Data after the __DATA__ token in a module is read using the FOOBAR::DATA filehandle. __END__ can
still be used to denote the end of the __DATA__ section if followed by the token DATA − this is supporte
by the SelfLoader. The FOOBAR::DATA filehandle is left open if an __END__ followed by a DATA is
found, with the filehandle positioned at the start of the line after the __END__ token. If no __END__ token
is present, or an __END__ token with no DATA token on the same line, then the filehandle is closed.

The SelfLoader reads from wherever the current position of the FOOBAR::DATA filehandle is, until the
EOF or __END__. This means that if you want to use that filehandle (and ONLY if you want to),
should either

1. Put all your subroutine declarations immediately after the __DATA__ token and put your own data afte
those declarations, using the __END__ token to mark the end of subroutine declarations. You must a
ensure that the SelfLoader reads first by calling ‘SelfLoader−>load_stubs() ;‘, or by using a
function which is selfloaded;

or

2. You should read the FOOBAR::DATA filehandle first, leaving the handle open and positioned at the f
line of subroutine declarations.

You could conceivably do both.

Classes and inherited methods.
For modules which are not classes, this section is not relevant. This section is only relevant if yo
methods which could be inherited.

A subroutine stub (or forward declaration) looks like

 sub stub;

i.e. it is a subroutine declaration without the body of the subroutine. For modules which are not classe
is no real need for stubs as far as autoloading is concerned.

For modules which ARE classes, and need to handle inherited methods, stubs are needed to ensur
method inheritance mechanism works properly. You can load the stubs into the module at ‘require’ tim
adding the statement ‘SelfLoader−>load_stubs() ;’ to the module to do this.

The alternative is to put the stubs in before the __DATA__ token BEFORE releasing the module, and fo
this purpose the Devel::SelfStubber module is available. However this does require the extra ste
ensuring that the stubs are in the module. If this is done I strongly recommend that this is done BE
releasing the module − it should NOT be done at install time in general.
08−Oct−1996 Version 5.003 497

SelfLoader Perl Programmers Reference Guide SelfLoader

equires
lly

 the
Multiple packages and fully qualified subroutine names
Subroutines in multiple packages within the same file are supported − but you should note that this r
exporting the SelfLoader::AUTOLOAD to every package which requires it. This is done automatica
by the SelfLoader when it first loads the subs into the cache, but you should really specify it in
initialization before the __DATA__ by putting a ‘use SelfLoader’ statement in each package.

Fully qualified subroutine names are also supported. For example,

 __DATA__
 sub foo::bar {23}
 package baz;
 sub dob {32}

will all be loaded correctly by the SelfLoader, and the SelfLoader will ensure that the packages ‘foo’ and
‘baz’ correctly have the SelfLoader AUTOLOAD method when the data after __DATA__ is first parsed.
498 Version 5.003 08−Oct−1996

Shell Perl Programmers Reference Guide Shell

 bug in
NAME
Shell − run shell commands transparently within perl

SYNOPSIS
See below.

DESCRIPTION
 Date: Thu, 22 Sep 94 16:18:16 −0700
 Message−Id: <9409222318.AA17072@scalpel.netlabs.com>
 To: perl5−porters@isu.edu
 From: Larry Wall <lwall@scalpel.netlabs.com>
 Subject: a new module I just wrote

Here‘s one that‘ll whack your mind a little out.

 #!/usr/bin/perl

 use Shell;

 $foo = echo("howdy", "<funny>", "world");
 print $foo;

 $passwd = cat("</etc/passwd");
 print $passwd;

 sub ps;
 print ps −ww;

 cp("/etc/passwd", "/tmp/passwd");

That‘s maybe too gonzo. It actually exports an AUTOLOAD to the current package (and uncovered a
Beta 3, by the way). Maybe the usual usage should be

 use Shell qw(echo cat ps cp);

Larry

AUTHOR
Larry Wall
08−Oct−1996 Version 5.003 499

Socket Perl Programmers Reference Guide Socket

tructure

d
This
monly

guments

ion for

achine
ce. This
NAME
Socket, sockaddr_in, sockaddr_un, inet_aton, inet_ntoa − load the C socket.h defines and s
manipulators

SYNOPSIS
 use Socket;

 $proto = getprotobyname(’udp’);
 socket(Socket_Handle, PF_INET, SOCK_DGRAM, $proto);
 $iaddr = gethostbyname(’hishost.com’);
 $port = getservbyname(’time’, ’udp’);
 $sin = sockaddr_in($port, $iaddr);
 send(Socket_Handle, 0, 0, $sin);

 $proto = getprotobyname(’tcp’);
 socket(Socket_Handle, PF_INET, SOCK_STREAM, $proto);
 $port = getservbyname(’smtp’);
 $sin = sockaddr_in($port,inet_aton("127.1"));
 $sin = sockaddr_in(7,inet_aton("localhost"));
 $sin = sockaddr_in(7,INADDR_LOOPBACK);
 connect(Socket_Handle,$sin);

 ($port, $iaddr) = sockaddr_in(getpeername(Socket_Handle));
 $peer_host = gethostbyaddr($iaddr, AF_INET);
 $peer_addr = inet_ntoa($iaddr);

 $proto = getprotobyname(’tcp’);
 socket(Socket_Handle, PF_UNIX, SOCK_STREAM, $proto);
 unlink(’/tmp/usock’);
 $sun = sockaddr_un(’/tmp/usock’);
 connect(Socket_Handle,$sun);

DESCRIPTION
This module is just a translation of the C socket.h file. Unlike the old mechanism of requiring a translate
socket.ph file, this uses the h2xs program (see the Perl source distribution) and your native C compiler.
means that it has a far more likely chance of getting the numbers right. This includes all of the com
used pound−defines like AF_INET, SOCK_STREAM, etc.

In addition, some structure manipulation functions are available:

inet_aton HOSTNAME
Takes a string giving the name of a host, and translates that to the 4−byte string (structure). Takes ar
of both the ‘rtfm.mit.edu’ type and ‘18.181.0.24’. If the host name cannot be resolved, returns undef.

inet_ntoa IP_ADDRESS
Takes a four byte ip address (as returned by inet_aton()) and translates it into a string of the form
‘d.d.d.d’ where the ‘d‘s are numbers less than 256 (the normal readable four dotted number notat
internet addresses).

INADDR_ANY
Note: does not return a number, but a packed string.

Returns the 4−byte wildcard ip address which specifies any of the hosts ip addresses. (A particular m
can have more than one ip address, each address corresponding to a particular network interfa
wildcard address allows you to bind to all of them simultaneously.) Normally equivalent to
inet_aton(‘0.0.0.0’).
500 Version 5.003 08−Oct−1996

Socket Perl Programmers Reference Guide Socket

ORT,
eturns

main

e right

g of
ns it.

_UNIX

l

INADDR_LOOPBACK
Note − does not return a number.

Returns the 4−byte loopback address. Normally equivalent to inet_aton(‘localhost’).

INADDR_NONE
Note − does not return a number.

Returns the 4−byte invalid ip address. Normally equivalent to inet_aton(‘255.255.255.255’).

sockaddr_in PORT, ADDRESS
sockaddr_in SOCKADDR_IN
In an array context, unpacks its SOCKADDR_IN argument and returns an array consisting of (P
ADDRESS). In a scalar context, packs its (PORT, ADDRESS) arguments as a SOCKADDR_IN and r
it. If this is confusing, use pack_sockaddr_in() and unpack_sockaddr_in() explicitly.

pack_sockaddr_in PORT, IP_ADDRESS
Takes two arguments, a port number and a 4 byte IP_ADDRESS (as returned by inet_aton()). Returns
the sockaddr_in structure with those arguments packed in with AF_INET filled in. For internet do
sockets, this structure is normally what you need for the arguments in bind() , connect() , and send() ,
and is also returned by getpeername() , getsockname() and recv() .

unpack_sockaddr_in SOCKADDR_IN
Takes a sockaddr_in structure (as returned by pack_sockaddr_in()) and returns an array of two
elements: the port and the 4−byte ip−address. Will croak if the structure does not have AF_INET in th
place.

sockaddr_un PATHNAME
sockaddr_un SOCKADDR_UN
In an array context, unpacks its SOCKADDR_UN argument and returns an array consistin
(PATHNAME). In a scalar context, packs its PATHNAME arguments as a SOCKADDR_UN and retur
 If this is confusing, use pack_sockaddr_un() and unpack_sockaddr_un() explicitly. These are
only supported if your system has <sys/un.h>.

pack_sockaddr_un PATH
Takes one argument, a pathname. Returns the sockaddr_un structure with that path packed in with AF
filled in. For unix domain sockets, this structure is normally what you need for the arguments in bind() ,
connect() , and send() , and is also returned by getpeername() , getsockname() and recv() .

unpack_sockaddr_un SOCKADDR_UN
Takes a sockaddr_un structure (as returned by pack_sockaddr_un()) and returns the pathname. Wil
croak if the structure does not have AF_UNIX in the right place.
08−Oct−1996 Version 5.003 501

Symbol Perl Programmers Reference Guide Symbol

 can be

 −>
;
ENV",

mption
NAME
Symbol − manipulate Perl symbols and their names

SYNOPSIS
 use Symbol;

 $sym = gensym;
 open($sym, "filename");
 $_ = <$sym>;
 # etc.

 ungensym $sym; # no effect

 print qualify("x"), "\n"; # "Test::x"
 print qualify("x", "FOO"), "\n" # "FOO::x"
 print qualify("BAR::x"), "\n"; # "BAR::x"
 print qualify("BAR::x", "FOO"), "\n"; # "BAR::x"
 print qualify("STDOUT", "FOO"), "\n"; # "main::STDOUT" (global)
 print qualify(*x), "\n"; # returns *x
 print qualify(*x, "FOO"), "\n"; # returns *x

DESCRIPTION
Symbol::gensym creates an anonymous glob and returns a reference to it. Such a glob reference
used as a file or directory handle.

For backward compatibility with older implementations that didn‘t support anonymous globs,
Symbol::ungensym is also provided. But it doesn‘t do anything.

Symbol::qualify turns unqualified symbol names into qualified variable names (e.g. "myvar"
"MyPackage::myvar"). If it is given a second parameter, qualify uses it as the default package
otherwise, it uses the package of its caller. Regardless, global variable names (e.g. "STDOUT", "
"SIG") are always qualfied with "main::".

Qualification applies only to symbol names (strings). References are left unchanged under the assu
that they are glob references, which are qualified by their nature.
502 Version 5.003 08−Oct−1996

Hostname Perl Programmers Reference Guide Hostname

It tries
NAME
Sys::Hostname − Try every conceivable way to get hostname

SYNOPSIS
 use Sys::Hostname;
 $host = hostname;

DESCRIPTION
Attempts several methods of getting the system hostname and then caches the result.
syscall(SYS_gethostname) , ‘hostname‘ , ‘uname −n‘ , and the file /com/host. If all that fails it
croak s.

All nulls, returns, and newlines are removed from the result.

AUTHOR
David Sundstrom <sunds@asictest.sc.ti.com>

Texas Instruments
08−Oct−1996 Version 5.003 503

Syslog Perl Programmers Reference Guide Syslog
NAME
Sys::Syslog, openlog, closelog, setlogmask, syslog − Perl interface to the UNIX syslog(3) calls

SYNOPSIS
 use Sys::Syslog;

 openlog $ident, $logopt, $facility;
 syslog $priority, $format, @args;
 $oldmask = setlogmask $mask_priority;
 closelog;

DESCRIPTION
Sys::Syslog is an interface to the UNIX syslog(3) program. Call syslog() with a string priority and a
list of printf() args just like syslog(3) .

Syslog provides the functions:

openlog $ident, $logopt, $facility
$ident is prepended to every message. $logopt contains one or more of the words pid, ndelay,
cons, nowait. $facility specifies the part of the system

syslog $priority, $format, @args
If $priority permits, logs ($format, @args) printed as by printf(3V) , with the addition that
%m is replaced with "$!" (the latest error message).

setlogmask $mask_priority
Sets log mask $mask_priority and returns the old mask.

closelog
Closes the log file.

Note that openlog now takes three arguments, just like openlog(3) .

EXAMPLES
 openlog($program, ’cons,pid’, ’user’);
 syslog(’info’, ’this is another test’);
 syslog(’mail|warning’, ’this is a better test: %d’, time);
 closelog();

 syslog(’debug’, ’this is the last test’);
 openlog("$program $$", ’ndelay’, ’user’);
 syslog(’notice’, ’fooprogram: this is really done’);

 $! = 55;
 syslog(’info’, ’problem was %m’); # %m == $! in syslog(3)

DEPENDENCIES
Sys::Syslog needs syslog.ph, which can be created with h2ph .

SEE ALSO
syslog(3)

AUTHOR
Tom Christiansen <tchrist@perl.com> and Larry Wall <lwall@sems.com>
504 Version 5.003 08−Oct−1996

Cap Perl Programmers Reference Guide Cap

base.

sh,

 of the

 by
 the
ere is a

.

 (where

s to the
NAME
Term::Cap − Perl termcap interface

SYNOPSIS
 require Term::Cap;
 $terminal = Tgetent Term::Cap { TERM => undef, OSPEED => $ospeed };
 $terminal−>Trequire(qw/ce ku kd/);
 $terminal−>Tgoto(’cm’, $col, $row, $FH);
 $terminal−>Tputs(’dl’, $count, $FH);
 $terminal−>Tpad($string, $count, $FH);

DESCRIPTION
These are low−level functions to extract and use capabilities from a terminal capability (termcap) data

The Tgetent function extracts the entry of the specified terminal type TERM (defaults to the environment
variable TERM) from the database.

It will look in the environment for a TERMCAP variable. If found, and the value does not begin with a sla
and the terminal type name is the same as the environment string TERM, the TERMCAP string is used
instead of reading a termcap file. If it does begin with a slash, the string is used as a path name
termcap file to search. If TERMCAP does not begin with a slash and name is different from TERM, Tgetent
searches the files $HOME/.termcap , /etc/termcap, and /usr/share/misc/termcap, in that order, unless the
environment variable TERMPATH exists, in which case it specifies a list of file pathnames (separated
spaces or colons) to be searched instead. Whenever multiple files are searched and a tc field occurs in
requested entry, the entry it names must be found in the same file or one of the succeeding files. If th
:tc=...: in the TERMCAP environment variable string it will continue the search in the files as above

OSPEED is the terminal output bit rate (often mistakenly called the baud rate). OSPEED can be specified as
either a POSIX termios/SYSV termio speeds (where 9600 equals 9600) or an old BSD−style speeds
13 equals 9600).

Tgetent returns a blessed object reference which the user can then use to send the control string
terminal using Tputs and Tgoto. It calls croak on failure.

Tgoto decodes a cursor addressing string with the given parameters.

The output strings for Tputs are cached for counts of 1 for performance. Tgoto and Tpad do not cache.
$self−>{_xx} is the raw termcap data and $self−>{xx} is the cached version.

 print $terminal−>Tpad($self−>{_xx}, 1);

Tgoto, Tputs, and Tpad return the string and will also output the string to $FH if specified.

The extracted termcap entry is available in the object as $self−>{TERMCAP}.

EXAMPLES
 # Get terminal output speed
 require POSIX;
 my $termios = new POSIX::Termios;
 $termios−>getattr;
 my $ospeed = $termios−>getospeed;

 # Old−style ioctl code to get ospeed:
 # require ’ioctl.pl’;
 # ioctl(TTY,$TIOCGETP,$sgtty);
 # ($ispeed,$ospeed) = unpack(’cc’,$sgtty);

 # allocate and initialize a terminal structure
 $terminal = Tgetent Term::Cap { TERM => undef, OSPEED => $ospeed };
08−Oct−1996 Version 5.003 505

Cap Perl Programmers Reference Guide Cap
 # require certain capabilities to be available
 $terminal−>Trequire(qw/ce ku kd/);

 # Output Routines, if $FH is undefined these just return the string

 # Tgoto does the % expansion stuff with the given args
 $terminal−>Tgoto(’cm’, $col, $row, $FH);

 # Tputs doesn’t do any % expansion.
 $terminal−>Tputs(’dl’, $count = 1, $FH);
506 Version 5.003 08−Oct−1996

Complete Perl Programmers Reference Guide Complete
NAME
Term::Complete − Perl word completion module

SYNOPSIS
 $input = complete(’prompt_string’, \@completion_list);
 $input = complete(’prompt_string’, @completion_list);

DESCRIPTION
This routine provides word completion on the list of words in the array (or array ref).

The tty driver is put into raw mode using the system command stty raw −echo and restored using
stty −raw echo .

The following command characters are defined:

<tab>
Attempts word completion. Cannot be changed.

^D Prints completion list. Defined by $Term::Complete::complete .

^U Erases the current input. Defined by $Term::Complete::kill .

, <bs>
Erases one character. Defined by $Term::Complete::erase1 and
$Term::Complete::erase2 .

DIAGNOSTICS
Bell sounds when word completion fails.

BUGS
The completion charater <tab> cannot be changed.

AUTHOR
Wayne Thompson
08−Oct−1996 Version 5.003 507

ReadLine Perl Programmers Reference Guide ReadLine

tes

he only
is to set

es are

f the

ory.

t and

tation.

y

NAME
Term::ReadLine − Perl interface to various readline packages. If no real package is found, substitu
stubs instead of basic functions.

SYNOPSIS
 use Term::ReadLine;
 $term = new Term::ReadLine ’Simple Perl calc’;
 $prompt = "Enter your arithmetic expression: ";
 $OUT = $term−>OUT || STDOUT;
 while (defined ($_ = $term−>readline($prompt))) {
 $res = eval($_), "\n";
 warn $@ if $@;
 print $OUT $res, "\n" unless $@;
 $term−>addhistory($_) if /\S/;
 }

DESCRIPTION
This package is just a front end to some other packages. At the moment this description is written, t
such package is Term−ReadLine, available on CPAN near you. The real target of this stub package
up a common interface to whatever Readline emerges with time.

Minimal set of supported functions
All the supported functions should be called as methods, i.e., either as

 $term = new Term::ReadLine ’name’;

or as

 $term−>addhistory(’row’);

where $term is a return value of Term::ReadLine−>Init.

ReadLine returns the actual package that executes the commands. Among possible valu
Term::ReadLine::Gnu , Term::ReadLine::Perl , Term::ReadLine::Stub
Exporter .

new returns the handle for subsequent calls to following functions. Argument is the name o
application. Optionally can be followed by two arguments for IN and OUT filehandles.
These arguments should be globs.

readline gets an input line, possibly with actual readline support. Trailing newline is removed.
Returns undef on EOF.

addhistory adds the line to the history of input, from where it can be used if the actual readline is
present.

IN , $OUT return the filehandles for input and output or undef if readline input and output
cannot be used for Perl.

MinLine If argument is specified, it is an advice on minimal size of line to be included into hist
undef means do not include anything into history. Returns the old value.

findConsole returns an array with two strings that give most appropriate names for files for inpu
output using conventions "<$in", ">out" .

Features Returns a reference to a hash with keys being features present in current implemen
Several optional features are used in the minimal interface: appname should be present if
the first argument to new is recognized, and minline should be present if MinLine
method is not dummy. autohistory should be present if lines are put into histor
automatically (maybe subject to MinLine), and addhistory if addhistory method
is not dummy.
508 Version 5.003 08−Oct−1996

ReadLine Perl Programmers Reference Guide ReadLine
Actually Term::ReadLine can use some other package, that will support reacher set of commands.

EXPORTS
None
08−Oct−1996 Version 5.003 509

Harness Perl Programmers Reference Guide Harness

f
t
med as

 by

r. Lines

 its

o

NAME
Test::Harness − run perl standard test scripts with statistics

SYNOPSIS
use Test::Harness;

runtests(@tests);

DESCRIPTION
Perl test scripts print to standard output "ok N" for each single test, where N is an increasing sequence o
integers. The first line output by a standard test script is "1..M" with M being the number of tests tha
should be run within the test script. Test::Harness::runtests(@tests) runs all the testscripts na
arguments and checks standard output for the expected "ok N" strings.

After all tests have been performed, runtests() prints some performance statistics that are computed
the Benchmark module.

The test script output
Any output from the testscript to standard error is ignored and bypassed, thus will be seen by the use
written to standard output containing /^(not\s+)?ok\b/ are interpreted as feedback for runtests() .
All other lines are discarded.

It is tolerated if the test numbers after ok are omitted. In this case Test::Harness maintains temporarily
own counter until the script supplies test numbers again. So the following test script

 print <<END;
 1..6
 not ok
 ok
 not ok
 ok
 ok
 END

will generate

 FAILED tests 1, 3, 6
 Failed 3/6 tests, 50.00% okay

The global variable $Test::Harness::verbose is exportable and can be used to let runtests()
display the standard output of the script without altering the behavior otherwise.

EXPORT
&runtests is exported by Test::Harness per default.

DIAGNOSTICS

All tests successful.\nFiles=%d, Tests=%d, %s
If all tests are successful some statistics about the performance are printed.

FAILED tests %s\n\tFailed %d/%d tests, %.2f%% okay.
For any single script that has failing subtests statistics like the above are printed.

Test returned status %d (wstat %d)
Scripts that return a non−zero exit status, both $? >> 8 and $? are printed in a message similar t
the above.

Failed 1 test, %.2f%% okay. %s
Failed %d/%d tests, %.2f%% okay. %s

If not all tests were successful, the script dies with one of the above messages.
510 Version 5.003 08−Oct−1996

Harness Perl Programmers Reference Guide Harness

d by
ig.

 the
s.
SEE ALSO
See Benchmark for the underlying timing routines.

AUTHORS
Either Tim Bunce or Andreas Koenig, we don‘t know. What we know for sure is, that it was inspire
Larry Wall‘s TEST script that came with perl distributions for ages. Current maintainer is Andreas Koen

BUGS
Test::Harness uses $^X to determine the perl binary to run the tests with. Test scripts running via
shebang (#!) line may not be portable because $^X is not consistent for shebang scripts across platform
This is no problem when Test::Harness is run with an absolute path to the perl binary or when $^X can be
found in the path.
08−Oct−1996 Version 5.003 511

Abbrev Perl Programmers Reference Guide Abbrev

erenced
NAME
abbrev − create an abbreviation table from a list

SYNOPSIS
 use Text::Abbrev;
 abbrev $hashref, LIST

DESCRIPTION
Stores all unambiguous truncations of each element of LIST as keys key in the associative array ref
to by $hashref. The values are the original list elements.

EXAMPLE
 $hashref = abbrev qw(list edit send abort gripe);

 %hash = abbrev qw(list edit send abort gripe);

 abbrev $hashref, qw(list edit send abort gripe);

 abbrev(*hash, qw(list edit send abort gripe));
512 Version 5.003 08−Oct−1996

ParseWords Perl Programmers Reference Guide ParseWords

breaks

es are

m the
ld

the old
NAME
Text::ParseWords − parse text into an array of tokens

SYNOPSIS
 use Text::ParseWords;
 @words = "ewords($delim, $keep, @lines);
 @words = &shellwords(@lines);
 @words = &old_shellwords(@lines);

DESCRIPTION
"ewords() accepts a delimiter (which can be a regular expression) and a list of lines and then
those lines up into a list of words ignoring delimiters that appear inside quotes.

The $keep argument is a boolean flag. If true, the quotes are kept with each word, otherwise quot
stripped in the splitting process. $keep also defines whether unprotected backslashes are retained.

A &shellwords() replacement is included to demonstrate the new package. This version differs fro
original in that it will _NOT_ default to using $_ if no arguments are given. I personally find the o
behavior to be a mis−feature.

"ewords() works by simply jamming all of @lines into a single string in $_ and then pulling off
words a bit at a time until $_ is exhausted.

AUTHORS
Hal Pomeranz (pomeranz@netcom.com), 23 March 1994

Basically an update and generalization of the old shellwords.pl. Much code shamelessly stolen from
version (author unknown).
08−Oct−1996 Version 5.003 513

Soundex Perl Programmers Reference Guide Soundex

mall
peaker.

and the

st is

h

its) no
e. For
NAME
Text::Soundex − Implementation of the Soundex Algorithm as Described by Knuth

SYNOPSIS
 use Text::Soundex;

 $code = soundex $string; # get soundex code for a string
 @codes = soundex @list; # get list of codes for list of strings

 # set value to be returned for strings without soundex code

 $soundex_nocode = ’Z000’;

DESCRIPTION
This module implements the soundex algorithm as described by Donald Knuth in Volume 3 of The Art of
Computer Programming. The algorithm is intended to hash words (in particular surnames) into a s
space using a simple model which approximates the sound of the word when spoken by an English s
Each word is reduced to a four character string, the first character being an upper case letter
remaining three being digits.

If there is no soundex code representation for a string then the value of $soundex_nocode is returned.
This is initially set to undef , but many people seem to prefer an unlikely value like Z000 (how unlikely this
is depends on the data set being dealt with.) Any value can be assigned to $soundex_nocode.

In scalar context soundex returns the soundex code of its first argument, and in array context a li
returned in which each element is the soundex code for the corresponding argument passed to soundex
e.g.

 @codes = soundex qw(Mike Stok);

leaves @codes containing (‘M200‘, ‘S320’) .

EXAMPLES
Knuth‘s examples of various names and the soundex codes they map to are listed below:

 Euler, Ellery −> E460
 Gauss, Ghosh −> G200
 Hilbert, Heilbronn −> H416
 Knuth, Kant −> K530
 Lloyd, Ladd −> L300
 Lukasiewicz, Lissajous −> L222

so:

 $code = soundex ’Knuth’; # $code contains ’K530’
 @list = soundex qw(Lloyd Gauss); # @list contains ’L300’, ’G200’

LIMITATIONS
As the soundex algorithm was originally used a long time ago in the US it considers only the Englis
alphabet and pronunciation.

As it is mapping a large space (arbitrary length strings) onto a small space (single letter plus 3 dig
inference can be made about the similarity of two strings which end up with the same soundex cod
example, both Hilbert and Heilbronn end up with a soundex code of H416.

AUTHOR
This code was implemented by Mike Stok (stok@cybercom.net) from the description given by Knuth.
Ian Phillips (ian@pipex.net) and Rich Pinder (rpinder@hsc.usc.edu) supplied ideas and spotted
mistakes.
514 Version 5.003 08−Oct−1996

Tabs Perl Programmers Reference Guide Tabs

s in it,
s in it,

d feed
NAME
Text::Tabs − expand and unexpand tabs per the unix expand(1) and unexpand(1)

SYNOPSIS
 use Text::Tabs;

 $tabstop = 4;
 @lines_without_tabs = expand(@lines_with_tabs);
 @lines_with_tabs = unexpand(@lines_without_tabs);

DESCRIPTION
Text::Tabs does about what the unix utilities expand(1) and unexpand(1) do. Given a line with tab
expand will replace the tabs with the appropriate number of spaces. Given a line with or without tab
unexpand will add tabs when it can save bytes by doing so. Invisible compression with plain ascii!

BUGS
expand doesn‘t handle newlines very quickly — do not feed it an entire document in one string. Instea
it an array of lines.

AUTHOR
David Muir Sharnoff <muir@idiom.com>
08−Oct−1996 Version 5.003 515

Wrap Perl Programmers Reference Guide Wrap

lines at
NAME
Text::Wrap − line wrapping to form simple paragraphs

SYNOPSIS
use Text::Wrap

print wrap($initial_tab, $subsequent_tab, @text);

use Text::Wrap qw(wrap $columns);

$columns = 132;

DESCRIPTION
Text::Wrap is a very simple paragraph formatter. It formats a single paragraph at a time by breaking
word boundries. Indentation is controlled for the first line ($initial_tab) and all subsquent lines
($subsequent_tab) independently. $Text::Wrap::columns should be set to the full width of
your output device.

EXAMPLE
print wrap("\t","","This is a bit of text that forms

a normal book−style paragraph");

AUTHOR
David Muir Sharnoff <muir@idiom.com>
516 Version 5.003 08−Oct−1996

Hash Perl Programmers Reference Guide Hash

or
shes,
 a

w. See

e

NAME
Tie::Hash, Tie::StdHash − base class definitions for tied hashes

SYNOPSIS
 package NewHash;
 require Tie::Hash;

 @ISA = (Tie::Hash);

 sub DELETE { ... } # Provides needed method
 sub CLEAR { ... } # Overrides inherited method

 package NewStdHash;
 require Tie::Hash;

 @ISA = (Tie::StdHash);

 # All methods provided by default, define only those needing overrides
 sub DELETE { ... }

 package main;

 tie %new_hash, ’NewHash’;
 tie %new_std_hash, ’NewStdHash’;

DESCRIPTION
This module provides some skeletal methods for hash−tying classes. See perltie for a list of the functions
required in order to tie a hash to a package. The basic Tie::Hash package provides a new method, as well as
methods TIEHASH, EXISTS and CLEAR. The Tie::StdHash package provides most methods required f
hashes in perltie. It inherits from Tie::Hash, and causes tied hashes to behave exactly like standard ha
allowing for selective overloading of methods. The new method is provided as grandfathering in the case
class forgets to include a TIEHASH method.

For developers wishing to write their own tied hashes, the required methods are briefly defined belo
the perltie section for more detailed descriptive, as well as example code:

TIEHASH classname, LIST
The method invoked by the command tie %hash, classname . Associates a new hash instanc
with the specified class. LIST would represent additional arguments (along the lines of AnyDBM_File
and compatriots) needed to complete the association.

STORE this, key, value
Store datum value into key for the tied hash this.

FETCH this, key
Retrieve the datum in key for the tied hash this.

FIRSTKEY this
Return the (key, value) pair for the first key in the hash.

NEXTKEY this, lastkey
Return the next (key, value) pair for the hash.

EXISTS this, key
Verify that key exists with the tied hash this.

DELETE this, key
Delete the key key from the tied hash this.
08−Oct−1996 Version 5.003 517

Hash Perl Programmers Reference Guide Hash

s.
ges,
CLEAR this
Clear all values from the tied hash this.

CAVEATS
The perltie documentation includes a method called DESTROY as a necessary method for tied hashe
Neither Tie::Hash nor Tie::StdHash define a default for this method. This is a standard for class packa
but may be omitted in favor of a simple default.

MORE INFORMATION
The packages relating to various DBM−related implemetations (DB_File, NDBM_File, etc.) show examples
of general tied hashes, as does the Config module. While these do not utilize Tie::Hash, they serve as good
working examples.
518 Version 5.003 08−Oct−1996

Scalar Perl Programmers Reference Guide Scalar

d
lars,
g,

w. The

of

l
ctions
NAME
Tie::Scalar, Tie::StdScalar − base class definitions for tied scalars

SYNOPSIS
 package NewScalar;
 require Tie::Scalar;

 @ISA = (Tie::Scalar);

 sub FETCH { ... } # Provide a needed method
 sub TIESCALAR { ... } # Overrides inherited method

 package NewStdScalar;
 require Tie::Scalar;

 @ISA = (Tie::StdScalar);

 # All methods provided by default, so define only what needs be overridden
 sub FETCH { ... }

 package main;

 tie $new_scalar, ’NewScalar’;
 tie $new_std_scalar, ’NewStdScalar’;

DESCRIPTION
This module provides some skeletal methods for scalar−tying classes. See perltie for a list of the functions
required in tying a scalar to a package. The basic Tie::Scalar package provides a new method, as well as
methods TIESCALAR, FETCH and STORE. The Tie::StdScalar package provides all the methods specifie
in perltie. It inherits from Tie::Scalar and causes scalars tied to it to behave exactly like the built−in sca
allowing for selective overloading of methods. The new method is provided as a means of grandfatherin
for classes that forget to provide their own TIESCALAR method.

For developers wishing to write their own tied−scalar classes, the methods are summarized belo
perltie section not only documents these, but has sample code as well:

TIESCALAR classname, LIST
The method invoked by the command tie $scalar, classname . Associates a new scalar
instance with the specified class. LIST would represent additional arguments (along the lines
AnyDBM_File and compatriots) needed to complete the association.

FETCH this
Retrieve the value of the tied scalar referenced by this.

STORE this, value
Store data value in the tied scalar referenced by this.

DESTROY this
Free the storage associated with the tied scalar referenced by this. This is rarely needed, as Per
manages its memory quite well. But the option exists, should a class wish to perform specific a
upon the destruction of an instance.

MORE INFORMATION
The perltie section uses a good example of tying scalars by associating process IDs with priority.
08−Oct−1996 Version 5.003 519

SubstrHash Perl Programmers Reference Guide SubstrHash

, with

sed, the
 pairs,

 than
ctly

ory than

o means
NAME
Tie::SubstrHash − Fixed−table−size, fixed−key−length hashing

SYNOPSIS
 require Tie::SubstrHash;

 tie %myhash, ’Tie::SubstrHash’, $key_len, $value_len, $table_size;

DESCRIPTION
The Tie::SubstrHash package provides a hash−table−like interface to an array of determinate size
constant key size and record size.

Upon tying a new hash to this package, the developer must specify the size of the keys that will be u
size of the value fields that the keys will index, and the size of the overall table (in terms of key−value
not size in hard memory). These values will not change for the duration of the tied hash. The
newly−allocated hash table may now have data stored and retrieved. Efforts to store more
$table_size elements will result in a fatal error, as will efforts to store a value not exa
$value_len characters in length, or reference through a key not exactly $key_len characters in length.
While these constraints may seem excessive, the result is a hash table using much less internal mem
an equivalent freely−allocated hash table.

CAVEATS
Because the current implementation uses the table and key sizes for the hashing algorithm, there is n
by which to dynamically change the value of any of the initialization parameters.
520 Version 5.003 08−Oct−1996

Local Perl Programmers Reference Guide Local

w the
ves are
are close
e time
ou hit

nd then
ined by
rently

 most
NAME
Time::Local − efficiently compute time from local and GMT time

SYNOPSIS
 $time = timelocal($sec,$min,$hours,$mday,$mon,$year);
 $time = timegm($sec,$min,$hours,$mday,$mon,$year);

DESCRIPTION
These routines are quite efficient and yet are always guaranteed to agree with localtime() and
gmtime() . We manage this by caching the start times of any months we‘ve seen before. If we kno
start time of the month, we can always calculate any time within the month. The start times themsel
guessed by successive approximation starting at the current time, since most dates seen in practice
to the current date. Unlike algorithms that do a binary search (calling gmtime once for each bit of th
value, resulting in 32 calls), this algorithm calls it at most 6 times, and usually only once or twice. If y
the month cache, of course, it doesn‘t call it at all.

timelocal is implemented using the same cache. We just assume that we‘re translating a GMT time, a
fudge it when we‘re done for the timezone and daylight savings arguments. The timezone is determ
examining the result of localtime(0) when the package is initialized. The daylight savings offset is cur
assumed to be one hour.

Both routines return −1 if the integer limit is hit. I.e. for dates after the 1st of January, 2038 on
machines.
08−Oct−1996 Version 5.003 521

diagnostics Perl Programmers Reference Guide diagnostics

rpeter,

ry good
y

e

e)
NAME
diagnostics − Perl compiler pragma to force verbose warning diagnostics

splain − standalone program to do the same thing

SYNOPSIS
As a pragma:

 use diagnostics;
 use diagnostics −verbose;

 enable diagnostics;
 disable diagnostics;

Aa a program:

 perl program 2>diag.out
 splain [−v] [−p] diag.out

DESCRIPTION

The diagnostics Pragma
This module extends the terse diagnostics normally emitted by both the perl compiler and the perl inte
augmenting them with the more explicative and endearing descriptions found in perldiag. Like the other
pragmata, it affects the compilation phase of your program rather than merely the execution phase.

To use in your program as a pragma, merely invoke

 use diagnostics;

at the start (or near the start) of your program. (Note that this does enable perl‘s −w flag.) Your whole
compilation will then be subject(ed :−) to the enhanced diagnostics. These still go out STDERR.

Due to the interaction between runtime and compiletime issues, and because it‘s probably not a ve
idea anyway, you may not use no diagnostics to turn them off at compiletime. However, you ma
control there behaviour at runtime using the disable() and enable() methods to turn them off and on
respectively.

The −verbose flag first prints out the perldiag introduction before any other diagnostics. Th
$diagnostics::PRETTY variable can generate nicer escape sequences for pagers.

The splain Program
While apparently a whole nuther program, splain is actually nothing more than a link to the (executabl
diagnostics.pm module, as well as a link to the diagnostics.pod documentation. The −v flag is like the use
diagnostics −verbose directive. The −p flag is like the $diagnostics::PRETTY variable.
Since you‘re post−processing with splain, there‘s no sense in being able to enable() or disable()
processing.

Output from splain is directed to STDOUT, unlike the pragma.

EXAMPLES
The following file is certain to trigger a few errors at both runtime and compiletime:

 use diagnostics;
 print NOWHERE "nothing\n";
 print STDERR "\n\tThis message should be unadorned.\n";
 warn "\tThis is a user warning";
 print "\nDIAGNOSTIC TESTER: Please enter a <CR> here: ";
 my $a, $b = scalar <STDIN>;
 print "\n";
 print $x/$y;
522 Version 5.003 08−Oct−1996

diagnostics Perl Programmers Reference Guide diagnostics

e

the

 of

level"
If you prefer to run your program first and look at its problem afterwards, do this:

 perl −w test.pl 2>test.out
 ./splain < test.out

Note that this is not in general possible in shells of more dubious heritage, as the theoretical

 (perl −w test.pl >/dev/tty) >& test.out
 ./splain < test.out

Because you just moved the existing stdout to somewhere else.

If you don‘t want to modify your source code, but still have on−the−fly warnings, do this:

 exec 3>&1; perl −w test.pl 2>&1 1>&3 3>&− | splain 1>&2 3>&−

Nifty, eh?

If you want to control warnings on the fly, do something like this. Make sure you do the use first, or you
won‘t be able to get at the enable() or disable() methods.

 use diagnostics; # checks entire compilation phase
print "\ntime for 1st bogus diags: SQUAWKINGS\n";
print BOGUS1 ’nada’;
print "done with 1st bogus\n";

 disable diagnostics; # only turns off runtime warnings
print "\ntime for 2nd bogus: (squelched)\n";
print BOGUS2 ’nada’;
print "done with 2nd bogus\n";

 enable diagnostics; # turns back on runtime warnings
print "\ntime for 3rd bogus: SQUAWKINGS\n";
print BOGUS3 ’nada’;
print "done with 3rd bogus\n";

 disable diagnostics;
print "\ntime for 4th bogus: (squelched)\n";
print BOGUS4 ’nada’;
print "done with 4th bogus\n";

INTERNALS
Diagnostic messages derive from the perldiag.pod file when available at runtime. Otherwise, they may b
embedded in the file itself when the splain package is built. See the Makefile for details.

If an extant $SIG{__WARN__} handler is discovered, it will continue to be honored, but only after
diagnostics::splainthis() function (the module‘s $SIG{__WARN__} interceptor) has had its
way with your warnings.

There is a $diagnostics::DEBUG variable you may set if you‘re desperately curious what sorts
things are being intercepted.

 BEGIN { $diagnostics::DEBUG = 1 }

BUGS
Not being able to say "no diagnostics" is annoying, but may not be insurmountable.

The −pretty directive is called too late to affect matters. You have to to this instead, and before you load
the module.

 BEGIN { $diagnostics::PRETTY = 1 }

I could start up faster by delaying compilation until it should be needed, but this gets a "panic: top_
when using the pragma form in 5.001e.
08−Oct−1996 Version 5.003 523

diagnostics Perl Programmers Reference Guide diagnostics
While it‘s true that this documentation is somewhat subserious, if you use a program named splain, you
should expect a bit of whimsy.

AUTHOR
Tom Christiansen <tchrist@mox.perl.com>, 25 June 1995.
524 Version 5.003 08−Oct−1996

integer Perl Programmers Reference Guide integer

OCK.
floating
NAME
integer − Perl pragma to compute arithmetic in integer instead of double

SYNOPSIS
 use integer;
 $x = 10/3;
 # $x is now 3, not 3.33333333333333333

DESCRIPTION
This tells the compiler that it‘s okay to use integer operations from here to the end of the enclosing BL
On many machines, this doesn‘t matter a great deal for most computations, but on those without
point hardware, it can make a big difference.

See Pragmatic Modules.
08−Oct−1996 Version 5.003 525

less Perl Programmers Reference Guide less

uch as
NAME
less − perl pragma to request less of something from the compiler

SYNOPSIS
 use less; # unimplemented

DESCRIPTION
Currently unimplemented, this may someday be a compiler directive to make certain trade−offs, s
perhaps

 use less ’memory’;
 use less ’CPU’;
 use less ’fat’;
526 Version 5.003 08−Oct−1996

lib Perl Programmers Reference Guide lib

led
g

 care
ules in

te

ter

led
g

NAME
lib − manipulate @INC at compile time

SYNOPSIS
 use lib LIST;

 no lib LIST;

DESCRIPTION
This is a small simple module which simplifies the manipulation of @INC at compile time.

It is typically used to add extra directories to perl‘s search path so that later use or require statements
will find modules which are not located on perl‘s default search path.

ADDING DIRECTORIES TO @INC
The parameters to use lib are added to the start of the perl search path. Saying

 use lib LIST;

is almost the same as saying

 BEGIN { unshift(@INC, LIST) }

For each directory in LIST (called $dir here) the lib module also checks to see if a directory cal
$dir/$archname/auto exists. If so the $dir/$archname directory is assumed to be a correspondin
architecture specific directory and is added to @INC in front of $dir.

If LIST includes both $dir and $dir/$archname then $dir/$archname will be added to @INC
twice (if $dir/$archname/auto exists).

DELETING DIRECTORIES FROM @INC
You should normally only add directories to @INC. If you need to delete directories from @INC take
to only delete those which you added yourself or which you are certain are not needed by other mod
your script. Other modules may have added directories which they need for correct operation.

By default the no lib statement deletes the first instance of each named directory from @INC. To dele
multiple instances of the same name from @INC you can specify the name multiple times.

To delete all instances of all the specified names from @INC you can specify ‘:ALL’ as the first parame
of no lib . For example:

 no lib qw(:ALL .);

For each directory in LIST (called $dir here) the lib module also checks to see if a directory cal
$dir/$archname/auto exists. If so the $dir/$archname directory is assumed to be a correspondin
architecture specific directory and is also deleted from @INC.

If LIST includes both $dir and $dir/$archname then $dir/$archname will be deleted from @INC
twice (if $dir/$archname/auto exists).

RESTORING ORIGINAL @INC
When the lib module is first loaded it records the current value of @INC in an array @lib::ORIG_INC .
To restore @INC to that value you can say

 @INC = @lib::ORIG_INC;

SEE ALSO
FindBin − optional module which deals with paths relative to the source file.

AUTHOR
Tim Bunce, 2nd June 1995.
08−Oct−1996 Version 5.003 527

overload Perl Programmers Reference Guide overload

x, nor
uture.

ll work.

e

ded

se
ents
e first

er the
tion by
NAME
overload − Package for overloading perl operations

SYNOPSIS
 package SomeThing;

 use overload
’+’ => \&myadd,
’−’ => \&mysub;
etc

 ...

 package main;
 $a = new SomeThing 57;
 $b=5+$a;
 ...
 if (overload::Overloaded $b) {...}
 ...
 $strval = overload::StrVal $b;

CAVEAT SCRIPTOR
Overloading of operators is a subject not to be taken lightly. Neither its precise implementation, synta
semantics are 100% endorsed by Larry Wall. So any of these may be changed at some point in the f

DESCRIPTION

Declaration of overloaded functions
The compilation directive

 package Number;
 use overload

"+" => \&add,
"*=" => "muas";

declares function Number::add() for addition, and method muas() in the "class" Number (or one of its
base classes) for the assignment form *= of multiplication.

Arguments of this directive come in (key, value) pairs. Legal values are values legal inside a &{ ... }
call, so the name of a subroutine, a reference to a subroutine, or an anonymous subroutine will a
Legal keys are listed below.

The subroutine add will be called to execute $a+$b if $a is a reference to an object blessed into th
package Number, or if $a is not an object from a package with defined mathemagic addition, but $b is a
reference to a Number. It can also be called in other situations, like $a+=7, or $a++. See
MAGIC AUTOGENERATION. (Mathemagical methods refer to methods triggered by an overloa
mathematical operator.)

Calling Conventions for Binary Operations
The functions specified in the use overload ... directive are called with three (in one particular ca
with four, see Last Resort) arguments. If the corresponding operation is binary, then the first two argum
are the two arguments of the operation. However, due to general object calling conventions, th
argument should always be an object in the package, so in the situation of 7+$a, the order of the arguments
is interchanged. It probably does not matter when implementing the addition method, but wheth
arguments are reversed is vital to the subtraction method. The method can query this informa
examining the third argument, which can take three different values:

FALSE the order of arguments is as in the current operation.
528 Version 5.003 08−Oct−1996

overload Perl Programmers Reference Guide overload

ariant is

g

issing

ng
he

led both

ither

d too,
TRUE the arguments are reversed.

undef the current operation is an assignment variant (as in $a+=7), but the usual function is called
instead. This additional information can be used to generate some optimizations.

Calling Conventions for Unary Operations
Unary operation are considered binary operations with the second argument being undef . Thus the
functions that overloads {"++"} is called with arguments ($a,undef,‘’) when $a++ is executed.

Overloadable Operations
The following symbols can be specified in use overload :

 Arithmetic operations
 "+", "+=", "−", "−=", "*", "*=", "/", "/=", "%", "%=",
 "**", "**=", "<<", "<<=", ">>", ">>=", "x", "x=", ".", ".=",

For these operations a substituted non−assignment variant can be called if the assignment v
not available. Methods for operations "+", "−", "+=", and "−=" can be called to automatically
generate increment and decrement methods. The operation "−" can be used to autogenerate missin
methods for unary minus or abs .

 Comparison operations
 "<", "<=", ">", ">=", "==", "!=", "<=>",
 "lt", "le", "gt", "ge", "eq", "ne", "cmp",

If the corresponding "spaceship" variant is available, it can be used to substitute for the m
operation. During sort ing arrays, cmp is used to compare values subject to use overload .

 Bit operations
 "&", "^", "|", "neg", "!", "~",

"neg " stands for unary minus. If the method for neg is not specified, it can be autogenerated usi
the method for subtraction. If the method for "! " is not specified, it can be autogenerated using t
methods for "bool ", or "\"\" ", or "0+".

 Increment and decrement
 "++", "−−",

If undefined, addition and subtraction methods can be used instead. These operations are cal
in prefix and postfix form.

 Transcendental functions
 "atan2", "cos", "sin", "exp", "abs", "log", "sqrt",

If abs is unavailable, it can be autogenerated using methods for "<" or "<=>" combined with e
unary minus or subtraction.

 Boolean, string and numeric conversion
 "bool", "\"\"", "0+",

If one or two of these operations are unavailable, the remaining ones can be used instead. bool is
used in the flow control operators (like while) and for the ternary "?: " operation. These functions
can return any arbitrary Perl value. If the corresponding operation for this value is overloade
that operation will be called again with this value.

 Special
 "nomethod", "fallback", "=",

see SPECIAL SYMBOLS FOR use overload .

See "Fallback" for an explanation of when a missing method can be autogenerated.
08−Oct−1996 Version 5.003 529

overload Perl Programmers Reference Guide overload

alled
s of this
ent is
d. Say,

ree

tly

l hair.

ct with

s
re

e is
SPECIAL SYMBOLS FOR use overload
Three keys are recognized by Perl that are not covered by the above description.

Last Resort
"nomethod" should be followed by a reference to a function of four parameters. If defined, it is c
when the overloading mechanism cannot find a method for some operation. The first three argument
function coincide with the arguments for the corresponding method if it were found, the fourth argum
the symbol corresponding to the missing method. If several methods are tried, the last one is use
1−$a can be equivalent to

&nomethodMethod($a,1,1,"−")

if the pair "nomethod" => "nomethodMethod" was specified in the use overload directive.

If some operation cannot be resolved, and there is no function assigned to "nomethod" , then an exception
will be raised via die() — unless "fallback" was specified as a key in use overload directive.

Fallback
The key "fallback" governs what to do if a method for a particular operation is not found. Th
different cases are possible depending on the value of "fallback" :

 undef Perl tries to use a substituted method (see MAGIC AUTOGENERATION). If this
fails, it then tries to calls "nomethod" value; if missing, an exception will be
raised.

 TRUE The same as for the undef value, but no exception is raised. Instead, it silen
reverts to what it would have done were there no use overload present.

 defined, but FALSE No autogeneration is tried. Perl tries to call "nomethod" value, and if this is
missing, raises an exception.

Copy Constructor
The value for "=" is a reference to a function with three arguments, i.e., it looks like the other values inuse
overload . However, it does not overload the Perl assignment operator. This would go against Came

This operation is called in the situations when a mutator is applied to a reference that shares its obje
some other reference, such as

$a=$b;
$a++;

To make this change $a and not change $b, a copy of $$a is made, and $a is assigned a reference to thi
new object. This operation is done during execution of the $a++, and not during the assignment, (so befo
the increment $$a coincides with $$b). This is only done if ++ is expressed via a method for ‘++’ or
‘+=’ . Note that if this operation is expressed via ‘+’ a nonmutator, i.e., as in

$a=$b;
$a=$a+1;

then $a does not reference a new copy of $$a, since $$a does not appear as lvalue when the above cod
executed.

If the copy constructor is required during the execution of some mutator, but a method for ‘=’ was not
specified, it can be autogenerated as a string copy if the object is a plain scalar.

Example
The actually executed code for

$a=$b;
 Something else which does not modify $a or $b....

++$a;
530 Version 5.003 08−Oct−1996

overload Perl Programmers Reference Guide overload

rations.

 if not

rical

alue is

ical
ibly

on is

e lost.

−time
may be

$a=$b;
 Something else which does not modify $a or $b....

$a = $a−>clone(undef,"");
 $a−>incr(undef,"");

if $b was mathemagical, and ‘++’ was overloaded with \&incr, ‘=’ was overloaded with
\&clone.

MAGIC AUTOGENERATION
If a method for an operation is not found, and the value for "fallback" is TRUE or undefined, Perl tries
to autogenerate a substitute method for the missing operation based on the defined ope
Autogenerated method substitutions are possible for the following operations:

Assignment forms of arithmetic operations
$a+=$b can use the method for "+" if the method for "+=" is not defined.

Conversion operations
String, numeric, and boolean conversion are calculated in terms of one another
all of them are defined.

Increment and decrement
The ++$a operation can be expressed in terms of $a+=1 or $a+1, and $a— in
terms of $a−=1 and $a−1.

abs($a) can be expressed in terms of $a<0 and −$a (or 0−$a).

Unary minus can be expressed in terms of subtraction.

Negation ! and not can be expressed in terms of boolean conversion, or string or nume
conversion.

Concatenation can be expressed in terms of string conversion.

Comparison operations
can be expressed in terms of its "spaceship" counterpart: either <=> or cmp:

 <, >, <=, >=, ==, != in terms of <=>
 lt, gt, le, ge, eq, ne in terms of cmp

Copy operator can be expressed in terms of an assignment to the dereferenced value, if this v
a scalar and not a reference.

WARNING
The restriction for the comparison operation is that even if, for example, ‘cmp’ should return a blessed
reference, the autogenerated ‘lt ’ function will produce only a standard logical value based on the numer
value of the result of ‘cmp’. In particular, a working numeric conversion is needed in this case (poss
expressed in terms of other conversions).

Similarly, .= and x= operators lose their mathemagical properties if the string conversion substituti
applied.

When you chop() a mathemagical object it is promoted to a string and its mathemagical properties ar
 The same can happen with other operations as well.

Run−time Overloading
Since all use directives are executed at compile−time, the only way to change overloading during run
is to

 eval ’use overload "+" => \&addmethod’;
08−Oct−1996 Version 5.003 531

overload Perl Programmers Reference Guide overload

e. The

ble may
 have

y during

 most
inimize
question

d with

 that

 (but this

special
You can also use

 eval ’no overload "+", "−−", "<="’;

though the use of these constructs during run−time is questionable.

Public functions
Package overload.pm provides the following public functions:

overload::StrVal(arg)
Gives string value of arg as in absence of stringify overloading.

overload::Overloaded(arg)
Returns true if arg is subject to overloading of some operations.

overload::Method(obj,op)
Returns undef or a reference to the method that implements op .

IMPLEMENTATION
What follows is subject to change RSN.

The table of methods for all operations is cached as magic in the symbol table hash for the packag
table is rechecked for changes due to use overload , no overload , and @ISA only during bless ing;
so if they are changed dynamically, you‘ll need an additional fake bless ing to update the table.

(Every SVish thing has a magic queue, and magic is an entry in that queue. This is how a single varia
participate in multiple forms of magic simultaneously. For instance, environment variables regularly
two forms at once: their %ENV magic and their taint magic.)

If an object belongs to a package using overload, it carries a special flag. Thus the only speed penalt
arithmetic operations without overloading is the checking of this flag.

In fact, if use overload is not present, there is almost no overhead for overloadable operations, so
programs should not suffer measurable performance penalties. A considerable effort was made to m
the overhead when overload is used and the current operation is overloadable but the arguments in
do not belong to packages using overload. When in doubt, test your speed with use overload and
without it. So far there have been no reports of substantial speed degradation if Perl is compile
optimization turned on.

There is no size penalty for data if overload is not used.

Copying ($a=$b) is shallow; however, a one−level−deep copying is carried out before any operation
can imply an assignment to the object $a (or $b) refers to, like $a++. You can override this behavior by
defining your own copy constructor (see "Copy Constructor").

It is expected that arguments to methods that are not explicitly supposed to be changed are constant
is not enforced).

AUTHOR
Ilya Zakharevich <ilya@math.mps.ohio−state.edu>.

DIAGNOSTICS
When Perl is run with the −Do switch or its equivalent, overloading induces diagnostic messages.

BUGS
Because it is used for overloading, the per−package associative array %OVERLOAD now has a
meaning in Perl.

As shipped, mathemagical properties are not inherited via the @ISA tree.

This document is confusing.
532 Version 5.003 08−Oct−1996

sigtrap Perl Programmers Reference Guide sigtrap

f two

r for
 supply

al
 an

d then

t cause

ey are

ssed
NAME
sigtrap − Perl pragma to enable simple signal handling

SYNOPSIS
 use sigtrap;
 use sigtrap qw(stack−trace old−interface−signals); # equivalent
 use sigtrap qw(BUS SEGV PIPE ABRT);
 use sigtrap qw(die INT QUIT);
 use sigtrap qw(die normal−signals);
 use sigtrap qw(die untrapped normal−signals);
 use sigtrap qw(die untrapped normal−signals

 stack−trace any error−signals);
 use sigtrap ’handler’ => \&my_handler, ’normal−signals’;
 use sigtrap qw(handler my_handler normal−signals
 stack−trace error−signals);

DESCRIPTION
The sigtrap pragma is a simple interface to installing signal handlers. You can have it install one o
handlers supplied by sigtrap itself (one which provides a Perl stack trace and one which simply die() s), or
alternately you can supply your own handler for it to install. It can be told only to install a handle
signals which are either untrapped or ignored. It has a couple of lists of signals to trap, plus you can
your own list of signals.

The arguments passed to the use statement which invokes sigtrap are processed in order. When a sign
name or the name of one of sigtrap‘s signal lists is encountered a handler is immediately installed, when
option is encountered it affects subsequently installed handlers.

OPTIONS

SIGNAL HANDLERS
These options affect which handler will be used for subsequently installed signals.

stack−trace
The handler used for subsequently installed signals will output a Perl stack trace to STDERR an
tries to dump core. This is the default signal handler.

die The handler used for subsequently installed signals calls die (actually croak) with a message
indicating which signal was caught.

handler your−handler
your−handler will be used as the handler for subsequently installed signals. your−handler can be any
value which is valid as an assignment to an element of %SIG.

SIGNAL LISTS
sigtrap has two built−in lists of signals to trap. They are:

normal−signals
These are the signals which a program might normally expect to encounter and which by defaul
it to terminate. They are HUP, INT, PIPE and TERM.

error−signals
These signals usually indicate a serious problem with the Perl interpreter or with your script. Th
ABRT, BUS, EMT, FPE, ILL, QUIT, SEGV, SYS and TRAP.

old−interface−signals
These are the signals which were trapped by default by the old sigtrap interface, they are ABRT, BUS,
EMT, FPE, ILL, PIPE, QUIT, SEGV, SYS, TERM, and TRAP. If no signals or signals lists are pa
to sigtrap this list is used.
08−Oct−1996 Version 5.003 533

sigtrap Perl Programmers Reference Guide sigtrap

ady

ault

ped or

ne of
OTHER

untrapped
This token tells sigtrap only to install handlers for subsequently listed signals which aren‘t alre
trapped or ignored.

any This token tells sigtrap to install handlers for all subsequently listed signals. This is the def
behavior.

signal
Any argument which looks like a signals name (that is, /^[A−Z][A−Z0−9]*$/) is taken as a signal
name and indicates that sigtrap should install a handler for it.

number
Require that at least version number of sigtrap is being used.

EXAMPLES
Provide a stack trace for the old−interface−signals:

 use sigtrap;

Ditto:

 use sigtrap qw(stack−trace old−interface−signals);

Provide a stack trace on the 4 listed signals only:

 use sigtrap qw(BUS SEGV PIPE ABRT);

Die on INT or QUIT:

 use sigtrap qw(die INT QUIT);

Die on HUP, INT, PIPE or TERM:

 use sigtrap qw(die normal−signals);

Die on HUP, INT, PIPE or TERM, except don‘t change the behavior for signals which are already trap
ignored:

 use sigtrap qw(die untrapped normal−signals);

Die on receipt one of an of the normal−signals which is currently untrapped, provide a stack trace on
receipt of any of the error−signals:

 use sigtrap qw(die untrapped normal−signals
 stack−trace any error−signals);

Install my_handler() as the handler for the normal−signals:

 use sigtrap ’handler’, \&my_handler, ’normal−signals’;

Install my_handler() as the handler for the normal−signals, provide a Perl stack trace on receipt of o
the error−signals:

 use sigtrap qw(handler my_handler normal−signals
 stack−trace error−signals);
534 Version 5.003 08−Oct−1996

strict Perl Programmers Reference Guide strict

, but is
about:

amic

ithout

word
of the
NAME
strict − Perl pragma to restrict unsafe constructs

SYNOPSIS
 use strict;

 use strict "vars";
 use strict "refs";
 use strict "subs";
 use strict "untie";

 use strict;
 no strict "vars";

DESCRIPTION
If no import list is supplied, all possible restrictions are assumed. (This is the safest mode to operate in
sometimes too strict for casual programming.) Currently, there are four possible things to be strict
"subs", "vars", "refs", and "untie".

strict refs
This generates a runtime error if you use symbolic references (see perlref).

 use strict ’refs’;
 $ref = \$foo;
 print $$ref; # ok
 $ref = "foo";
 print $$ref; # runtime error; normally ok

strict vars
This generates a compile−time error if you access a variable that wasn‘t localized via my() or
wasn‘t fully qualified. Because this is to avoid variable suicide problems and subtle dyn
scoping issues, a merely local() variable isn‘t good enough. See my and local.

 use strict ’vars’;
 $X::foo = 1; # ok, fully qualified
 my $foo = 10; # ok, my() var
 local $foo = 9; # blows up

The local() generated a compile−time error because you just touched a global name w
fully qualifying it.

strict subs
This disables the poetry optimization, generating a compile−time error if you try to use a bare
identifier that‘s not a subroutine, unless it appears in curly braces or on the left hand side
"=>" symbol.

 use strict ’subs’;
 $SIG{PIPE} = Plumber; # blows up
 $SIG{PIPE} = "Plumber"; # just fine: bareword in curlies always ok
 $SIG{PIPE} = \&Plumber; # preferred form

strict untie
This generates a runtime error if any references to the object returned by tie (or tied) still exist
when untie is called. Note that to get this strict behaviour, the use strict ‘untie’
statement must be in the same scope as the untie . See tie, untie, tied and perltie.

 use strict ’untie’;
 $a = tie %a, ’SOME_PKG’;
 $b = tie %b, ’SOME_PKG’;
08−Oct−1996 Version 5.003 535

strict Perl Programmers Reference Guide strict
 $b = 0;
 tie %c, PKG;
 $c = tied %c;
 untie %a ; # blows up, $a is a valid object reference.
 untie %b; # ok, $b is not a reference to the object.
 untie %c ; # blows up, $c is a valid object reference.

See Pragmatic Modules.
536 Version 5.003 08−Oct−1996

subs Perl Programmers Reference Guide subs

ithout
NAME
subs − Perl pragma to predeclare sub names

SYNOPSIS
 use subs qw(frob);
 frob 3..10;

DESCRIPTION
This will predeclare all the subroutine whose names are in the list, allowing you to use them w
parentheses even before they‘re declared.

See Pragmatic Modules and subs.
08−Oct−1996 Version 5.003 537

vars Perl Programmers Reference Guide vars

r "use

an

stitute by
NAME
vars − Perl pragma to predeclare global variable names

SYNOPSIS
 use vars qw($frob @mung %seen);

DESCRIPTION
This will predeclare all the variables whose names are in the list, allowing you to use them unde
strict", and disabling any typo warnings.

Packages such as the AutoLoader and SelfLoader that delay loading of subroutines within packages c
create problems with package lexicals defined using my() . While the vars pragma cannot duplicate the
effect of package lexicals (total transparency outside of the package), it can act as an acceptable sub
pre−declaring global symbols, ensuring their availability to to the later−loaded routines.

See Pragmatic Modules.
538 Version 5.003 08−Oct−1996

	perl
	NAME
	SYNOPSIS
	DESCRIPTION
	Many usability enhancements
	Simplified grammar
	Lexical scoping
	Arbitrarily nested data structures
	Modularity and reusability
	Object-oriented programming
	Embeddable and Extensible
	POSIX compliant
	Package constructors and destructors
	Multiple simultaneous DBM implementations
	Subroutine definitions may now be autoloaded
	Regular expression enhancements

	ENVIRONMENT
	HOME
	LOGDIR
	PATH
	PERL5LIB
	PERL5DB
	PERLLIB

	AUTHOR
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS
	NOTES

	perldata
	NAME
	DESCRIPTION
	Variable names
	Context
	Scalar values
	Scalar value constructors
	List value constructors
	Typeglobs and FileHandles

	perlsyn
	NAME
	DESCRIPTION
	Declarations
	Simple statements
	Compound statements
	Loop Control
	For Loops
	Foreach Loops
	Basic BLOCKs and Switch Statements
	Goto
	PODs: Embedded Documentation

	perlop
	NAME
	SYNOPSIS
	DESCRIPTION
	Terms and List Operators (Leftward)
	The Arrow Operator
	Autoincrement and Autodecrement
	Exponentiation
	Symbolic Unary Operators
	Binding Operators
	Multiplicative Operators
	Additive Operators
	Shift Operators
	Named Unary Operators
	Relational Operators
	Equality Operators
	Bitwise And
	Bitwise Or and Exclusive Or
	C-style Logical And
	C-style Logical Or
	Range Operator
	Conditional Operator
	Assignment Operators
	Comma Operator
	List Operators (Rightward)
	Logical Not
	Logical And
	Logical or and Exclusive Or
	C Operators Missing From Perl
	unary &
	unary *
	(TYPE)

	Quote and Quotelike Operators
	Regexp Quotelike Operators
	?PATTERN?
	m/PATTERN/gimosx
	/PATTERN/gimosx
	q/STRING/
	`STRING'
	qq/STRING/
	"STRING"
	qx/STRING/
	`STRING`
	qw/STRING/
	s/PATTERN/REPLACEMENT/egimosx
	tr/SEARCHLIST/REPLACEMENTLIST/cds
	y/SEARCHLIST/REPLACEMENTLIST/cds

	I/O Operators
	Constant Folding
	Integer arithmetic

	perlre
	NAME
	DESCRIPTION
	Regular Expressions
	(?#text)
	(?:regexp)
	(?=regexp)
	(?!regexp)
	(?imsx)

	Backtracking
	Version 8 Regular Expressions
	WARNING on \1 vs �$1�

	perlrun
	NAME
	SYNOPSIS
	DESCRIPTION
	1.
	2.
	3.
	Switches
	-0[digits]
	-a
	-c
	-d
	-d:foo
	-Dnumber
	-Dlist
	-e commandline
	-Fpattern
	-h
	-i[extension]
	-Idirectory
	-l[octnum]
	-m[-]module
	-M[-]module
	-M[-]`module ...'
	-[mM][-]module=arg[,arg]...
	-n
	-p
	-P
	-s
	-S
	-T
	-u
	-U
	-v
	-V
	-V:name
	-w
	-x directory

	perlfunc
	NAME
	DESCRIPTION
	Perl Functions by Category
	Functions for SCALARs or strings
	Regular expressions and pattern matching
	Numeric functions
	Functions for real @ARRAYs
	Functions for list data
	Functions for real %HASHes
	Input and output functions
	Functions for fixed length data or records
	Functions for filehandles, files, or directories
	Keywords related to the control flow of your perl program
	Keywords related to scoping
	Miscellaneous functions
	Functions for processes and process groups
	Keywords related to perl modules
	Keywords related to classes and object-orientedness
	Low-level socket functions
	System V interprocess communication functions
	Fetching user and group info
	Fetching network info
	Time-related functions
	Functions new in perl5
	Functions obsoleted in perl5

	Alphabetical Listing of Perl Functions
	-X FILEHANDLE
	-X EXPR
	-X
	abs VALUE
	accept NEWSOCKET,GENERICSOCKET
	alarm SECONDS
	atan2 Y,X
	bind SOCKET,NAME
	binmode FILEHANDLE
	bless REF,CLASSNAME
	bless REF
	caller EXPR
	caller
	chdir EXPR
	chmod LIST
	chomp VARIABLE
	chomp LIST
	chomp
	chop VARIABLE
	chop LIST
	chop
	chown LIST
	chr NUMBER
	chroot FILENAME
	close FILEHANDLE
	closedir DIRHANDLE
	connect SOCKET,NAME
	continue BLOCK
	cos EXPR
	crypt PLAINTEXT,SALT
	dbmclose ASSOC_ARRAY
	dbmopen ASSOC,DBNAME,MODE
	defined EXPR
	delete EXPR
	die LIST
	do BLOCK
	do SUBROUTINE(LIST)
	do EXPR
	dump LABEL
	each ASSOC_ARRAY
	eof FILEHANDLE
	eof ()
	eof
	eval EXPR
	eval BLOCK
	exec LIST
	exists EXPR
	exit EXPR
	exp EXPR
	fcntl FILEHANDLE,FUNCTION,SCALAR
	fileno FILEHANDLE
	flock FILEHANDLE,OPERATION
	fork
	format
	formline PICTURE, LIST
	getc FILEHANDLE
	getc
	getlogin
	getpeername SOCKET
	getpgrp PID
	getppid
	getpriority WHICH,WHO
	getpwnam NAME
	getgrnam NAME
	gethostbyname NAME
	getnetbyname NAME
	getprotobyname NAME
	getpwuid UID
	getgrgid GID
	getservbyname NAME,PROTO
	gethostbyaddr ADDR,ADDRTYPE
	getnetbyaddr ADDR,ADDRTYPE
	getprotobynumber NUMBER
	getservbyport PORT,PROTO
	getpwent
	getgrent
	gethostent
	getnetent
	getprotoent
	getservent
	setpwent
	setgrent
	sethostent STAYOPEN
	setnetent STAYOPEN
	setprotoent STAYOPEN
	setservent STAYOPEN
	endpwent
	endgrent
	endhostent
	endnetent
	endprotoent
	endservent
	getsockname SOCKET
	getsockopt SOCKET,LEVEL,OPTNAME
	glob EXPR
	gmtime EXPR
	goto LABEL
	goto EXPR
	goto &NAME
	grep BLOCK LIST
	grep EXPR,LIST
	hex EXPR
	import
	index STR,SUBSTR,POSITION
	index STR,SUBSTR
	int EXPR
	ioctl FILEHANDLE,FUNCTION,SCALAR
	join EXPR,LIST
	keys ASSOC_ARRAY
	kill LIST
	last LABEL
	last
	lc EXPR
	lcfirst EXPR
	length EXPR
	link OLDFILE,NEWFILE
	listen SOCKET,QUEUESIZE
	local EXPR
	localtime EXPR
	log EXPR
	lstat FILEHANDLE
	lstat EXPR
	m//
	map BLOCK LIST
	map EXPR,LIST
	mkdir FILENAME,MODE
	msgctl ID,CMD,ARG
	msgget KEY,FLAGS
	msgsnd ID,MSG,FLAGS
	msgrcv ID,VAR,SIZE,TYPE,FLAGS
	my EXPR
	next LABEL
	next
	no Module LIST
	oct EXPR
	open FILEHANDLE,EXPR
	open FILEHANDLE
	opendir DIRHANDLE,EXPR
	ord EXPR
	pack TEMPLATE,LIST
	package NAMESPACE
	pipe READHANDLE,WRITEHANDLE
	pop ARRAY
	pos SCALAR
	print FILEHANDLE LIST
	print LIST
	print
	printf FILEHANDLE LIST
	printf LIST
	prototype FUNCTION
	push ARRAY,LIST
	q/STRING/
	qq/STRING/
	qx/STRING/
	qw/STRING/
	quotemeta EXPR
	rand EXPR
	rand
	read FILEHANDLE,SCALAR,LENGTH,OFFSET
	read FILEHANDLE,SCALAR,LENGTH
	readdir DIRHANDLE
	readlink EXPR
	recv SOCKET,SCALAR,LEN,FLAGS
	redo LABEL
	redo
	ref EXPR
	rename OLDNAME,NEWNAME
	require EXPR
	require
	reset EXPR
	reset
	return LIST
	reverse LIST
	rewinddir DIRHANDLE
	rindex STR,SUBSTR,POSITION
	rindex STR,SUBSTR
	rmdir FILENAME
	s///
	scalar EXPR
	seek FILEHANDLE,POSITION,WHENCE
	seekdir DIRHANDLE,POS
	select FILEHANDLE
	select
	select RBITS,WBITS,EBITS,TIMEOUT
	semctl ID,SEMNUM,CMD,ARG
	semget KEY,NSEMS,FLAGS
	semop KEY,OPSTRING
	send SOCKET,MSG,FLAGS,TO
	send SOCKET,MSG,FLAGS
	setpgrp PID,PGRP
	setpriority WHICH,WHO,PRIORITY
	setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
	shift ARRAY
	shift
	shmctl ID,CMD,ARG
	shmget KEY,SIZE,FLAGS
	shmread ID,VAR,POS,SIZE
	shmwrite ID,STRING,POS,SIZE
	shutdown SOCKET,HOW
	sin EXPR
	sleep EXPR
	sleep
	socket SOCKET,DOMAIN,TYPE,PROTOCOL
	socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
	sort SUBNAME LIST
	sort BLOCK LIST
	sort LIST
	splice ARRAY,OFFSET,LENGTH,LIST
	splice ARRAY,OFFSET,LENGTH
	splice ARRAY,OFFSET
	split /PATTERN/,EXPR,LIMIT
	split /PATTERN/,EXPR
	split /PATTERN/
	split
	sprintf FORMAT,LIST
	sqrt EXPR
	srand EXPR
	stat FILEHANDLE
	stat EXPR
	study SCALAR
	study
	sub BLOCK
	sub NAME
	sub NAME BLOCK
	substr EXPR,OFFSET,LEN
	substr EXPR,OFFSET
	symlink OLDFILE,NEWFILE
	syscall LIST
	sysopen FILEHANDLE,FILENAME,MODE
	sysopen FILEHANDLE,FILENAME,MODE,PERMS
	sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
	sysread FILEHANDLE,SCALAR,LENGTH
	system LIST
	syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
	syswrite FILEHANDLE,SCALAR,LENGTH
	tell FILEHANDLE
	tell
	telldir DIRHANDLE
	tie VARIABLE,CLASSNAME,LIST
	tied VARIABLE
	time
	times
	tr///
	truncate FILEHANDLE,LENGTH
	truncate EXPR,LENGTH
	uc EXPR
	ucfirst EXPR
	umask EXPR
	umask
	undef EXPR
	undef
	unlink LIST
	unpack TEMPLATE,EXPR
	untie VARIABLE
	unshift ARRAY,LIST
	use Module LIST
	use Module
	use Module VERSION LIST
	use VERSION
	utime LIST
	values ASSOC_ARRAY
	vec EXPR,OFFSET,BITS
	wait
	waitpid PID,FLAGS
	wantarray
	warn LIST
	write FILEHANDLE
	write EXPR
	write
	y///

	perlvar
	NAME
	DESCRIPTION
	Predefined Names
	$ARG
	$_
	$<digit>
	$MATCH
	$&
	$PREMATCH
	$`
	$POSTMATCH
	$'
	$LAST_PAREN_MATCH
	$+
	$MULTILINE_MATCHING
	$*
	input_line_number HANDLE EXPR
	$INPUT_LINE_NUMBER
	$NR
	$.
	input_record_separator HANDLE EXPR
	$INPUT_RECORD_SEPARATOR
	$RS
	$/
	autoflush HANDLE EXPR
	$OUTPUT_AUTOFLUSH
	$|
	output_field_separator HANDLE EXPR
	$OUTPUT_FIELD_SEPARATOR
	$OFS
	$,
	output_record_separator HANDLE EXPR
	$OUTPUT_RECORD_SEPARATOR
	$ORS
	$\
	$LIST_SEPARATOR
	$"
	$SUBSCRIPT_SEPARATOR
	$SUBSEP
	$;
	$OFMT
	$#
	format_page_number HANDLE EXPR
	$FORMAT_PAGE_NUMBER
	$%
	format_lines_per_page HANDLE EXPR
	$FORMAT_LINES_PER_PAGE
	$=
	format_lines_left HANDLE EXPR
	$FORMAT_LINES_LEFT
	$-
	format_name HANDLE EXPR
	$FORMAT_NAME
	$~
	format_top_name HANDLE EXPR
	$FORMAT_TOP_NAME
	$^
	format_line_break_characters HANDLE EXPR
	$FORMAT_LINE_BREAK_CHARACTERS
	$:
	format_formfeed HANDLE EXPR
	$FORMAT_FORMFEED
	$^L
	$ACCUMULATOR
	$^A
	$CHILD_ERROR
	$?
	$OS_ERROR
	$ERRNO
	$!
	$EXTENDED_OS_ERROR
	$^E
	$EVAL_ERROR
	$@
	$PROCESS_ID
	$PID
	$$
	$REAL_USER_ID
	$UID
	$<
	$EFFECTIVE_USER_ID
	$EUID
	$
	$REAL_GROUP_ID
	$GID
	$(
	$EFFECTIVE_GROUP_ID
	$EGID
	$)
	$PROGRAM_NAME
	$0
	$[
	$PERL_VERSION
	$]
	$DEBUGGING
	$^D
	$SYSTEM_FD_MAX
	$^F
	$^H
	$INPLACE_EDIT
	$^I
	$OSNAME
	$^O
	$PERLDB
	$^P
	$BASETIME
	$^T
	$WARNING
	$^W
	$EXECUTABLE_NAME
	$^X
	$ARGV
	@ARGV
	@INC
	%INC
	$ENV{expr}
	$SIG{expr}

	perlsub
	NAME
	SYNOPSIS
	DESCRIPTION
	Private Variables via �my()�
	Temporary Values via �local()�
	Passing Symbol Table Entries (typeglobs)
	Pass by Reference
	Prototypes
	Overriding Builtin Functions
	Autoloading

	SEE ALSO

	perlmod
	NAME
	DESCRIPTION
	Packages
	Symbol Tables
	Package Constructors and Destructors
	Perl Classes
	Perl Modules

	NOTE
	THE PERL MODULE LIBRARY
	Pragmatic Modules
	diagnostics
	integer
	less
	ops
	overload
	sigtrap
	strict
	subs
	vars

	Standard Modules
	AnyDBM_File
	AutoLoader
	AutoSplit
	Benchmark
	Carp
	Config
	Cwd
	DB_File
	Devel::SelfStubber
	DynaLoader
	English
	Env
	Exporter
	ExtUtils::Liblist
	ExtUtils::MakeMaker
	ExtUtils::Manifest
	ExtUtils::Mkbootstrap
	ExtUtils::Miniperl
	Fcntl
	File::Basename
	File::CheckTree
	File::Find
	FileHandle
	File::Path
	Getopt::Long
	Getopt::Std
	I18N::Collate
	IPC::Open2
	IPC::Open3
	Net::Ping
	POSIX
	SelfLoader
	Safe
	Socket
	Test::Harness
	Text::Abbrev

	Extension Modules

	CPAN
	Modules: Creation, Use and Abuse
	Guidelines for Module Creation
	Do similar modules already exist in some form?
	Try to design the new module to be easy to extend and reuse.
	Some simple style guidelines
	Select what to export.
	Select a name for the module.
	Have you got it right?
	README and other Additional Files.
	Adding a Copyright Notice.
	Give the module a version/issue/release number.
	How to release and distribute a module.
	Take care when changing a released module.

	Guidelines for Converting Perl 4 Library Scripts into Modules
	There is no requirement to convert anything.
	Consider the implications.
	Make the most of the opportunity.
	The pl2pm utility will get you started.

	Guidelines for Reusing Application Code
	Complete applications rarely belong in the Perl Module Library.
	Many applications contain some perl code which could be reused.
	Break-out the reusable code into one or more separate module files.
	Take the opportunity to reconsider and redesign the interfaces.
	In some cases the `application' can then be reduced to a small

	perlform
	NAME
	DESCRIPTION
	1.
	2.
	3.
	Format Variables

	NOTES
	Footers
	Accessing Formatting Internals

	WARNING

	perli18n
	NAME
	DESCRIPTION
	USING LOCALES
	locale -a
	nlsinfo
	ls /usr/lib/nls/loc
	ls /usr/lib/locale
	ls /usr/lib/nls
	CHARACTER TYPES
	COLLATION

	ENVIRONMENT
	PERL_BADLANG
	LC_ALL
	LC_CTYPE
	LC_COLLATE
	LANG

	perlref
	NAME
	DESCRIPTION
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	1.
	2.
	3.
	4.
	Symbolic references
	Not-so-symbolic references

	WARNING
	SEE ALSO

	perldsc
	NAME
	DESCRIPTION
	arrays of arrays
	hashes of arrays
	arrays of hashes
	hashes of hashes
	more elaborate constructs
	recursive and self-referential data structures
	objects

	REFERENCES
	COMMON MISTAKES
	CAVEAT ON PRECEDENCE
	WHY YOU SHOULD ALWAYS �use strict�
	DEBUGGING
	CODE EXAMPLES
	LISTS OF LISTS
	Declaration of a LIST OF LISTS
	Generation of a LIST OF LISTS
	Access and Printing of a LIST OF LISTS

	HASHES OF LISTS
	Declaration of a HASH OF LISTS
	Generation of a HASH OF LISTS
	Access and Printing of a HASH OF LISTS

	LISTS OF HASHES
	Declaration of a LIST OF HASHES
	Generation of a LIST OF HASHES
	Access and Printing of a LIST OF HASHES

	HASHES OF HASHES
	Declaration of a HASH OF HASHES
	Generation of a HASH OF HASHES
	Access and Printing of a HASH OF HASHES

	MORE ELABORATE RECORDS
	Declaration of MORE ELABORATE RECORDS
	Declaration of a HASH OF COMPLEX RECORDS
	Generation of a HASH OF COMPLEX RECORDS

	Database Ties
	SEE ALSO
	AUTHOR

	perllol
	NAME
	DESCRIPTION
	Declaration and Access of Lists of Lists
	Growing Your Own
	Access and Printing
	Slices
	SEE ALSO
	AUTHOR

	perlobj
	NAME
	DESCRIPTION
	1.
	2.
	3.
	An Object is Simply a Reference
	A Class is Simply a Package
	A Method is Simply a Subroutine
	Method Invocation
	Default UNIVERSAL methods
	isa (CLASS)
	can (METHOD)
	VERSION ([VERSION])
	class ()
	is_instance ()

	Destructors
	WARNING
	Summary
	Two-Phased Garbage Collection

	SEE ALSO

	perltie
	NAME
	SYNOPSIS
	DESCRIPTION
	Tying Scalars
	TIESCALAR classname, LIST
	FETCH this
	STORE this, value
	DESTROY this

	Tying Arrays
	TIEARRAY classname, LIST
	FETCH this, index
	STORE this, index, value
	DESTROY this

	Tying Hashes
	USER
	HOME
	CLOBBER
	LIST
	TIEHASH classname, LIST
	FETCH this, key
	STORE this, key, value
	DELETE this, key
	CLEAR this
	EXISTS this, key
	FIRSTKEY this
	NEXTKEY this, lastkey
	DESTROY this

	Tying FileHandles
	TIEHANDLE classname, LIST
	PRINT this, LIST
	READLINE this
	DESTROY this

	SEE ALSO
	BUGS
	AUTHOR

	perlbot
	NAME
	DESCRIPTION
	OO SCALING TIPS
	1
	2
	3
	4
	5
	6
	7
	8
	9

	INSTANCE VARIABLES
	SCALAR INSTANCE VARIABLES
	INSTANCE VARIABLE INHERITANCE
	OBJECT RELATIONSHIPS
	OVERRIDING SUPERCLASS METHODS
	USING RELATIONSHIP WITH SDBM
	THINKING OF CODE REUSE
	CLASS CONTEXT AND THE OBJECT
	INHERITING A CONSTRUCTOR
	DELEGATION

	perlipc
	NAME
	DESCRIPTION
	Signals
	Named Pipes
	Using �open()� for IPC
	Safe Pipe Opens
	Bidirectional Communication

	Sockets: Client/Server Communication
	Internet TCP Clients and Servers
	Unix-Domain TCP Clients and Servers
	UDP: Message Passing

	SysV IPC
	WARNING
	NOTES
	BUGS
	AUTHOR
	SEE ALSO

	perldebug
	NAME
	DESCRIPTION
	The Perl Debugger
	Debugger Commands
	h [command]
	p expr
	x expr
	V [pkg [vars]]
	X [vars]
	T
	s [expr]
	n
	<CR>
	c [line]
	l
	l min+incr
	l min-max
	l line
	l subname
	-
	w [line]
	.
	f filename
	/pattern/
	?pattern?
	L
	S [[!]pattern]
	t
	t expr
	b [line] [condition]
	b subname [condition]
	d [line]
	D
	a [line] command
	1
	2
	3
	4
	5
	A
	O [opt[=val]] [opt"val"] [opt?]...
	recallCommand, ShellBang
	pager
	arrayDepth, hashDepth
	compactDump, veryCompact
	globPrint
	DumpDBFiles
	DumpPackages
	quote, HighBit, undefPrint
	tkRunning
	signalLevel, warnLevel. dieLevel
	< command
	> command
	! number
	! -number
	! pattern
	!! cmd
	H -number
	q or ^D
	R
	|dbcmd
	||dbcmd
	= [alias value]
	command
	p expr

	Debugger Customization
	Readline Support
	Editor Support for Debugging
	The Perl Profiler
	Debugger Internals
	TTY
	noTTY
	ReadLine
	NonStop
	LineInfo

	Other resources

	BUGS

	perldiag
	NAME
	DESCRIPTION
	"my" variable %s can`t be in a package
	"my" variable %s masks earlier declaration in same scope
	"no" not allowed in expression
	"use" not allowed in expression
	% may only be used in unpack
	%s (...) interpreted as function
	%s argument is not a HASH element
	%s did not return a true value
	%s found where operator expected
	%s had compilation errors.
	%s has too many errors.
	%s matches null string many times
	%s never introduced
	%s syntax OK
	%s: Command not found.
	%s: Expression syntax.
	%s: Undefined variable.
	%s: not found
	-P not allowed for setuid/setgid script
	-T and -B not implemented on filehandles
	500 Server error
	?+* follows nothing in regexp
	@ outside of string
	accept() on closed fd
	Allocation too large: %lx
	Arg too short for msgsnd
	Ambiguous use of %s resolved as %s
	Args must match #! line
	Argument "%s" isn`t numeric
	Array @%s missing the @ in argument %d of %s()
	assertion botched: %s
	Assertion failed: file "%s"
	Assignment to both a list and a scalar
	Attempt to free non-arena SV: 0x%lx
	Attempt to free temp prematurely
	Attempt to free unreferenced glob pointers
	Attempt to free unreferenced scalar
	Attempt to use reference as lvalue in substr
	Bad arg length for %s, is %d, should be %d
	Bad associative array
	Bad filehandle: %s
	Bad free() ignored
	Bad name after %s::
	Bad symbol for array
	Bad symbol for filehandle
	Bad symbol for hash
	Badly placed ()`s
	BEGIN failed‘compilation aborted
	bind() on closed fd
	Bizarre copy of %s in %s
	Callback called exit
	Can`t "last" outside a block
	Can`t "next" outside a block
	Can`t "redo" outside a block
	Can`t bless non-reference value
	Can`t break at that line
	Can`t call method "%s" in empty package "%s"
	Can`t call method "%s" on unblessed reference
	Can`t call method "%s" without a package or object reference
	Can`t chdir to %s
	Can`t coerce %s to integer in %s
	Can`t coerce %s to number in %s
	Can`t coerce %s to string in %s
	Can`t create pipe mailbox
	Can`t declare %s in my
	Can`t do inplace edit on %s: %s
	Can`t do inplace edit without backup
	Can`t do inplace edit: %s > 14 characters
	Can`t do inplace edit: %s is not a regular file
	Can`t do setegid!
	Can`t do seteuid!
	Can`t do setuid
	Can`t do waitpid with flags
	Can`t do {n,m} with n > m
	Can`t emulate -%s on #! line
	Can`t exec "%s": %s
	Can`t exec %s
	Can`t execute %s
	Can`t find label %s
	Can`t find string terminator %s anywhere before EOF
	Can`t fork
	Can`t get filespec - stale stat buffer?
	Can`t get pipe mailbox device name
	Can`t get SYSGEN parameter value for MAXBUF
	Can`t goto subroutine outside a subroutine
	Can`t localize a reference
	Can`t localize lexical variable %s
	Can`t locate %s in @INC
	Can`t locate object method "%s" via package "%s"
	Can`t locate package %s for @%s::ISA
	Can`t mktemp()
	Can`t modify %s in %s
	Can`t modify non-existent substring
	Can`t msgrcv to readonly var
	Can`t open %s: %s
	Can`t open bidirectional pipe
	Can`t open error file %s as stderr
	Can`t open input file %s as stdin
	Can`t open output file %s as stdout
	Can`t open output pipe (name: %s)
	Can`t open perl script "%s": %s
	Can`t rename %s to %s: %s, skipping file
	Can`t reopen input pipe (name: %s) in binary mode
	Can`t reswap uid and euid
	Can`t return outside a subroutine
	Can`t stat script "%s"
	Can`t swap uid and euid
	Can`t take log of %g
	Can`t take sqrt of %g
	Can`t undef active subroutine
	Can`t unshift
	Can`t untie: %d inner references still exist
	Can`t upgrade that kind of scalar
	Can`t upgrade to undef
	Can`t use "my %s" in sort comparison
	Can`t use %s for loop variable
	Can`t use %s ref as %s ref
	Can`t use \1 to mean $1 in expression
	Can`t use string ("%s") as %s ref while "strict refs" in use
	Can`t use an undefined value as %s reference
	Can`t use global %s in "my"
	Can`t use subscript on %s
	Can`t write to temp file for -e: %s
	Can`t x= to readonly value
	Cannot open temporary file
	chmod: mode argument is missing initial 0
	Close on unopened file <%s>
	connect() on closed fd
	Corrupt malloc ptr 0x%lx at 0x%lx
	corrupted regexp pointers
	corrupted regexp program
	Deep recursion on subroutine "%s"
	Did you mean &%s instead?
	Did you mean $ or @ instead of %?
	Do you need to predeclare %s?
	Don`t know how to handle magic of type `%s'
	do_study: out of memory
	Duplicate free() ignored
	elseif should be elsif
	END failed‘cleanup aborted
	Error converting file specification %s
	Execution of %s aborted due to compilation errors.
	Exiting eval via %s
	Exiting subroutine via %s
	Exiting substitution via %s
	Fatal VMS error at %s, line %d
	fcntl is not implemented
	Filehandle %s never opened
	Filehandle %s opened only for input
	Filehandle only opened for input
	Final $ should be \$ or $name
	Final @ should be \@ or @name
	Format %s redefined
	Format not terminated
	Found = in conditional, should be ==
	gdbm store returned %d, errno %d, key "%s"
	gethostent not implemented
	get{sock,peer}name() on closed fd
	getpwnam returned invalid UIC %#o for user "%s"
	Glob not terminated
	Global symbol "%s" requires explicit package name
	goto must have label
	Had to create %s unexpectedly
	Hash %%s missing the % in argument %d of %s()
	Ill-formed logical name |%s| in prime_env_iter
	Illegal division by zero
	Illegal modulus zero
	Illegal octal digit
	Illegal octal digit ignored
	Insecure dependency in %s
	Insecure directory in %s
	Insecure PATH
	Internal inconsistency in tracking vforks
	internal disaster in regexp
	internal urp in regexp at /%s/
	invalid [] range in regexp
	ioctl is not implemented
	junk on end of regexp
	Label not found for "last %s"
	Label not found for "next %s"
	Label not found for "redo %s"
	listen() on closed fd
	Literal @%s now requires backslash
	Method for operation %s not found in package %s during blessing
	Might be a runaway multi-line %s string starting on line %d
	Misplaced _ in number
	Missing $ on loop variable
	Missing comma after first argument to %s function
	Missing operator before %s?
	Missing right bracket
	Missing semicolon on previous line?
	Modification of a read-only value attempted
	Modification of non-creatable array value attempted, subscript %d
	Modification of non-creatable hash value attempted, subscript "%s"
	Module name must be constant
	msg%s not implemented
	Multidimensional syntax %s not supported
	Name "%s::%s" used only once: possible typo
	Negative length
	nested *?+ in regexp
	No #! line
	No %s allowed while running setuid
	No -e allowed in setuid scripts
	No comma allowed after %s
	No command into which to pipe on command line
	No DB::DB routine defined
	No dbm on this machine
	No DBsub routine
	No error file after 2> or 2>> on command line
	No input file after < on command line
	No output file after > on command line
	No output file after > or >> on command line
	No Perl script found in input
	No setregid available
	No setreuid available
	No space allowed after -I
	No such pipe open
	No such signal: SIG%s
	Not a CODE reference
	Not a format reference
	Not a GLOB reference
	Not a HASH reference
	Not a perl script
	Not a SCALAR reference
	Not a subroutine reference
	Not a subroutine reference in %OVERLOAD
	Not an ARRAY reference
	Not enough arguments for %s
	Not enough format arguments
	Null filename used
	NULL OP IN RUN
	Null realloc
	NULL regexp argument
	NULL regexp parameter
	Odd number of elements in hash list
	oops: oopsAV
	oops: oopsHV
	Operation `%s' %s: no method found,
	Operator or semicolon missing before %s
	Out of memory for yacc stack
	Out of memory!
	page overflow
	panic: ck_grep
	panic: ck_split
	panic: corrupt saved stack index
	panic: die %s
	panic: do_match
	panic: do_split
	panic: do_subst
	panic: do_trans
	panic: goto
	panic: INTERPCASEMOD
	panic: INTERPCONCAT
	panic: last
	panic: leave_scope clearsv
	panic: leave_scope inconsistency
	panic: malloc
	panic: mapstart
	panic: null array
	panic: pad_alloc
	panic: pad_free curpad
	panic: pad_free po
	panic: pad_reset curpad
	panic: pad_sv po
	panic: pad_swipe curpad
	panic: pad_swipe po
	panic: pp_iter
	panic: realloc
	panic: restartop
	panic: return
	panic: scan_num
	panic: sv_insert
	panic: top_env
	panic: yylex
	Parens missing around "%s" list
	Perl %3.3f required‘this is only version %s, stopped
	Permission denied
	pid %d not a child
	POSIX getpgrp can`t take an argument
	Possible memory corruption: %s overflowed 3rd argument
	Precedence problem: open %s should be open(%s)
	print on closed filehandle %s
	printf on closed filehandle %s
	Probable precedence problem on %s
	Prototype mismatch: (%s) vs (%s)
	Read on closed filehandle <%s>
	Reallocation too large: %lx
	Recompile perl with -DDEBUGGING to use -D switch
	Recursive inheritance detected
	Reference miscount in sv_replace()
	regexp memory corruption
	regexp out of space
	regexp too big
	Reversed %s= operator
	Runaway format
	Scalar value @%s[%s] better written as $%s[%s]
	Script is not setuid/setgid in suidperl
	Search pattern not terminated
	seek() on unopened file
	select not implemented
	sem%s not implemented
	semi-panic: attempt to dup freed string
	Semicolon seems to be missing
	Send on closed socket
	Sequence (?#... not terminated
	Sequence (?%s...) not implemented
	Sequence (?%s...) not recognized
	Server error
	setegid() not implemented
	seteuid() not implemented
	setrgid() not implemented
	setruid() not implemented
	Setuid/gid script is writable by world
	shm%s not implemented
	shutdown() on closed fd
	SIG%s handler "%s" not defined.
	sort is now a reserved word
	Sort subroutine didn`t return a numeric value
	Sort subroutine didn`t return single value
	Split loop
	Stat on unopened file <%s>
	Statement unlikely to be reached
	Subroutine %s redefined
	Substitution loop
	Substitution pattern not terminated
	Substitution replacement not terminated
	substr outside of string
	suidperl is no longer needed since...
	syntax error
	syntax error at line %d: `%s' unexpected
	System V IPC is not implemented on this machine
	Syswrite on closed filehandle
	tell() on unopened file
	Test on unopened file <%s>
	That use of $[is unsupported
	The %s function is unimplemented
	The crypt() function is unimplemented due to excessive paranoia.
	The stat preceding -l _ wasn`t an lstat
	times not implemented
	Too few args to syscall
	Too many (`s
	Too many)`s
	Too many args to syscall
	Too many arguments for %s
	trailing \ in regexp
	Translation pattern not terminated
	Translation replacement not terminated
	truncate not implemented
	Type of arg %d to %s must be %s (not %s)
	umask: argument is missing initial 0
	Unable to create sub named "%s"
	Unbalanced context: %d more PUSHes than POPs
	Unbalanced saves: %d more saves than restores
	Unbalanced scopes: %d more ENTERs than LEAVEs
	Unbalanced tmps: %d more allocs than frees
	Undefined format "%s" called
	Undefined sort subroutine "%s" called
	Undefined subroutine &%s called
	Undefined subroutine called
	Undefined subroutine in sort
	Undefined top format "%s" called
	unexec of %s into %s failed!
	Unknown BYTEORDER
	unmatched () in regexp
	Unmatched right bracket
	unmatched [] in regexp
	Unquoted string "%s" may clash with future reserved word
	Unrecognized character \%03o ignored
	Unrecognized signal name "%s"
	Unrecognized switch: -%s
	Unsuccessful %s on filename containing newline
	Unsupported directory function "%s" called
	Unsupported function %s
	Unsupported socket function "%s" called
	Unterminated <> operator
	Use of $# is deprecated
	Use of $* is deprecated
	Use of %s in printf format not supported
	Use of %s is deprecated
	Use of bare << to mean <<"" is deprecated
	Use of implicit split to @_ is deprecated
	Use of uninitialized value
	Useless use of %s in void context
	Variable "%s" is not exported
	Variable syntax.
	Warning: unable to close filehandle %s properly.
	Warning: Use of "%s" without parens is ambiguous
	Write on closed filehandle
	X outside of string
	x outside of string
	Xsub "%s" called in sort
	Xsub called in sort
	You can`t use -l on a filehandle
	YOU HAVEN`T DISABLED SET-ID SCRIPTS IN THE KERNEL YET!
	You need to quote "%s"
	[gs]etsockopt() on closed fd
	\1 better written as $1
	`|' and `<' may not both be specified on command line
	`|' and `>' may not both be specified on command line

	perlsec
	NAME
	DESCRIPTION
	Laundering and Detecting Tainted Data
	Cleaning Up Your Path
	Security Bugs

	perltrap
	NAME
	DESCRIPTION
	Awk Traps
	C Traps
	Sed Traps
	Shell Traps
	Perl Traps
	Perl4 to Perl5 Traps
	Discontinuance, Deprecation, and BugFix traps
	Parsing Traps
	Numerical Traps
	General data type traps
	Context Traps - scalar, list contexts
	Precedence Traps
	General Regular Expression Traps using s///, etc.
	Subroutine, Signal, Sorting Traps
	OS Traps
	DBM Traps
	Unclassified Traps

	Discontinuance, Deprecation, and BugFix traps
	Discontinuance
	Deprecation
	BugFix
	Discontinuance
	Discontinuance
	Discontinuance
	BugFix
	Discontinuance
	Discontinuance
	Deprecation
	Discontinuance

	Parsing Traps
	Parsing
	Parsing
	Parsing

	Numerical Traps
	Numerical
	Numerical
	Numerical

	General data type traps
	(Arrays)
	(Arrays)
	(Hashes)
	(Globs)
	(Scalar String)
	(Constants)
	(Scalars)
	(Variable Suicide)

	Context Traps - scalar, list contexts
	(list context)
	(scalar context)
	(scalar context)
	(list, builtin)

	Precedence Traps
	Precedence
	Precedence
	Precedence
	Precedence
	Precedence
	Precedence
	Precedence

	General Regular Expression Traps using s///, etc.
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression

	Subroutine, Signal, Sorting Traps
	(Signals)
	(Sort Subroutine)
	warn() specifically implies STDERR

	OS Traps
	(SysV)
	(SysV)

	Interpolation Traps
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation

	DBM Traps
	DBM
	DBM

	Unclassified Traps
	Unclassified

	perlstyle
	NAME
	DESCRIPTION

	perlpod
	NAME
	DESCRIPTION
	Embedding Pods in Perl Modules
	SEE ALSO
	AUTHOR

	perlbook
	NAME
	DESCRIPTION

	perlembed
	NAME
	DESCRIPTION
	PREAMBLE
	Use C from Perl?
	Use a UNIX program from Perl?
	Use Perl from Perl?
	Use C from C?
	Use Perl from C?

	ROADMAP
	Compiling your C program
	Adding a Perl interpreter to your C program
	Calling a Perl subroutine from your C program
	Evaluating a Perl statement from your C program
	Performing Perl pattern matches and substitutions from your C program
	Fiddling with the Perl stack from your C program
	Using Perl modules, which themselves use C libraries, from your C program

	MORAL
	AUTHOR

	perlapio
	NAME
	SYNOPSIS
	DESCRIPTION
	PerlIO *
	PerlIO_stdin(), PerlIO_stdout(), PerlIO_stderr()
	PerlIO_open(path, mode), PerlIO_fdopen(fd,mode)
	PerlIO_printf(f,fmt,...), PerlIO_vprintf(f,fmt,a)
	PerlIO_stdoutf(fmt,...)
	PerlIO_read(f,buf,count), PerlIO_write(f,buf,count)
	PerlIO_close(f)
	PerlIO_puts(s,f), PerlIO_putc(c,f)
	PerlIO_ungetc(c,f)
	PerlIO_getc(f)
	PerlIO_eof(f)
	PerlIO_error(f)
	PerlIO_fileno(f)
	PerlIO_clearerr(f)
	PerlIO_flush(f)
	PerlIO_tell(f)
	PerlIO_seek(f,o,w)
	PerlIO_getpos(f,p), PerlIO_setpos(f,p)
	PerlIO_rewind(f)
	PerlIO_tmpfile()
	Co-existence with stdio
	PerlIO_importFILE(f,flags)
	PerlIO_exportFILE(f,flags)
	PerlIO_findFILE(f)
	PerlIO_releaseFILE(p,f)
	PerlIO_setlinebuf(f)
	PerlIO_has_cntptr(f)
	PerlIO_get_ptr(f)
	PerlIO_get_cnt(f)
	PerlIO_canset_cnt(f)
	PerlIO_fast_gets(f)
	PerlIO_set_ptrcnt(f,p,c)
	PerlIO_set_cnt(f,c)
	PerlIO_has_base(f)
	PerlIO_get_base(f)
	PerlIO_get_bufsiz(f)

	perlxs
	NAME
	DESCRIPTION
	Introduction
	On The Road
	The Anatomy of an XSUB
	The Argument Stack
	The RETVAL Variable
	The MODULE Keyword
	The PACKAGE Keyword
	The PREFIX Keyword
	The OUTPUT: Keyword
	The CODE: Keyword
	The INIT: Keyword
	The NO_INIT Keyword
	Initializing Function Parameters
	Default Parameter Values
	The PREINIT: Keyword
	The SCOPE: Keyword
	The INPUT: Keyword
	Variable-length Parameter Lists
	The PPCODE: Keyword
	Returning Undef And Empty Lists
	The REQUIRE: Keyword
	The CLEANUP: Keyword
	The BOOT: Keyword
	The VERSIONCHECK: Keyword
	The PROTOTYPES: Keyword
	The PROTOTYPE: Keyword
	The ALIAS: Keyword
	The INCLUDE: Keyword
	The CASE: Keyword
	The �&� Unary Operator
	Inserting Comments and C Preprocessor Directives
	Using XS With C++
	Interface Strategy
	Perl Objects And C Structures
	The Typemap

	EXAMPLES
	XS VERSION
	AUTHOR

	perlxstut
	NAME
	DESCRIPTION
	VERSION CAVEAT
	DYNAMIC VERSUS STATIC
	EXAMPLE 1
	EXAMPLE 2
	WHAT HAS GONE ON?
	WRITING GOOD TEST SCRIPTS
	EXAMPLE 3
	WHAT`S NEW HERE?
	INPUT AND OUTPUT PARAMETERS
	THE XSUBPP COMPILER
	THE TYPEMAP FILE
	WARNING
	EXAMPLE 4
	WHAT HAS HAPPENED HERE?
	SPECIFYING ARGUMENTS TO XSUBPP
	THE ARGUMENT STACK
	EXTENDING YOUR EXTENSION
	DOCUMENTING YOUR EXTENSION
	INSTALLING YOUR EXTENSION
	SEE ALSO
	Author
	Last Changed

	perlguts
	NAME
	DESCRIPTION
	Datatypes
	What is an "IV"?
	Working with SVs
	What`s Really Stored in an SV?
	Working with AVs
	Working with HVs
	References
	Blessed References and Class Objects

	Creating New Variables
	XSUBs and the Argument Stack
	Mortality
	Stashes
	Magic
	Assigning Magic
	Magic Virtual Tables
	Finding Magic

	Double-Typed SVs
	Calling Perl Routines from within C Programs
	Memory Allocation
	API LISTING
	AvFILL
	av_clear
	av_extend
	av_fetch
	av_len
	av_make
	av_pop
	av_push
	av_shift
	av_store
	av_undef
	av_unshift
	CLASS
	Copy
	croak
	CvSTASH
	DBsingle
	DBsub
	DBtrace
	dMARK
	dORIGMARK
	dowarn
	dSP
	dXSARGS
	dXSI32
	dXSI32
	ENTER
	EXTEND
	FREETMPS
	G_ARRAY
	G_DISCARD
	G_EVAL
	GIMME
	G_NOARGS
	G_SCALAR
	gv_stashpv
	gv_stashsv
	GvSV
	he_free
	hv_clear
	hv_delete
	hv_exists
	hv_fetch
	hv_iterinit
	hv_iterkey
	hv_iternext
	hv_iternextsv
	hv_iterval
	hv_magic
	HvNAME
	hv_store
	hv_undef
	isALNUM
	isALPHA
	isDIGIT
	isLOWER
	isSPACE
	isUPPER
	items
	ix
	LEAVE
	MARK
	mg_clear
	mg_copy
	mg_find
	mg_free
	mg_get
	mg_len
	mg_magical
	mg_set
	Move
	na
	New
	Newc
	Newz
	newAV
	newHV
	newRV
	newSV
	newSViv
	newSVnv
	newSVpv
	newSVrv
	newSVsv
	newXS
	newXSproto
	Nullav
	Nullch
	Nullcv
	Nullhv
	Nullsv
	ORIGMARK
	perl_alloc
	perl_call_argv
	perl_call_method
	perl_call_pv
	perl_call_sv
	perl_construct
	perl_destruct
	perl_eval_sv
	perl_free
	perl_get_av
	perl_get_cv
	perl_get_hv
	perl_get_sv
	perl_parse
	perl_require_pv
	perl_run
	POPi
	POPl
	POPp
	POPn
	POPs
	PUSHMARK
	PUSHi
	PUSHn
	PUSHp
	PUSHs
	PUTBACK
	Renew
	Renewc
	RETVAL
	safefree
	safemalloc
	saferealloc
	savepv
	savepvn
	SAVETMPS
	SP
	SPAGAIN
	ST
	strEQ
	strGE
	strGT
	strLE
	strLT
	strNE
	strnEQ
	strnNE
	sv_2mortal
	sv_bless
	sv_catpv
	sv_catpvn
	sv_catsv
	sv_cmp
	sv_cmp
	SvCUR
	SvCUR_set
	sv_dec
	sv_dec
	SvEND
	sv_eq
	SvGROW
	sv_grow
	sv_inc
	SvIOK
	SvIOK_off
	SvIOK_on
	SvIOK_only
	SvIOK_only
	SvIOKp
	sv_isa
	SvIV
	sv_isobject
	SvIVX
	SvLEN
	sv_len
	sv_len
	sv_magic
	sv_mortalcopy
	SvOK
	sv_newmortal
	sv_no
	SvNIOK
	SvNIOK_off
	SvNIOKp
	SvNOK
	SvNOK_off
	SvNOK_on
	SvNOK_only
	SvNOK_only
	SvNOKp
	SvNV
	SvNVX
	SvPOK
	SvPOK_off
	SvPOK_on
	SvPOK_only
	SvPOK_only
	SvPOKp
	SvPV
	SvPVX
	SvREFCNT
	SvREFCNT_dec
	SvREFCNT_inc
	SvROK
	SvROK_off
	SvROK_on
	SvRV
	sv_setiv
	sv_setnv
	sv_setpv
	sv_setpvn
	sv_setref_iv
	sv_setref_nv
	sv_setref_pv
	sv_setref_pvn
	sv_setsv
	SvSTASH
	SVt_IV
	SVt_PV
	SVt_PVAV
	SVt_PVCV
	SVt_PVHV
	SVt_PVMG
	SVt_NV
	SvTRUE
	SvTYPE
	svtype
	SvUPGRADE
	sv_upgrade
	sv_undef
	sv_unref
	sv_usepvn
	sv_yes
	THIS
	toLOWER
	toUPPER
	warn
	XPUSHi
	XPUSHn
	XPUSHp
	XPUSHs
	XS
	XSRETURN
	XSRETURN_EMPTY
	XSRETURN_IV
	XSRETURN_NO
	XSRETURN_NV
	XSRETURN_PV
	XSRETURN_UNDEF
	XSRETURN_YES
	XST_mIV
	XST_mNV
	XST_mNO
	XST_mPV
	XST_mUNDEF
	XST_mYES
	XS_VERSION
	XS_VERSION_BOOTCHECK
	Zero

	AUTHOR
	DATE

	perlcall
	NAME
	DESCRIPTION
	An Error Handler
	An Event Driven Program

	THE PERL_CALL FUNCTIONS
	perl_call_sv
	perl_call_pv
	perl_call_method
	perl_call_argv

	FLAG VALUES
	G_SCALAR
	1.
	2.

	G_ARRAY
	1.
	2.

	G_DISCARD
	G_NOARGS
	G_EVAL	
	G_KEEPERR
	Determining the Context

	KNOWN PROBLEMS
	1.
	2.

	EXAMPLES
	No Parameters, Nothing returned
	1.
	2.
	3.
	4.
	5.

	Passing Parameters
	1.
	2.
	3.
	4.
	5.
	6.

	Returning a Scalar
	1.
	2.
	3.
	4.
	5.
	6.

	Returning a list of values
	1.
	2.

	Returning a list in a scalar context
	Returning Data from Perl via the parameter list
	Using G_EVAL
	1.
	2.
	3.

	Using G_KEEPERR
	Using perl_call_sv
	Using perl_call_argv
	Using perl_call_method
	Using GIMME
	Using Perl to dispose of temporaries
	Strategies for storing Callback Context Information
	1. Ignore the problem - Allow only 1 callback
	2. Create a sequence of callbacks - hard wired limit
	3. Use a parameter to map to the Perl callback

	Alternate Stack Manipulation
	1.
	2.
	3.

	SEE ALSO
	AUTHOR
	DATE

	Core Modules
	AnyDBM_File
	NAME
	SYNOPSIS
	DESCRIPTION
	DBM Comparisons
	[0]
	[1]
	[2]
	[3]

	SEE ALSO

	AutoLoader
	NAME
	SYNOPSIS
	DESCRIPTION
	__END__
	Loading Stubs
	Package Lexicals
	AutoLoader vs. SelfLoader

	CAVEAT

	AutoSplit
	NAME
	SYNOPSIS
	DESCRIPTION
	CAVEATS
	DIAGNOSTICS

	Benchmark
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	new
	debug

	Standard Exports
	timeit(COUNT, CODE)
	timethis
	timethese
	timediff
	timestr

	Optional Exports

	NOTES
	INHERITANCE
	CAVEATS
	AUTHORS
	MODIFICATION HISTORY

	Carp
	NAME
	SYNOPSIS
	DESCRIPTION

	Cwd
	NAME
	SYNOPSIS
	DESCRIPTION

	Devel
	SelfStubber
	NAME
	SYNOPSIS
	DESCRIPTION

	DirHandle
	NAME
	SYNOPSIS
	DESCRIPTION

	DynaLoader
	NAME
	SYNOPSIS
	DESCRIPTION
	@dl_library_path
	@dl_resolve_using
	@dl_require_symbols
	dl_error()
	$dl_debug
	dl_findfile()
	dl_expandspec()
	dl_load_file()
	dl_find_symbol()
	dl_undef_symbols()
	dl_install_xsub()
	bootstrap()

	AUTHOR

	English
	NAME
	SYNOPSIS
	DESCRIPTION

	Env
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Exporter
	NAME
	SYNOPSIS
	DESCRIPTION
	Selecting What To Export
	Specialised Import Lists
	Module Version Checking
	Managing Unknown Symbols
	Tag Handling Utility Functions

	ExtUtils
	Embed
	NAME
	SYNOPSIS
	DESCRIPTION
	@EXPORT
	FUNCTIONS
	xsinit()
	Examples
	ldopts()
	Examples
	perl_inc()
	ccflags(), ccdlflags()
	ccopts()
	xsi_header()
	xsi_protos(@modules)
	xsi_body(@modules)

	EXAMPLES
	SEE ALSO
	AUTHOR

	Install
	NAME
	SYNOPSIS
	DESCRIPTION

	Liblist
	NAME
	SYNOPSIS
	DESCRIPTION
	For static extensions
	For dynamic extensions
	For dynamic extensions
	EXTRALIBS
	LDLOADLIBS and LD_RUN_PATH
	BSLOADLIBS

	PORTABILITY
	SEE ALSO

	MM_OS2
	NAME
	SYNOPSIS
	DESCRIPTION

	MM_Unix
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	Preloaded methods
	canonpath
	catdir
	catfile
	curdir
	rootdir
	updir

	SelfLoaded methods
	c_o (o)
	cflags (o)
	clean (o)
	const_cccmd (o)
	const_config (o)
	const_loadlibs (o)
	constants (o)
	depend (o)
	dir_target (o)
	dist (o)
	dist_basics (o)
	dist_ci (o)
	dist_core (o)
	dist_dir (o)
	dist_test (o)
	dlsyms (o)
	dynamic (o)
	dynamic_bs (o)
	dynamic_lib (o)
	exescan
	extliblist
	file_name_is_absolute
	find_perl

	Methods to actually produce chunks of text for the Makefile
	force (o)
	guess_name
	has_link_code
	init_dirscan
	init_main
	init_others
	install (o)
	installbin (o)
	libscan (o)
	linkext (o)
	lsdir
	macro (o)
	makeaperl (o)
	makefile (o)
	manifypods (o)
	maybe_command
	maybe_command_in_dirs
	needs_linking (o)
	nicetext
	parse_version
	pasthru (o)
	path
	perl_script
	perldepend (o)
	pm_to_blib
	post_constants (o)
	post_initialize (o)
	postamble (o)
	prefixify
	processPL (o)
	realclean (o)
	replace_manpage_separator
	static (o)
	static_lib (o)
	staticmake (o)
	subdir_x (o)
	subdirs (o)
	test (o)
	test_via_harness (o)
	test_via_script (o)
	tool_autosplit (o)
	tools_other (o)
	tool_xsubpp (o)
	top_targets (o)
	writedoc
	xs_c (o)
	xs_o (o)

	SEE ALSO

	MM_VMS
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods always loaded
	eliminate_macros
	fixpath
	catdir
	catfile
	curdir (override)
	rootdir (override)
	updir (override)

	SelfLoaded methods
	guess_name (override)
	find_perl (override)
	path (override)
	maybe_command (override)
	maybe_command_in_dirs (override)
	perl_script (override)
	file_name_is_absolute (override)
	replace_manpage_separator
	init_others (override)
	constants (override)
	const_loadlibs (override)
	cflags (override)
	const_cccmd (override)
	pm_to_blib (override)
	tool_autosplit (override)
	tool_sxubpp (override)
	xsubpp_version (override)
	tools_other (override)
	dist (override)
	c_o (override)
	xs_c (override)
	xs_o (override)
	top_targets (override)
	dlsyms (override)
	dynamic_lib (override)
	dynamic_bs (override)
	static_lib (override)
	manifypods (override)
	processPL (override)
	installbin (override)
	subdir_x (override)
	clean (override)
	realclean (override)
	dist_basics (override)
	dist_core (override)
	dist_dir (override)
	dist_test (override)
	install (override)
	perldepend (override)
	makefile (override)
	test (override)
	test_via_harness (override)
	test_via_script (override)
	makeaperl (override)
	ext (specific)
	nicetext (override)

	MakeMaker
	NAME
	SYNOPSIS
	DESCRIPTION
	How To Write A Makefile.PL
	Default Makefile Behaviour
	make test
	make install
	PREFIX attribute
	AFS users
	Static Linking of a new Perl Binary
	Determination of Perl Library and Installation Locations
	Which architecture dependent directory?
	Using Attributes and Parameters
	C
	CONFIG
	CONFIGURE
	DEFINE
	DIR
	DISTNAME
	DL_FUNCS
	DL_VARS
	EXCLUDE_EXT
	EXE_FILES
	NO_VC
	FIRST_MAKEFILE
	FULLPERL
	H
	INC
	INCLUDE_EXT
	INSTALLARCHLIB
	INSTALLBIN
	INSTALLDIRS
	INSTALLMAN1DIR
	INSTALLMAN3DIR
	INSTALLPRIVLIB
	INSTALLSCRIPT
	INSTALLSITELIB
	INSTALLSITEARCH
	INST_ARCHLIB
	INST_BIN
	INST_EXE
	INST_LIB
	INST_MAN1DIR
	INST_MAN3DIR
	INST_SCRIPT
	LDFROM
	LIBPERL_A
	LIBS
	LINKTYPE
	MAKEAPERL
	MAKEFILE
	MAN1PODS
	MAN3PODS
	MAP_TARGET
	MYEXTLIB
	NAME
	NEEDS_LINKING
	NOECHO
	NORECURS
	OBJECT
	OPTIMIZE
	PERL
	PERLMAINCC
	PERL_ARCHLIB
	PERL_LIB
	PERL_SRC
	PL_FILES
	PM
	PMLIBDIRS
	PREFIX
	PREREQ_PM
	SKIP
	TYPEMAPS
	VERSION
	VERSION_FROM
	XS
	XSOPT
	XSPROTOARG
	XS_VERSION

	Additional lowercase attributes
	clean
	depend
	dist
	dynamic_lib
	installpm
	linkext
	macro
	realclean
	tool_autosplit

	Overriding MakeMaker Methods
	Hintsfile support
	Distribution Support
	make distcheck
	make skipcheck
	make distclean
	make manifest
	make distdir
	make disttest
	make tardist
	make dist
	make uutardist
	make shdist
	make zipdist
	make ci

	SEE ALSO
	AUTHORS

	Manifest
	NAME
	SYNOPSIS
	DESCRIPTION
	MANIFEST.SKIP
	EXPORT_OK
	GLOBAL VARIABLES
	DIAGNOSTICS
	Not in MANIFEST: file
	No such file: file
	MANIFEST: $!
	Added to MANIFEST: file

	SEE ALSO
	AUTHOR

	Miniperl
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	Mkbootstrap
	NAME
	SYNOPSIS
	DESCRIPTION

	Mksymlists
	NAME
	SYNOPSIS
	DESCRIPTION
	NAME
	DL_FUNCS
	DL_VARS
	FILE
	FUNCLIST
	DLBASE

	AUTHOR
	REVISION

	testlib
	NAME
	SYNOPSIS
	DESCRIPTION

	xsubpp
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-C++
	-except
	-typemap typemap
	-v
	-prototypes
	-noversioncheck

	ENVIRONMENT
	AUTHOR
	MODIFICATION HISTORY
	SEE ALSO

	Fatal
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Fcntl
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE

	File
	Basename
	NAME
	SYNOPSIS
	DESCRIPTION
	fileparse_set_fstype
	fileparse

	EXAMPLES
	basename
	dirname

	CheckTree
	NAME
	SYNOPSIS
	DESCRIPTION

	Copy
	NAME
	SYNOPSIS
	DESCRIPTION
	Special behavior under VMS
	rmscopy($from,$to[,$date_flag])

	RETURN
	AUTHOR

	Find
	NAME
	SYNOPSIS
	DESCRIPTION

	Path
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHORS
	REVISION

	FileCache
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	FileHandle
	NAME
	SYNOPSIS
	DESCRIPTION
	$fh->print
	$fh->printf
	$fh->getline
	$fh->getlines

	SEE ALSO
	BUGS

	FindBin
	NAME
	SYNOPSIS
	DESCRIPTION
	EXPORTABLE VARIABLES
	KNOWN BUGS
	AUTHORS
	COPYRIGHT
	REVISION

	Getopt
	Long
	NAME
	SYNOPSIS
	DESCRIPTION
	<none>
	!
	=s
	:s
	=i
	:i
	=f
	:f
	Linkage specification
	Aliases and abbreviations
	Non-option call-back routine
	Option starters
	Return value

	COMPATIBILITY
	EXAMPLES
	CONFIGURATION VARIABLES
	$Getopt::Long::autoabbrev
	$Getopt::Long::getopt_compat
	$Getopt::Long::order
	$Getopt::Long::bundling
	$Getopt::Long::ignorecase
	$Getopt::Long::VERSION
	$Getopt::Long::error
	$Getopt::Long::debug

	Std
	NAME
	SYNOPSIS
	DESCRIPTION

	I18N
	Collate
	NAME
	SYNOPSIS
	DESCRIPTION

	IO
	File
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRUCTOR
	new ([ARGS])

	METHODS
	open(FILENAME [,MODE [,PERMS]])

	SEE ALSO
	HISTORY
	REVISION

	Handle
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRUCTOR
	new ()
	new_from_fd (FD, MODE)

	METHODS
	$fh-getline
	$fh-getlines
	$fh-fdopen (FD, MODE)
	$fh-write (BUF, LEN [, OFFSET }\])
	$fh-opened

	NOTE
	SEE ALSO
	BUGS
	HISTORY

	Pipe
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRCUTOR
	new ([READER, WRITER])

	METHODS
	reader ([ARGS])
	writer ([ARGS])
	handles ()

	SEE ALSO
	AUTHOR
	REVISION
	COPYRIGHT

	Seekable
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	HISTORY
	REVISION

	Select
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRUCTOR
	new ([HANDLES])

	METHODS
	add (HANDLES)
	remove (HANDLES)
	can_read ([TIMEOUT])
	can_write ([TIMEOUT])
	has_error ([TIMEOUT])
	count ()
	select (READ, WRITE, ERROR [, TIMEOUT])

	EXAMPLE
	AUTHOR
	REVISION
	COPYRIGHT

	Socket
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRUCTOR
	new ([ARGS])

	METHODS
	accept([PKG])
	timeout([VAL])
	sockopt(OPT [, VAL])
	sockdomain
	socktype
	protocol

	SUB-CLASSES
	IO::Socket::INET
	METHODS
	sockaddr ()
	sockport ()
	sockhost ()
	peeraddr ()
	peerport ()
	peerhost ()

	IO::Socket::UNIX
	METHODS
	hostpath()
	peerpath()

	AUTHOR
	REVISION
	COPYRIGHT

	IPC
	Open2
	NAME
	SYNOPSIS
	DESCRIPTION
	WARNING
	SEE ALSO

	Open3
	NAME
	SYNOPSIS
	DESCRIPTION

	Math
	BigFloat
	NAME
	SYNOPSIS
	DESCRIPTION
	number format
	Error returns `NaN'
	Division is computed to

	BUGS
	AUTHOR

	BigInt
	NAME
	SYNOPSIS
	DESCRIPTION
	Canonical notation
	Input
	Output

	EXAMPLES
	BUGS
	AUTHOR

	Complex
	NAME
	SYNOPSIS
	DESCRIPTION
	OPERATIONS
	CREATION
	STRINGIFICATION
	USAGE
	BUGS
	AUTHOR

	NDBM_File
	NAME
	SYNOPSIS
	DESCRIPTION

	Net
	Ping
	NAME
	SYNOPSIS
	DESCRIPTION
	Parameters
	hostname
	timeout

	WARNING

	ODBM_File
	NAME
	SYNOPSIS
	DESCRIPTION

	Opcode
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	WARNING
	Operator Names and Operator Lists
	an operator name (opname)
	an operator tag name (optag)
	a negated opname or optag
	an operator set (opset)

	Opcode Functions
	opcodes
	opset (OP, ...)
	opset_to_ops (OPSET)
	opset_to_hex (OPSET)
	full_opset
	empty_opset
	invert_opset (OPSET)
	verify_opset (OPSET, ...)
	define_optag (OPTAG, OPSET)
	opmask_add (OPSET)
	opmask
	opdesc (OP, ...)
	opdump (PAT)

	Manipulating Opsets
	TO DO (maybe)
	Predefined Opcode Tags
	:base_core
	:base_mem
	:base_loop
	:base_io
	:base_orig
	:base_math
	:default
	:filesys_read
	:sys_db
	:browse
	:filesys_open
	:filesys_write
	:subprocess
	:ownprocess
	:others
	:still_to_be_decided
	:dangerous

	SEE ALSO
	AUTHORS

	POSIX
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	CAVEATS
	FUNCTIONS
	_exit
	abort
	abs
	access
	acos
	alarm
	asctime
	asin
	assert
	atan
	atan2
	atexit
	atof
	atoi
	atol
	bsearch
	calloc
	ceil
	chdir
	chmod
	chown
	clearerr
	clock
	close
	closedir
	cos
	cosh
	creat
	ctermid
	ctime
	cuserid
	difftime
	div
	dup
	dup2
	errno
	execl
	execle
	execlp
	execv
	execve
	execvp
	exit
	exp
	fabs
	fclose
	fcntl
	fdopen
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	fileno
	floor
	fmod
	fopen
	fork
	fpathconf
	fprintf
	fputc
	fputs
	fread
	free
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	fstat
	ftell
	fwrite
	getc
	getchar
	getcwd
	getegid
	getenv
	geteuid
	getgid
	getgrgid
	getgrnam
	getgroups
	getlogin
	getpgrp
	getpid
	getppid
	getpwnam
	getpwuid
	gets
	getuid
	gmtime
	isalnum
	isalpha
	isatty
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	kill
	labs
	ldexp
	ldiv
	link
	localeconv
	localtime
	log
	log10
	longjmp
	lseek
	malloc
	mblen
	mbstowcs
	mbtowc
	memchr
	memcmp
	memcpy
	memmove
	memset
	mkdir
	mkfifo
	mktime
	modf
	nice
	offsetof
	open
	opendir
	pathconf
	pause
	perror
	pipe
	pow
	printf
	putc
	putchar
	puts
	qsort
	raise
	rand
	read
	readdir
	realloc
	remove
	rename
	rewind
	rewinddir
	rmdir
	scanf
	setgid
	setjmp
	setlocale
	setpgid
	setsid
	setuid
	sigaction
	siglongjmp
	sigpending
	sigprocmask
	sigsetjmp
	sigsuspend
	sin
	sinh
	sleep
	sprintf
	sqrt
	srand
	sscanf
	stat
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	stroul
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strxfrm
	sysconf
	system
	tan
	tanh
	tcdrain
	tcflow
	tcflush
	tcgetpgrp
	tcsendbreak
	tcsetpgrp
	time
	times
	tmpfile
	tmpnam
	tolower
	toupper
	ttyname
	tzname
	tzset
	umask
	uname
	ungetc
	unlink
	utime
	vfprintf
	vprintf
	vsprintf
	wait
	waitpid
	wcstombs
	wctomb
	write

	CLASSES
	POSIX::SigAction
	new

	POSIX::SigSet
	new
	addset
	delset
	emptyset
	fillset
	ismember

	POSIX::Termios
	new
	getattr
	getcc
	getcflag
	getiflag
	getispeed
	getlflag
	getoflag
	getospeed
	setattr
	setcc
	setcflag
	setiflag
	setispeed
	setlflag
	setoflag
	setospeed
	Baud rate values
	Terminal interface values
	c_cc field values
	c_cflag field values
	c_iflag field values
	c_lflag field values
	c_oflag field values

	PATHNAME CONSTANTS
	Constants

	POSIX CONSTANTS
	Constants

	SYSTEM CONFIGURATION
	Constants

	ERRNO
	Constants

	FCNTL
	Constants

	FLOAT
	Constants

	LIMITS
	Constants

	LOCALE
	Constants

	MATH
	Constants

	SIGNAL
	Constants

	STAT
	Constants
	Macros

	STDLIB
	Constants

	STDIO
	Constants

	TIME
	Constants

	UNISTD
	Constants

	WAIT
	Constants
	Macros

	CREATION

	SDBM_File
	NAME
	SYNOPSIS
	DESCRIPTION

	Safe
	NAME
	SYNOPSIS
	DESCRIPTION
	a new namespace
	an operator mask

	WARNING
	RECENT CHANGES
	Methods in class Safe
	permit (OP, ...)
	permit_only (OP, ...)
	deny (OP, ...)
	deny_only (OP, ...)
	trap (OP, ...)
	untrap (OP, ...)
	share (NAME, ...)
	share_from (PACKAGE, ARRAYREF)
	varglob (VARNAME)
	reval (STRING)
	rdo (FILENAME)
	root (NAMESPACE)
	mask (MASK)

	Some Safety Issues
	Memory
	CPU
	Snooping
	Signals
	State Changes

	AUTHOR

	Search
	Dict
	NAME
	SYNOPSIS
	DESCRIPTION

	SelectSaver
	NAME
	SYNOPSIS
	DESCRIPTION

	SelfLoader
	NAME
	SYNOPSIS
	DESCRIPTION
	The __DATA__ token
	SelfLoader autoloading
	Autoloading and package lexicals
	SelfLoader and AutoLoader
	__DATA__, __END__, and the FOOBAR::DATA filehandle.
	Classes and inherited methods.

	Multiple packages and fully qualified subroutine names

	Shell
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Socket
	NAME
	SYNOPSIS
	DESCRIPTION
	inet_aton HOSTNAME
	inet_ntoa IP_ADDRESS
	INADDR_ANY
	INADDR_LOOPBACK
	INADDR_NONE
	sockaddr_in PORT, ADDRESS
	sockaddr_in SOCKADDR_IN
	pack_sockaddr_in PORT, IP_ADDRESS
	unpack_sockaddr_in SOCKADDR_IN
	sockaddr_un PATHNAME
	sockaddr_un SOCKADDR_UN
	pack_sockaddr_un PATH
	unpack_sockaddr_un SOCKADDR_UN

	Symbol
	NAME
	SYNOPSIS
	DESCRIPTION

	Sys
	Hostname
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Syslog
	NAME
	SYNOPSIS
	DESCRIPTION
	openlog $ident, $logopt, $facility
	syslog $priority, $format, @args
	setlogmask $mask_priority
	closelog

	EXAMPLES
	DEPENDENCIES
	SEE ALSO
	AUTHOR

	Term
	Cap
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES

	Complete
	NAME
	SYNOPSIS
	DESCRIPTION
	<tab>
	^D
	^U
	, <bs>

	DIAGNOSTICS
	BUGS
	AUTHOR

	ReadLine
	NAME
	SYNOPSIS
	DESCRIPTION
	Minimal set of supported functions
	ReadLine
	new
	readline
	addhistory
	IN, $OUT
	MinLine
	findConsole
	Features

	EXPORTS

	Test
	Harness
	NAME
	SYNOPSIS
	DESCRIPTION
	The test script output

	EXPORT
	DIAGNOSTICS
	All tests successful.\nFiles=%d, Tests=%d, %s
	FAILED tests %s\n\tFailed %d/%d tests, %.2f%% okay.
	Test returned status %d (wstat %d)
	Failed 1 test, %.2f%% okay. %s
	Failed %d/%d tests, %.2f%% okay. %s

	SEE ALSO
	AUTHORS
	BUGS

	Text
	Abbrev
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE

	ParseWords
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHORS

	Soundex
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	LIMITATIONS
	AUTHOR

	Tabs
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS
	AUTHOR

	Wrap
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	AUTHOR

	Tie
	Hash
	NAME
	SYNOPSIS
	DESCRIPTION
	TIEHASH classname, LIST
	STORE this, key, value
	FETCH this, key
	FIRSTKEY this
	NEXTKEY this, lastkey
	EXISTS this, key
	DELETE this, key
	CLEAR this

	CAVEATS
	MORE INFORMATION

	Scalar
	NAME
	SYNOPSIS
	DESCRIPTION
	TIESCALAR classname, LIST
	FETCH this
	STORE this, value
	DESTROY this

	MORE INFORMATION

	SubstrHash
	NAME
	SYNOPSIS
	DESCRIPTION
	CAVEATS

	Time
	Local
	NAME
	SYNOPSIS
	DESCRIPTION

	diagnostics
	NAME
	SYNOPSIS
	DESCRIPTION
	The �diagnostics� Pragma
	The �splain� Program

	EXAMPLES
	INTERNALS
	BUGS
	AUTHOR

	integer
	NAME
	SYNOPSIS
	DESCRIPTION

	less
	NAME
	SYNOPSIS
	DESCRIPTION

	lib
	NAME
	SYNOPSIS
	DESCRIPTION
	ADDING DIRECTORIES TO @INC
	DELETING DIRECTORIES FROM @INC
	RESTORING ORIGINAL @INC

	SEE ALSO
	AUTHOR

	overload
	NAME
	SYNOPSIS
	CAVEAT SCRIPTOR
	DESCRIPTION
	Declaration of overloaded functions
	Calling Conventions for Binary Operations
	FALSE
	TRUE
	undef

	Calling Conventions for Unary Operations
	Overloadable Operations
	Arithmetic operations
	Comparison operations
	Bit operations
	Increment and decrement
	Transcendental functions
	Boolean, string and numeric conversion
	Special

	SPECIAL SYMBOLS FOR �use overload�
	Last Resort
	Fallback
	undef
	TRUE
	defined, but FALSE

	Copy Constructor
	Example

	MAGIC AUTOGENERATION
	Assignment forms of arithmetic operations
	Conversion operations
	Increment and decrement
	abs($a)
	Unary minus
	Negation
	Concatenation
	Comparison operations
	Copy operator

	WARNING
	Run-time Overloading
	Public functions
	overload::StrVal(arg)
	overload::Overloaded(arg)
	overload::Method(obj,op)

	IMPLEMENTATION
	AUTHOR
	DIAGNOSTICS
	BUGS

	sigtrap
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SIGNAL HANDLERS
	stack-trace
	die
	handler your-handler

	SIGNAL LISTS
	normal-signals
	error-signals
	old-interface-signals

	OTHER
	untrapped
	any
	signal
	number

	EXAMPLES

	strict
	NAME
	SYNOPSIS
	DESCRIPTION
	strict refs
	strict vars
	strict subs
	strict untie

	subs
	NAME
	SYNOPSIS
	DESCRIPTION

	vars
	NAME
	SYNOPSIS
	DESCRIPTION

