Perl Programmers Reference Guide

Version 5.003
08—-0Oct—-1996

"There’s more than one way to do it."
—— Larry Wall, Author of the Perl Programming Language

Author: Perl5—-Porters

blank

perl Perl Programmers Reference Guide perl

NAME

perl — Practical Extraction and Report Language
SYNOPSIS

perl [-sTuU]

[-hv][-V[:configval]

[—cw] [—d[:debuggef] [-D[number/lis}]

[-pna][—Fpattern] [—I[octall] [—O[octal|]

[-Idir][=-m[-]module] [-M[-]'module...’]

[-P]

[-S]

[—x[dir]]

[—i[extensioh]

[—e‘command’] [—] [programfile] [argument]...

For ease of access, the Perl manual has been split up into a number of sections:

perl Perl overview (this section)

perltoc Perl documentation table of contents
perldata Perl data structures

perlsyn Perl syntax

perlop Perl operators and precedence

perlre Perl regular expressions

perlrun Perl execution and options

perlfunc Perl builtin functions

perlvar Perl predefined variables

perlsub Perl subroutines

perimod Perl modules

perlform Perl formats

perli18n Perl internalization

perlref Perl references

perldsc Perl data structures intro

perllol Perl data structures: lists of lists

perlobj Perl objects

perltie Perl objects hidden behind simple variables
perlbot Perl OO tricks and examples

perlipc Perl interprocess communication
perldebug Perl debugging

perldiag Perl diagnostic messages

perlsec Perl security

perltrap Perl traps for the unwary

perlstyle Perl style guide

perlpod Perl plain old documentation

perlbook Perl book information

perlembed Perl how to embed perl in your C or C++ app
perlapio Perl internal 1O abstraction interface

perlxs Perl XS application programming interface
perixstut Perl XS tutorial

perlguts Perl internal functions for those doing extensions
perlcall Perl calling conventions from C

(If you're intending to read these straight through for the first time, the suggested order will tend to reduce
the number of forward references.)

08-0Oct-1996 Version 5.003 3

perl Perl Programmers Reference Guide perl

Additional documentation for Perl modules is available in/tie/local/man/ directory. Some of this is
distributed standard with Perl, but you'll also find third—party modules there. You should be able to view
this with your man(1) program by including the proper directories in the appropriate start-up files. To find
out where these are, type:

perl =V:man.dir

If the directories werdusr/local/man/manl and /usr/local/man/man3 you would only need to add
/usr/local/manto your MANPATH. If they are different, you'll have to add both stems.

If that doesn't work for some reason, you can still use the suppkedoc script to view module
information. You might also look into getting a replacement man program.

If something strange has gone wrong with your program and you‘re not sure where you should look for help,
try the—w switch first. It will often point out exactly where the trouble is.

DESCRIPTION

Perl is an interpreted language optimized for scanning arbitrary text files, extracting information from those
text files, and printing reports based on that information. It's also a good language for many system
management tasks. The language is intended to be practical (easy to use, efficient, complete) rather than
beautiful (tiny, elegant, minimal).

Perl combines (in the author‘s opinion, anyway) some of the best featuresexf @yk, andsh, so people

familiar with those languages should have little difficulty with it. (Language historians will also note some
vestiges ofcsh Pascal, and even BASIC-PLUS.) Expression syntax corresponds quite closely to C
expression syntax. Unlike most Unix utilities, Perl does not arbitrarily limit the size of your data—if you‘ve
got the memory, Perl can slurp in your whole file as a single string. Recursion is of unlimited depth. And
the hash tables used by associative arrays grow as necessary to prevent degraded performance. Perl uses
sophisticated pattern matching techniques to scan large amounts of data very quickly. Although optimized
for scanning text, Perl can also deal with binary data, and can make dbm files look like associative arrays.
Setuid Perl scripts are safer than C programs through a dataflow tracing mechanism which prevents many
stupid security holes. If you have a problem that would ordinarilyseder awk or sh, but it exceeds their
capabilities or must run a little faster, and you don‘t want to write the silly thing in C, then Perl may be for
you. There are also translators to turn ygeaandawk scripts into Perl scripts.

But wait, there's more...
Perl version 5 is nearly a complete rewrite, and provides the following additional benefits:

e Many usability enhancements

It is now possible to write much more readable Perl code (even within regular expressions).
Formerly cryptic variable names can be replaced by mnemonic identifiers. Error messages are more
informative, and the optional warnings will catch many of the mistakes a novice might make. This
cannot be stressed enough. Whenever you get mysterious behavior-tny givtch!!! Whenever

you don‘t get mysterious behavior, try using anyway.

e Simplified grammar
The new yacc grammar is one half the size of the old one. Many of the arbitrary grammar rules have

been regularized. The number of reserved words has been cut by 2/3. Despite this, nearly all old Perl
scripts will continue to work unchanged.

e Lexical scoping
Perl variables may now be declared within a lexical scope, like "auto” variables in C. Not only is this
more efficient, but it contributes to better privacy for "programming in the large".

e Arbitrarily nested data structures

Any scalar value, including any array element, may now contain a reference to any other variable or
subroutine. You can easily create anonymous variables and subroutines. Perl manages your
reference counts for you.

4 Version 5.003 08-0Oct-1996

perl

Perl Programmers Reference Guide perl

e Modularity and reusability

The Perl library is now defined in terms of modules which can be easily shared among various
packages. A package may choose to import all or a portion of a module's published interface.
Pragmas (that is, compiler directives) are defined and used by the same mechanism.

e Object-oriented programming

A package can function as a class. Dynamic multiple inheritance and virtual methods are supported
in a straightforward manner and with very little new syntax. Filehandles may now be treated as
objects.

e Embeddable and Extensible

Perl may now be embedded easily in your C or C++ application, and can either call or be called by
your routines through a documented interface. The XS preprocessor is provided to make it easy to
glue your C or C++ routines into Perl. Dynamic loading of modules is supported.

e POSIX compliant

A major new module is the POSIX module, which provides access to all available POSIX routines
and definitions, via object classes where appropriate.

e Package constructors and destructors

The new BEGIN and END blocks provide means to capture control as a package is being compiled,
and after the program exits. As a degenerate case they work just like awk's BEGIN and END when
you use the-p or —n switches.

e Multiple simultaneous DBM implementations

A Perl program may now access DBM, NDBM, SDBM, GDBM, and Berkeley DB files from the
same script simultaneously. In fact, the old dbmopen interface has been generalized to allow any
variable to be tied to an object class which defines its access methods.

e Subroutine definitions may now be autoloaded

In fact, the AUTOLOAD mechanism also allows you to define any arbitrary semantics for undefined
subroutine calls. It's not just for autoloading.

e Regular expression enhancements
You can now specify non—greedy quantifiers. You can now do grouping without creating a
backreference. You can now write regular expressions with embedded whitespace and comments for
readability. A consistent extensibility mechanism has been added that is upwardly compatible with
all old regular expressions.

Ok, that'sdefinitelyenough hype.

ENVIRONMENT

HOME Used if chdir has no argument.

LOGDIR Used if chdir has no argument and HOME is not set.

PATH Used in executing subprocesses, and in finding the scrifftig used.

PERL5LIB A colon-separated list of directories in which to look for Perl library files before looking

in the standard library and the current directory. If PERL5LIB is not defined, PERLLIB is
used. When running taint checks (because the script was running setuid or setgid, or the
—T switch was used), neither variable is used. The script should instead say

use lib "/my/directory";
PERL5DB The command used to get the debugger code. If unset, uses
BEGIN { require 'perl5db.pl’ }

08-0Oct-1996 Version 5.003 5

perl Perl Programmers Reference Guide perl

PERLLIB A colon-separated list of directories in which to look for Perl library files before looking
in the standard library and the current directory. If PERL5LIB is defined, PERLLIB is not
used.

Perl also has environment variables that control how Perl handles language—-specific data. Please consult the
perlil8nsection.

Apart from these, Perl uses no other environment variables, except to make them available to the script being
executed, and to child processes. However, scripts running setuid would do well to execute the following
lines before doing anything else, just to keep people honest:

$ENV{PATH'} = '/bin:/usr/bin’; # or whatever you need
$ENV{'SHELL'} = '/bin/sh’ if defined $ENV{'SHELL'}

SENV{IFS} =" if defined SENV{'IFS};
AUTHOR
Larry Wall darry@wall.org>, with the help of oodles of other folks.
FILES
"ftmp/perl-e$$" temporary file for -e commands
"@INC" locations of perl 5 libraries
SEE ALSO
azp awk to perl translator
s2p sed to perl translator
DIAGNOSTICS

The-w switch produces some lovely diagnostics.
Seeperldiagfor explanations of all Perl‘s diagnostics.

Compilation errors will tell you the line number of the error, with an indication of the next token or token
type that was to be examined. (In the case of a script passed to Pexlswiiches, eachke is counted as
one line.)

Setuid scripts have additional constraints that can produce error messages such as "Insecure dependency".
Seeperlsec

Did we mention that you should definitely consider using-theswitch?

BUGS
The-w switch is not mandatory.

Perl is at the mercy of your machine‘s definitions of various operations such as type easf(hg, and
sprintf() . The latter can even trigger a coredump when passed ludicrous input values.

If your stdio requires a seek or eof between reads and writes on a particular stream, so does Perl. (This
doesn't apply teysread() andsyswrite() .)

While none of the built-in data types have any arbitrary size limits (apart from memory size), there are still a
few arbitrary limits: a given variable name may not be longer than 255 characters, and no component of
your PATH may be longer than 255 if you us8 A regular expression may not compile to more than
32767 bytes internally.

See the perl bugs databasétsp://perl.com/perl/bugs/ You may mail your bug reports (be sure to include
full configuration information as output by the myconfig program in the perl source treeperlby) to
perlbug@perl.comif you‘ve succeeded in compiling perl, the perlbug script in the utils/ subdirectory can be
used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don'‘t tell anyone | said that.

6 Version 5.003 08-0Oct-1996

perl Perl Programmers Reference Guide perl

NOTES
The Perl motto is "There's more than one way to do it." Divining how many more is left as an exercise to
the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See the Camel Book for
why.

08-0Oct-1996 Version 5.003 7

perldata Perl Programmers Reference Guide perldata

NAME
perldata — Perl data types

DESCRIPTION

Variable names

Perl has three data structures: scalars, arrays of scalars, and associative arrays of scalars, known as "hashes".
Normal arrays are indexed by number, starting with 0. (Negative subscripts count from the end.) Hash
arrays are indexed by string.

Values are usually referred to by name (or through a named reference). The first character of the name tells
you to what sort of data structure it refers. The rest of the name tells you the particular value to which it
refers. Most often, it consists of a singlentifier, that is, a string beginning with a letter or underscore, and
containing letters, underscores, and digits. In some cases, it may be a chain of identifiers, separated by
(or by’ , but that's deprecated); all but the last are interpreted as names of packages, in order to locate the
namespace in which to look up the final identifier (Baekagedor details). It's possible to substitute for a
simple identifier an expression which produces a reference to the value at runtime; this is described in more
detail below, and iperliref.

There are also special variables whose names don‘t follow these rules, so that they don‘t accidentally collide
with one of your normal variables. Strings which match parenthesized parts of a regular expression are
saved under names containing only digits afterhseeperlop andperlre). In addition, several special
variables which provide windows into the inner working of Perl have names containing punctuation
characters (segerlvar).

Scalar values are always named with ‘ even when referring to a scalar that is part of an array. It works
like the English word "the". Thus we have:

$days # the simple scalar value "days"
$days[28] # the 29th element of array @days
$days{'Feb’} # the 'Feb’ value from hash %days
$#days # the last index of array @days
but entire arrays or array slices are denoted by ‘@°, which works much like the word "these" or "those":
@days # ($days[0], $days[1],... $days[n])
@days[3,4,5] # same as @days[3..5]
@days{'a’,'c’} # same as ($days{'a’},$days{’c’})

and entire hashes are denoted by ‘%"
%days # (keyl, vall, key2, val2? ...)

In addition, subroutines are named with an initi&l, * though this is optional when it's otherwise
unambiguous (just as "do" is often redundant in English). Symbol table entries can be named with an initial
**_but you don't really care about that yet.

Every variable type has its own namespace. You can, without fear of conflict, use the same name for a scalar
variable, an array, or a hash (or, for that matter, a filehandle, a subroutine name, or a label). This means that
$foo and @foo are two different variables. It also means$feat[1] is a part of @foo, not a part of

$foo. This may seem a bit weird, but that's okay, because it is weird.

Since variable and array references always start %ith “@°, or ‘%', the "reserved" words aren‘t in fact
reserved with respect to variable names. (They ARE reserved with respect to labels and filehandles,
however, which don‘t have an initial special character. You can‘t have a filehandle named "log", for
instance. Hint: you could saypen(LOG, logdfile’) rather tharopen(log,‘logfile’) . Using
uppercase filehandles also improves readability and protects you from conflict with future reserved words.)
CaselS significant—"FOQ", "Foo" and "foo" are all different names. Names that start with a letter or
underscore may also contain digits and underscores.

8 Version 5.003 08-0Oct-1996

perldata Perl Programmers Reference Guide perldata

It is possible to replace such an alphanumeric name with an expression that returns a reference to an object of
that type. For a description of this, seelref.

Names that start with a digit may only contain more digits. Names which do not start with a letter,
underscore, or digit are limited to one character, $3gor $$. (Most of these one character names have a
predefined significance to Perl. For instar&®,is the current process id.)

Context

The interpretation of operations and values in Perl sometimes depends on the requirements of the context
around the operation or value. There are two major contexts: scalar and list. Certain operations return list
values in contexts wanting a list, and scalar values otherwise. (If this is true of an operation it will be
mentioned in the documentation for that operation.) In other words, Perl overloads certain operations based
on whether the expected return value is singular or plural. (Some words in English work this way, like "fish"
and "sheep".)

In a reciprocal fashion, an operation provides either a scalar or a list context to each of its arguments. For
example, if you say

int(<STDIN>)

the integer operation provides a scalar context for the <STDIN> operator, which responds by reading one
line from STDIN and passing it back to the integer operation, which will then find the integer value of that
line and return that. If, on the other hand, you say

sort(<STDIN>)

then the sort operation provides a list context for <STDIN>, which will proceed to read every line available
up to the end of file, and pass that list of lines back to the sort routine, which will then sort those lines and
return them as a list to whatever the context of the sort was.

Assignment is a little bit special in that it uses its left argument to determine the context for the right
argument. Assignment to a scalar evaluates the righthand side in a scalar context, while assignment to an
array or array slice evaluates the righthand side in a list context. Assignment to a list also evaluates the
righthand side in a list context.

User defined subroutines may choose to care whether they are being called in a scalar or list context, but
most subroutines do not need to care, because scalars are automatically interpolated into lists. See
wantarray.

Scalar values

All data in Perl is a scalar or an array of scalars or a hash of scalars. Scalar variables may contain various
kinds of singular data, such as numbers, strings, and references. In general, conversion from one form to
another is transparent. (A scalar may not contain multiple values, but may contain a reference to an array or
hash containing multiple values.) Because of the automatic conversion of scalars, operations and functions
that return scalars don't need to care (and, in fact, can‘t care) whether the context is looking for a string or a
number.

Scalars aren‘t necessarily one thing or another. There's no place to declare a scalar variable to be of type
"string", or of type "number", or type "filehandle", or anything else. Perl is a contextually polymorphic
language whose scalars can be strings, numbers, or references (which includes objects). While strings and
numbers are considered pretty much the same thing for nearly all purposes, references are strongly-typed
uncastable pointers with built—in reference—counting and destructor invocation.

A scalar value is interpreted as TRUE in the Boolean sense if it is not the null string or the number 0 (or its
string equivalent, "0"). The Boolean context is just a special kind of scalar context.

There are actually two varieties of null scalars: defined and undefined. Undefined null scalars are returned
when there is no real value for something, such as when there was an error, or at end of file, or when you
refer to an uninitialized variable or element of an array. An undefined null scalar may become defined the
first time you use it as if it were defined, but prior to that you can usdefireed() operator to determine
whether the value is defined or not.

08-0Oct-1996 Version 5.003 9

perldata Perl Programmers Reference Guide perldata

To find out whether a given string is a valid non-zero number, it's usually enough to test it against both
numeric 0 and also lexical "0" (although this will causg noises). That's because strings that aren't
numbers count as 0, just as they dawrk:

if ($str == 0 && $str ne "0") {
warn "That doesn't look like a number";

}

That's usually preferable because otherwise you won't treat IEEE notation®NdiMeor Infinity
properly. At other times you might prefer to use a regular expression to check whether data is numeric. See
perlre for details on regular expressions.

warn "has nondigits" if AD/;
warn "not a whole number" unless /M\d+$/;
warn "not an integer" unless /A[+=]2\d+$/

warn "not a decimal number" unless /A[+=]2\d+\.2\d*$/
warn "not a C float"
unless /M ([+-]1?2)(?=\d\\d)\d*(\.\d*) ?([Ee] ([+-]?\d+))?$/;

The length of an array is a scalar value. You may find the length of array @days by evékddys as

in csh (Actually, it's not the length of the array, it's the subscript of the last element, since there is
(ordinarily) a Oth element.) Assigning $#days changes the length of the array. Shortening an array by

this method destroys intervening values. Lengthening an array that was previously sho@drm@dGER

recovers the values that were in those elements. (It used to in Perl 4, but we had to break this to make sure
destructors were called when expected.) You can also gain some measure of efficiency by preextending an
array that is going to get big. (You can also extend an array by assigning to an element that is off the end of
the array.) You can truncate an array down to nothing by assigning the nQll istit. The following are
equivalent:

@whatever = ();
$#whatever = $[- 1;

If you evaluate a named array in a scalar context, it returns the length of the array. (Note that this is not true
of lists, which return the last value, like the C comma operator.) The following is always true:

scalar(@whatever) == $#whatever — $[+ 1;

Version 5 of Perl changed the semantic$[of files that don‘t set the value 8f no longer need to worry
about whether another file changed its value. (In other words, e isfdeprecated.) So in general you
can just assume that

scalar(@whatever) == $#whatever + 1,
Some programmers choose to use an explicit conversion so nothing'‘s left to doubt:
$element_count = scalar(@whatever);

If you evaluate a hash in a scalar context, it returns a value which is true if and only if the hash contains any
key/value pairs. (If there are any key/value pairs, the value returned is a string consisting of the number of
used buckets and the number of allocated buckets, separated by a slash. This is pretty much only useful to
find out whether Perl's (compiled in) hashing algorithm is performing poorly on your data set. For example,
you stick 10,000 things in a hash, but evaluating %HASH in scalar context reveals "1/16", which means only
one out of sixteen buckets has been touched, and presumably contains all 10,000 of your items. This isn‘t
supposed to happen.)

Scalar value constructors
Numeric literals are specified in any of the customary floating point or integer formats:
12345

12345.67
.23E-10

10 Version 5.003 08-0Oct-1996

perldata Perl Programmers Reference Guide perldata

Oxffff # hex
0377 # octal
4 294 967_296 # underline for legibility

String literals are usually delimited by either single or double quotes. They work much like shell quotes:
double—quoted string literals are subject to backslash and variable substitution; single—quoted strings are not
(except for V' " and "\ "). The usual Unix backslash rules apply for making characters such as newline,
tab, etc., as well as some more exotic forms. gder a list.

You can also embed newlines directly in your strings, i.e. they can end on a different line than they begin.
This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds another line
containing the quote character, which may be much further on in the script. Variable substitution inside
strings is limited to scalar variables, arrays, and array slices. (In other words, names beginifing \@th
followed by an optional bracketed expression as a subscript.) The following code segment prints out "The

price is$100."
$Price ='$100’; # not interpreted
print "The price is $Price.\n"; # interpreted

As in some shells, you can put curly brackets around the name to delimit it from following alphanumerics.
In fact, an identifier within such curlies is forced to be a string, as is any single identifier within a hash
subscript. Our earlier example,

$days{'Feb’}
can be written as
$days{Feb}

and the quotes will be assumed automatically. But anything more complicated in the subscript will be
interpreted as an expression.

Note that a single—quoted string must be separated from a preceding word by a space, since single quote is a
valid (though deprecated) character in a variable namé>¢sdegek

Two special literals are __ LINE___ and __FILE__, which represent the current line humber and filename at
that point in your program. They may only be used as separate tokens; they will not be interpolated into
strings. In addition, the token _ END__ may be used to indicate the logical end of the script before the
actual end of file. Any following text is ignored, but may be read via the DATA filehandle. (The DATA
filehandle may read data only from the main script, but not from any required file or evaluated string.) The
two control characters "D and ~Z are synonyms for __ END__ (or _ DATA__ in a moduleelfiesader

for details on __ DATA).

A word that has no other interpretation in the grammar will be treated as if it were a quoted string. These are
known as "barewords". As with filehandles and labels, a bareword that consists entirely of lowercase letters
risks conflict with future reserved words, and if you use-tweswitch, Perl will warn you about any such
words. Some people may wish to outlaw barewords entirely. If you say

use strict 'subs’;

then any bareword that would NOT be interpreted as a subroutine call produces a compile-time error
instead. The restriction lasts to the end of the enclosing block. An inner block may countermand this by
sayingno strict ‘subs’

Array variables are interpolated into double—quoted strings by joining all the elements of the array with the
delimiter specified in th&" variable $LIST_SEPARATORIn English), space by default. The following
are equivalent:

$temp = join($", @ARGV);

system "echo $temp";

system "echo @ARGV";

08-0Oct-1996 Version 5.003 11

perldata Perl Programmers Reference Guide perldata

Within search patterns (which also undergo double—quotish substitution) there is a bad ambiguity: Is
/$foo[bar)/ to be interpreted a${foo}[bar]/ (where[bar] is a character class for the regular
expression) or agb{foo[bar]}/ (where[bar] is the subscript to array @foo)? If @foo doesn‘t
otherwise exist, then it's obviously a character class. If @foo exists, Perl takes a good gudsabqut

and is almost always right. If it does guess wrong, or if you'‘re just plain paranoid, you can force the correct
interpretation with curly brackets as above.

A line—oriented form of quoting is based on the shell "here—doc" syntax. Followitigyau specify a string

to terminate the quoted material, and all lines following the current line down to the terminating string are
the value of the item. The terminating string may be either an identifier (a word), or some quoted text. If
guoted, the type of quotes you use determines the treatment of the text, just as in regular quoting. An
unquoted identifier works like double quotes. There must be no space betwseratigkthe identifier. (If

you put a space it will be treated as a null identifier, which is valid, and matches the first blank line.) The
terminating string must appear by itself (unquoted and with no surrounding whitespace) on the terminating
line.

print <<EOF;
The price is $Price.
EOF

print <<"EOF"; # same as above
The price is $Price.
EOF

print <<‘EOC'; # execute commands
echo hi there
echo lo there

EOC
print <<"foo", <<"bar"; # you can stack them
| said foo.
foo
| said bar.
bar
myfunc(<<"THIS", 23, <<'THAT);
Here's a line
or two.
THIS
and here another.
THAT

Just don't forget that you have to put a semicolon on the end to finish the statement, as Perl doesn‘t know
you'‘re not going to try to do this:

print <<ABC
179231
ABC

+ 20;

List value constructors

List values are denoted by separating individual values by commas (and enclosing the list in parentheses
where precedence requires it):

(LIST)

In a context not requiring a list value, the value of the list literal is the value of the final element, as with the
C comma operator. For example,

@foo = (cc’, '-E’, $bar);

12

Version 5.003 08-0ct—-1996

perldata Perl Programmers Reference Guide perldata

assigns the entire list value to array foo, but
$foo = ('cc’, '-E’, $bar);

assigns the value of variable bar to variable foo. Note that the value of an actual array in a scalar context is
the length of the array; the following assign$too the value 3:

@foo = (cc’, '-E’, $bar);

$foo = @foo; # $foo gets 3
You may have an optional comma before the closing parenthesis of an list literal, so that you can say:
@foo = (
1!
2!
3!
)i

LISTs do automatic interpolation of sublists. That is, when a LIST is evaluated, each element of the list is
evaluated in a list context, and the resulting list value is interpolated into LIST just as if each individual
element were a member of LIST. Thus arrays lose their identity in a LIST—the list

(@foo,@bar,&SomeSub)

contains all the elements of @foo followed by all the elements of @bar, followed by all the elements
returned by the subroutine named SomeSub when it's called in a list context. To make a list reference that
doesNOT interpolate, seperlref.

The null list is represented iy . Interpolating it in a list has no effect. TH@s(),()) is equivalent to
() . Similarly, interpolating an array with no elements is the same as if no array had been interpolated at that
point.

A list value may also be subscripted like a normal array. You must put the list in parentheses to avoid
ambiguity. Examples:

Stat returns list value.
$time = (stat($file))[8];

SYNTAX ERROR HERE.
$time = stat($file)[8]; # OOPS, FORGOT PARENS

Find a hex digit.
$hexdigit = (‘a’,’b’,’c’,'d’,’e’,'f)[$digit—10];
A "reverse comma operator".
return (pop(@foo),pop(@fo0))[0];
Lists may be assigned to if and only if each element of the list is legal to assign to:
($a, $b, $c) = (1, 2, 3);
($map{’red’}, $map{’blue’}, $map{'green’}) = (0x00f, 0x0f0, Oxf0O0);

Array assignment in a scalar context returns the number of elements produced by the expression on the right
side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # set $x to 3, not 2
$x = (($foo,$bar) = 1()); # set $x to f()'s return count

This is very handy when you want to do a list assignment in a Boolean context, since most list functions
return a null list when finished, which when assigned produces a 0, which is interpreted as FALSE.

The final element may be an array or a hash:
($a, $b, @rest) = split;

08-0Oct-1996 Version 5.003 13

perldata Perl Programmers Reference Guide perldata

local($a, $b, %rest) = @_;

You can actually put an array or hash anywhere in the list, but the first one in the list will soak up all the
values, and anything after it will get a null value. This may be usefubira) ormy() .

A hash literal contains pairs of values to be interpreted as a key and a value:

same as map assignment above
%map = ('red’,0x00f,’blue’,0x0f0,'green’,0xf00);

While literal lists and named arrays are usually interchangeable, that's not the case for hashes. Just because
you can subscript a list value like a normal array does not mean that you can subscript a list value as a hash.
Likewise, hashes included as parts of other lists (including parameters lists and return lists from functions)
always flatten out into key/value pairs. That's why it's good to use references sometimes.

It is often more readable to use the operator between key/value pairs. Hweoperator is mostly just a

more visually distinctive synonym for a comma, but it also arranges for its left-hand operand to be
interpreted as a string, if it's a bareword which would be a legal identifier. This makes it nice for initializing
hashes:

%map = (
red => 0x00f,
blue => 0x0f0,
green => 0xf00,

)i

or for initializing hash references to be used as records:

$rec ={
witch =>'Mable the Merciless’,
cat =>'Fluffy the Ferocious’,
date =>'10/31/1776’,

¥

or for using call-by—named-parameter to complicated functions:

$field = $query—>radio_group(
name =>’'group_name’,
values =>[eenie’,’meenie’,'minie’],
default =>’'meenie’,
linebreak => 'true’,
labels =>\%labels

)i
Note that just because a hash is initialized in that order doesn‘t mean that it comes out in that ostet. See
for examples of how to arrange for an output ordering.

Typeglobs and FileHandles

Perl uses an internal type calledypeglobto hold an entire symbol table entry. The type prefix of a
typeglob is &, because it represents all types. This used to be the preferred way to pass arrays and hashes
by reference into a function, but now that we have real references, this is seldom needed.

One place where you still use typeglobs (or references thereto) is for passing or storing filehandles. If you
want to save away a filehandle, do it this way:

$th =*STDOUT,;
or perhaps as a real reference, like this:
$th =*STDOUT;

This is also the way to create a local filehandle. For example:

14

Version 5.003 08-0ct—-1996

perldata Perl Programmers Reference Guide perldata

sub newopen {
my $path = shift;
local *FH; # not my!
open (FH, $path) || return undef;
return *FH;

}

$th = newopen('/etc/passwd’);

Seeperlref, perlsuh andSymbols Tables in perimddr more discussion on typeglobs. Ssxenfor other
ways of generating filehandles.

08-0Oct-1996 Version 5.003 15

perlsyn Perl Programmers Reference Guide perlsyn

NAME

perlsyn — Perl syntax

DESCRIPTION

A Perl script consists of a sequence of declarations and statements. The only things that need to be declared
in Perl are report formats and subroutines. See the sections below for more information on those
declarations. All uninitialized user—created objects are assumed to start with a null or O value until they are
defined by some explicit operation such as assignment. (Though you can get warnings about the use of
undefined values if you like.) The sequence of statements is executed just once, usdit@rd awk

scripts, where the sequence of statements is executed for each input line. While this means that you must
explicitly loop over the lines of your input file (or files), it also means you have much more control over
which files and which lines you look at. (Actually, I'm lying—it is possible to do an implicit loop with
either the-n or —p switch. It's just not the mandatory default like it isedandawk.)

Declarations

Perl is, for the most part, a free-form language. (The only exception to this is format declarations, for
obvious reasons.) Comments are indicated by the "#" character, and extend to the end of the line. If you
attempt to use* */ C-style comments, it will be interpreted either as division or pattern matching,
depending on the context, and CH#+ comments just look like a null regular expression, so don‘t do that.

A declaration can be put anywhere a statement can, but has no effect on the execution of the primary
sequence of statements—declarations all take effect at compile time. Typically all the declarations are put at
the beginning or the end of the script. However, if you‘re using lexically—scoped private variables created
with my() , you'll have to make sure your format or subroutine definition is within the same block scope as
the my if you expect to to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator from that point
forward in the program. You can declare a subroutine (prototyped to take one scalar parameter) without
defining it by saying just:

sub myname ($);
$me = myname $0 or die "can’t get myname";

Note that it functions as a list operator though, not as a unary operator, so be carefal tingt=ad of|
there.

Subroutines declarations can also be loaded up withetiigre statement or both loaded and imported
into your namespace withuse statement. Segerimodfor details on this.

A statement sequence may contain declarations of lexically-scoped variables, but apart from declaring a
variable name, the declaration acts like an ordinary statement, and is elaborated within the sequence of
statements as if it were an ordinary statement. That means it actually has both compile-time and run-time
effects.

Simple statements

The only kind of simple statement is an expression evaluated for its side effects. Every simple statement
must be terminated with a semicolon, unless it is the final statement in a block, in which case the semicolon
is optional. (A semicolon is still encouraged there if the block takes up more than one line, since you may
eventually add another line.) Note that there are some operatoe/éik§} anddo {} that look like
compound statements, but aren't (they're just TERMs in an expression), and thus need an explicit
termination if used as the last item in a statement.

Any simple statement may optionally be followed bySENGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR

16

Version 5.003 08-0ct—-1996

perlsyn Perl Programmers Reference Guide perlsyn

Theif andunless modifiers have the expected semantics, presuming you're a speaker of English. The
while anduntil modifiers also have the usual "while loop" semantics (conditional evaluated first),
except when applied to a do—-BLOCK (or to the now-deprecated do—SUBROUTINE statement), in which
case the block executes once before the conditional is evaluated. This is so that you can write loops like:

do {
$line = <STDIN>;

} until $line eq ".\n";
Seedo. Note also that the loop control statements described lateN@ill work in this construct, since

modifiers don‘t take loop labels. Sorry. You can always wrap another block around it to do that sort of
thing.

Compound statements

In Perl, a sequence of statements that defines a scope is called a block. Sometimes a block is delimited by the
file containing it (in the case of a required file, or the program as a whole), and sometimes a block is
delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces. We will call this syntactic
construct a BLOCK.

The following compound statements may be used to control flow:

if (EXPR) BLOCK

if (EXPR) BLOCK else BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
LABEL while (EXPR) BLOCK

LABEL while (EXPR) BLOCK continue BLOCK
LABEL for (EXPR; EXPR; EXPR) BLOCK

LABEL foreach VAR (LIST) BLOCK

LABEL BLOCK continue BLOCK

Note that, unlike C and Pascal, these are defined in terms of BLOCKS, not statements. This means that the
curly brackets areequired—no dangling statements allowed. If you want to write conditionals without
curly brackets there are several other ways to do it. The following all do the same thing:

if (lopen(FOO)) { die "Can’t open $FOO: $!"; }
die "Can’t open $FOO: $!" unless open(FOO);
open(FOO) or die "Can’t open $FOO: $!"; # FOO or bust!
open(FOO) ? 'hi mom’ : die "Can’t open $FOO: $!";
a bit exotic, that last one

Theif statement is straightforward. Since BLOCKSs are always bounded by curly brackets, there is never
any ambiguity about whicli anelse goes with. If you usanless in place ofif , the sense of the test
is reversed.

Thewhile statement executes the block as long as the expression is true (does not evaluate to the null string
or 0 or "0"). The LABEL is optional, and if present, consists of an identifier followed by a colon. The
LABEL identifies the loop for the loop control statemenext , last , andredo . If the LABEL is

omitted, the loop control statement refers to the innermost enclosing loop. This may include dynamically
looking back your call-stack at run time to find the LABEL. Such desperate behavior triggers a warning if
you use the-w flag.

If there is acontinue BLOCK, it is always executed just before the conditional is about to be evaluated
again, just like the third part offar loop in C. Thus it can be used to increment a loop variable, even
when the loop has been continued viartegt statement (which is similar to theoBntinue statement).

08-0Oct-1996 Version 5.003 17

perlsyn Perl Programmers Reference Guide perlsyn

Loop Control

Thenext command is like theontinue statement in C; it starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /"#/; # discard comments

}

Thelast command is like théreak statement in C (as used in loops); it immediately exits the loop in
guestion. Theontinue block, if any, is not executed:

LINE: while (<STDIN>) {
last LINE if /"$/; # exit when done with header

}

The redo command restarts the loop block without evaluating the conditional again.cofitiaue
block, if any, isnot executed. This command is normally used by programs that want to lie to themselves
about what was just input.

For example, when processing a file lilec/termcap If your input lines might end in backslashes to
indicate continuation, you want to skip ahead and get the next record.

while (<>) {
chomp;
if (sN\$//) {
$ =<

redo unless eof();

}

now process $_

}

which is Perl short-hand for the more explicitly written version:

LINE: while ($line = <ARGV>) {
chomp($line);
if ($line =~ s/\$//) {
$line .= <ARGV>;
redo LINE unless eof(); # not eof(ARGV)!
}

now process $line

}

Or here's a simpleminded Pascal comment stripper (warning: assumes no { or } in strings).

LINE: while (<STDIN>) {
while (s|({.*}.){-}$1) {}
S I
it (sI{-*) {
$front=$_;
while (<STDIN>) {
if (}){ # end of comment?
s|™$front{|;
redo LINE;
}

print;

18

Version 5.003 08-0ct—-1996

perlsyn Perl Programmers Reference Guide perlsyn

Note that if there were @ontinue block on the above code, it would get executed even on discarded lines.

If the wordwhile is replaced by the wondntil , the sense of the test is reversed, but the conditional is
still tested before the first iteration.

In either thelf or thewhile statement, you may replace "(EXPR)" with a BLOCK, and the conditional is
true if the value of the last statement in that block is true. While this "feature" continues to work in version
5, it has been deprecated, so please change any occurrences of "if BLOCK" to "if (do BLOCK)".

For Loops
Perl's C-styldfor loop works exactly like the correspondiwwile loop; that means that this:

for ($i = 1; $i < 10; $i++) {

}

is the same as this:

$i=1;
while ($i < 10) {

} continu.é.{
$i++;
}

Besides the normal array index loopifigr, can lend itself to many other interesting applications. Here's
one that avoids the problem you get into if you explicitly test for end-of-file on an interactive file
descriptor causing your program to appear to hang.

$on_a_tty = -t STDIN && -t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {

do something

}

Foreach Loops
Theforeach loop iterates over a normal list value and sets the variable VAR to be each element of the list
in turn. The variable is implicitly local to the loop and regains its former value upon exiting the loop. If the
variable was previously declared withy, it uses that variable instead of the global one, but it's still
localized to the loop. This can cause problems if you have subroutine or format declarations within that
block's scope.

The foreach keyword is actually a synonym for ttfer keyword, so you can usereach for
readability orfor for brevity. If VAR is omitted$_ is set to each value. If LIST is an actual array (as
opposed to an expression returning a list value), you can modify each element of the array by modifying
VAR inside the loop. That's because foeesach loop index variable is an implicit alias for each item in

the list that you‘re looping over.

Examples:
for (@ary) { s/foo/bar/ }

foreach $elem (@elements) {
$elem *= 2;

}

for $count (10,9,8,7,6,5,4,3,2,1,'BOOM’) {
print $count, "\n"; sleep(1);

}

08-0Oct-1996 Version 5.003 19

perlsyn Perl Programmers Reference Guide perlsyn

for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:[\\n:]*/, SENV{TERMCAP})) {
print "ltem: $item\n";

}

Here's how a C programmer might code up a particular algorithm in Perl:

for ($i = 0; $i < @aryl; $i++) {
for ($j = 0; $j < @ary2; $j++) {
if ($ary1[$i] > $ary2[$j]) {
last; # can't go to outer :—(

}
Saryl[$i] += Sary2[$]];
}

this is where that last takes me

}

Whereas here's how a Perl programmer more comfortable with the idiom might do it:

OUTER: foreach $wid (@ary1) {
INNER: foreach $jet (@ary2) {
next OUTER if $wid > $jet;
$wid += $jet;
}
}

See how much easier this is? It's cleaner, safer, and faster. It's cleaner because it's less noisy. It's safer
because if code gets added between the inner and outer loops later on, the new code won'‘t be accidentally
executed, th@ext explicitly iterates the other loop rather than merely terminating the inner one. And it's
faster because Perl executdsr@ach statement more rapidly than it would the equivalent loop.

Basic BLOCKs and Switch Statements

A BLOCK by itself (labeled or not) is semantically equivalent to a loop that executes once. Thus you can
use any of the loop control statements in it to leave or restart the block. (Note thatN@i¥ fsue in

eval{} , sub{} , or contrary to popular belieflo{} blocks, which doNOT count as loops.) The
continue block is optional.

The BLOCK construct is particularly nice for doing case structures.

SWITCH: {
if (/"abc/) { $abc = 1; last SWITCH; }
if (/"def/) { $def = 1; last SWITCH; }
if (/*xyz/) { $xyz = 1; last SWITCH; }
$nothing = 1;

}

There is no official switch statement in Perl, because there are already several ways to write the equivalent.
In addition to the above, you could write

SWITCH: {
$abc = 1, last SWITCH if /*abc/;
$def = 1, last SWITCH if /~def;
$xyz = 1, last SWITCH if /"xyz/;
$nothing = 1;

}

(That's actually not as strange as it looks once you realize that you can use loop control "operators" within an
expression, That's just the normal C comma operator.)

20

Version 5.003 08-0ct—-1996

perlsyn Perl Programmers Reference Guide perlsyn

or
SWITCH: {
/Mabc/ && do { $abc = 1; last SWITCH; };
/~def/ && do { $def = 1; last SWITCH; };
I"xyz/ && do { $xyz = 1; last SWITCH; };
$nothing = 1;
}
or formatted so it stands out more as a "proper" switch statement:
SWITCH: {
/Nabc/ && do {
$abc = 1;
last SWITCH,;
¥
/def/ && do {
$def = 1;
last SWITCH,;
¥
"xyz/ && do {
$xyz = 1;
last SWITCH,;
¥
$nothing = 1;
}
or
SWITCH: {
/~abc/ and $abc = 1, last SWITCH,;
/~def/ and $def = 1, last SWITCH;
["xyz/ and $xyz = 1, last SWITCH;
$nothing = 1;
}
or even, horrors,
if (/~abcl)
{$abc=1}
elsif (/~def/)
{$def=1}
elsif (/"xyz/)
{$xyz=1}

else
{ $nothing =1}

A common idiom for a switch statement is to feeeach ‘s aliasing to make a temporary assignment to
$_ for convenient matching:

SWITCH: for ($where) {
/In Card Names/ && do { push @flags, '-e’; last; };
/Anywhere/ && do { push @flags, '-h’; last; };
/In Rulings/ && do{ last; };
die "unknown value for form variable where: ‘Swhere™;

}

Another interesting approach to a switch statement is arrangeléoblck to return the proper value:

08-0Oct-1996 Version 5.003 21

perlsyn Perl Programmers Reference Guide perlsyn

Goto

PODs:

$amode = do {
if ($flag & O_RDONLY){"r"}
elsif ($flag & O_WRONLY) { ($flag & O_APPEND) ? "a" : "w" }
elsif ($flag & O_RDWR) {
if ($flag & O_CREAT) {"w+"}
else { ($flag & O_APPEND) ? "a+": "r+"}

Although not for the faint of heart, Perl does suppagb® statement. A loop‘’s LABEL is not actually a
valid target for ggoto ; it's just the name of the loop. There are three forms: goto—LABEL, goto—EXPR,
and goto&NAME.

The goto—-LABEL form finds the statement labeled with LABEL and resumes execution there. It may not be
used to go into any construct that requires initialization, such as a subroutine or a foreach loop. It also can't
be used to go into a construct that is optimized away. It can be used to go almost anywhere else within the
dynamic scope, including out of subroutines, but it's usually better to use some other construct such as last or
die. The author of Perl has never felt the need to use this form of goto (in Perl, that is—C is another matter).

The goto—EXPR form expects a label name, whose scope will be resolved dynamically. This allows for
computed gotos per FORTRAN, but isn‘t necessarily recommended if you‘re optimizing for maintainability:

goto ("FOO", "BAR", "GLARCH")[$il;

The goto-&NAMEorm is highly magical, and substitutes a call to the named subroutine for the currently
running subroutine. This is used AYTOLOAD() subroutines that wish to load another subroutine and then
pretend that the other subroutine had been called in the first place (except that any modifications to @__ in the
current subroutine are propagated to the other subroutine.) Aftgotbe not evencaller() will be

able to tell that this routine was called first.

In almost all cases like this, it's usually a far, far better idea to use the structured control flow mechanisms of

next ,last , orredo instead of resorting togoto . For certain applications, the catch and throw pair of

eval{} anddie() for exception processing can also be a prudent approach.

Embedded Documentation

Perl has a mechanism for intermixing documentation with source code. While it's expecting the beginning of

a new statement, if the compiler encounters a line that begins with an equal sign and a word, like this
=headl Here There Be Pods!

Then that text and all remaining text up through and including a line beginningauth will be ignored.
The format of the intervening text is describegénlpod

This allows you to intermix your source code and your documentation text freely, as in
=item snazzle($)

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

=cut back to the compiler, nuff of this pod stuff!

sub snazzle($) {
my $thingie = shift;

Note that pod translators should only look at paragraphs beginning with a pod directive (it makes parsing
easier), whereas the compiler actually knows to look for pod escapes even in the middle of a paragraph.
This means that the following secret stuff will be ignored by both the compiler and the translators.

22

Version 5.003 08-0ct—-1996

perlsyn Perl Programmers Reference Guide perlsyn

$a=3;

=secret stuff

warn "Neither POD nor CODE!?"
=cut back

print "got $a\n";

You probably shouldn't rely upon thearn() being podded out forever. Not all pod translators are
well-behaved in this regard, and perhaps the compiler will become pickier.

08-0Oct-1996 Version 5.003 23

perlop

Perl Programmers Reference Guide perlop

NAME

perlop — Perl operators and precedence

SYNOPSIS

Perl operators have the following associativity and precedence, listed from highest precedence to lowest.
Note that all operators borrowed from C keep the same precedence relationship with each other, even where
C's precedence is slightly screwy. (This makes learning Perl easier for C folks.) With very few exceptions,
these all operate on scalar values only, not array values.

left terms and list operators (leftward)
left -

nonassoc ++ ——

right *x

right I ~\and unary + and -
left =~ I~

left *[% X

left +-.

left << >>

nonassoc named unary operators
nonassoc <><=>zltgtlege
nonassoc === <=>eq ne cmp
left &

left |~

left &&

left I

nonassoc .

right ?:

right =+= —-="*=etc.

left , =>

nonassoc list operators (rightward)
right not

left and

left or xor

In the following sections, these operators are covered in precedence order.

DESCRIPTION

Terms

and List Operators (Leftward)

Any TERM is of highest precedence of Perl. These includes variables, quote and quotelike operators, any

expression in parentheses, and any function whose arguments are parenthesized. Actually, there aren't really
functions in this sense, just list operators and unary operators behaving as functions because you put
parentheses around the arguments. These are all documepeelfinc

If any list operator(print() , etc.) or any unary operatqchdir() , etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be of highest
precedence, just like a normal function call.

In the absence of parentheses, the precedence of list operators puch assort , or chmod is either
very high or very low depending on whether you look at the left side of operator or the right side of it. For
example, in

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas on the left are evaluated
after. In other words, list operators tend to gobble up all the arguments that follow them, and then act like a
simple TERM with regard to the preceding expression. Note that you have to be careful with parens:

24

Version 5.003 08-0ct—-1996

perlop Perl Programmers Reference Guide perlop

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor is this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or this.

print ($foo), exit; # Or even this.

Also note that
print ($foo & 255) + 1, "\n";

probably doesn‘t do what you expect at first glance. Skaened Unary Operatorfor more discussion of
this.

Also parsed as terms are tthe {} andeval {} constructs, as well as subroutine and method calls, and
the anonymous constructdts and{} .

See als®@Quote and Quotelike Operatotsward the end of this section, as wela®perators’

The Arrow Operator

Just as in C and C++:-2" is an infix dereference operator. If the right side is either]a or{...}
subscript, then the left side must be either a hard or symbolic reference to an array or hash (or a location
capable of holding a hard reference, if it's an lvalue (assignable)peBlee.

Otherwise, the right side is a method name or a simple scalar variable containing the method name, and the
left side must either be an object (a blessed reference) or a class name (that is, a package pamea)j. See

Autoincrement and Autodecrement

"++" and "—" work as in C. That is, if placed before a variable, they increment or decrement the variable
before returning the value, and if placed after, increment or decrement the variable after returning the value.

The autoincrement operator has a little extra built—in magic to it. If you increment a variable that is numeric,
or that has ever been used in a numeric context, you get a normal increment. If, however, the variable has
only been used in string contexts since it was set, and has a value that is not null and matches the pattern

/Na-zA-Z]*[0-9]*%/, the increment is done as a string, preserving each character within its range,
with carry:

print ++($foo ='99’); # prints '100°

print ++($foo ='a0’); # prints 'al’

print ++($foo = 'Az’); # prints 'Ba’

print ++($foo = 'zz’); # prints 'aaa’

The autodecrement operator is not magical.

Exponentiation

Binary "**" is the exponentiation operator. Note that it binds even more tightly than unary minus, so —2**4
is —(2**4), not (=2)**4. (This is implemented using C's pow(3) function, which actually works on doubles
internally.)

Symbolic Unary Operators
Unary "I" performs logical negation, i.e. "not". See alseb for a lower precedence version of this.

Unary "-" performs arithmetic negation if the operand is numeric. If the operand is an identifier, a string

consisting of a minus sign concatenated with the identifier is returned. Otherwise, if the string starts with a
plus or minus, a string starting with the opposite sign is returned. One effect of these rules is that
—bareword is equivalent t6—bareword"

Unary "~" performs bitwise negation, i.e. 1's complement.

Unary "+" has no effect whatsoever, even on strings. It is useful syntactically for separating a function name

08-0Oct-1996 Version 5.003 25

perlop Perl Programmers Reference Guide perlop

from a parenthesized expression that would otherwise be interpreted as the complete list of function
arguments. (See examples above uh@#rOperators)

Unary "\" creates a reference to whatever follows it. |$edref Do not confuse this behavior with the
behavior of backslash within a string, although both forms do convey the notion of protecting the next thing
from interpretation.

Binding Operators

Binary "=~" binds a scalar expression to a pattern match. Certain operations search or modify the string

by default. This operator makes that kind of operation work on some other string. The right argument is a
search pattern, substitution, or translation. The left argument is what is supposed to be searched, substituted,
or translated instead of the defahilt The return value indicates the success of the operation. (If the right
argument is an expression rather than a search pattern, substitution, or translation, it is interpreted as a search
pattern at run time. This is less efficient than an explicit search, since the pattern must be compiled every
time the expression is evaluated—unless you'‘ve [sed

Binary "I~" is just like "=~" except the return value is negated in the logical sense.

Multiplicative Operators
Binary "*" multiplies two numbers.

Binary "/" divides two numbers.

Binary "%" computes the modulus of the two numbers.

Binary "X" is the repetition operator. In a scalar context, it returns a string consisting of the left operand
repeated the number of times specified by the right operand. In a list context, if the left operand is a list in
parens, it repeats the list.

print "=’ x 80; # print row of dashes
print "\t" x ($tab/8), ' ' x ($tab%8); # tab over
@ones = (1) x 80; #alistof 80 1's
@ones = (5) x @ones; # set all elements to 5

Additive Operators
Binary "+" returns the sum of two numbers.

Binary returns the difference of two numbers.

Binary "." concatenates two strings.

Shift Operators
Binary "<<" returns the value of its left argument shifted left by the number of bits specified by the right
argument. Arguments should be integers.

Binary ">>" returns the value of its left argument shifted right by the number of bits specified by the right
argument. Arguments should be integers.

Named Unary Operators
The various named unary operators are treated as functions with one argument, with optional parentheses.
These include the filetest operators, ke, —M etc. Se@erlfunc

If any list operator(print() , etc.) or any unary operatqchdir() , etc.) is followed by a left
parenthesis as the next token, the operator and arguments within parentheses are taken to be of highest
precedence, just like a normal function call. Examples:

chdir $foo || die; # (chdir $foo) || die
chdir($foo) || die; # (chdir $foo) || die
chdir ($foo) || die; # (chdir $foo) || die
chdir +($foo) || die; # (chdir $foo) || die

26 Version 5.003 08-0Oct-1996

perlop Perl Programmers Reference Guide perlop

but, because * is higher precedence than ||:

chdir $foo * 20; # chdir ($foo * 20)
chdir($foo) * 20; # (chdir $foo) * 20
chdir ($foo) * 20; # (chdir $foo) * 20
chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; #rand (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20

rand +(10) * 20; #rand (10 * 20)
See alsdList Operators”

Relational Operators
Binary "<" returns true if the left argument is numerically less than the right argument.

Binary ">" returns true if the left argument is numerically greater than the right argument.

Binary "<="returns true if the left argument is numerically less than or equal to the right argument.
Binary ">=" returns true if the left argument is numerically greater than or equal to the right argument.
Binary "It" returns true if the left argument is stringwise less than the right argument.

Binary "gt" returns true if the left argument is stringwise greater than the right argument.

Binary "le" returns true if the left argument is stringwise less than or equal to the right argument.
Binary "ge" returns true if the left argument is stringwise greater than or equal to the right argument.

Equality Operators
Binary "=="returns true if the left argument is numerically equal to the right argument.

Binary "1="returns true if the left argument is numerically not equal to the right argument.

Binary "<=>" returns -1, 0, or 1 depending on whether the left argument is numerically less than, equal to,
or greater than the right argument.

Binary "eq" returns true if the left argument is stringwise equal to the right argument.
Binary "ne" returns true if the left argument is stringwise not equal to the right argument.

Binary "cmp" returns -1, 0, or 1 depending on whether the left argument is stringwise less than, equal to, or
greater than the right argument.

Bitwise And
Binary "&" returns its operators ANDed together bit by bit.

Bitwise Or and Exclusive Or
Binary "|" returns its operators ORed together bit by bit.

Binary "M returns its operators XORed together bit by bit.

C-style Logical And
Binary "&&" performs a short—circuit logical AND operation. That is, if the left operand is false, the right
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evaluated.
C-style Logical Or
Binary "||" performs a short—circuit logical OR operation. That is, if the left operand is true, the right
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evaluated.

The || and&& operators differ from C's in that, rather than returning O or 1, they return the last value
evaluated. Thus, a reasonably portable way to find out the home directory (assuming it's not "0") might be:

08-0Oct-1996 Version 5.003 27

perlop Perl Programmers Reference Guide perlop

$home = SENV{'HOME'} || SENV{'LOGDIR’} ||
(getpwuid($<))[7] || die "You're homeless\n";

As more readable alternatives && and|| , Perl provides "and" and "or" operators (see below). The
short—circuit behavior is identical. The precedence of "and" and "or" is much lower, however, so that you
can safely use them after a list operator without the need for parentheses:

unlink "alpha”, "beta", "gamma"
or gripe(), next LINE;

With the C-style operators that would have been written like this:

unlink("alpha”, "beta", "gamma’)
|| (gripe(), next LINE);

Range Operator

Binary ".." is the range operator, which is really two different operators depending on the context. In a list
context, it returns an array of values counting (by ones) from the left value to the right value. This is useful
for writing for (1..10) loops and for doing slice operations on arrays. Be aware that under the current

implementation, a temporary array is created, so you'll burn a lot of memory if you write something like

this:

for (1 .. 1_000_000) {
code

}

In a scalar context, ".." returns a boolean value. The operator is bistable, like a flip—flop, and emulates the
line-range (comma) operator &£d awk, and various editors. Each ".." operator maintains its own boolean
state. Itis false as long as its left operand is false. Once the left operand is true, the range operator stays true
until the right operand is tru&FTERwhich the range operator becomes false again. (It doesn't become
false till the next time the range operator is evaluated. It can test the right operand and become false on the
same evaluation it became true (aguvk), but it still returns true once. If you don‘t want it to test the right
operand till the next evaluation (asdad, use three dots ("...") instead of two.) The right operand is not
evaluated while the operator is in the "false" state, and the left operand is not evaluated while the operator is
in the "true" state. The precedence is a little lower than |R&nd The value returned is either the null

string for false, or a sequence number (beginning with 1) for true. The sequence number is reset for each
range encountered. The final sequence number in a range has the string "EQ" appended to it, which doesn't
affect its numeric value, but gives you something to search for if you want to exclude the endpoint. You can
exclude the beginning point by waiting for the sequence number to be greater than 1. If either operand of
scalar ".." is a numeric literal, that operand is implicity compared to$thevariable, the current line
number. Examples:

As a scalar operator:

if (101 .. 200) { print; } # print 2nd hundred lines
nextline if (1 .. /"$/); # skip header lines
s> [if (/9] .. eof()); # quote body

As a list operator:

for (101 .. 200) { print; } # print $_ 100 times
@foo = @foo[$[.. $#foo]; # an expensive no-op
@foo = @foo[$#foo—-4 .. $#foo]; # slice last 5 items

The range operator (in a list context) makes use of the magical autoincrement algorithm if the operands are
strings. You can say

@alphabet = (A’ .. ’Z’);

to get all the letters of the alphabet, or

28 Version 5.003 08-0Oct-1996

perlop Perl Programmers Reference Guide perlop

$hexdigit= (0 .. 9, 'a’ .. 'f)[$num & 15];
to get a hexadecimal digit, or
@z2 = (01’ .. '31"); print $z2[$mday];

to get dates with leading zeros. If the final value specified is not in the sequence that the magical increment
would produce, the sequence goes until the next value would be longer than the final value specified.

Conditional Operator

Ternary "?:" is the conditional operator, just as in C. It works much like an if-then—-else. If the argument
before the ? is true, the argument before the : is returned, otherwise the argument after the : is returned. For
example:

printf "I have %d dog%s.\n", $n,
($n==1)72":"s";

Scalar or list context propagates downward into the 2nd or 3rd argument, whichever is selected.

$a = $ok ? $b : $c; # get a scalar
@a = %ok ? @b : @c; # get an array
$a = $ok ? @b : @c; # oops, that's just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are legal Ivalues (meaning that you can
assign to them):

($a_or_b ? $a: $b) = $c;
This is not necessarily guaranteed to contribute to the readability of your program.

Assignment Operators
"="is the ordinary assignment operator.

Assignment operators work as in C. That is,

$a +=2;
is equivalent to
$a=$%a+2;
although without duplicating any side effects that dereferencing the Ivalue might trigger, such as from
tie() . Other assignment operators work similarly. The following are recognized:
= 4= F= K= <<= &&=
—_ = |: >>= ||:
= Op= N=

Note that while these are grouped by family, they all have the precedence of assignment.

Unlike in C, the assignment operator produces a valid Ivalue. Modifying an assignment is equivalent to
doing the assignment and then modifying the variable that was assigned to. This is useful for modifying a
copy of something, like this:

($tmp = $global) =~ tr [A-Z] [a-z];
Likewise,

($a +=2) *=3;
is equivalent to

$a +=2;
$a *=3;

08-0Oct-1996 Version 5.003 29

perlop Perl Programmers Reference Guide perlop

Comma Operator

Binary "," is the comma operator. In a scalar context it evaluates its left argument, throws that value away,
then evaluates its right argument and returns that value. This is just like C's comma operator.

In a list context, it's just the list argument separator, and inserts both its arguments into the list.

The => digraph is mostly just a synonym for the comma operator. It's useful for documenting arguments
that come in pairs. As of release 5.001, it also forces any word to the left of it to be interpreted as a string.
List Operators (Rightward)

On the right side of a list operator, it has very low precedence, such that it controls all comma-separated
expressions found there. The only operators with lower precedence are the logical operators "and", "or", and
"not”, which may be used to evaluate calls to list operators without the need for extra parentheses:

open HANDLE, "filename"
or die "Can't open: $!\n";

See also discussion of list operators.igt Operators (Leftward)

Logical Not

Unary "not" returns the logical negation of the expression to its right. It's the equivalent of
very low precedence.

except for the

Logical And
Binary "and" returns the logical conjunction of the two surrounding expressions. It's equivalk&t to
except for the very low precedence. This means that it short—circuits: i.e. the right expression is evaluated
only if the left expression is true.

Logical or and Exclusive Or

Binary "or" returns the logical disjunction of the two surrounding expressions. It's equivalent to || except for
the very low precedence. This means that it short—circuits: i.e. the right expression is evaluated only if the
left expression is false.

Binary "xor" returns the exclusive—OR of the two surrounding expressions. It cannot short circuit, of course.

C Operators Missing From Perl
Here is what C has that Perl doesn‘t:

unary & Address-of operator. (But see the "\" operator for taking a reference.)

unary * Dereference—address operator. (Perl‘s prefix dereferencing operators arebty@d:%, and
&)

(TYPE) Type casting operator.

Quote and Quotelike Operators

While we usually think of quotes as literal values, in Perl they function as operators, providing various kinds

of interpolating and pattern matching capabilities. Perl provides customary quote characters for these
behaviors, but also provides a way for you to choose your quote character for any of them. In the following

table, af} represents any pair of delimiters you choose. Non-bracketing delimiters use the same character
fore and aft, but the 4 sorts of brackets (round, angle, square, curly) will all nest.

Customary Generic Meaning Interpolates

" af} Literal no
qa{} Literal yes
“ ax{} Command yes
gw{} Word list no
I m{} Pattern match yes
s{{} Substitution yes
tr{}{} Translation no

30 Version 5.003 08-0Oct-1996

perlop Perl Programmers Reference Guide perlop

For constructs that do interpolation, variables beginning with 6r "@ are interpolated, as are the
following sequences:

\t tab (HT, TAB)
\n newline (LF, NL)
\r return (CR)

\f form feed (FF)

\b backspace (BS)
\a alarm (bell) (BEL)
\e escape (ESC)
\033 octal char

\x1b hex char

\c[control char

\l lowercase next char
\u uppercase next char
\L lowercase till \E

\U uppercase till \E

\E end case modification
\Q guote regexp metacharacters till \E

Patterns are subject to an additional level of interpretation as a regular expression. This is done as a second
pass, after variables are interpolated, so that regular expressions may be incorporated into the pattern from
the variables. If this is not what you want, ¥Qeto interpolate a variable literally.

Apart from the above, there are no multiple levels of interpolation. In particular, contrary to the expectations
of shell programmers, backquotes NO®T interpolate within double quotes, nor do single quotes impede
evaluation of variables when used within double quotes.

Regexp Quotelike Operators
Here are the quotelike operators that apply to pattern matching and related activities.

?PATTERN?

This is just like thdpattern/ search, except that it matches only once between calls to the
reset() operator. This is a useful optimization when you only want to see the first occurrence
of something in each file of a set of files, for instance. ypatterns local to the current
package are reset.

This usage is vaguely deprecated, and may be removed in some future version of Perl.

m/PATTERN/gimosx
/PATTERN/gimosx

Searches a string for a pattern match, and in a scalar context returns true (1) or false (). If no
string is specified via the~ or !~ operator, th&_ string is searched. (The string specified with

=~ need not be an Ilvalue—it may be the result of an expression evaluation, but remember the
binds rather tightly.) See alperlre.

Options are:

g Match globally, i.e. find all occurrences.
i Do case-insensitive pattern matching.
m Treat string as multiple lines.

0 Only compile pattern once.

s Treat string as single line.

X Use extended regular expressions.

If "/" is the delimiter then the initiam is optional. With them you can use any pair of
non—-alphanumeric, non-whitespace characters as delimiters. This is particularly useful for
matching Unix path names that contain /", to avoid LTS (leaning toothpick syndrome).

08-0Oct-1996 Version 5.003 31

perlop Perl Programmers Reference Guide perlop
PATTERN may contain variables, which will be interpolated (and the pattern recompiled) every
time the pattern search is evaluated. (Note $hatind$| might not be interpolated because
they look like end-of-string tests.) If you want such a pattern to be compiled only once, add a
/o after the trailing delimiter. This avoids expensive run-time recompilations, and is useful
when the value you are interpolating won‘t change over the life of the script. However,
mentioning/o constitutes a promise that you won't change the variables in the pattern. If you
change them, Perl won'‘t even notice.
If the PATTERN evaluates to a null string, the last successfully executed regular expression is
used instead.
If used in a context that requires a list value, a pattern match returns a list consisting of the
subexpressions matched by the parentheses in the patter®l,i.ebZ, $3...). (Note that
here$1 etc. are also set, and that this differs from Perl 4's behavior.) If the match fails, a null
array is returned. If the match succeeds, but there were no parentheses, a list value of (1) is
returned.
Examples:
open(TTY, '/devitty’);
<TTY> =~ /"y/i && foo(); # do foo if desired
if (/Version: *([0-9.]%)/) { $version = $1; }
next if m#~/usr/spool/uucp#;
poor man'’s grep
$arg = shift;
while (<>) {
print if /$arg/o; # compile only once
}
if ($F1, $F2, $Etc) = ($foo =~ I"(\S+)\s+(\S+)\s*(.*)/))
This last example split§foo into the first two words and the remainder of the line, and assigns
those three fields t&F1, $F2 and $Etc. The conditional is true if any variables were
assigned, i.e. if the pattern matched.
The/g modifier specifies global pattern matching—that is, matching as many times as possible
within the string. How it behaves depends on the context. In a list context, it returns a list of all
the substrings matched by all the parentheses in the regular expression. If there are no
parentheses, it returns a list of all the matched strings, as if there were parentheses around the
whole pattern.
In a scalar contextn//g iterates through the string, returning TRUE each time it matches, and
FALSE when it eventually runs out of matches. (In other words, it remembers where it left off
last time and restarts the search at that point. You can actually find the current match position of
a string using thpos() function—seeerlifunc) If you modify the string in any way, the match
position is reset to the beginning. Examples:
list context
($one,$five, $fifteen) = (‘uptime’ =~ /(\d+\.\d+)/g);
scalar context
$/=""; $* = 1; # $* deprecated in Perl 5
while ($paragraph = <>) {
while ($paragraph =~ /[a—z][")]*[.!?]+[")]*\s/g) {
$sentences++;
}
}
print "$sentences\n";
32 Version 5.003 08-0Oct-1996

perlop Perl Programmers Reference Guide perlop

q/STRING/
‘STRING’

A single—quoted, literal string. Backslashes are ignored, unless followed by the delimiter or
another backslash, in which case the delimiter or backslash is interpolated.

$foo = g!l said, "You said, 'She said it."";
$bar = q('This is it.”);

gq/STRING/
"STRING"
A double—quoted, interpolated string.
$_.=qq
(*** The previous line contains the naughty word "$1".\n)
if /(tclrexx|python)/; # :-)
gX/STRING/

‘STRING® A string which is interpolated and then executed as a system command. The collected standard
output of the command is returned. In scalar context, it comes back as a single (potentially
multi-line) string. In list context, returns a list of lines (however you‘ve defined lineshuitbr
$INPUT_RECORD_SEPARATOR).

$today = qx{ date };
SeeO Operatorsfor more discussion.

qW/STRING/

Returns a list of the words extracted out of STRING, using embedded whitespace as the word
delimiters. It is exactly equivalent to

split(" ’, g/STRING/);
Some frequently seen examples:

use POSIX qw(setlocale localeconv)
@EXPORT = qw(foo bar baz);

S/IPATTERN/REPLACEMENT/egimosx

Searches a string for a pattern, and if found, replaces that pattern with the replacement text and
returns the number of substitutions made. Otherwise it returns false (specifically, the empty
string).

If no string is specified via the~ or !~ operator, thes_ variable is searched and modified.
(The string specified witke~ must be a scalar variable, an array element, a hash element, or an
assignment to one of those, i.e. an Ivalue.)

If the delimiter chosen is single quote, no variable interpolation is done on either the PATTERN
or the REPLACEMENT. Otherwise, if the PATTERN contain$ that looks like a variable

rather than an end-of-string test, the variable will be interpolated into the pattern at run—time. If
you only want the pattern compiled once the first time the variable is interpolated, uUse the
option. If the pattern evaluates to a null string, the last successfully executed regular expression
is used instead. Seerlre for further explanation on these.

Options are:

e Evaluate the right side as an expression.
g Replace globally, i.e. all occurrences.

i Do case-insensitive pattern matching.

m Treat string as multiple lines.

0 Only compile pattern once.

s Treat string as single line.

08-0Oct-1996 Version 5.003 33

perlop

Perl Programmers Reference Guide perlop

X Use extended regular expressions.

Any non-alphanumeric, hon-whitespace delimiter may replace the slashes. If single quotes are
used, no interpretation is done on the replacement string/gthenodifier overrides this,
however). Unlike Perl 4, Perl 5 treats backticks as normal delimiters; the replacement text is not
evaluated as a command. If the PATTERN is delimited by bracketing quotes, the
REPLACEMENT has its own pair of quotes, which may or may not be bracketing quotes, e.g.
s(foo)(bar) or s<foo>/bar/ . Al/e will cause the replacement portion to be interpreter

as a full-fledged Perl expression aewhl() ed right then and there. It is, however, syntax
checked at compile-time.

Examples:
s/\bgreen\b/mauve/q; # don’t change wintergreen
$path =~ s|/usr/bin|/usr/local/bin];
s/Login: $foo/Login: $bar/; # run—time pattern
($foo = $bar) =~ s/this/that/;
$count = ($paragraph =~ s/Mister\b/Mr./g);
$_ ='abcl23xyz’;

sN\d+/$&*2/e; # yields 'abc246xyz’
sN\d+/sprintf("%5d",$&)/e; # yields 'abc 246xyz’

s\w/$& x 2/eg; # yields 'aabbcc 224466xxyyzz’
s/%(.)/$percent{$1}/g; # change percent escapes; no /e
s/%(.)/$percent{$1} || $&/ge; # expr now, so /e
si*=(\w+)/&pod($1)/ge; # use function call

/e’s can even nest; this will expand
simple embedded variables in $_
s/(\$\w+)/$1/eeq;

Delete C comments.
$program =~ s {

N* # Match the opening delimiter.
x? # Match a minimal number of characters.
*/ # Match the closing delimiter.

}Hlgsx;

SIMs*(*?)\s*$/$1/; # trim white space

sI(M %) *([™ 1%)/$2 $1/; # reverse 1st two fields

Note the use of instead of \ in the last example. Unlileed we only use the digit> form in
the left hand side. Anywhere else sdigit >.

Occasionally, you can't just use/@ to get all the changes to occur. Here are two common
cases:

put commas in the right places in an integer
1 while s/(.:A\d)(\d\d\d)/$1,$2/g; # perl4
1 while s/(\d)(\d\d\d)(?\d)/$1,$2/g; # perl5

expand tabs to 8—column spacing
1 while sA\t+/" * x (length($&)*8 — length($)%8)/e;

tr/SEARCHLIST/REPLACEMENTLIST/cds
y/SEARCHLIST/REPLACEMENTLIST/cds

Translates all occurrences of the characters found in the search list with the corresponding

34

Version 5.003 08-0ct—-1996

perlop Perl Programmers Reference Guide perlop

character in the replacement list. It returns the number of characters replaced or deleted. If no
string is specified via the =~ or !~ operator, $hestring is translated. (The string specified with

=~ must be a scalar variable, an array element, or an assignment to one of those, i.e. an Ivalue.)
For sed devoteesy is provided as a synonym for . If the SEARCHLIST is delimited by
bracketing quotes, the REPLACEMENTLIST has its own pair of quotes, which may or may not
be bracketing quotes, etgA-Z][a-z] or tr(+—*/)/ABCD/

Options:

¢ Complement the SEARCHLIST.
d Delete found but unreplaced characters.
s Squash duplicate replaced characters.

If the /c modifier is specified, the SEARCHLIST character set is complemented. [fithe
modifier is specified, any characters specified by SEARCHLIST not found in

REPLACEMENTLIST are deleted. (Note that this is slightly more flexible than the behavior of
sometr programs, which delete anything they find in the SEARCHLIST, period.) Ifshe
modifier is specified, sequences of characters that were translated to the same character are
squashed down to a single instance of the character.

If the /d modifier is used, the REPLACEMENTLIST is always interpreted exactly as specified.
Otherwise, if the REPLACEMENTLIST is shorter than the SEARCHLIST, the final character is
replicated till it is long enough. If the REPLACEMENTLIST is null, the SEARCHLIST is
replicated. This latter is useful for counting characters in a class or for squashing character
sequences in a class.

Examples:
$ARGV[1] =~ tr/A-Z/a-z/; # canonicalize to lower case
$cnt = tr/*/*/; # countthe starsin $_
$cnt = $sky =~ tr/*/*/; # count the stars in $sky
$cnt = tr/0-9//; # count the digits in $_
trla—zA-Z/ls; # bookkeeper —> bokeper
($HOST = $host) =~ trla-z/A-Z/;
trla-zA-Z/ Ics; # change non-alphas to single space
tr \200-\377]
[\000-\177]; # delete 8th bit
If multiple translations are given for a character, only the first one is used:
tr/AAAIXYZ/

will translate any A to X.

Note that because the translation table is built at compile time, neither the SEARCHLIST nor the
REPLACEMENTLIST are subjected to double quote interpolation. That means that if you want
to use variables, you must useemal()

eval "tr/$oldlist/Snewlist/";

die 3@ if $@;
eval "tr/$oldlist/$newlist/, 1" or die $@;

I/O Operators

There are several 1/0O operators you should know about. A string is enclosed by backticks (grave accents)
first undergoes variable substitution just like a double quoted string. It is then interpreted as a command, and
the output of that command is the value of the pseudo-literal, like in a shell. In a scalar context, a single

08-0Oct-1996 Version 5.003 35

perlop

Perl Programmers Reference Guide perlop

string consisting of all the output is returned. In a list context, a list of values is returned, one for each line of
output. (You can se$/ to use a different line terminator.) The command is executed each time the
pseudo-literal is evaluated. The status value of the command is returi$&d (see perlvar for the
interpretation ofs?). Unlike incsh, no translation is done on the return data—newlines remain newlines.
Unlike in any of the shells, single quotes do not hide variable names in the command from interpretation. To
pass ab through to the shell you need to hide it with a backslash. The generalized form of backticks is
gx// . (Because backticks always undergo shell expansion as welkeidsecfor security concerns.)

Evaluating a filehandle in angle brackets yields the next line from that file (newline included, so it's never
false until end of file, at which time an undefined value is returned). Ordinarily you must assign that value to
a variable, but there is one situation where an automatic assignment haffpand. ONLY ifthe input

symbol is the only thing inside the conditional ofvhile loop, the value is automatically assigned to the
variable$_. The assigned value is then tested to see if it is defined. (This may seem like an odd thing to
you, but you'll use the construct in almost every Perl script you write.) Anyway, the following lines are
equivalent to each other:

while (defined($_ = <STDIN>)) { print; }
while (<STDIN>) { print; }

for (;<STDIN>;) { print; }

print while defined($_ = <STDIN>);
print while <STDIN>;

The filehandles STDIN, STDOUT and STDERR are predefined. (The filehasidlies , stdout and
stderr will also work except in packages, where they would be interpreted as local identifiers rather than
global.) Additional filehandles may be created withdpen() function. Se@pen() for details on this.

If a <FILEHANDLE> is used in a context that is looking for a list, a list consisting of all the input lines is
returned, one line per list element. It's easy to mak&RGEdata space this way, so use with care.

The null filehandle <> is special and can be used to emulate the behasextafdawk. Input from <>

comes either from standard input, or from each file listed on the command line. Here's how it works: the
first time <> is evaluated, the @ARGYV array is checked, and if it is BARGV[0] is set to "-", which

when opened gives you standard input. The @ARGYV array is then processed as a list of filenames. The
loop

while (<>) {
code for each line

}

is equivalent to the following Perl-like pseudo code:

unshiftf(@ARGV, ') if $#ARGV < $J;
while (JARGV = shift) {
open(ARGV, $ARGV);
while (RARGV>) {
code for each line
}
}

except that it isn‘t so cumbersome to say, and will actually work. It really does shift array @ARGV and put
the current filename into variabARGV. It also uses filehandl@ARGVinternally—<> is just a synonym

for <ARGV>, which is magical. (The pseudo code above doesn‘t work because it treats <ARGV> as
non—-magical.)

You can modify @ARGYV before the first <> as long as the array ends up containing the list of flenames you
really want. Line numbersp() continue as if the input were one big happy file. (But see example under
eof() for how to reset line numbers on each file.)

If you want to set @ARGV to your own list of files, go right ahead. If you want to pass switches into your
script, you can use one of the Getopts modules or put a loop on the front like this:

36

Version 5.003 08-0ct—-1996

perlop

Perl Programmers Reference Guide perlop

while ($_ = SARGVI[0], /I"-/) {
shift;
last if N ——9/;
if (/A-D(.*)/) { $debug = $1}
if (*-vl) {$verbose++ }
other switches

while (<>) {
code for each line

}

The <> symbol will return FALSE only once. If you call it again after this it will assume you are processing
another @ARGYV list, and if you haven't set @ARGV, will input from STDIN.

If the string inside the angle brackets is a reference to a scalar variablebfeap)< then that variable
contains the name of the filehandle to input from, or a reference to the same. For example:

$fh = *STDIN;
$line = <$fh>;

If the string inside angle brackets is not a filehandle or a scalar variable containing a filehandle name or
reference, then it is interpreted as a filename pattern to be globbed, and either a list of flenames or the next
filename in the list is returned, depending on context. One lev&linterpretation is done first, but you

can't say<$foo> because that's an indirect filehandle as explained in the previous paragraph. (In older
versions of Perl, programmers would insert curly brackets to force interpretation as a filename glob:
<${foo}>. These days, it's considered cleaner to call the internal function directiplfoo),

which is probably the right way to have done it in the first place.) Example:

while (<*.c>) {
chmod 0644, $_;
}

is equivalent to

open(FOO, "echo *.c | tr —s " \t\r\f’ "\\012\\012\\012\\012'|");
while (<FOO>) {

chop;

chmod 0644, $_;
}

In fact, it's currently implemented that way. (Which means it will not work on filenames with spaces in
them unless you have csh(1) on your machine.) Of course, the shortest way to do the above is:

chmod 0644, <*.c>;

Because globbing invokes a shell, it's often faster to restldir() yourself and just do your own
grep() on the filenames. Furthermore, due to its current implementation of using a shglblif)e
routine may get "Arg list too long" errors (unless you'‘ve installed tcsh(1bjrassh).

A glob only evaluates its (embedded) argument when it is starting a new list. All values must be read before
it will start over. In a list context this isn‘t important, because you automatically get them all anyway. In a
scalar context, however, the operator returns the next value each time it is called, or a FALSE value if you‘ve
just run out. Again, FALSE is returned only once. So if you‘re expecting a single value from a glob, it is
much better to say

($file) = <blurch*>;
than

$file = <blurch*>;

08-0Oct-1996 Version 5.003 37

perlop Perl Programmers Reference Guide perlop

because the latter will alternate between returning a filename and returning FALSE.

It you're trying to do variable interpolation, it's definitely better to usegiod() function, because the
older notation can cause people to become confused with the indirect filehandle notation.

@files = glob("$dir/*.[ch]");
@files = glob($files[$i]);
Constant Folding

Like C, Perl does a certain amount of expression evaluation at compile time, whenever it determines that all
of the arguments to an operator are static and have no side effects. In particular, string concatenation
happens at compile time between literals that don‘t do variable substitution. Backslash interpretation also
happens at compile time. You can say

'Now is the time for all’ . "\n" .
'good men to come to.’

and this all reduces to one string internally. Likewise, if you say

foreach $file (@filenames) {
if (-s $file > 5 + 100 * 2**16) { ... }
}

the compiler will pre—compute the number that expression represents so that the interpreter won'‘t have to.

Integer arithmetic
By default Perl assumes that it must do most of its arithmetic in floating point. But by saying

use integer;

you may tell the compiler that it's okay to use integer operations from here to the end of the enclosing
BLOCK. An inner BLOCK may countermand this by saying

no integer;

which lasts until the end of that BLOCK.

38 Version 5.003 08-0Oct-1996

perire Perl Programmers Reference Guide perlre

NAME
perlre — Perl regular expressions

DESCRIPTION

This page describes the syntax of regular expressions in Perl. For a description of how to ussually
regular expressions in matching operations, plus various examples of the samé, aeds/// in perlop

The matching operations can have various modifiers, some of which relate to the interpretation of the regular
expression inside. These are:

i Do case-insensitive pattern matching.

m Treat string as multiple lines.

s Treat string as single line.

x Extend your pattern’s legibility with whitespace and comments.

These are usually written as "the modifier", even though the delimiter in question might not actually be a
slash. In fact, any of these modifiers may also be embedded within the regular expression itself using the
new(?...) construct. See below.

The /x modifier itself needs a little more explanation. It tells the regular expression parser to ignore
whitespace that is not backslashed or within a character class. You can use this to break up your regular
expression into (slightly) more readable parts. Floharacter is also treated as a metacharacter introducing

a comment, just as in ordinary Perl code. Taken together, these features go a long way towards making Perl
5 areadable language. See the C comment deletion cpdddp

Regular Expressions

The patterns used in pattern matching are regular expressions such as those supplied in the Version 8 regexp
routines. (In fact, the routines are derived (distantly) from Henry Spencer's freely redistributable
reimplementation of the V8 routines.) Séersion 8 Regular Expressiofar details.

In particular the following metacharacters have their stanelgnep-ish meanings:

\ Quote the next metacharacter

A Match the beginning of the line

. Match any character (except newline)

$ Match the end of the line (or before newline at the end)
| Alternation

() Grouping

[Character class

By default, the "" character is guaranteed to match only at the beginning of the striryj, tbleatacter

only at the end (or before the newline at the end) and Perl does certain optimizations with the assumption
that the string contains only one line. Embedded newlines will not be matched by $*! orYou may,
however, wish to treat a string as a multi-line buffer, such that the "" will match after any newline within
the string, and$" will match before any newline. At the cost of a little more overhead, you can do this by
using the /m modifier on the pattern match operator. (Older programs did this by $&ttingut this

practice is deprecated in Perl 5.)

To facilitate multi-line substitutions, the character never matches a newline unless you Ise the
modifier, which tells Perl to pretend the string is a single line—even if it isn‘t. /§henodifier also
overrides the setting &, in case you have some (badly behaved) older code that sets it in another module.

The following standard quantifiers are recognized:

* Match O or more times
+ Match 1 or more times
? Match 1 or O times

08-0Oct-1996 Version 5.003 39

perire

Perl Programmers Reference Guide perlre

{n} Match exactly n times
{n,} Match at least n times
{n,m} Match at least n but not more than m times

(If a curly bracket occurs in any other context, it is treated as a regular character.) The ™" modifier is
equivalent tof0,} , the "+" modifier to{1,} , and the "?" modifier t§0,1} . n and m are limited to
integral values less than 65536.

By default, a quantified subpattern is "greedy", that is, it will match as many times as possible without
causing the rest of the pattern not to match. The standard quantifiers are all "greedy", in that they match as
many occurrences as possible (given a particular starting location) without causing the pattern to fail. If you
want it to match the minimum number of times possible, follow the quantifier with a "?" after any of them.
Note that the meanings don‘t change, just the "gravity":

*? Match O or more times

+? Match 1 or more times

?? Match O or 1 time

{n}? Match exactly n times

{n,}? Match at least n times

{n,m}? Match at least n but not more than m times

Since patterns are processed as double quoted strings, the following also work:

\t tab (HT, TAB)

\n newline (LF, NL)

\r return (CR)

\f form feed (FF)

\a alarm (bell) (BEL)

\e escape (think troff) (ESC)
\033 octal char (think of a PDP-11)
\x1B hex char

\c[control char

\l lowercase next char (think vi)

\u uppercase next char (think vi)
\L lowercase till \E (think vi)

\U uppercase till \E (think vi)

\E end case modification (think vi)
\Q quote regexp metacharacters till \E

In addition, Perl defines the following:

\w Match a "word" character (alphanumeric plus " ")
\W Match a non-word character

\s Match a whitespace character

\S Match a non—-whitespace character

\d Match a digit character

\D Match a non-digit character

Note that\w matches a single alphanumeric character, not a whole word. To match a word you‘d need to
say\w+. You may uséw,\W, \s ,\S,\d and\D within character classes (though not as either end of a
range).

Perl defines the following zero—width assertions:

\b Match a word boundary

\B Match a non-(word boundary)

\A Match only at beginning of string

\Z Match only at end of string (or before newline at the end)
\G Match only where previous m//g left off

40

Version 5.003 08-0ct—-1996

perire Perl Programmers Reference Guide perlre

A word boundary\p) is defined as a spot between two characters that /waa one side of it and and a

\W on the other side of it (in either order), counting the imaginary characters off the beginning and end of the
string as matching ®V. (Within character classéls represents backspace rather than a word boundary.)
The\A and\Z are just like """ and$" except that they won‘t match multiple times when/themodifier

is used, while "*" and$" will match at every internal line boundary. To match the actual end of the string,
not ignoring newline, you can us&(?\n)

When the bracketing construgt..) is used, \<digit> matches the digit'th substring. Outside of the
pattern, always usé” instead of "\" in front of the digit. (While the \<digit> notation can on rare occasion
work outside the current pattern, this should not be relied upon. See the WARNING below.) The scope of
$<digit> (and$', $&, and$’) extends to the end of the enclosing BLOCK or eval string, or to the next
successful pattern match, whichever comes first. If you want to use parentheses to delimit a subpattern (e.qg.
a set of alternatives) without saving it as a subpattern, follow the (with a ?:.

You may have as many parentheses as you wish. If you have more than 9 substrings, the$&Djables

$11, ... refer to the corresponding substring. Within the pattern, \10, \11, etc. refer back to substrings if
there have been at least that many left parens before the backreference. Otherwise (for backward
compatibility) \10 is the same as \010, a backspace, and \11 the same as \011, a tab. And so on. (\1 through
\9 are always backreferences.)

$+ returns whatever the last bracket match match®fl.returns the entire matched string$0 (used to
return the same thing, but not any moré&) returns everything before the matched strir§j. returns
everything after the matched string. Examples:

SIN[MT) *([N T9)/%2 $1/; # swap first two words

if (/Time: (.):(..):()N {
$hours = $1;
$minutes = $2;
$seconds = $3;

}

You will note that all backslashed metacharacters in Perl are alphanumeric, sbch\ws \n . Unlike

some other regular expression languages, there are no backslashed symbols that aren‘t alphanumeric. So
anything that looks like \\, \(; \), \<, \>, \{{, or \} is always interpreted as a literal character, not a
metacharacter. This makes it simple to quote a string that you want to use for a pattern but that you are
afraid might contain metacharacters. Simply quote all the non—alphanumeric characters:

$pattern =~ s/(\W)\\$1/g;

You can also use the built-iquotemeta() function to do this. An even easier way to quote
metacharacters right in the match operator is to say

/$unquoted\Q$quoted\E$unquoted/

Perl 5 defines a consistent extension syntax for regular expressions. The syntax is a pair of parens with a
guestion mark as the first thing within the parens (this was a syntax error in Perl 4). The character after the
guestion mark gives the function of the extension. Several extensions are already supported:

(?#text) A comment. The text is ignored. If the switch is used to enable whitespace formatting, a
simple# will suffice.

(?:regexp) This groups things lik&) " but doesn‘t make backreferences liKe " does. So
split(Ab(?:alb|c)\b/)
is like
split(/Ab(a|b|c)\b/)

but doesn‘t spit out extra fields.

08-0Oct-1996 Version 5.003 41

perire

Perl Programmers Reference Guide perlre

(?=regexp) A zero—width positive lookahead assertion. For exaniphe;(?=\t)/ matches a word
followed by a tab, without including the tab$&..

(?'regexp) A zero—width negative lookahead assertion. For exartiptg?!bar)/ matches any
occurrence of "foo" that isn‘t followed by "bar". Note however that lookahead and
lookbehind are NOT the same thing. You cannot use this for lookbée(?tdo)bar/
will not find an occurrence of "bar" that is preceded by something which is not "foo". That's
because th€?!foo) s just saying that the next thing cannot be "foo"—and it's not, it's a
"bar", so "foobar" will match. You would have to do something l{Ré&foo)...bar/
for that. We say "like" because there's the case of your "bar" not having three characters
before it. You could cover that this wa{?:(?!foo)...|*..?)bar/ . Sometimes it's
still easier just to say:

if (/foo/ && $' =~ /bar$/)

(?imsx) One or more embedded pattern—match modifiers. This is particularly useful for patterns that
are specified in a table somewhere, some of which want to be case sensitive, and some of
which don‘t. The case insensitive ones merely need to in¢Rijle at the front of the
pattern. For example:

$pattern = "foobar"”;
if (/$pattern/i)

more flexible:

$pattern = "(?i)foobar"”;
if (/$pattern/)

The specific choice of question mark for this and the new minimal matching construct was because 1)
guestion mark is pretty rare in older regular expressions, and 2) whenever you see one, you should stop and
"question"” exactly what is going on. That's psychology...

Backtracking

A fundamental feature of regular expression matching involves the notion batt&ttacking which is
used (when needed) by all regular expression quantifiers, nantély +, +?, {n,m} , and{n,m}? .

For a regular expression to match, #mire regular expression must match, not just part of it. So if the
beginning of a pattern containing a quantifier succeeds in a way that causes later parts in the pattern to fail,
the matching engine backs up and recalculates the beginning part—that‘s why it's called backtracking.

Here is an example of backtracking: Let's say you want to find the word following "foo" in the string "Food
is on the foo table.™:

$ ="Food is on the foo table.";
if (Ab(foo)\s+(\w+)/i) {

print "$2 follows $1.\n";
}

When the match runs, the first part of the regular expresdi@fod)) finds a possible match right at the
beginning of the string, and loads #fi with "Foo". However, as soon as the matching engine sees that
there's no whitespace following the "Foo" that it had savefilin it realizes its mistake and starts over

again one character after where it had had the tentative match. This time it goes all the way until the next
occurrence of "foo". The complete regular expression matches this time, and you get the expected output of
"table follows foo."

Sometimes minimal matching can help a lot. Imagine you'd like to match everything between "foo" and
"bar". Initially, you write something like this:

$_ = "The food is under the bar in the barn.";
if (/foo(.*)bar/) {
print "got <$1>\n";

42

Version 5.003 08-0ct—-1996

perire Perl Programmers Reference Guide perlre

}
Which perhaps unexpectedly yields:

got <d is under the bar in the >

That's because® was greedy, so you get everything betweerfitae"foo" and thdast "bar". In this case,
it's more effective to use minimal matching to make sure you get the text between a "foo" and the first "bar"
thereafter.

if (/foo(.*?)bar/) { print "got <$1>\n"}
got <d is under the >

Here's another example: let's say you'd like to match a number at the end of a string, and you also want to
keep the preceding part the match. So you write this:

$ ="l have 2 numbers: 53147";

if (/(X)0d*)/){ # Wrong!
print "Beginning is <$1>, number is <$2>.\n";

}

That won't work at all, becausé was greedy and gobbled up the whole string\d&s can match on an
empty string the complete regular expression matched successfully.

Beginning is <I have 2 numbers: 53147>, number is <>.
Here are some variants, most of which don‘t work:

$ ="l have 2 numbers: 53147";
@pats = qw{
(:)(\d*)
(:)(d+)
(*?2)(\d*)
(-*?2)(\d+)
((\d+)$
(*?2)(\d+)$
(N\b(\d+)$
(-"\D)(\d+)$
¥
for $pat (@pats) {
printf "%-12s ", $pat;
if (/$pat/) {
print "<$1> <$2>\n";
}else {
print "FAIL\n";
}
}

That will print out:

(.:*)(\d*) <l have 2 numbers: 53147> <>
(.:*)(\d+) <l have 2 numbers: 5314> <7>
(F?2)(\d*) <><>

(.*?)(\d+) <l have > <2>

(*)(\d+)$ <l have 2 numbers: 5314> <7>
(-*?)(\d+)$ <I have 2 numbers: > <53147>
(-*)\b(\d+)$ <I have 2 numbers: > <53147>
(.*\D)(\d+)$ <I have 2 numbers: > <53147>

As you see, this can be a bit tricky. It's important to realize that a regular expression is merely a set of

08-0Oct-1996 Version 5.003 43

perire

Perl Programmers Reference Guide perlre

assertions that gives a definition of success. There may be 0, 1, or several different ways that the definition
might succeed against a particular string. And if there are multiple ways it might succeed, you need to
understand backtracking in order to know which variety of success you will achieve.

When using lookahead assertions and negations, this can all get even tricker. Imagine you'd like to find a
sequence of nondigits not followed by "123". You might try to write that as

$_="ABC123"

if (/MD*(?1123)/){ # Wrong!
print "Yup, no 123 in $_\n";

}

But that isn‘t going to match; at least, not the way you‘re hoping. It claims that there is no 123 in the string.
Here's a clearer picture of why it that pattern matches, contrary to popular expectations:

$x ='ABC123’;
$y = 'ABC445’;

print "1: got $1\n" if $x =~ /A(ABC)(?!123)/ ;
print "2: got $1\n" if $y =~ /*(ABC)(?!123)/ ;

print "3: got $1\n" if $x =~ /M(\D*)(?!1123)/ ;
print "4: got $1\n" if $y =~ /A(\D*)(?!1123)/ ;

This prints

2: got ABC
3: got AB
4: got ABC

You might have expected test 3 to fail because it just seems to a more general purpose version of test 1. The
important difference between them is that test 3 contains a quanfiffej &nd so can use backtracking,
whereas test 1 will not. What's happening is that you‘'ve asked "Is it true that at the $xartfoflowing 0

or more nondigits, you have something that's not 123?" If the pattern matcher hBd lexpand to

"ABC", this would have caused the whole pattern to fail. The search engine will initially YDétctvith

"ABC". Then it will try to match(?!123 with "123" which, of course, fails. But because a quantifier

(\D*) has been used in the regular expression, the search engine can backtrack and retry the match
differently in the hope of matching the complete regular expression.

Well now, the pattern reallygally wants to succeed, so it uses the standard regexp backoff-and-retry and
lets\D* expand to just "AB" this time. Now there's indeed something following "AB" that is not "123".
It's in fact "C123", which suffices.

We can deal with this by using both an assertion and a negation. We'll say that the firs§pariust be
followed by a digit, and in fact, it must also be followed by something that's not "123". Remember that the
lookaheads are zero—-width expressions—they only look, but don‘t consume any of the string in their match.
So rewriting this way produces what you‘d expect; that is, case 5 will fail, but case 6 succeeds:

print "5: got $1\n" if $x =~ /A(\D*)(?=\d)(?!123)/ ;
print "6: got $1\n" if $y =~ /A(\D*)(?=\d)(?!123)/ ;

6: got ABC

In other words, the two zero—width assertions next to each other work like they‘'re ANDed together, just as
you'd use any builtin assertiong®$/ matches only if you're at the beginning of the line AND the end of

the line simultaneously. The deeper underlying truth is that juxtaposition in regular expressions always
means AND, except when you write an explicit OR using the vertical fadw. means match "a" AND

(then) match "b", although the attempted matches are made at different positions because "a" is not a
zero—-width assertion, but a one—width assertion.

One warning: particularly complicated regular expressions can take exponential time to solve due to the
immense number of possible ways they can use backtracking to try match. For example this will take a very

44

Version 5.003 08-0ct—-1996

perire Perl Programmers Reference Guide perlre

long time to run

/((a{0,5}){0,5){0,5}

And if you used* ‘s instead of limiting it to O through 5 matches, then it would take literally forever—or
until you ran out of stack space.

Version 8 Regular Expressions

In case you'‘re not familiar with the "regular" Version 8 regexp routines, here are the pattern—matching rules
not described above.

Any single character matches itself, unless it imedacharactemwith a special meaning described here or
above. You can cause characters which normally function as metacharacters to be interpreted literally by
prefixing them with a "\" (e.g. "\." matches a ".", not any character; "\" matches a "\"). A series of characters
matches that series of characters in the target string, so the fitdkn would match "blurfl* in the

target string.

You can specify a character class, by enclosing a list of characfgrs which will match any one of the
characters in the list. If the first character after the "[" is """, the class matches any character not in the list.
Within a list, the "-" character is used to specify a range, s@attmtepresents all the characters between

"a" and "z", inclusive.

Characters may be specified using a metacharacter syntax much like that used in C: "\n" matches a newline,
"\t" a tab, "\r" a carriage return, "\f* a form feed, etc. More generally), \wherennnis a string of octal
digits, matches the character whose ASCII valuenis Similarly, \xan, wherenn are hexadecimal digits,
matches the character whose ASCII valuerisThe expression Xcmatches the ASCII character contral-

Finally, the "." metacharacter matches any character except "\n" (unless yeu) use

You can specify a series of alternatives for a pattern using "|" to separate themfesgiftbHoe will

match any of "fee", "fie", or "foe" in the target string (as wd(ddi|o)e). Note that the first alternative
includes everything from the last pattern delimiter ("(", "[", or the beginning of the pattern) up to the first "|",
and the last alternative contains everything from the last "|" to the next pattern delimiter. For this reason, it's
common practice to include alternatives in parentheses, to minimize confusion about where they start and
end. Note however that "|" is interpreted as a literal with square brackets, so if ydieeffiejfoe]

you're really only matchingfeio|]

Within a pattern, you may designate subpatterns for later reference by enclosing them in parentheses, and
you may refer back to theth subpattern later in the pattern using the metacharact&ubpatterns are

numbered based on the left to right order of their opening parenthesis. Note that a backreference matches
whatever actually matched the subpattern in the string being examined, not the rules for that subpattern.

Therefore(0|0x)\d*\s\1\d* will match "0x1234 0x4321",but not "0x1234 01234", since subpattern 1
actually matched "0x", even though the r@®x could potentially match the leading O in the second
number.

WARNING on\lvs $1
Some people get too used to writing things like
$pattern =~ s/(\W)\\1/g;

This is grandfathered for the RHS of a substitute to avoid shockirngetheddicts, but it's a dirty habit to
get into. That's because in PerlThink, the right-hand sideséf a is a double—quoted stringl in the
usual double—quoted string means a control-A. The customary Unix meaningsokludged in fois///

However, if you get into the habit of doing that, you get yourself into trouble if you then afd an
modifier.

s/(\d+)/\1 + 1 /eq;
Or if you try to do
s/(\d+)/\1000/;

08-0Oct-1996 Version 5.003 45

perire

Perl Programmers Reference Guide perlre

You can‘t disambiguate that by sayi{d}000 , whereas you can fix it witB{1}000. Basically, the
operation of interpolation should not be confused with the operation of matching a backreference. Certainly
they mean two different things on tledt side of thes///

46

Version 5.003 08-0ct—-1996

perlrun Perl Programmers Reference Guide perlrun

NAME

perlrun — how to execute the Perl interpreter
SYNOPSIS

perl [-sTuU]

[-hv][-V[:configval]

[—cw] [—d[:debuggef] [-D[number/lis}]

[-pna][—Fpattern] [—I[octall] [—O[octal|]

[-Idir][=-m[-]module] [-M[-]'module...’]

[-P]

[-S]

[—x[dir]]

[—i[extensioh]

[—e‘command’] [—] [programfile] [argument]...

DESCRIPTION
Upon startup, Perl looks for your script in one of the following places:

1. Specified line by line viae switches on the command line.

2. Contained in the file specified by the first filename on the command line. (Note that systems
supporting the #! notation invoke interpreters this way.)

3. Passed in implicitly via standard input. This only works if there are no filename arguments—to pass
arguments to a STDIN script you must explicitly specify a "-" for the script name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless you‘ve speeified a
switch, in which case it scans for the first line starting with #! and containing the word "perl", and starts there
instead. This is useful for running a script embedded in a larger message. (In this case you would indicate
the end of the script using the __ END___ token.)

As of Perl 5, the #! line is always examined for switches as the line is being parsed. Thus, if you're on a
machine that only allows one argument with the #! line, or worse, doesn't even recognize the #! line, you
still can get consistent switch behavior regardless of how Perl was invoked, exendg used to find the
beginning of the script.

Because many operating systems silently chop off kernel interpretation of the #! line after 32 characters,
some switches may be passed in on the command line, and some may not; you could even get a "-" without
its letter, if you‘re not careful. You probably want to make sure that all your switches fall either before or
after that 32 character boundary. Most switches don't actually care if they're processed redundantly, but
getting a - instead of a complete switch could cause Perl to try to execute standard input instead of your
script. And a partiatl switch could also cause odd results.

Parsing of the #! switches starts wherever "perl" is mentioned in the line. The sequences "-*" and "- " are
specifically ignored so that you could, if you were so inclined, say

#l/bin/sh —— # —*— perl —*— —p
eval 'exec perl $0 -S ${1+"$@"}
if 0;
to let Perl see thep switch.

If the #! line does not contain the word "perl”, the program named after the #! is executed instead of the Perl
interpreter. This is slightly bizarre, but it helps people on machines that don‘t do #!, because they can tell a
program that their SHELL is /usr/bin/perl, and Perl will then dispatch the program to the correct interpreter
for them.

After locating your script, Perl compiles the entire script to an internal form. If there are any compilation
errors, execution of the script is not attempted. (This is unlike the typical shell script, which might run
partway through before finding a syntax error.)

08-0Oct-1996 Version 5.003 47

perlrun Perl Programmers Reference Guide perlrun

If the script is syntactically correct, it is executed. If the script runs off the end without hitteagt@n
ordie() operator, an impliciexit(0) is provided to indicate successful completion.

Switches
A single—character switch may be combined with the following switch, if any.
#1/usr/bin/perl —spi.bak # same as —s —p —i.bak
Switches include:
—0[digits]
specifies the record separat8f)(as an octal number. If there are no digits, the null character is the

separator. Other switches may precede or follow the digits. For example, if you have a version of
find which can print filenames terminated by the null character, you can say this:

find . —name *.bak’ —print0 | perl —nOe unlink

The special value 00 will cause Perl to slurp files in paragraph mode. The value 0777 will cause Perl
to slurp files whole since there is no legal character with that value.

—a turns on autosplit mode when used withraor —p. An implicit split command to the @F array is
done as the first thing inside the implicit while loop produced byther —p.

perl —ane ’'print pop(@F), "\n";’
is equivalent to

while (<>) {

@F = split(");

print pop(@F), "\n";
}

An alternate delimiter may be specified usitlg

—-C causes Perl to check the syntax of the script and then exit without executing it. Actuailly, it
executeBEGIN, END anduse blocks, since these are considered as occurring outside the execution
of your program.

-d runs the script under the Perl debugger. (&eklebug
-d: foo

runs the script under the control of a debugging or tracing module installed as Devel:foo. E.g.,
—d:DProf executes the script using the Devel::DProf profiler. [g=llebug

-Dnumber
-Dlist

sets debugging flags. To watch how it executes your script—Ddd. (This only works if
debugging is compiled into your Perl.) Another nice valueD4024 which lists your compiled
syntax tree. And-D512 displays compiled regular expressions. As an alternative specify a list of
letters instead of numbers (e-d@>14is equivalent te-Dtls):

1 p Tokenizing and Parsing

2 s Stack Snapshots

4 | Label Stack Processing

8 t Trace Execution

16 o Operator Node Construction
32 ¢ String/Numeric Conversions
64 P Print Preprocessor Command for —P
128 m Memory Allocation

256 f Format Processing

512 r Regular Expression Parsing
1024 x Syntax Tree Dump

48 Version 5.003 08-0Oct-1996

perlrun Perl Programmers Reference Guide perlrun

2048 u Tainting Checks

4096 L Memory Leaks (not supported anymore)
8192 H Hash Dump —- usurps values()

16384 X Scratchpad Allocation

32768 D Cleaning Up

—-e commandline

may be used to enter one line of script.—dfis given, Perl will not look for a script filename in the
argument list. Multiple-e commands may be given to build up a multi-line script. Make sure to
use semicolons where you would in a normal program.

—Fpattern

specifies the pattern to split on-f is also in effect. The pattern may be surrounded hy" or
“ , otherwise it will be put in single quotes.

-h prints a summary of the options.

—i[extension]
specifies that files processed by #re construct are to be edited in—place. It does this by renaming
the input file, opening the output file by the original name, and selecting that output file as the default
for print() statements. The extension, if supplied, is added to the name of the old file to make a
backup copy. If no extension is supplied, no backup is made. From the shell, saying

$ perl —p —i.bak —e "s/foo/bar/; ... "
is the same as using the script:

#1/usr/bin/perl —pi.bak
s/foo/bar/;

which is equivalent to

#1/usr/bin/perl
while (<>) {
if (JARGV ne $oldargv) {
rename($ARGV, $ARGV . ".bak’);
open(ARGVOUT, ">$ARGV");
select(ARGVOUT);
$oldargv = $ARGV,

s/foo/bar/;
}
continue {
print; # this prints to original filename

}
select(STDOUT);

except that thei form doesn‘t need to compa$ARGVto $oldargv to know when the filename
has changed. It does, however, use ARGVOUT for the selected filehandle. Note that STDOUT is
restored as the default output filehandle after the loop.

You can useof without parenthesis to locate the end of each input file, in case you want to append
to each file, or reset line numbering (see exampé®in

—ldirectory

Directories specified byl are prepended to the search path for mod@id(), and also tells the C
preprocessor where to search for include files. The C preprocessor is invokedPyithdefault it
searches /usr/include and /ustr/lib/perl.

08-0Oct-1996 Version 5.003 49

perlrun Perl Programmers Reference Guide perlrun
=l[octnum)]
enables automatic line—ending processing. It has two effects: first, it automatically chomps the line
terminator when used withn or —p, and second, it assign$\" to have the value afctnumso that
any print statements will have that line terminator added back @ttrifimis omitted, sets$\" to
the current value of$/". For instance, to trim lines to 80 columns:
perl —Ipe 'substr($_, 80) ="
Note that the assignmeft = $/ is done when the switch is processed, so the input record
separator can be different than the output record separatorif ¢hétch is followed by &0 switch:
gnufind / —print0 | perl =InOe ’print "found $_" if —-p’
This setsp\ to newline and then se$¢ to the null character.
—m[-]module
-M[-]module
-M[-]'module ...’

—[mM] [-]module=arg[,arg]...

—-mmoduleexecutesise module(); before executing your script.

—Mmoduleexecutesuse module; before executing your script. You can use quotes to add extra
code after the module name, e-gM‘module qw(foo bar)’

If the first character after theMor —mis a dash+) then the ‘use’ is replaced with ‘no’.

A little built—in syntactic sugar means you can also-saynodule=foo,bar or

—Mmodule=foo,bar as a shortcut forM‘module gw(foo bar)’ . This avoids the need to
use quotes when importing symbols. The actual code generatddrbgdule=foo,bar is use
module split(/,/,q{foo,bar}) . Note that the= form removes the distinction betweem
and-M

causes Perl to assume the following loop around your script, which makes it iterate over filename
arguments somewhat lilsed —nor awk:

while (<>) {
your script goes here

}

Note that the lines are not printed by default. Se¢o have lines printed. Here is an efficient way
to delete all files older than a week:

find . -mtime +7 —print | perl —nle 'unlink;’

This is faster than using th@xec switch offind because you don‘t have to start a process on every
filename found.

BEGIN andENDblocks may be used to capture control before or after the implicit loop, just as in
awk.

causes Perl to assume the following loop around your script, which makes it iterate over filename
arguments somewhat lilsed

while (<>) {

your script goes here

} continue {
print;

}

Note that the lines are printed automatically. To suppress printing use #wdtch. A—p overrides
a—n switch.

50

Version 5.003 08-0ct—-1996

perlrun

Perl Programmers Reference Guide perlrun

-V

-V

BEGIN andENDblocks may be used to capture control before or after the implicit loop, just as in
awk.

causes your script to be run through the C preprocessor before compilation by Perl. (Since both
comments and cpp directives begin with the # character, you should avoid starting comments with

any words recognized by the C preprocessor such as "if", "else" or "define".)

enables some rudimentary switch parsing for switches on the command line after the script name but
before any filename arguments (or before-p Any switch found there is removed from @ARGV

and sets the corresponding variable in the Perl script. The following script prints "true" if and only if
the script is invoked with axyz switch.

#l/usr/bin/perl —s
if ($xyz) { print "true\n"; }

makes Perl use the PATH environment variable to search for the script (unless the name of the script
starts with a slash). Typically this is used to emulate #! startup on machines that don‘t support #!, in
the following manner:

#1/usr/bin/perl
eval "exec /ust/bin/perl =S $0 $*"
if $running_under_some_shell;

The system ignores the first line and feeds the script to /bin/sh, which proceeds to try to execute the
Perl script as a shell script. The shell executes the second line as a normal shell command, and thus
starts up the Perl interpreter. On some systgdndoesn‘t always contain the full pathname, so the
—Stells Perl to search for the script if necessary. After Perl locates the script, it parses the lines and
ignores them because the variaeinning_under_some_shell is never true. A better
construct than$* would be ${1+"$@"}, which handles embedded spaces and such in the
filenames, but doesn‘t work if the script is being interpreted by csh. In order to start up sh rather than
csh, some systems may have to replace the #! line with a line containing just a colon, which will be
politely ignored by Perl. Other systems can‘t control that, and need a totally devious construct that
will work under any of csh, sh or Perl, such as the following:

eval '(exit $70)' && eval 'exec /usr/bin/perl =S $0 ${1+"$@"}
& eval 'exec /usr/bin/perl =S $0 $argv:q’
if 0;
forces "taint" checks to be turned on so you can test them. Ordinarily these checks are done only

when running setuid or setgid. It's a good idea to turn them on explicitly for programs run on
another's behalf, such as CGI programs. [Saésec

causes Perl to dump core after compiling your script. You can then take this core dump and turn it
into an executable file by using thendump program (not supplied). This speeds startup at the
expense of some disk space (which you can minimize by stripping the executable). (Still, a "hello
world" executable comes out to about 200K on my machine.) If you want to execute a portion of
your script before dumping, use tdemp() operator instead. Note: availability ahdump is
platform specific and may not be available for a specific port of Perl.

allows Perl to do unsafe operations. Currently the only "unsafe" operations are the unlinking of
directories while running as superuser, and running setuid programs with fatal taint checks turned
into warnings.

prints the version and patchlevel of your Perl executable.

prints summary of the major perl configuration values and the current value of @INC.

-V:name

Prints to STDOUT the value of the named configuration variable.

08-0Oct-1996 Version 5.003 51

perlrun

Perl Programmers Reference Guide perlrun

-W

prints warnings about variable names that are mentioned only once, and scalar variables that are used
before being set. Also warns about redefined subroutines, and references to undefined filehandles or
filehandles opened readonly that you are attempting to write on. Also warns you if you use values as
a number that doesn‘t look like numbers, using an array as though it were a scalar, if your subroutines
recurse more than 100 deep, and innumerable other thingse®giag andperltrap.

—X directory

tells Perl that the script is embedded in a message. Leading garbage will be discarded until the first
line that starts with #! and contains the string "perl”. Any meaningful switches on that line will be
applied (but only one group of switches, as with normal #! processing). If a directory name is
specified, Perl will switch to that directory before running the script. -=krewitch only controls the

the disposal of leading garbage. The script must be terminated vitND ___if there is trailing
garbage to be ignored (the script can process any or all of the trailing garbage via the DATA
filehandle if desired).

52

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

NAME
perlfunc — Perl builtin functions

DESCRIPTION

The functions in this section can serve as terms in an expression. They fall into two major categories: list
operators and named unary operators. These differ in their precedence relationship with a following comma.
(See the precedence tableperlop.) List operators take more than one argument, while unary operators can
never take more than one argument. Thus, a comma terminates the argument of a unary operator, but merely
separates the arguments of a list operator. A unary operator generally provides a scalar context to its
argument, while a list operator may provide either scalar and list contexts for its arguments. If it does both,
the scalar arguments will be first, and the list argument will follow. (Note that there can only ever be one list
argument.) For instancsplice() has three scalar arguments followed by a list.

In the syntax descriptions that follow, list operators that expect a list (and provide list context for the
elements of the list) are shown with LIST as an argument. Such a list may consist of any combination of
scalar arguments or list values; the list values will be included in the list as if each individual element were
interpolated at that point in the list, forming a longer single—dimensional list value. Elements of the LIST
should be separated by commas.

Any function in the list below may be used either with or without parentheses around its arguments. (The
syntax descriptions omit the parens.) If you use the parens, the simple (but occasionally surprising) rule is
this: It LOOKSIlike a function, therefore IS a function, and precedence doesn't matter. Otherwise it's a list
operator or unary operator, and precedence does matter. And whitespace between the function and left
parenthesis doesn‘t count—so you need to be careful sometimes:

print 1+2+3; # Prints 6.
print(1+2) + 3; # Prints 3.

print (1+2)+3; # Also prints 3!
print +(1+2)+3; # Prints 6.

print ((1+2)+3); # Prints 6.
If you run Perl with the-w switch it can warn you about this. For example, the third line above produces:

print (...) interpreted as function at - line 1.
Useless use of integer addition in void context at — line 1.

For functions that can be used in either a scalar or list context, non—abortive failure is generally indicated in
a scalar context by returning the undefined value, and in a list context by returning the null list.

Remember the following rule:
THERE IS NO GENERAL RULE FOR CONVERTING A LIST INTO A SCALAR!

Each operator and function decides which sort of value it would be most appropriate to return in a scalar
context. Some operators return the length of the list that would have been returned in a list context. Some
operators return the first value in the list. Some operators return the last value in the list. Some operators
return a count of successful operations. In general, they do what you want, unless you want consistency.
Perl Functions by Category
Here are Perl's functions (including things that look like functions, like some of the keywords and named
operators) arranged by category. Some functions appear in more than one place.
Functions for SCALARS or strings
chomp, chop, chr, crypt, hex, index, lc, Icfirst, length, oct, ord, pack, g/STRING/, qq/STRING/,
reverse, rindex, sprintf, substr, tr///, uc, ucfirst, y///
Regular expressions and pattern matching
m//, pos, quotemeta, s///, split, study

08-0Oct-1996 Version 5.003 53

perlfunc Perl Programmers Reference Guide perlfunc

Numeric functions
abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Functions for real @ARRAY's
pop, push, shift, splice, unshift

Functions for list data
grep, join, map, qw/STRING/, reverse, sort, unpack

Functions for real %HASHes
delete, each, exists, keys, values

Input and output functions
binmode, close, closedir, domclose, dbmopen, die, eof, fileno, flock, format, getc, print, printf, read,
readdir, rewinddir, seek, seekdir, select, syscall, sysread, syswrite, tell, telldir, truncate, warn, write
Functions for fixed length data or records
pack, read, syscall, sysread, syswrite, unpack, vec

Functions for filehandles, files, or directories
-X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, Istat, mkdir, open, opendir, readlink, rename,
rmdir, stat, symlink, umask, unlink, utime

Keywords related to the control flow of your perl program
caller, continue, die, do, dump, eval, exit, goto, last, next, redo, return, sub, wantarray

Keywords related to scoping
caller, import, local, my, package, use

Miscellaneous functions
defined, dump, eval, formline, local, my, reset, scalar, undef, wantarray

Functions for processes and process groups
alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, gx/STRING/, setpgrp, setpriority, sleep,
system, times, wait, waitpid

Keywords related to perl modules
do, import, no, package, require, use

Keywords related to classes and object-orientedness
bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use

Low-level socket functions
accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv, send, setsockopt, shutdown,
socket, socketpair

System V interprocess communication functions
msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, shmread, shmwrite

Fetching user and group info
endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam, getlogin, getpwent,
getpwnam, getpwuid, setgrent, setpwent

Fetching network info

endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent, getnetbyaddr, getnetbyname,
getnetent, getprotobyname, getprotobynumber, getprotoent, getservbyname, getservbyport, getservent,
sethostent, setnetent, setprotoent, setservent

54 Version 5.003 08-0Oct-1996

perlfunc

Perl Programmers Reference Guide

perlfunc

Time-related functions
gmtime, localtime, time, times

Functions new in perl5
abs, bless, chomp, chr, exists, formline, glob, import, Ic, Icfirst, map, my, no, prototype, gx, qw,

readline, readpipe, ref, sub*, sysopen, tie, tied, uc, ucfirst, untie, use

* — sub was a keyword in perl4, but in perl5 it is an operator which can be used in expressions.

Functions obsoleted in perl5
dbmclose, dbmopen

Alphabetical Listing of Perl Functions

—-X FILEHANDLE

-X EXPR
=X

A file test, where X is one of the letters listed below. This unary operator takes one argument,
either a filename or a filehandle, and tests the associated file to see if something is true about it.

If the argument is omitted, tes$,
documented, it returnk for TRUE and’

except for-t , which tests STDIN. Unless otherwise
for FALSE, or the undefined value if the file doesn't

exist. Despite the funny names, precedence is the same as any other named unary operator, and
the argument may be parenthesized like any other unary operator. The operator may be any of:

=T
-W

File is readable by effective uid/gid.
File is writable by effective uid/gid.
File is executable by effective uid/gid.
File is owned by effective uid.

File is readable by real uid/gid.
File is writable by real uid/gid.
File is executable by real uid/gid.
File is owned by real uid.

File exists.
File has zero size.
File has non-zero size (returns size).

File is a plain file.
File is a directory.

File is a symbolic link.

File is a named pipe (FIFO).
File is a socket.

File is a block special file.
File is a character special file.
Filehandle is opened to a tty.

File has setuid bit set.
File has setgid bit set.
File has sticky bit set.

File is a text file.
File is a binary file (opposite of -T).

Age of file in days when script started.
Same for access time.
Same for inode change time.

The interpretation of the file permission operatars -R, —-w, -W —x and-Xis based solely on
the mode of the file and the uids and gids of the user. There may be other reasons you can‘t
actually read, write or execute the file. Also note that, for the superuserR, -w and-W

08-0Oct-1996

Version 5.003

55

perlfunc

Perl Programmers Reference Guide perlfunc

always return 1, angx and-X return 1 if any execute bit is set in the mode. Scripts run by the
superuser may thus need to detat() in order to determine the actual mode of the file, or
temporarily set the uid to something else.

Example:

while (<>) {
chop;
next unless —f $_; # ignore specials

}

Note that-s/a/b/ does not do a negated substitution. Sayiagp($foo) still works as
expected, however—only single letters following a minus are interpreted as file tests.

The-T and-B switches work as follows. The first block or so of the file is examined for odd
characters such as strange control codes or characters with the high bit set. If too many odd
characters (>30%) are found, it's—8 file, otherwise it's a-T file. Also, any file containing

null in the first block is considered a binary file.—If or—B is used on a filehandle, the current

stdio buffer is examined rather than the first block. Bofhand-B return TRUE on a null file,

or a file at EOF when testing a filehandle. Because you have to read a file to-dotésé on

most occasions you want to usefa against the file first, as inext unless —f $file

&& - T $file.

If any of the file tests (or either theat() or Istat() operators) are given the special
filehandle consisting of a solitary underline, then the stat structure of the previous file test (or stat
operator) is used, saving a system call. (This doesn‘t work-witfand you need to remember
thatIstat() and-| will leave values in the stat structure for the symbolic link, not the real
file.) Example:

print "Can do.\n" if -r $a || -w _ || -x _;

stat($filename);

print "Readable\n" if —r _;
print "Writable\n" if -w _;
print "Executable\n™ if -x _;
print "Setuid\n" if —u _;
print "Setgid\n" if —-g _;
print "Sticky\n" if -k _;

print "Text\n" if =T _;

print "Binary\n" if -B _;

abs VALUE

Returns the absolute value of its argument.

accept NEWSOCKET,GENERICSOCKET

Accepts an incoming socket connect, just as the accept(2) system call does. Returns the packed
address if it succeeded, FALSE otherwise. See example in
Sockets: Client/Server Communication in petlipc

alarm SECONDS

Arranges to have a SIGALRM delivered to this process after the specified number of seconds
have elapsed. (On some machines, unfortunately, the elapsed time may be up to one second less
than you specified because of how seconds are counted.) Only one timer may be counting at
once. Each call disables the previous timer, and an argument of 0 may be supplied to cancel the
previous timer without starting a new one. The returned value is the amount of time remaining
on the previous timer.

For delays of finer granularity than one second, you may use Besksll() interface to

56

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

access setitimer(2) if your system supports it, or elsésséect() below. Itis not advised
to intermixalarm() andsleep() calls.

atan2 Y,X
Returns the arctangent of Y/X in the range —PI to PI.

bind SOCKET,NAME

Binds a network address to a socket, just as the bind system call does. Returns TRUE if it
succeeded, FALSE otherwise. NAME should be a packed address of the appropriate type for the
socket. See the examplesSackets: Client/Server Communication in petlipc

binmode FILEHANDLE

Arranges for the file to be read or written in "binary” mode in operating systems that distinguish
between binary and text files. Files that are not in binary mode have CR LF sequences translated
to LF on input and LF translated to CR LF on output. Binmode has no effect under Unix; in
DOS and similarly archaic systems, it may be imperative—otherwise your DOS-damaged C
library may mangle your file. The key distinction between systems that need binmode and those
that don't is their text file formats. Systems like Unix and Plan9 that delimit lines with a single
character, and that encode that character in C as ‘\n‘, do nobimeedde . The rest need it. If
FILEHANDLE is an expression, the value is taken as the name of the filehandle.

bless REF,CLASSNAME
bless REF

This function tells the referenced object (passed as REF) that it is nhow an object in the
CLASSNAME package—or the current package if no CLASSNAME is specified, which is often
the case. It returns the reference for convenience, sibless() is often the last thing in a
constructor. Always use the two—argument version if the function doing the blessing might be
inherited by a derived class. Sezrlobjfor more about the blessing (and blessings) of objects.

caller EXPR
caller Returns the context of the current subroutine call. In a scalar context, returns TRUE if there is a
caller, that is, if we're in a subroutine eval() orrequire() , and FALSE otherwise. In a

list context, returns
($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to print a stack trace. The
value of EXPR indicates how many call frames to go back before the current one.

($package, $filename, $line,
$subroutine, $hasargs, $wantargs) = caller($i);

Furthermore, when called from within the DB package, caller returns more detailed information:
it sets the list variable @DB::args to be the arguments with which that subroutine was invoked.

chdir EXPR

Changes the working directory to EXPR, if possible. If EXPR is omitted, changes to home
directory. Returns TRUE upon success, FALSE otherwise. See exampl&iefder

chmod LIST

Changes the permissions of a list of files. The first element of the list must be the numerical
mode, which should probably be an octal number. Returns the number of files successfully
changed.

$cnt = chmod 0755, 'foo’, 'bar’;
chmod 0755, @executables;

chomp VARIABLE

08-0Oct-1996 Version 5.003 57

perlfunc Perl Programmers Reference Guide perlfunc

chomp LIST

chomp This is a slightly safer version of chop (see below). It removes any line ending that corresponds
to the current value d/ (also known as$INPUT_RECORD_SEPARATQAR the English
module). It returns the number of characters removed. It's often used to remove the newline
from the end of an input record when you‘re worried that the final record may be missing its
newline. When in paragraph modg € "), it removes all trailing newlines from the string.
If VARIABLE is omitted, it chompss_. Example:

while (<>) {
chomp; # avoid \n on last field
@array = split(/:/);

}

You can actually chomp anything that's an Ivalue, including an assignment:

chomp($cwd = ‘pwd’);
chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characters removed is
returned.

chop VARIABLE

chop LIST

chop Chops off the last character of a string and returns the character chopped. It's used primarily to
remove the newline from the end of an input record, but is much more efficierd/thén
because it neither scans nor copies the string. If VARIABLE is omitted, &hopExample:

while (<>) {
chop; # avoid \n on last field
@array = split(/:/);

}

You can actually chop anything that's an Ivalue, including an assignment:

chop($cwd = ‘pwd");
chop($answer = <STDIN>);

If you chop a list, each element is chopped. Only the value of the last chop is returned.

Note that chop returns the last character. To return all but the last character, use
substr($string, 0, —1)
chown LIST

Changes the owner (and group) of a list of files. The first two elements of the list must be the
NUMERICALuid and gid, in that order. Returns the number of files successfully changed.

$cnt = chown $uid, $gid, 'foo’, 'bar’;
chown $uid, $gid, @filenames;

Here's an example that looks up non—numeric uids in the passwd file:

print "User: ";

chop($user = <STDIN>);
print "Files: "
chop($pattern = <STDIN>);

($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

@ary = <${pattern}>; # expand filenames

58

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless you‘re the
superuser, although you should be able to change the group to any of your secondary groups. On
insecure systems, these restrictions may be relaxed, but this is not a portable assumption.

chr NUMBER

Returns the character represented by that NUMBER in the character set. For exiar(Gdg,
is "A" in ASCII.

chroot FILENAME
This function works as the system call by the same name: it makes the named directory the new
root directory for all further pathnames that begin with a "/* by your process and all of its
children. (It doesn‘t change your current working directory is unaffected.) For security reasons,
this call is restricted to the superuser. If FILENAME is omitted, does chr&ot to

close FILEHANDLE
Closes the file or pipe associated with the file handle, returning TRUE only if stdio successfully
flushes buffers and closes the system file descriptor. You don‘t have to close FILEHANDLE if
you are immediately going to do anottegren() on it, sinceopen() will close it for you.
(Seeopen() .) However, an explicit close on an input file resets the line coudifer (while
the implicit close done bgppen() does not. Also, closing a pipe will wait for the process
executing on the pipe to complete, in case you want to look at the output of the pipe afterwards.
Closing a pipe explicitly also puts the status value of the commangiintoExample:

open(OUTPUT, ’|sort >foo’); # pipe to sort

print stuff to output
close OUTPUT; # wait for sort to finish
open(INPUT, foo’); # get sort’s results

FILEHANDLE may be an expression whose value gives the real filehandle name.

closedir DIRHANDLE
Closes a directory opened bgendir()

connect SOCKET,NAME

Attempts to connect to a remote socket, just as the connect system call does. Returns TRUE if it
succeeded, FALSE otherwise. NAME should be a packed address of the appropriate type for the
socket. See the examplesSackets: Client/Server Communication in petlipc

continue BLOCK

Actually a flow control statement rather than a function. If there é@rdinue BLOCK
attached to a BLOCK (typically in\ahile orforeach), it is always executed just before the
conditional is about to be evaluated again, just like the third partoof doop in C. Thus it can
be used to increment a loop variable, even when the loop has been continuednaat the
statement (which is similar to thed®ntinue statement).

cos EXPR
Returns the cosine of EXPR (expressed in radians). If EXPR is omitted takes c@ksine of

crypt PLAINTEXT,SALT

Encrypts a string exactly like the crypt(3) function in the C library (assuming that you actually
have a version there that has not been extirpated as a potential munition). This can prove useful
for checking the password file for lousy passwords, amongst other things. Only the guys
wearing white hats should do this.

Here's an example that makes sure that whoever runs this program knows their own password:

$pwd = (getpwuid($<))[1];

08-0Oct-1996 Version 5.003 59

perlfunc

Perl Programmers Reference Guide perlfunc

$salt = substr($pwd, 0, 2);

system "stty —echo";

print "Password: ";

chop($word = <STDIN>);

print "\n";

system "stty echo";

if (crypt($word, $salt) ne $pwd) {
die "Sorry...\n";

}else {
print "ok\n";
}

Of course, typing in your own password to whoever asks you for it is unwise.

dbmclose ASSOC_ARRAY

[This function has been superseded byuthie() function.]

Breaks the binding between a DBM file and an associative array.

dbmopen ASSOC,DBNAME,MODE

[This function has been superseded bytigh@ function.]

This binds a dbm(3), ndbm(3), sdbm(8dbm() , or Berkeley DB file to an associative array.
ASSOC is the name of the associative array. (Unlike normal open, the first arguiNext és
filehandle, even though it looks like one). DBNAME is the name of the database (without the
dir or .pag extension if any). If the database does not exist, it is created with protection
specified by MODE (as modified by themask()). If your system only supports the older
DBM functions, you may perform only ombmopen() in your program. In older versions of
Perl, if your system had neither DBM nor ndbm, callitmmopen() produced a fatal error; it

now falls back to sdbm(3).

If you don‘t have write access to the DBM file, you can only read associative array variables, not
set them. If you want to test whether you can write, either use file tests or try setting a dummy
array entry inside aaval() , which will trap the error.

Note that functions such &gys() andvalues() may return huge array values when used
on large DBM files. You may prefer to use thach() function to iterate over large DBM
files. Example:

print out history file offsets
dbmopen(%HIST, /usr/lib/news/history’,0666);
while (($key,$val) = each %HIST) {

print $key, ' =", unpack(’L’,$val), "\n";
}

dbmclose(%HIST);

See als;AnyDBM_Filefor a more general description of the pros and cons of the various dbm
approaches, as well 88_File for a particularly rich implementation.

defined EXPR

Returns a boolean value saying whether EXPR has a real value or not. Many operations return
the undefined value under exceptional conditions, such as end of file, uninitialized variable,
system error and such. This function allows you to distinguish between an undefined null scalar
and a defined null scalar with operations that might return a real null string, such as referencing
elements of an array. You may also check to see if arrays or subroutines exist. Use of defined
on predefined variables is not guaranteed to produce intuitive results.

When used on a hash array element, it tells you whether the value is defined, not whether the key

60

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

exists in the hash. Usxists() for that.
Examples:

print if defined $switch{'D’};

print "$val\n" while defined($val = pop(@ary));

die "Can’t readlink $sym: $!"

unless defined($value = readlink $sym);

eval ‘@foo = ()’ if defined(@fo0);

die "No XYZ package defined" unless defined %_XYZ;

sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
See alsaindef()
Note: many folks tend to overuskefined() , and then are surprised to discover that the
number 0 and the null string are, in fact, defined concepts. For example, if you say

"ab" =~ fa(.*)b/;
the pattern match succeeds, &idis defined, despite the fact that it matched "nothing”. But it
didn't really match nothing—rather, it matched something that happened to be 0 characters long.
This is all very above-board and honest. When a function returns an undefined value, it's an
admission that it couldn‘t give you an honest answer. So you should onbjefised()
when you'‘re questioning the integrity of what you‘re trying to do. At other times, a simple
comparison to 0 or "™ is what you want.

delete EXPR

Deletes the specified value from its hash array. Returns the deleted value, or the undefined value
if nothing was deleted. Deleting froBENV{} modifies the environment. Deleting from an
array tied to a DBM file deletes the entry from the DBM file. (But deleting fréi®(r d hash
doesn't necessarily return anything.)
The following deletes all the values of an associative array:

foreach $key (keys %ARRAY) {

delete SARRAY{$key};

}
(But it would be faster to use thmdef() command.) Note that the EXPR can be arbitrarily
complicated as long as the final operation is a hash key lookup:

delete $ref->[$x][$y]{Skey};

die LIST Outside of areval() , prints the value of LIST t8§ TDERRand exits with the current value of

$! (errno). If$! is 0, exits with the value ¢$? >>8) (backtick ‘command’ status). ($?
>> 8) is 0, exits with 255. Inside aval() , the error message is stuffed i@, and the
eval() is terminated with the undefined value; this makies() the way to raise an
exception.

Equivalent examples:

die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news’;
chdir '/usr/spool/news’ or die "Can't cd to spool: $!\n"

If the value of EXPR does not end in a newline, the current script line number and input line
number (if any) are also printed, and a newline is supplied. Hint: sometimes appending ",
stopped" to your message will cause it to make better sense when the string "at foo line 123" is
appended. Suppose you are running script "canasta”.

die "/etc/games is no good";
die "/etc/games is no good, stopped";

08-0Oct-1996

Version 5.003 61

perlfunc Perl Programmers Reference Guide perlfunc

produce, respectively

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

See als@xit() andwarn() .

do BLOCK

Not really a function. Returns the value of the last command in the sequence of commands
indicated by BLOCK. When modified by a loop modifier, executes the BLOCK once before
testing the loop condition. (On other statements the loop modifiers test the conditional first.)

do SUBROUTINE(LIST)
A deprecated form of subroutine call. $eelsub

do EXPR Uses the value of EXPR as a filename and executes the contents of the file as a Perl script. Its
primary use is to include subroutines from a Perl subroutine library.

do 'stat.pl’;
is just like
eval ‘cat stat.pl;

except that it's more efficient, more concise, keeps track of the current filename for error
messages, and searches all-thdibraries if the file isn‘t in the current directory (see also the
@INC array inPredefined Nam@s It's the same, however, in that it does reparse the file every
time you call it, so you probably don‘t want to do this inside a loop.

Note that inclusion of library modules is better done with tise() and require()
operators, which also do error checking and raise an exception if there's a problem.

dump LABEL

This causes an immediate core dump. Primarily this is so that you can usehgp program

to turn your core dump into an executable binary after having initialized all your variables at the
beginning of the program. When the new binary is executed it will begin by execuirtg a
LABEL (with all the restrictions thajoto suffers). Think of it as a goto with an intervening
core dump and reincarnation. If LABEL is omitted, restarts the program from the top.
WARNING: any files opened at the time of the dump will NOT be open any more when the
program is reincarnated, with possible resulting confusion on the part of Perl. See @dimn

in perlrun.

Example:

#1/usr/bin/perl
require 'getopt.pl’;
require 'stat.pl’;

%days = (
'Sun’ =>1,
'Mon’ => 2,
"Tue' => 3,
'Wed' => 4,
'Thu’ => 5,
'Fri’ => 6,
'Sat’ => 7,

);

dump QUICKSTART if $ARGV[0] eq '-d’;

QUICKSTART:

Getopt('f);

62 Version 5.003 08-0Oct-1996

perlfunc

Perl Programmers Reference Guide perlfunc

each ASSOC_ARRAY

When called in a list context, returns a 2—element array consisting of the key and value for the
next element of an associative array, so that you can iterate over it. When called in a scalar
context, returns the key only for the next element in the associative array. Entries are returned in
an apparently random order. When the array is entirely read, a null array is returned in list
context (which when assigned produces a FALSE (0) value)uaaef is returned in a scalar
context. The next call teach() after that will start iterating again. The iterator can be reset
only by reading all the elements from the array. You should not add elements to an array while
you're iterating over it. There is a single iterator for each associative array, shared by all
each() ,keys() andvalues() function calls in the program. The following prints out your
environment like the printenv(1) program, only in a different order:

while (($key,$value) = each %ENV) {
print "$key=$value\n";
}

See als&keys() andvalues()

eof FILEHANDLE

eof ()
eof Returns 1 if the next read on FILEHANDLE will return end of file, or if FILEHANDLE is not
open. FILEHANDLE may be an expression whose value gives the real filehandle name. (Note
that this function actually reads a character and tingetc() s it, so it is not very useful in an
interactive context.) Do not read from a terminal file (or eaf(FILEHANDLE) on it) after
end-of-file is reached. Filetypes such as terminals may lose the end-of-file condition if you
do.
An eof without an argument uses the last file read as argument. Empty pareithesayg be
used to indicate the pseudofile formed of the files listed on the command lirepf()e. is
reasonable to use inside a while (<>) loop to detect the end of only the last file. Use
eof(ARGV) or eof without the parentheses to EAICH file in a while (<>) loop. Examples:
reset line numbering on each input file
while (<>) {
print "$.\t$_";
close(ARGV) if (eof); # Not eof().
}
insert dashes just before last line of last file
while (<>) {
if (eof()) {
print " \n";
close(ARGV); # close or break; is needed if we
are reading from the terminal
} .
print;
}
Practical hint: you almost never need to esé in Perl, because the input operators return undef
when they run out of data.
eval EXPR
eval BLOCK

EXPR is parsed and executed as if it were a little Perl program. It is executed in the context of
the current Perl program, so that any variable settings, subroutine or format definitions remain
afterwards. The value returned is the value of the last expression evaluated, or a return statement
may be used, just as with subroutines.

08-0Oct-1996

Version 5.003 63

perlfunc

Perl Programmers Reference Guide perlfunc

exec LIST

If there is a syntax error or runtime error, ati@() statement is executed, an undefined value
is returned byeval() , and$@is set to the error message. If there was no eb@ris
guaranteed to be a null string. If EXPR is omitted, evaluiates The final semicolon, if any,
may be omitted from the expression.

Note that, sinceeval() traps otherwise—fatal errors, it is useful for determining whether a
particular feature (such asocket() or symlink()) is implemented. It is also Perl's
exception trapping mechanism, where the die operator is used to raise exceptions.

If the code to be executed doesn't vary, you may use the eval-BLOCK form to trap run-time
errors without incurring the penalty of recompiling each time. The error, if any, is still returned
in $@. Examples:

make divide—-by-zero non-fatal
eval { $answer = $a / $b; }; warn $@ if $@;

same thing, but less efficient
eval '$answer = $a / $b’; warn $@ if $@;

a compile-time error
eval { $answer = };

a run—time error
eval '$answer ='; # sets $@

With aneval() , you should be especially careful to remember what's being looked at when:

eval $x; # CASE 1
eval "$x"; # CASE 2
eval '$x’; # CASE 3
eval { $x }; # CASE 4
eval "\$Sx++" # CASE 5
$Px++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in the #iable
(Although case 2 has misleading double quotes making the reader wonder what else might be
happening (nothing is).) Cases 3 and 4 likewise behave in the same way: they run the code
<$x>, which does nothing at all. (Case 4 is preferred for purely visual reasons.) Case 5 is a
place where normally yodVOULD like to use double quotes, except that in that particular
situation, you can just use symbolic references instead, as in case 6.

The exec() function executes a system commaAdlD NEVER RETURNS Use the
system() function if you want it to return.

If there is more than one argument in LIST, or if LIST is an array with more than one value, calls
execvp(3) with the arguments in LIST. If there is only one scalar argument, the argument is
checked for shell metacharacters. If there are any, the entire argument is p@sseshto

—c for parsing. If there are none, the argument is split into words and passed directly to
execvp() , which is more efficient. Noteexec() andsystem() do not flush your output
buffer, so you may need to st to avoid lost output. Examples:

exec 'fbinfecho’, "Your arguments are: ', @ARGV;
exec "sort $outfile | uniq";

If you don't really want to execute the first argument, but want to lie to the program you are
executing about its own name, you can specify the program you actually want to run as an
"indirect object" (without a comma) in front of the LIST. (This always forces interpretation of
the LIST as a multi-valued list, even if there is only a single scalar in the list.) Example:

64

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

$shell = '/bin/csh’;
exec $shell '=sh’; # pretend it's a login shell

or, more directly,

exec {'/bin/csh’} '=sh’; # pretend it's a login shell
exists EXPR
Returns TRUE if the specified hash key exists in its hash array, even if the corresponding value
is undefined.

print "Exists\n" if exists $array{$key};
print "Defined\n" if defined $Sarray{$key};
print "True\n" if $array{$key};

A hash element can only be TRUE if it's defined, and defined if it exists, but the reverse doesn‘t
necessarily hold true.

Note that the EXPR can be arbitrarily complicated as long as the final operation is a hash key
lookup:

if (exists $ref->[$x][$yl{$key}) { ... }

exit EXPR

Evaluates EXPR and exits immediately with that value. (Actually, it calls any defiNéd
routines first, but th&NDroutines may not abort the exit. Likewise any object destructors that
need to be called are called before exit.) Example:

$ans = <STDIN>;
exit 0 if $ans =~ /"[Xx]/;

See alsdalie() . If EXPR is omitted, exits with O status.

exp EXPR
Returnse (the natural logarithm base) to the power of EXPR. If EXPR is omitted, gives
exp($)).

fentl FILEHANDLE,FUNCTION,SCALAR
Implements the fcntl(2) function. You'll probably have to say

use Fentl;

first to get the correct function definitions. Argument processing and value return works just like
ioctl() below. Note thafcntl() will produce a fatal error if used on a machine that
doesn‘t implement fcntl(2). For example:

use Fentl;
fentl($filehandle, F_GETLK, $packed_return_buffer);

fileno FILEHANDLE

Returns the file descriptor for a filehandle. This is useful for constructing bitmaps for
select() . If FILEHANDLE is an expression, the value is taken as the name of the filehandle.

flock FILEHANDLE,OPERATION

Calls flock(2) on FILEHANDLE. Sedock(2)for definition of OPERATION. Returns TRUE

for success, FALSE on failure. Will produce a fatal error if used on a machine that doesn't
implement either flock(2) or fcntl(2). The fentl(2) system call will be automatically used if
flock(2) is missing from your system. This maklkegk() the portable file locking strategy,
although it will only lock entire files, not records. Note also that some versidiachf)

cannot lock things over the network; you would need to use the more system—$petbijic

for that.

08-0Oct-1996 Version 5.003 65

perlfunc Perl Programmers Reference Guide perlfunc

Here's a mailbox appender for BSD systems.

$LOCK_SH =1;
$LOCK_EX = 2;
$LOCK_NB = 4;
$LOCK_UN = 8;
sub lock {

flock(MBOX,$LOCK_EX);

and, in case someone appended
while we were waiting...
seek(MBOX, 0, 2);

}

sub unlock {
flock(MBOX,$LOCK_UN);

}

open(MBOX, ">>/usr/spool/mail/SENV{'USER'}")
or die "Can't open mailbox: $!";

lock();
print MBOX $msg,"\n\n";
unlock();

See als®B_File for otherflock() examples.

fork Does a fork(2) system call. Returns the child pid to the parent process and 0 to the child process,
or undef if the fork is unsuccessful. Note: unflushed buffers remain unflushed in both
processes, which means you may need to$$et($AUTOFLUSHIn English) or call the
autoflush() FileHandle method to avoid duplicate output.

If you fork() without ever waiting on your children, you will accumulate zombies:
$SIG{CHLD} = sub { wait };
There's also the double—fork trick (error checkingfornk() returns omitted);

unless ($pid = fork) {

unless (fork) {
exec "what you really wanna do";
die "no exec";
#..0r...
(some_perl_code_here)
exit 0;

}

exit 0;

}
waitpid($pid,0);

See als@erlipc for more examples of forking and reaping moribund children.
format Declare a picture format with use by thdate() function. For example:

format Something =
Test: @<<<<<<<< @||||| @>>>>>
$str, $%, '$. int($num)

$str = "widget";
$num = $cost/$quantity;
$~ ='Something’;

66 Version 5.003 08-0Oct-1996

perlfunc

Perl Programmers Reference Guide perlfunc

write;

Seeperlformfor many details and examples.

formline PICTURE, LIST

This is an internal function used ligrmat s, though you may call it too. It formats (see
perlform) a list of values according to the contents of PICTURE, placing the output into the
format output accumulator$”A (or SACCUMULATORN English). Eventually, when a
write() is done, the contents 8MA are written to some filehandle, but you could also read
$"A yourself and then s&*A back to ™. Note that a format typically does daemline()

per line of form, but thdormline() function itself doesn‘t care how many newlines are
embedded in the PICTURE. This means thattlaad~~ tokens will treat the entire PICTURE

as a single line. You may therefore need to use multiple formlines to implement a single record

format, just like the format compiler.

Be careful if you put double quotes around the picture, sincegdaoharacter may be taken to
mean the beginning of an array narf@emline() always returns TRUE. Seeerlform for
other examples.

getc FILEHANDLE

getc

getlogin

Returns the next character from the input file attached to FILEHANDLE, or a null string at end
of file. If FILEHANDLE is omitted, reads from STDIN. This is not particularly efficient. It

cannot be used to get unbuffered single—characters, however. For that, try something more like:

if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";
}

else {

system "stty", '—icanon’, 'eol’, "\001";
}
$key = getc(STDIN);

if ($BSD_STYLE) {
system "stty —cbreak </dev/tty >/dev/ity 2>&1";
}

else {

system "stty", 'icanon’, 'eol’, "*@’; # ascii null

}
print "\n";

Determination of whether to wheth8BSD_STYLEshould be set is left as an exercise to the
reader.

See also th&@erm::ReadKey module from your nearest CPAN site; details on CPAN can be
found onCPAN

Returns the current login frofatc/utmp if any. If null, usegetpwuid()
$login = getlogin || (getpwuid($<))[0] || "Kilroy";

Do not considegetlogin() for authentication: it is not as securegagpwuid()

getpeername SOCKET

Returns the packed sockaddr address of other end of the SOCKET connection.

use Socket;

$hersockaddr = getpeername(SOCK);

($port, Siaddr) = unpack_sockaddr_in($hersockaddr);
$herhostname = gethostbyaddr($iaddr, AF_INET);
$herstraddr = inet_ntoa($iaddr);

08-0Oct-1996

Version 5.003 67

perlfunc

Perl Programmers Reference Guide

perlfunc

getpgrp PID

Returns the current process group for the specified PID. Use a PID of 0 to get the current
process group for the current process. Will raise an exception if used on a machine that doesn‘t
implement getpgrp(2). If PID is omitted, returns process group of current process. Note that the
does not accept a PID argument, so only PID==0 is truly

POSIX version ofgetpgrp()

portable.

getppid Returns the process id of the parent process.

getpriority WHICH,WHO

Returns the current priority for a process, a process group, or a usege{Seerity(2)) Will
raise a fatal exception if used on a machine that doesn‘t implement getpriority(2).

getpwnam NAME

getgrnam NAME
gethostbyname NAME
getnetbyname NAME
getprotobyname NAME
getpwuid UID

getgrgid GID

getservbyname NAME,PROTO
gethostbyaddr ADDR,ADDRTYPE
getnetbyaddr ADDR,ADDRTYPE
getprotobynumber NUMBER
getservbyport PORT,PROTO
getpwent

getgrent

gethostent

getnetent

getprotoent

getservent

setpwent

setgrent

sethostent STAYOPEN
setnetent STAYOPEN
setprotoent STAYOPEN
setservent STAYOPEN
endpwent

endgrent

endhostent

endnetent

endprotoent

endservent

These routines perform the same functions as their counterparts in the system library. Within a

list context, the return values from the various get routines are as follows:

($name,$passwd,$uid, $gid,

$quota,$comment,$gcos, $dir,$shell) = getpw*
($name,$passwd,$gid, Smembers) = getgr*
($name, $aliases,$addrtype,$length, @addrs) = gethost*
($name,$aliases,$addrtype,$net) = getnet*

($name,$aliases,$proto) = getproto*

($name,$aliases,$port,$proto) = getserv*

(If the entry doesn‘t exist you get a null list.)

68

Version 5.003

08-0Oct-1996

perlfunc Perl Programmers Reference Guide perlfunc

Within a scalar context, you get the name, unless the function was a lookup by name, in which
case you get the other thing, whatever it is. (If the entry doesn't exist you get the undefined
value.) For example:

$uid = getpwnam
$name = getpwuid
$name = getpwent
$gid = getgrnam
$name = getgrgid
$name = getgrent
etc.

The$members value returned bgetgr*() is a space separated list of the login names of the
members of the group.

For thegethost*() functions, if theh_errno variable is supported in C, it will be returned

to you via$? if the function call fails. The @addrs value returned by a successful call is a list of
the raw addresses returned by the corresponding system library call. In the Internet domain, each
address is four bytes long and you can unpack it by saying something like:

($a,$b,$c,$d) = unpack('C4’,$addr[0]);

getsockname SOCKET
Returns the packed sockaddr address of this end of the SOCKET connection.

use Socket;
$mysockaddr = getsockname(SOCK);
($port, $myaddr) = unpack_sockaddr_in($mysockaddr);

getsockopt SOCKET,LEVEL,OPTNAME
Returns the socket option requested, or undefined if there is an error.

glob EXPR

Returns the value of EXPR with filename expansions such as a shell would do. This is the
internal function implementing the <*.*> operator, except it's easier to use.

gmtime EXPR

Converts a time as returned by the time function to a 9—element array with the time localized for
the standard Greenwich timezone. Typically used as follows:

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
gmtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this means that
$mon has the range 0..11 arlvday has the range 0..6. If EXPR is omitted, does
gmtime(time())

goto LABEL
goto EXPR
goto &NAME

The goto—LABEL form finds the statement labeled with LABEL and resumes execution there. It
may not be used to go into any construct that requires initialization, such as a subroutine or a
foreach loop. It also can‘t be used to go into a construct that is optimized away. It can be used
to go almost anywhere else within the dynamic scope, including out of subroutines, but it's
usually better to use some other construct such as last or die. The author of Perl has never felt
the need to use this form of goto (in Perl, that is—C is another matter).

The goto—EXPR form expects a label name, whose scope will be resolved dynamically. This
allows for computed gotos per FORTRAN, but isn't necessarily recommended if you‘re
optimizing for maintainability:

08-0Oct-1996 Version 5.003 69

perlfunc

Perl Programmers Reference Guide perlfunc

goto ("FOO", "BAR", "GLARCH")[$il;

The goto&NAMHorm is highly magical, and substitutes a call to the named subroutine for the
currently running subroutine. This is used by AUTOLOAD subroutines that wish to load
another subroutine and then pretend that the other subroutine had been called in the first place
(except that any modifications to @_ in the current subroutine are propagated to the other
subroutine.) After the goto, not evealler() will be able to tell that this routine was called

first.

grep BLOCK LIST
grep EXPR,LIST

hex EXPR

import

Evaluates the BLOCK or EXPR for each element of LIST (locally sefiingo each element)
and returns the list value consisting of those elements for which the expression evaluated to
TRUE. In a scalar context, returns the number of times the expression was TRUE.

@foo = grep(!/"#/, @bar); # weed out comments
or equivalently,
@foo = grep {I/#/} @bar; # weed out comments

Note that, sinc&_ is a reference into the list value, it can be used to modify the elements of the
array. While this is useful and supported, it can cause bizarre results if the LIST is not a named
array.

Interprets EXPR as a hex string and returns the corresponding decimal value. (To convert strings
that might start with O or Ox seet() .) If EXPR is omitted, use® .

There is no built-inmport() function. It is merely an ordinary method (subroutine) defined
(or inherited) by modules that wish to export names to another moduleus&fle function
calls theimport() = method for the package used. See Alsg perimod andExporter.

index STR,SUBSTR,POSITION
index STR,SUBSTR

Returns the position of the first occurrence of SUBSTR in STR at or after POSITION. If
POSITION is omitted, starts searching from the beginning of the string. The return value is
based at 0 (or whatever you'‘ve set $ievariable to—but don‘t do that). If the substring is not
found, returns one less than the base, ordinarily —1.

int EXPR Returns the integer portion of EXPR. If EXPR is omitted, $ses
ioctl FILEHANDLE,FUNCTION,SCALAR

Implements the ioctl(2) function. You'll probably have to say
require "ioctl.ph"; # probably in /usr/local/lib/perl/ioctl.ph

first to get the correct function definitions. itfctl.ph doesn't exist or doesn't have the correct
definitions you'll have to roll your own, based on your C header files suetsyadioctl.h>

(There is a Perl script calld®2ph that comes with the Perl kit which may help you in this, but

it's non-trivial.) SCALAR will be read and/or written depending on the FUNCTION—a pointer

to the string value of SCALAR will be passed as the third argument of the actual ioctl call. (If
SCALAR has no string value but does have a numeric value, that value will be passed rather than
a pointer to the string value. To guarantee this to be TRUE, add a 0 to the scalar before using it.)
The pack() andunpack() functions are useful for manipulating the values of structures
used byioctl() . The following example sets the erase character to DEL.

require 'ioctl.ph’;

$getp = &TIOCGETP;

die "NO TIOCGETP" if $@ || !$getp;

$sgttyb_t = "ccces”; # 4 chars and a short

70

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

if (ioctl(STDIN,$getp,$sgttyb)) {
@ary = unpack($sgttyb_t,$sgttyb);
$ary[2] = 127;
$sgttyb = pack($sgttyb_t,@ary);
ioctl(STDIN,&TIOCSETP, $sgityb)
|| die "Can't ioctl: $!";

}
The return value of ioctl (and fcntl) is as follows:
if OS returns: then Perl returns:
-1 undefined value
0 string "0 but true"
anything else that number

Thus Perl returns TRUE on success and FALSE on failure, yet you can still easily determine the
actual value returned by the operating system:

($retval = ioctl(...)) || ($retval = -1);
printf "System returned %d\n", $retval;

join EXPR,LIST

Joins the separate strings of LIST or ARRAY into a single string with fields separated by the
value of EXPR, and returns the string. Example:

$_=join(’’", $login,$passwd,$uid,$gid,$gcos,$home,$shell);
Seesplit.

keys ASSOC_ARRAY
Returns a normal array consisting of all the keys of the named associative array. (In a scalar
context, returns the number of keys.) The keys are returned in an apparently random order, but it
is the same order as either thalues() or each() function produces (given that the
associative array has not been modified). Here is yet another way to print your environment:

@keys = keys %ENV;
@values = values %ENV;
while ($#keys >= 0) {
print pop(@keys), '=’, pop(@values), "\n";
}

or how about sorted by key:
foreach $key (sort(keys %ENV)) {
print $key, '=", SENV{$key}, "\n";
}

To sort an array by value, you'll need to ussod{} function. Here's a descending numeric
sort of a hash by its values:

foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash)) {
printf "%4d %s\n", $hash{$key}, $key;
}

kill LIST Sends a signal to a list of processes. The first element of the list must be the signal to send.
Returns the number of processes successfully signaled.

$cnt = kill 1, $child1, $child2;
kill 9, @goners;

Unlike in the shell, in Perl if th8IGNALIs negative, it kills process groups instead of processes.
(On System V, a negativBROCESShumber will also kill process groups, but that's not

08-0Oct-1996 Version 5.003 71

perlfunc Perl Programmers Reference Guide perlfunc

portable.) That means you usually want to use positive not negative signals. You may also use a
signal name in quotes. SB@nals in perlipdor details.

last LABEL

last Thelast command is like théreak statement in C (as used in loops); it immediately exits
the loop in question. If the LABEL is omitted, the command refers to the innermost enclosing
loop. Thecontinue block, if any, is not executed:

LINE: while (<STDIN>) {
last LINE if /"$/; # exit when done with header

}

lc EXPR Returns an lowercased version of EXPR. This is the internal function implementing the \L
escape in double—quoted strings. Should respect any Ps@Btale() settings.

Icfirst EXPR

Returns the value of EXPR with the first character lowercased. This is the internal function
implementing the \l escape in double—quoted strings. Should respect any POSIX

setlocale() settings.

length EXPR
Returns the length in characters of the value of EXPR. If EXPR is omitted, returns length of
$_.

link OLDFILE,NEWFILE
Creates a new filename linked to the old filename. Returns 1 for success, 0 otherwise.
listen SOCKET,QUEUESIZE

Does the same thing that the listen system call does. Returns TRUE if it succeeded, FALSE
otherwise. See example $ockets: Client/Server Communication in petlipc

local EXPR

A local modifies the listed variables to be local to the enclosing block, subroesm§, or
do. If more than one value is listed, the list must be placed in parens. See
"Temporary Values vidocal() " for details.

But you really probably want to be usimgy() instead, becausecal() isn‘t what most
people think of as "local"). Séerivate Variables viany() " for details.

localtime EXPR

Converts a time as returned by the time function to a 9—element array with the time analyzed for
the local timezone. Typically used as follows:

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday, Sisdst) =
localtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this means that
$mon has the range 0..11 arflvday has the range 0..6. If EXPR is omitted, does
localtime(time).

In a scalar context, prints out the ctime(3) value:
$now_string = localtime; # e.g. "Thu Oct 13 04:54:34 1994"
Also see theéimelocal.pllibrary, and the strftime(3) function available via the POSIX module.

log EXPR
Returns logarithm (bas® of EXPR. If EXPR is omitted, returns log $f.

72

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

Istat FILEHANDLE
Istat EXPR

Does the same thing as th@t() function, but stats a symbolic link instead of the file the
symbolic link points to. If symbolic links are unimplemented on your system, a nstah@|
is done.

m// The match operator. Seerlop.

map BLOCK LIST
map EXPR,LIST

Evaluates the BLOCK or EXPR for each element of LIST (locally sefiingo each element)

and returns the list value composed of the results of each such evaluation. Evaluates BLOCK or
EXPR in a list context, so each element of LIST may produce zero, one, or more elements in the
returned value.

@chars = map(chr, @nums);

translates a list of numbers to the corresponding characters. And
%hash = map { getkey($_) => $_} @array;

is just a funny way to write

%hash = ();

foreach $_ (@array) {
$hash{getkey($)} =$_;

}

mkdir FILENAME,MODE

Creates the directory specified by FILENAME, with permissions specified by MODE (as
modified by umask). If it succeeds it returns 1, otherwise it returns 0 arfil s@gno).

msgctl ID,CMD,ARG

Calls the System V IPC function msgctl(2). If CMD&$PC_STAT, then ARG must be a
variable which will hold the returned msqid_ds structure. Returns like ioctl: the undefined value
for error, "0 but true" for zero, or the actual return value otherwise.

msgget KEY,FLAGS

Calls the System V IPC function msgget(2). Returns the message queue id, or the undefined
value if there is an error.

msgsnd ID,MSG,FLAGS
Calls the System V IPC function msgsnd to send the message MSG to the message queue ID.
MSG must begin with the long integer message type, which may be creatquhok{i",
$type). Returns TRUE if successful, or FALSE if there is an error.

msgrev ID,VAR,SIZE, TYPE,FLAGS
Calls the System V IPC function msgrcv to receive a message from message queue ID into
variable VAR with a maximum message size of SIZE. Note that if a message is received, the
message type will be the first thing in VAR, and the maximum length of VAR is SIZE plus the
size of the message type. Returns TRUE if successful, or FALSE if there is an error.

my EXPR

A "my" declares the listed variables to be local (lexically) to the enclosing block, subroutine,
eval , ordo/require/use ‘d file. If more than one value is listed, the list must be placed in
parens. Se&rivate Variables viany() " for details.

08-0Oct-1996 Version 5.003 73

perlfunc

Perl Programmers Reference Guide perlfunc

next LABEL

next

Thenext command is like theontinue statement in C; it starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /"#/; # discard comments

}

Note that if there were aontinue block on the above, it would get executed even on
discarded lines. If the LABEL is omitted, the command refers to the innermost enclosing loop.

no Module LIST

oct EXPR

See the "use" function, which "no" is the opposite of.

Interprets EXPR as an octal string and returns the corresponding decimal value. (If EXPR
happens to start off with 0x, interprets it as a hex string instead.) The following will handle
decimal, octal, and hex in the standard Perl or C notation:

$val = oct($val) if $val =~ /70,
If EXPR is omitted, use$.

open FILEHANDLE,EXPR
open FILEHANDLE

Opens the file whose filename is given by EXPR, and associates it with FILEHANDLE. If
FILEHANDLE is an expression, its value is used as the name of the real filehandle wanted. If
EXPR is omitted, the scalar variable of the same name as the FILEHANDLE contains the
filename. If the filename begins with "<" or nothing, the file is opened for input. If the filename
begins with ">", the file is opened for output. If the filename begins with ">>", the file is opened
for appending. You can put a ‘+’ in front of the >’ or ‘<’ to indicate that you want both read
and write access to the file; thus ‘+<’ is usually preferred for read/write updates—the ‘+>" mode
would clobber the file first. These correspond to the fopen(3) modes of ‘', ‘r+', ‘w', ‘w+, ‘a’,
and ‘at’.

If the filename begins with "|", the filename is interpreted as a command to which output is to be
piped, and if the filename ends with a "|", the filename is interpreted\%#eg open() for

IPC" for more examples of this. as command which pipes input to us. (You may not have a raw
open() toacommand that pipes bothand out, but seepen2 open3 and

Bidirectional Communication in perlipgior alternatives.)

Opening ‘=’ opens STDIN and opening ‘>-’ opens STDOUT. Open returns non-zero upon
success, the undefined value otherwise. If the open involved a pipe, the return value happens to
be the pid of the subprocess.

If you're unfortunate enough to be running Perl on a system that distinguishes between text files
and binary files (modern operating systems don‘t care), then you should chébinoadefor

tips for dealing with this. The key distinction between systems that need binmode and those that
don'‘t is their text file formats. Systems like Unix and Plan9 that delimit lines with a single
character, and that encode that character in C as ‘\n‘, do nobimeeode . The rest need it.

Examples:

$ARTICLE = 100;
open ARTICLE or die "Can't find article $ARTICLE: $!\n";
while (<ARTICLE>) {...

open(LOG, '>>/usr/spool/news/twitlog’); # (log is reserved)

74

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

open(DBASE, '+<dbase.mine’); # open for update
open(ARTICLE, "caesar <$atrticle |"); # decrypt article
open(EXTRACT, "|sort >/tmp/Tmp3"); # 3 is our process id
process argument list of files along with any includes

foreach $file (@ARGV) {
process($file, 'fh00’);
}

sub process {
local($filename, $input) = @_;
Sinput++; # this is a string increment
unless (open($input, $filename)) {
print STDERR "Can't open $filename: $\n";
return;

}

while (<$input>) { # note use of indirection
if (/M #include "(.*)"/) {
process($1, $input);
next;

whatever

}

You may also, in the Bourne shell tradition, specify an EXPR beginning w&h "n which

case the rest of the string is interpreted as the name of a filehandle (or file descriptor, if numeric)
which is to be duped and opened. You may&aéier >, >>, <, +>, +>> and +<. The mode you
specify should match the mode of the original filehandle. (Duping a filehandle does not take into
account any existing contents of stdio buffers.) Here is a script that saves, redirects, and restores
STDOUT and STDERR:

#1/usr/bin/perl
open(SAVEOUT, ">&STDOUT");
open(SAVEERR, ">&STDERR");

open(STDOUT, ">foo.out") || die "Can’t redirect stdout";
open(STDERR, ">&STDOUT") || die "Can’t dup stdout";

select(STDERR); $| = 1; # make unbuffered
select(STDOUT); $| = 1; # make unbuffered

print STDOUT "stdout 1\n"; # this works for
print STDERR "stderr 1\n"; # subprocesses too

close(STDOUT);
close(STDERR);

open(STDOUT, ">&SAVEOUT");
open(STDERR, ">&SAVEERR");

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you specify "&=N", where N is a number, then Perl will do an equivalent of@pen()
of that file descriptor; this is more parsimonious of file descriptors. For example:

open(FILEHANDLE, "<&=%$fd")

08-0Oct-1996 Version 5.003 75

perlfunc

Perl Programmers Reference Guide perlfunc

If you open a pipe on the command "-", i.e. either "|-" or "—|", then there is an implicit fork
done, and the return value of open is the pid of the child within the parent process, and 0 within
the child process. (Ustefined($pid) to determine whether the open was successful.) The

filehandle behaves normally for the parent, but i/o to that filehandle is piped from/to the
STDOUT/STDIN of the child process. In the child process the filehandle isn‘t opened—i/o
happens from/to the new STDOUT or STDIN. Typically this is used like the normal piped open
when you want to exercise more control over just how the pipe command gets executed, such as
when you are running setuid, and don‘t want to have to scan shell commands for metacharacters.
The following pairs are more or less equivalent:

open(FOO, "|tr '[a-z] '[A-Z]™);
open(FOO, "|-") || exec 'tr, '[a-z], '[A-Z];

open(FOO, "cat —n "$file’|");
open(FOO, "-|") || exec 'cat’, '-n’, $file;

SeeSafe Pipe Opens in perlifor more examples of this.

Explicitly closing any piped filehandle causes the parent process to wait for the child to finish,
and returns the status value $8. Note: on any operation which may do a fork, unflushed
buffers remain unflushed in both processes, which means you may need$fo teetavoid
duplicate output.

Using the FileHandle constructor from the FileHandle package, you can generate anonymous
filehandles which have the scope of whatever variables hold references to them, and
automatically close whenever and however you leave that scope:

use FileHandle;

sub read_myfile_munged {
my $ALL = shift;
my $handle = new FileHandle;
open($handle, "myfile") or die "myfile: $!";
$first = <$handle>
orreturn (); # Automatically closed here.

mung $first or die "mung failed"; # Or here.
return $first, <$handle> if $ALL; # Or here.
$first; # Or here.

}

The filename that is passed to open will have leading and trailing whitespace deleted. In order to
open a file with arbitrary weird characters in it, it's necessary to protect any leading and trailing
whitespace thusly:

$file =~ s# (\s)#./$1#;
open(FOO, "< $file\0");

If you want a "real" Copen() (seeopen(2)on your system), then you should use the
sysopen() function. This is another way to protect your filenames from interpretation. For
example:

use FileHandle;

sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL, 0700)
or die "sysopen $path: $!";

HANDLE->autoflush(1);

HANDLE->print("stuff $$\n");

seek(HANDLE, 0, 0);

print "File contains: ", <HANDLE>;

76

Version 5.003 08-0ct—-1996

perlfunc

Perl Programmers Reference Guide perlfunc

See/seek() for some details about mixing reading and writing.

opendir DIRHANDLE,EXPR

ord EXPR

Opens a directory named EXPR for processingdaddir() , telldir() , seekdir()
rewinddir() and closedir() . Returns TRUE if successful. DIRHANDLEs have their
own namespace separate from FILEHANDLEs.

Returns the numeric ascii value of the first character of EXPR. If EXPR is omitte&_uses

pack TEMPLATE,LIST

Takes an array or list of values and packs it into a binary structure, returning the string
containing the structure. The TEMPLATE is a sequence of characters that give the order and
type of values, as follows:

>

An ascii string, will be space padded.

An ascii string, will be null padded.

A bit string (ascending bit order, like vec()).
A bit string (descending bit order).

A hex string (low nybble first).

A hex string (high nybble first).

IS WO o

A signed char value.

An unsigned char value.
A signed short value.

An unsigned short value.
A signed integer value.

An unsigned integer value.
A signed long value.

An unsigned long value.

r— == unouQNnao

A short in "network” order.
A long in "network" order.
A short in "VAX" (little—endian) order.
A long in "VAX" (little—endian) order.

A single—precision float in the native format.
A double—precision float in the native format.

A pointer to a null-terminated string.
A pointer to a structure (fixed-length string).

TTo o=+ << =z

c

A uuencoded string.

X Anull byte.
X Back up a byte.
@ Null fill to absolute position.

Each letter may optionally be followed by a number which gives a repeat count. With all types
except "a", "A", "b", "B", "h" and "H", and "P" the pack function will gobble up that many
values from the LIST. A * for the repeat count means to use however many items are left. The
"a" and "A" types gobble just one value, but pack it as a string of length count, padding with
nulls or spaces as necessary. (When unpacking, "A" strips trailing spaces and nulls, but "a" does
not.) Likewise, the "b" and "B" fields pack a string that many bits long. The "h" and "H" fields
pack a string that many nybbles long. The "P" packs a pointer to a structure of the size indicated
by the length. Real numbers (floats and doubles) are in the native machine format only; due to
the multiplicity of floating formats around, and the lack of a standard "network" representation,
no facility for interchange has been made. This means that packed floating point data written on
one machine may not be readable on another — even if both use IEEE floating point arithmetic

08-0Oct-1996

Version 5.003 77

perlfunc

Perl Programmers Reference Guide perlfunc

(as the endian—ness of the memory representation is not part of the IEEE spec). Note that Perl
uses doubles internally for all numeric calculation, and converting from double into float and
thence back to double again will lose precision (mpack("f", pack("f", $foo))

will not in general equ&bfoo).

Examples:

$foo = pack("cccc",65,66,67,68);
foo eq "ABCD"

$foo = pack("c4",65,66,67,68);
same thing

$foo = pack("ccxxcc",65,66,67,68);
foo eq "AB\0\OCD"

$foo = pack("s2",1,2);
"\1\0\2\0" on little—endian
"\0\1\0\2" on big—endian

$foo = pack("a4","abcd","x","y","z");

"abcd"

$foo = pack("aaaa","abcd","x","y","z");
"axyz"

$foo = pack("al4","abcdefg");

"abcdefg\0\0\0\0\0\0\O"

$foo = pack("i9pl", gmtime);
a real struct tm (on my system anyway)

sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, —32)));

}

The same template may generally also be used in the unpack function.

package NAMESPACE

Declares the compilation unit as being in the given namespace. The scope of the package
declaration is from the declaration itself through the end of the enclosing block (the same scope
as thelocal() operator). All further unqualified dynamic identifiers will be in this
namespace. A package statement only affects dynamic variables—including those you‘ve used
local() on—but not lexical variables created withny() . Typically it would be the first
declaration in a file to be included by thequire or use operator. You can switch into a
package in more than one place; it merely influences which symbol table is used by the compiler
for the rest of that block. You can refer to variables and filehandles in other packages by
prefixing the identifier with the package name and a double cd®&ackage::Variable.

If the package name is null, theain package as assumed. That$issail is equivalent to
$main::sail.

See Packages in perlmodor more information about packages, modules, and classes. See
perlsubfor other scoping issues.

pipe READHANDLE,WRITEHANDLE

Opens a pair of connected pipes like the corresponding system call. Note that if you set up a loop
of piped processes, deadlock can occur unless you are very careful. In addition, note that Perl‘s
pipes use stdio buffering, so you may need tdspeto flush your WRITEHANDLE after each
command, depending on the application.

Seeopen2 open3 andBidirectional Communication in perliplor examples of such things.

78

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

pop ARRAY
Pops and returns the last value of the array, shortening the array by 1. Has a similar effect to

$tmp = SARRAY[$#ARRAY—-];

If there are no elements in the array, returns the undefined value. If ARRAY is omitted, pops the
@ARGYV array in the main program, and the @_ array in subroutines, jushifi

pos SCALAR

Returns the offset of where the last/g search left off for the variable in question. May be
modified to change that offset.

print FILEHANDLE LIST

print LIST

print Prints a string or a comma-separated list of strings. Returns TRUE if successful.
FILEHANDLE may be a scalar variable name, in which case the variable contains the name of
or a reference to the filehandle, thus introducing one level of indirection. (NOTE: If
FILEHANDLE is a variable and the next token is a term, it may be misinterpreted as an operator
unless you interpose a + or put parens around the arguments.) If FILEHANDLE is omitted,
prints by default to standard output (or to the last selected output channéselsep If LIST
is also omitted, print$_ to STDOUT. To set the default output channel to something other than
STDOUT use the select operation. Note that, because print takes a LIST, anything in the LIST is
evaluated in a list context, and any subroutine that you call will have one or more of its
expressions evaluated in a list context. Also be careful not to follow the print keyword with a
left parenthesis unless you want the corresponding right parenthesis to terminate the arguments
to the print—interpose a + or put parens around all the arguments.

Note that if you're storing FILEHANDLES in an array or other expression, you will have to use
a block returning its value instead:

print { $files[$i] } "stuffin”;
print { $OK ? STDOUT : STDERR } "stuff\n";

printf FILEHANDLE LIST
printf LIST

Equivalent to a "print FILEHANDLE sprintf(LIST)". The first argument of the list will be
interpreted as the printf format.

prototype FUNCTION

Returns the prototype of a function as a stringuidef if the function has no prototype).
FUNCTION is a reference to the the function whose prototype you want to retrieve.

push ARRAY,LIST

Treats ARRAY as a stack, and pushes the values of LIST onto the end of ARRAY. The length
of ARRAY increases by the length of LIST. Has the same effect as

for $value (LIST) {
SARRAY[++$#ARRAY] = $value;

}

but is more efficient. Returns the new number of elements in the array.

q/STRING/

qa/STRING/
qX/STRING/
qW/STRING/

Generalized quotes. Sperlop.

08-0Oct-1996 Version 5.003 79

perlfunc Perl Programmers Reference Guide perlfunc

guotemeta EXPR
Returns the value of EXPR with with all regular expression metacharacters backslashed. This is
the internal function implementing the \Q escape in double—quoted strings.

rand EXPR
rand Returns a random fractional number between 0 and the value of EXPR. (EXPR should be

positive.) If EXPR is omitted, returns a value between 0 and 1. This function produces
repeatable sequences unlesnd() is invoked. See alsyand()

(Note: if your rand function consistently returns numbers that are too large or too small, then
your version of Perl was probably compiled with the wrong number of RANDBITS. As a
workaround, you can usually multiply EXPR by the correct power of 2 to get the range you
want. This will make your script unportable, however. It's better to recompile if you can.)

read FILEHANDLE,SCALAR,LENGTH,OFFSET

read FILEHANDLE,SCALAR,LENGTH
Attempts to read LENGTH bytes of data into variable SCALAR from the specified
FILEHANDLE. Returns the number of bytes actually read, or undef if there was an error.
SCALAR will be grown or shrunk to the length actually read. An OFFSET may be specified to
place the read data at some other place than the beginning of the string. This call is actually
implemented in terms of stdio‘s fread call. To get a true read system calyssead()

readdir DIRHANDLE

Returns the next directory entry for a directory openeddandir() . If used in a list context,
returns all the rest of the entries in the directory. If there are no more entries, returns an
undefined value in a scalar context or a null list in a list context.

If you're planning to filetest the return values out afeaddir() , you‘d better prepend the
directory in question. Otherwise, since we diditdir() there, it would have been testing the
wrong file.

opendir(DIR, $some_dir) || die "can’t opendir $some_dir: $!";
@dots = grep { /"\./ && —f "$some_dir/$_" } readdir(DIR);
closedir DIR;

readlink EXPR
Returns the value of a symbolic link, if symbolic links are implemented. If not, gives a fatal
error. If there is some system error, returns the undefined value ai$d getsno). If EXPR is
omitted, use$.

recv SOCKET,SCALAR,LEN,FLAGS
Receives a message on a socket. Attempts to receive LENGTH bytes of data into variable
SCALAR from the specified SOCKET filehandle. Actually does ee@/from() , so that it
can returns the address of the sender. Returns the undefined value if there's an error. SCALAR
will be grown or shrunk to the length actually read. Takes the same flags as the system call of
the same name. SE®P: Message Passing in perlifor examples.

redo LABEL

redo The redo command restarts the loop block without evaluating the conditional again. The
continue block, if any, is not executed. If the LABEL is omitted, the command refers to the
innermost enclosing loop. This command is normally used by programs that want to lie to
themselves about what was just input:

a simpleminded Pascal comment stripper
(warning: assumes no { or } in strings)
LINE: while (<STDIN>) {

while (s|({.*}.){-}$1 |) {}

sI{H I

80

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

it (sI{-*) {
$front=$_;
while (<STDIN>) {
if (}){ #endof comment?
s|™$front{|;
redo LINE;
}
}
} .
print;
}

ref EXPR Returns a TRUE value if EXPR is a reference, FALSE otherwise. The value returned depends
on the type of thing the reference is a reference to. Builtin types include:

REF
SCALAR
ARRAY
HASH
CODE
GLOB

If the referenced object has been blessed into a package, then that package name is returned
instead. You can think oéf() as atypeof() operator.

if (ref($r) eq "HASH") {
print "r is a reference to an associative array.\n";

}
if ('ref ($r) {

print "r is not a reference at all.\n";
}

See alsperlref.

rename OLDNAME,NEWNAME
Changes the name of a file. Returns 1 for success, 0 otherwise. Will not work across filesystem
boundaries.

require EXPR

require Demands some semantics specified by EXPR, db_byf EXPR is not supplied. If EXPR is
numeric, demands that the current version of PHErl ¢r SPERL_VERSION) be equal or
greater than EXPR.

Otherwise, demands that a library file be included if it hasn‘t already been included. The file is
included via the do—FILE mechanism, which is essentially just a variegvaf) . Has
semantics similar to the following subroutine:

sub require {
local($filename) = @_;
return 1 if $INC{$filename};
local($realfilename,$result);
ITER: {
foreach $prefix (@INC) {
$realfilename = "$prefix/$filename”;
if (—f $realfilename) {
$result = do $realfilename;
last ITER;

}

08-0Oct-1996 Version 5.003 81

perlfunc Perl Programmers Reference Guide perlfunc

die "Can't find $filename in \@INC";
}
die 3@ if $@;
die "$filename did not return true value" unless $result;
SINC{$filename} = $realfilename;
$result;

}

Note that the file will not be included twice under the same specified name. The file must return
TRUE as the last statement to indicate successful execution of any initialization code, so it's
customary to end such a file with "1;" unless you‘re sure it'll return TRUE otherwise. But it's
better just to put thel’; ", in case you add more statements.

If EXPR is a bare word, the require assumega” extension and replaces™ with "/" in the
filename for you, to make it easy to load standard modules. This form of loading of modules
does not risk altering your namespace.

For a yet-more—powerful import facility, sheseand perimod

reset EXPR

reset Generally used in eontinue block at the end of a loop to clear variables and reset ?? searches
so that they work again. The expression is interpreted as a list of single characters (hyphens
allowed for ranges). All variables and arrays beginning with one of those letters are reset to their
pristine state. If the expression is omitted, one—match searches (?pattern?) are reset to match
again. Only resets variables or searches in the current package. Always returns 1. Examples:

reset 'X’; # reset all X variables
reset 'a-z’; # reset lower case variables
reset; # just reset ?? searches

Resetting "A-Z" is not recommended since you'll wipe out your ARGV and ENV arrays. Only
resets package variables—lexical variables are unaffected, but they clean themselves up on scope
exit anyway, so you'll probably want to use them instead. /18ge

return LIST
Returns from a subroutine or eval with the value specified. (Note that in the absence of a return
a subroutine oeval() will automatically return the value of the last expression evaluated.)
reverse LIST

In a list context, returns a list value consisting of the elements of LIST in the opposite order. In a
scalar context, returns a string value consisting of the bytes of the first element of LIST in the
opposite order.

print reverse <>; # line tac
undef $/;
print scalar reverse scalar <>; # byte tac
rewinddir DIRHANDLE
Sets the current position to the beginning of the directory forre¢hddir() routine on
DIRHANDLE.

rindex STR,SUBSTR,POSITION
rindex STR,SUBSTR

Works just like index except that it returns the position of the LAST occurrence of SUBSTR in
STR. If POSITION is specified, returns the last occurrence at or before that position.
rmdir FILENAME

Deletes the directory specified by FILENAME if it is empty. If it succeeds it returns 1,
otherwise it returns 0 and sés (errno). If FILENAME is omitted, uses .

82

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc
s/l The substitution operator. Sperlop.
scalar EXPR

Forces EXPR to be interpreted in a scalar context and returns the value of EXPR.
@counts = (scalar @a, scalar @b, scalar @c);

There is no equivalent operator to force an expression to be interpolated in a list context because
it's in practice never needed. If you really wanted to do so, however, you could use the
construction@{[(some expression)]} , but usually a simplésome expression)

suffices.

seek FILEHANDLE,POSITION,WHENCE

Randomly positions the file pointer for FILEHANDLE, just like tfsmek() call of stdio.
FILEHANDLE may be an expression whose value gives the name of the filehandle. The values
for WHENCE are 0 to set the file pointer to POSITION, 1 to set the it to current plus
POSITION, and 2 to set it to EOF plus offset. You may use the values SEEK_ SET,
SEEK_CUR, and SEEK_END for this from POSIX module. Returns 1 upon success, 0
otherwise.

On some systems you have to do a seek whenever you switch between reading and writing.
Amongst other things, this may have the effect of calling stdio‘'s clearerr(3). A "whence" of 1
(SEEK_CUR) is useful for not moving the file pointer:

seek(TEST,0,1);

This is also useful for applications emulatitag —f . Once you hit EOF on your read, and
then sleep for a while, you might have to stick seak() to reset things. First the simple trick
listed above to clear the filepointer. Theek() doesn‘t change the current position, but it
doesclear the end-of-file condition on the handle, so that the ®EME> makes Perl try
again to read something. Hopefully.

If that doesn‘t work (some stdios are particularly cantankerous), then you may need something
more like this:

for (;;) {
for ($curpos = tell(FILE); $_ = <FILE>; $curpos = tell(FILE)) {
search for some stuff and put it into files
}
sleep($for_a_while);
seek(FILE, $curpos, 0);
}

seekdir DIRHANDLE,POS

Sets the current position for theaddir() routine on DIRHANDLE. POS must be a value
returned bytelldir() . Has the same caveats about possible directory compaction as the
corresponding system library routine.

select FILEHANDLE

select

Returns the currently selected filehandle. Sets the current default filehandle for output, if
FILEHANDLE is supplied. This has two effects: first,vaite or aprint without a
filehandle will default to this FILEHANDLE. Second, references to variables related to output
will refer to this output channel. For example, if you have to set the top of form format for more
than one output channel, you might do the following:

select(REPORTL1);
$" = "reportl_top’;
select(REPORT?2);
$" = "report2_top’;

08-0Oct-1996

Version 5.003 83

perlfunc Perl Programmers Reference Guide perlfunc

FILEHANDLE may be an expression whose value gives the name of the actual filehandle.
Thus:

$oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferring to
write the last example as:

use FileHandle;
STDERR->autoflush(1);

select RBITS,WBITS,EBITS, TIMEOUT

This calls the select(2) system call with the bitmasks specified, which can be constructed using
fileno() andvec() , along these lines:

$rin = $win = $ein = 7;
vec($rin,fileno(STDIN),1) = 1;
vec($win,fileno(STDOUT),1) = 1;
$ein = $rin | $win;
If you want to select on many filehandles you might wish to write a subroutine:

sub fhbits {
local(@fhlist) = split(' ’,$_[0]);
local($bits);
for (@fhlist) {
vec($bits,fileno($_),1) = 1;
}
$hits;

}
$rin = thbits('STDIN TTY SOCK’);

The usual idiom is:

($nfound,$timeleft) =
select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready just do this
$nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);

Most systems do not both to return anything usef@timeleft, so callingselect() ina
scalar context just returi$mfound.

Any of the bitmasks can also be undef. The timeout, if specified, is in seconds, which may be
fractional. Note: not all implementations are capable of returninftimeleft. If not, they
always returrtimeleft equal to the supplieBtimeout.

You can effect a 250-millisecond sleep this way:
select(undef, undef, undef, 0.25);

WARNING : Do not attempt to mix buffered 1/O (likeead() or <FH>) with select()
You have to ussysread() instead.

semctl ID,SEMNUM,CMD,ARG
Calls the System V IPC function semctl. If CMD&PC_STAT or &GETALL, then ARG
must be a variable which will hold the returned semid_ds structure or semaphore value array.
Returns like ioctl: the undefined value for error, "0 but true" for zero, or the actual return value
otherwise.

84

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

semget KEY,NSEMS,FLAGS

Calls the System V IPC function semget. Returns the semaphore id, or the undefined value if
there is an error.

semop KEY,OPSTRING

Calls the System V IPC function semop to perform semaphore operations such as signaling and
waiting. OPSTRING must be a packed array of semop structures. Each semop structure can be
generated withpack("sss", $semnum, $semop, $semflag). The number of
semaphore operations is implied by the length of OPSTRING. Returns TRUE if successful, or
FALSE if there is an error. As an example, the following code waits on semdseonaum of
semaphore iGsemid:

$semop = pack("sss", $semnum, -1, 0);
die "Semaphore trouble: $1\n" unless semop($semid, $semop);

To signal the semaphore, replace "-1" with "1".

send SOCKET,MSG,FLAGS, TO
send SOCKET,MSG,FLAGS

Sends a message on a socket. Takes the same flags as the system call of the same name. On
unconnected sockets you must specify a destination to send TO, in which case it does a C
sendto() . Returns the number of characters sent, or the undefined value if there is an error.
SeeUDP: Message Passing in perlifior examples.

setpgrp PID,PGRP

Sets the current process group for the specified PID, 0 for the current process. Will produce a
fatal error if used on a machine that doesn‘t implement setpgrp(2). If the arguments are
ommitted, it defaults to 0,0. Note that the POSIX versiogetpgrp() does not accept any
arguments, so only setpgrp 0,0 is portable.

setpriority WHICH,WHO,PRIORITY
Sets the current priority for a process, a process group, or a user. (See setpriority(2).) Will
produce a fatal error if used on a machine that doesn‘t implement setpriority(2).

setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requested. Returns undefined if there is an error. OPTVAL may be
specified as undef if you don't want to pass an argument.

shift ARRAY

shift Shifts the first value of the array off and returns it, shortening the array by 1 and moving
everything down. If there are no elements in the array, returns the undefined value. If ARRAY
is omitted, shifts the @ARGYV array in the main program, and the @__ array in subroutines. (This

is determined lexically.) See alamnshift() , push() , and pop() . Shift() and
unshift() do the same thing to the left end of an array phah() andpop() do to the
right end.

shmctl ID,CMD,ARG

Calls the System V IPC function shmctl. If CMD&HPC_STAT, then ARG must be a variable
which will hold the returned shmid_ds structure. Returns like ioctl: the undefined value for error,
"0 but true" for zero, or the actual return value otherwise.

shmget KEY,SIZE,FLAGS

Calls the System V IPC function shmget. Returns the shared memory segment id, or the
undefined value if there is an error.

shmread ID,VAR,POS,SIZE

08-0Oct-1996 Version 5.003 85

perlfunc Perl Programmers Reference Guide perlfunc

shmwrite ID,STRING,POS,SIZE

Reads or writes the System V shared memory segment ID starting at position POS for size SIZE
by attaching to it, copying in/out, and detaching from it. When reading, VAR must be a variable
which will hold the data read. When writing, if STRING is too long, only SIZE bytes are used;

if STRING is too short, nulls are written to fill out SIZE bytes. Return TRUE if successful, or
FALSE if there is an error.

shutdown SOCKET,HOW

Shuts down a socket connection in the manner indicated by HOW, which has the same
interpretation as in the system call of the same name.

sin EXPR Returns the sine of EXPR (expressed in radians). If EXPR is omitted, returns $ine of

sleep EXPR

sleep Causes the script to sleep for EXPR seconds, or forever if no EXPR. May be interrupted by
sending the process a SIGALRM. Returns the number of seconds actually slept. You probably
cannot mixalarm() and sleep() calls, sincesleep() is often implemented using
alarm()

On some older systems, it may sleep up to a full second less than what you requested, depending
on how it counts seconds. Most modern systems always sleep the full amount.

For delays of finer granularity than one second, you may use Besksll() interface to
access setitimer(2) if your system supports it, or elsésséeci() below.

socket SOCKET,DOMAIN, TYPE,PROTOCOL

Opens a socket of the specified kind and attaches it to filehandle SOCKET. DOMAIN, TYPE
and PROTOCOL are specified the same as for the system call of the same name. You should
"use Socket;" first to get the proper definitions imported. See the example in

Sockets: Client/Server Communication in petlipc

socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL

Creates an unnamed pair of sockets in the specified domain, of the specified type. DOMAIN,
TYPE and PROTOCOL are specified the same as for the system call of the same name. If
unimplemented, yields a fatal error. Returns TRUE if successful.

sort SUBNAME LIST

sort BLOCK LIST

sort LIST Sorts the LIST and returns the sorted list value. Nonexistent values of arrays are stripped out. If
SUBNAME or BLOCK is omitted, sorts in standard string comparison order. If SUBNAME is
specified, it gives the name of a subroutine that returns an integer less than, equal to, or greater
than 0, depending on how the elements of the array are to be ordered. (The <=> and cmp
operators are extremely useful in such routines.) SUBNAME may be a scalar variable name, in
which case the value provides the name of the subroutine to use. In place of a SUBNAME, you
can provide a BLOCK as an anonymous, in—line sort subroutine.

In the interests of efficiency the normal calling code for subroutines is bypassed, with the
following effects: the subroutine may not be a recursive subroutine, and the two elements to be
compared are passed into the subroutine not via @_ but as the package global $ariabtbs

$b (see example below). They are passed by reference, so don't $@difid$b. And don‘t

try to declare them as lexicals either.

Examples:

sort lexically
@articles = sort @files;

same thing, but with explicit sort routine
@articles = sort {$a cmp $b} @files;

86

Version 5.003 08-0ct—-1996

perlfunc

Perl Programmers Reference Guide perlfunc

now case-insensitively
@articles = sort { uc($a) cmp uc($b)} @files;

same thing in reversed order
@articles = sort {$b cmp $a} @files;

sort numerically ascending
@articles = sort {$a <=> $b} @files;

sort numerically descending
@articles = sort {$b <=> $a} @files;

sort using explicit subroutine name
sub byage {

$age{$a} <=> $age{$b}; # presuming integers
}

@sortedclass = sort byage @class;

this sorts the %age associative arrays by value
instead of key using an inline function
@eldest = sort { $age{$b} <=> $age{$a} } keys Yage;

sub backwards { $b cmp $a; }
@harry = ('dog’,’cat’,’x’,’Cain’,’Abel’);
@george = ('gone’,’chased’,’yz’,’Punished’,;’Axed’);
print sort @harry;
prints AbelCaincatdogx
print sort backwards @harry;
prints xdogcatCainAbel
print sort @george, 'to’, @harry;
prints AbelAxedCainPunishedcatchaseddoggonetoxyz

inefficiently sort by descending numeric compare using
the first integer after the first = sign, or the
whole record case-insensitively otherwise

@new = sort {
($b =~ /=(\d+)N[0] <=> ($a =~ /=(\d+)/)[0]

uc($a) cmp uc($b)
} @old;

same thing, but much more efficiently;
we'll build auxiliary indices instead
for speed
@nums = @caps = ();
for (@old) {
push @nums, /=(\d+)/;
push @caps, uc($);
}

@new = @old[sort {
$nums[$b] <=> $nums[$a]

Il
$caps[$a] cmp $caps[$b]
} 0..$#old
I;
same thing using a Schwartzian Transform (no temps)
@new =map {$_—>[0] }

08-0Oct-1996

Version 5.003

87

perlfunc

Perl Programmers Reference Guide perlfunc

sort { $h—>[1] <=> $a—>[1]

1
$a->[2] cmp $b—>[2]
Ymap {[$_, /=0\d+)/, uc($_)] } @old;

If you‘re using strict, yoMUST NOTdeclareba and$b as lexicals. They are package globals.
That means if you're in theain package, it's

@articles = sort {$main::b <=> $main::a} @files;
or just
@articles = sort {$::b <=> $::a} @files;
but if you're in theFooPack package, it's
@articles = sort {$FooPack::b <=> $FooPack::a} @files;

splice ARRAY,OFFSET,LENGTH,LIST
splice ARRAY,OFFSET,LENGTH
splice ARRAY,OFFSET

Removes the elements designated by OFFSET and LENGTH from an array, and replaces them
with the elements of LIST, if any. Returns the elements removed from the array. The array
grows or shrinks as necessary. If LENGTH is omitted, removes everything from OFFSET
onward. The following equivalencies hold (assun$hg=0):

push(@a,$x,$y) splice(@a,$#a+1,0,$x,3y)
pop(@a) splice(@a,-1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,9y) splice(@a,0,0,x,3y)

$a[$x] = Sy splice(@a,$x,1,$y);

Example, assuming array lengths are passed before arrays:

subaeq{ # compare two list values
local(@a) = splice(@_,0,shift);
local(@b) = splice(@_,0,shift);

return O unless @a == @b; # same len?
while (@a) {
return O if pop(@a) ne pop(@Db);
}
return 1,

}
if (&aeq($len,@foo[1..$len],0+@bar,@bar)){ ... }

split/PATTERN/,EXPR,LIMIT
split/PATTERN/,EXPR
split /PATTERN/

split

Splits a string into an array of strings, and returns it.

If not in a list context, returns the number of fields found and splits into the @_ array. (In a list
context, you can force the split into @_ by usk®yas the pattern delimiters, but it still returns
the array value.) The use of implicit split to @ _ is deprecated, however.

If EXPR is omitted, splits th&_ string. If PATTERN is also omitted, splits on whitespace (after
skipping any leading whitespace). Anything matching PATTERN is taken to be a delimiter
separating the fields. (Note that the delimiter may be longer than one character.) If LIMIT is
specified and is not negative, splits into no more than that many fields (though it may split into
fewer). If LIMIT is unspecified, trailing null fields are stripped (which potential usepepf)

would do well to remember). If LIMIT is negative, it is treated as if an arbitrarily large LIMIT
had been specified.

88

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

A pattern matching the null string (not to be confused with a null pattermvhich is just one
member of the set of patterns matching a null string) will split the value of EXPR into separate
characters at each point it matches that way. For example:

print join(":’, split(/ */, 'hi there"));

produces the output ‘h:i:t:h:e:r:e’.

The LIMIT parameter can be used to partially split a line
($login, $passwd, $remainder) = split(/:/, $_, 3);

When assigning to a list, if LIMIT is omitted, Perl supplies a LIMIT one larger than the number

of variables in the list, to avoid unnecessary work. For the list above LIMIT would have been 4
by default. In time critical applications it behooves you not to split into more fields than you

really need.

If the PATTERN contains parentheses, additional array elements are created from each matching
substring in the delimiter.

split(/([,-])/, "1-10,20", 3);
produces the list value
(11 ,_,l 101 ,5,! 20)

If you had the entire header of a normal Unix email messagieeiader, you could split it up
into fields and their values this way:

$header =~ s/\n\s+/ /g; # fix continuation lines
%hdrs = (UNIX_FROM => split /*(.*?):\s*/m, $header);

The patter’PATTERN/ may be replaced with an expression to specify patterns that vary at
runtime. (To do runtime compilation only once, (feariable/o.)

As a special case, specifying a PATTERN of space | will split on white space just as split
with no arguments does. Thus, split(’ ') can be used to emaudts default behavior, whereas

split(/ /) will give you as many null initial fields as there are leading spaces. A split on
Ns+/ is like a split(’ ') except that any leading whitespace produces a null first field. A split with
no arguments really doessplit(' ‘, $_) internally.

Example:

open(passwd, '/etc/passwd’);
while (<passwd>) {
($login, $passwd, $uid, $gid, $gcos,
$home, $shell) = split(/:/);

}

(Note thatshell above will still have a newline on it. Skhop /chomp and/join.)

sprintf FORMAT,LIST

Returns a string formatted by the usual printf conventions of the C languagespri®¢é3) or

printf(3) on your system for details. (The * character for an indirectly specified length is not
supported, but you can get the same effect by interpolating a variable into the pattern.) Some C
libraries’ implementations afprintf() can dump core when fed ludicrous arguments.

sgrt EXPR
Return the square root of EXPR. If EXPR is omitted, returns square rdot of

08-0Oct-1996 Version 5.003 89

perlfunc

Perl Programmers Reference Guide perlfunc

srand EXPR

Sets the random number seed for thved operator. If EXPR is omitted, uses a semirandom
value based on the current time and process ID, among other things. Of course, you‘'d need
something much more random than that for cryptographic purposes, since it's easy to guess the
current time. Checksumming the compressed output of rapidly changing operating system status
programs is the usual method. Examples are posted regularly to the comp.security.unix
newsgroup.

stat FILEHANDLE

stat EXPR

Returns a 13-element array giving the status info for a file, either the file opened via
FILEHANDLE, or named by EXPR. Returns a null list if the stat fails. Typically used as
follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev, $size,
$atime,$mtime, $ctime,$blksize,$blocks)
= stat($filename);

Not all fields are supported on all filesystem types. Here are the meaning of the fields:

dev device number of filesystem

ino inode number

mode file mode (type and permissions)
nlink number of (hard) links to the file

uid numeric user ID of file’s owner

gid numer group ID of file’s owner

rdev the device identifier (special files only)
size total size of file, in bytes

atime last access time since the epoch

mtime last modify time since the epoch

ctime inode change time (NOT creation type!) since the epoch
blksize preferred blocksize for file system I/O

blocks actual number of blocks allocated

(The epoch was at 00:00 January 1, 1970 GMT.)

If stat is passed the special filehandle consisting of an underline, no stat is done, but the current
contents of the stat structure from the last stat or filetest are returned. Example:

if (—x $file && (($d) = stat()) && $d < 0) {
print "$file is executable NFS file\n";

}
(This only works on machines for which the device number is negative under NFS.)
study SCALAR
study Takes extra time to study SCALAR (if unspecified) in anticipation of doing many pattern

matches on the string before it is next modified. This may or may not save time, depending on
the nature and number of patterns you are searching on, and on the distribution of character
frequencies in the string to be searched—you probably want to compare runtimes with and
without it to see which runs faster. Those loops which scan for many short constant strings
(including the constant parts of more complex patterns) will benefit most. You may have only
one study active at a time—if you study a different scalar the first is "unstudied". (The way
study works is this: a linked list of every character in the string to be searched is made, so we
know, for example, where all the ‘k’ characters are. From each search string, the rarest character
is selected, based on some static frequency tables constructed from some C programs and
English text. Only those places that contain this "rarest" character are examined.)

90

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

For example, here is a loop which inserts index producing entries before any line containing a
certain pattern:

while (<>) {
study;
print ".1X foo\n" if Abfoo\b/;
print ".1X ban\n" if Abbar\b/;
print ".1X blurfl\n" if Abblurfl\b/;

print;
}
In searching for Abfoo\b/, only those locationsbin that contain "f* will be looked at, because

"f* is rarer than "0". In general, this is a big win except in pathological cases. The only question
is whether it saves you more time than it took to build the linked list in the first place.

Note that if you have to look for strings that you don‘t know till runtime, you can build an entire
loop as a string and eval that to avoid recompiling all your patterns all the time. Together with
undefining $/ to input entire files as one record, this can be very fast, often faster than
specialized programs like fgrep(1). The following scans a list of f@8l€s) for a list of
words @words), and prints out the names of those files that contain a match:

$search ="while (<>) { study;’;
foreach $word (@words) {
$search .= "++\$seen{\BARGV} if N\bSword\\b/;\n";
}
$search .= "}";
@ARGV = @files;

undef $/;
eval $search; # this screams
$/="\n"; # put back to normal input delim
foreach $file (sort keys(%seen)) {
print $file, "\n";
}
sub BLOCK
sub NAME

sub NAME BLOCK
This is subroutine definition, not a real functiper se With just a NAME (and possibly
prototypes), it's just a forward declaration. Without a NAME, it's an anonymous function
declaration, and does actually return a value: the CODE ref of the closure you just created. See
perlsubandperlreffor details.

substr EXPR,OFFSET,LEN

substr EXPR,OFFSET
Extracts a substring out of EXPR and returns it. First character is at offset 0, or whatever you‘ve
set$[to. If OFFSET is negative, starts that far from the end of the string. If LEN is omitted,
returns everything to the end of the string. If LEN is negative, leaves that many characters off
the end of the string.

You can use theubstr() function as an Ivalue, in which case EXPR must be an Ivalue. If
you assign something shorter than LEN, the string will shrink, and if you assign something
longer than LEN, the string will grow to accommodate it. To keep the string the same length you
may need to pad or chop your value uspgntf()

symlink OLDFILE,NEWFILE

Creates a new filename symbolically linked to the old filename. Returns 1 for success, 0
otherwise. On systems that don‘t support symbolic links, produces a fatal error at run time. To

08-0Oct-1996 Version 5.003 91

perlfunc Perl Programmers Reference Guide perlfunc
check for that, use eval:
$symlink_exists = (eval 'symlink("","");’, $@ eq ");
syscall LIST

Calls the system call specified as the first element of the list, passing the remaining elements as
arguments to the system call. If unimplemented, produces a fatal error. The arguments are
interpreted as follows: if a given argument is numeric, the argument is passed as an int. If not,
the pointer to the string value is passed. You are responsible to make sure a string is
pre—extended long enough to receive any result that might be written into a string. If your
integer arguments are not literals and have never been interpreted in a numeric context, you may
need to add O to them to force them to look like numbers.

require 'syscall.ph’; # may need to run h2ph
syscall(&SYS_write, fileno(STDOUT), "hi there\n", 9);

Note that Perl only supports passing of up to 14 arguments to your system call, which in practice
should usually suffice.

sysopen FILEHANDLE,FILENAME,MODE
sysopen FILEHANDLE,FILENAME ,MODE,PERMS

Opens the file whose filename is given by FILENAME, and associates it with FILEHANDLE.
If FILEHANDLE is an expression, its value is used as the name of the real filehandle wanted.
This function calls the underlying operating systerafgen function with the parameters
FILENAME, MODE, PERMS.

The possible values and flag bits of the MODE parameter are system-dependent; they are
available via the standard modutentl . However, for historical reasons, some values are
universal: zero means read-only, one means write—only, and two means read/write.

If the file named by FILENAME does not exist and thgen call creates it (typically because
MODE includes the O_CREAT flag), then the value of PERMS specifies the permissions of the
newly created file. If PERMS is omitted, the default value is 0666, which allows read and write
for all. This default is reasonable: sgaask.

sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
sysread FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the specified
FILEHANDLE, using the system call read(2). It bypasses stdio, so mixing this with other kinds
of reads may cause confusion. Returns the number of bytes actually read, or undef if there was
an error. SCALAR will be grown or shrunk to the length actually read. An OFFSET may be
specified to place the read data at some other place than the beginning of the string.

system LIST

Does exactly the same thing as "exec LIST" except that a fork is done first, and the parent
process waits for the child process to complete. Note that argument processing varies depending
on the number of arguments. The return value is the exit status of the program as returned by the
wait() call. To getthe actual exit value divide by 256. See/alsec This iSNOT what you

want to use to capture the output from a command, for that you should merely use backticks, as
described iINSTRING' in perlop

syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
syswrite FILEHANDLE,SCALAR,LENGTH

Attempts to write LENGTH bytes of data from variable SCALAR to the specified

FILEHANDLE, using the system call write(2). It bypasses stdio, so mixing this with prints may
cause confusion. Returns the number of bytes actually written, or undef if there was an error.
An OFFSET may be specified to get the write data from some other place than the beginning of
the string.

92

Version 5.003 08-0ct—-1996

perlfunc

Perl Programmers Reference Guide perlfunc

tell FILEHANDLE

tell

Returns the current file position for FILEHANDLE. FILEHANDLE may be an expression
whose value gives the name of the actual filehandle. If FILEHANDLE is omitted, assumes the
file last read.

telldir DIRHANDLE

Returns the current position of theaddir() routines on DIRHANDLE. Value may be given
to seekdir() to access a particular location in a directory. Has the same caveats about
possible directory compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST

This function binds a variable to a package class that will provide the implementation for the
variable. VARIABLE is the name of the variable to be enchanted. CLASSNAME is the name
of a class implementing objects of correct type. Any additional arguments are passed to the
"new" method of the class (meaning TIESCALAR, TIEARRAY, or TIEHASH). Typically these
are arguments such as might be passed tdlihe open() function of C. The object returned

by the "new" method is also returned by tie§) function, which would be useful if you want

to access other methods in CLASSNAME.

Note that functions such &gys() andvalues() may return huge array values when used
on large objects, like DBM files. You may prefer to usedheh() function to iterate over
such. Example:

print out history file offsets
use NDBM_File;
tie(%HIST, 'NDBM_File’, 'fusr/lib/news/history’, 1, 0);
while (($key,$val) = each %HIST) {
print $key, ' =", unpack(’L’,$val), "\n";
}

untie(%HIST);
A class implementing an associative array should have the following methods:

TIEHASH classname, LIST
DESTROY this

FETCH this, key

STORE this, key, value
DELETE this, key

EXISTS this, key
FIRSTKEY this

NEXTKEY this, lastkey

A class implementing an ordinary array should have the following methods:

TIEARRAY classname, LIST
DESTROY this

FETCH this, key

STORE this, key, value
[others TBD]

A class implementing a scalar should have the following methods:

TIESCALAR classname, LIST
DESTROY this

FETCH this,

STORE this, value

Unlike dbmopen() , thetie() function will not use or require a module for you—you need to
do that explicitly yourself. Se®B_File or the Config module for interestingie()

08-0Oct-1996

Version 5.003 93

perlfunc Perl Programmers Reference Guide perlfunc

implementations.

tied VARIABLE

Returns a reference to the object underlying VARIABLE (the same value that was originally
returned by théie() call which bound the variable to a package.) Returns the undefined value
if VARIABLE isn't tied to a package.

time Returns the number of non-leap seconds since whatever time the system considers to be the
epoch (that's 00:00:00, January 1, 1904 for MacOS, and 00:00:00 UTC, January 1, 1970 for
most other systems). Suitable for feedingnatime() andlocaltime()

times Returns a four—element array giving the user and system times, in seconds, for this process and
the children of this process.

(Buser,$system,$cuser,$csystem) = times;
tr/ll The translation operator. Sperlop

truncate FILEHANDLE,LENGTH
truncate EXPR,LENGTH

Truncates the file opened on FILEHANDLE, or named by EXPR, to the specified length.
Produces a fatal error if truncate isn‘t implemented on your system.

uc EXPR Returns an uppercased version of EXPR. This is the internal function implementing the \U
escape in double—quoted strings. Should respect any P&8bXale() settings.

ucfirst EXPR

Returns the value of EXPR with the first character uppercased. This is the internal function
implementing the \u escape in double—quoted strings. Should respect any POSIX
setlocale() settings.

umask EXPR
umask Sets the umask for the process and returns the old one. If EXPR is omitted, merely returns
current umask.

undef EXPR

undef Undefines the value of EXPR, which must be an Ivalue. Use only on a scalar value, an entire
array, or a subroutine name (using'). (Usingundef() will probably not do what you
expect on most predefined variables or DBM list values, so don‘t do that.) Always returns the
undefined value. You can omit the EXPR, in which case nothing is undefined, but you still get
an undefined value that you could, for instance, return from a subroutine. Examples:

undef $foo;

undef $bar{’blurfl’};

undef @ary;

undef %assoc;

undef &mysub;

return (wantarray ? () : undef) if $they_blew_it;

unlink LIST
Deletes a list of files. Returns the number of files successfully deleted.
$cnt = unlink 'a’, 'b’, ’c’;
unlink @goners;
unlink <*.bak>;

Note: unlink will not delete directories unless you are superuser aneltiflag is supplied to
Perl. Even if these conditions are met, be warned that unlinking a directory can inflict damage
on your filesystem. Use rmdir instead.

94

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

unpack TEMPLATE,EXPR
Unpack does the reverse of pack: it takes a string representing a structure and expands it out into
a list value, returning the array value. (In a scalar context, it merely returns the first value
produced.) The TEMPLATE has the same format as in the pack function. Here's a subroutine
that does substring:

sub substr {
local($what,$where,$howmuch) = @_;
unpack("x$where a$howmuch", $what);

}

and then there's
sub ordinal { unpack('c",$_[0]); } # same as ord()

In addition, you may prefix a field with a %<number> to indicate that you want a <number>-bit
checksum of the items instead of the items themselves. Default is a 16-bit checksum. For
example, the following computes the same number as the System V sum program:

while (<>) {
$checksum += unpack("%16C*", $);
}
$checksum %= 65536;
The following efficiently counts the number of set bits in a bit vector:
$setbits = unpack("%32b*", $selectmask);

untie VARIABLE
Breaks the binding between a variable and a package ti¢9ee .)

unshift ARRAY,LIST

Does the opposite of ghift . Or the opposite of push, depending on how you look at it.
Prepends list to the front of the array, and returns the new number of elements in the array.

unshift(ARGV, '-e") unless $ARGV[0] =~ /"-/;

Note the LIST is prepended whole, not one element at a time, so the prepended elements stay in
the same order. Use reverse to do the reverse.

use Module LIST

use Module

use Module VERSION LIST
use VERSION

Imports some semantics into the current package from the named module, generally by aliasing
certain subroutine or variable names into your package. It is exactly equivalent to

BEGIN { require Module; import Module LIST; }
except that Modulenustbe a bare word.

If the first argument taise is a number, it is treated as a version number instead of a module
name. If the version of the Perl interpreter is less than VERSION, then an error message is
printed and Perl exits immediately. This is often useful if you need to check the current Perl
version beforeuseing library modules which have changed in incompatible ways from older
versions of Perl. (We try not to do this more than we have to.)

The BEGIN forces the require and import to happen at compile time. The require makes sure the
module is loaded into memory if it hasn't been yet. The import is not a builtin—it's just an
ordinary static method call into the "Module" package to tell the module to import the list of
features back into the current package. The module can implement its import method any way it

08-0Oct-1996 Version 5.003 95

perlfunc Perl Programmers Reference Guide perlfunc

likes, though most modules just choose to derive their import method via inheritance from the
Exporter class that is defined in the Exporter module Experter.

If you don't want your namespace altered, explicitly supply an empty list:
use Module ();

That is exactly equivalent to
BEGIN { require Module; }

If the VERSION argument is present between Module and LIST, theasthewill fail if the
$VERSIONVvariable in package Module is less than VERSION.

Because this is a wide—open interface, pragmas (compiler directives) are also implemented this
way. Currently implemented pragmas are:

use integer;

use diagnostics;

use sigtrap qw(SEGV BUS);
use strict qw(subs vars refs);
use subs qgw(afunc blurfl);

These pseudomodules import semantics into the current block scope, unlike ordinary modules,
which import symbols into the current package (which are effective through the end of the file).

There's a corresponding "no" command that unimports meanings imported by use, i.e. it calls
unimport Module LIST instead ofmport

no integer;
no strict 'refs’;

Seeperlmodfor a list of standard modules and pragmas.

utime LIST
Changes the access and modification times on each file of a list of files. The first two elements
of the list must be the NUMERICAL access and modification times, in that order. Returns the
number of files successfully changed. The inode modification time of each file is set to the
current time. Example of a "touch" command:

#1/usr/bin/perl
$now = time;
utime $now, $now, @ARGV;

values ASSOC_ARRAY

Returns a normal array consisting of all the values of the named associative array. (In a scalar
context, returns the number of values.) The values are returned in an apparently random order,
but it is the same order as either Reys() oreach() function would produce on the same
array. See alskeys() ,each() , andsort()

vec EXPR,OFFSET,BITS
Treats the string in EXPR as a vector of unsigned integers, and returns the value of the bitfield
specified by OFFSET. BITS specifies the number of bits that are reserved for each entry in the
bit vector. This must be a power of two from 1 tod2c() may also be assigned to, in which
case parens are needed to give the expression the correct precedence as in

vec($image, $max_x * $x + $y, 8) = 3;

Vectors created withiec() can also be manipulated with the logical operat&saphd », which
will assume a bit vector operation is desired when both operands are strings.

To transform a bit vector into a string or array of 0‘'s and 1's, use these:

96

Version 5.003 08-0ct—-1996

perlfunc Perl Programmers Reference Guide perlfunc

$bits = unpack("b*", $vector);
@bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the *.

wait Waits for a child process to terminate and returns the pid of the deceased process, or -1 if there
are no child processes. The status is return&a.in

waitpid PID,FLAGS

Waits for a particular child process to terminate and returns the pid of the deceased process, or
-1 if there is no such child process. The status is returrgl inlf you say

use POSIX ":wait_h";

waitpid(-1,&WNOHANG);

then you can do a non-blocking wait for any process. Non-blocking wait is only available on
machines supporting either the waitpid(2) or wait4(2) system calls. However, waiting for a
particular pid with FLAGS of 0 is implemented everywhere. (Perl emulates the system call by
remembering the status values of processes that have exited but have not been harvested by the
Perl script yet.)

wantarray

Returns TRUE if the context of the currently executing subroutine is looking for a list value.
Returns FALSE if the context is looking for a scalar.

return wantarray ? () : undef;

warn LIST
Produces a message on STDERR justdik¢) , but doesn‘t exit or on an exception.

write FILEHANDLE

write EXPR

write Writes a formatted record (possibly multi-line) to the specified file, using the format associated
with that file. By default the format for a file is the one having the same name is the filehandle,
but the format for the current output channel (seeséhect() function) may be set explicitly
by assigning the name of the format to $hevariable.

Top of form processing is handled automatically: if there is insufficient room on the current
page for the formatted record, the page is advanced by writing a form feed, a special
top—of-page format is used to format the new page header, and then the record is written. By
default the top—of-page format is the name of the filehandle with "_TOP" appended, but it may
be dynamically set to the format of your choice by assigning the name $0 thezriable while

the filehandle is selected. The number of lines remaining on the current page is in $ariable
which can be set to O to force a new page.

If FILEHANDLE is unspecified, output goes to the current default output channel, which starts
out as STDOUT but may be changed by seéect operator. If the FILEHANDLE is an

EXPR, then the expression is evaluated and the resulting string is used to look up the name of the
FILEHANDLE at run time. For more on formats, ge=lform

Note that write ilNOT the opposite of read. Unfortunately.

ylil The translation operator. Sperlop

08-0Oct-1996 Version 5.003 97

perlvar Perl Programmers Reference Guide perlvar

NAME

perlvar — Perl predefined variables

DESCRIPTION

Predefined Names

The following names have special meaning to Perl. Most of the punctuational names have reasonable
mnemonics, or analogues in one of the shells. Nevertheless, if you wish to use the long variable names, you
just need to say

use English;

at the top of your program. This will alias all the short hames to the long names in the current package.
Some of them even have medium names, generally borrowedirem

To go a step further, those variables that depend on the currently selected filehandle may instead be set by
calling an object method on the FileHandle object. (Summary lines below for this contain the word
HANDLE.) First you must say

use FileHandle;

after which you may use either
method HANDLE EXPR

or
HANDLE->method(EXPR)

Each of the methods returns the old value of the FileHandle attribute. The methods each take an optional
EXPR, which if supplied specifies the new value for the FileHandle attribute in question. If not supplied,
most of the methods do nothing to the current value, excepufoflush() , which will assume a 1 for

you, just to be different.

A few of these variables are considered "read-only". This means that if you try to assign to this variable,
either directly or indirectly through a reference, you'll raise a run—time exception.

$ARG
$_ The default input and pattern—searching space. The following pairs are equivalent:
while (<>) {...} # only equivalent in while!
while ($_=<>){...}
/"Subject:/
$_ =~ /ASubject:/
trla—z/A-2/
$ =~trla-z/IA-Z/
chop
chop($))

Here are the places where Perl will ass$mesven if you don'‘t use it:

e Various unary functions, including functions liked() andint() , as well as the all file
tests ¢f , —d) except for-t , which defaults to STDIN.

e Various list functions likerint() andunlink()

e The pattern matching operatioms// , s/// , and tr//l when used without ar~
operator.

98

Version 5.003 08-0ct—-1996

perlvar Perl Programmers Reference Guide perlvar

e The default iterator variable infareach loop if no other variable is supplied.
e The implicit iterator variable in thgrep() andmap() functions.

e The default place to put an input record whet&> operation’s result is tested by itself as
the sole criterion of ahile test. Note that outside ofshile test, this will not happen.

(Mnemonic: underline is understood in certain operations.)
$<digit >
Contains the subpattern from the corresponding set of parentheses in the last pattern matched,

not counting patterns matched in nested blocks that have been exited already. (Mnemonic: like
\digit.) These variables are all read—only.

$MATCH

$& The string matched by the last successful pattern match (not counting any matches hidden within
a BLOCK oreval() enclosed by the current BLOCK). (Mnemonic: li&én some editors.)
This variable is read—only.

$PREMATCH

$ The string preceding whatever was matched by the last successful pattern match (not counting
any matches hidden within a BLOCK or eval enclosed by the current BLOCK). (Mnerhonic:
often precedes a quoted string.) This variable is read-only.

$POSTMATCH

$ The string following whatever was matched by the last successful pattern match (not counting

any matches hidden within a BLOCK aval() enclosed by the current BLOCK).
(Mnemonic:’ often follows a quoted string.) Example:

$_='abcdefghi’;
/def/;
print "$:$&:$\n"; # prints abc:def:ghi

This variable is read-only.

$LAST_PAREN_MATCH
$+ The last bracket matched by the last search pattern. This is useful if you don‘t know which of a
set of alternative patterns matched. For example:

IVersion: (.*)|Revision: (.*)/ && ($rev = $+);
(Mnemonic: be positive and forward looking.) This variable is read—only.

$MULTILINE_MATCHING

$* Set to 1 to do multiline matching within a string, O to tell Perl that it can assume that strings
contain a single line, for the purpose of optimizing pattern matches. Pattern matches on strings
containing multiple newlines can produce confusing results wi&h 'is 0. Default is 0.
(Mnemonic: * matches multiple things.) Note that this variable only influences the interpretation
of ""and '$". A literal newline can be searched for even wtr= 0

Use of '$*" is deprecated in Perl 5.

input_line_number HANDLE EXPR

$INPUT_LINE_NUMBER

$NR

$. The current input line number for the last file handle from which you read (or perforseet a
ortell on). An explicit close on a filehandle resets the line number. Sixcenéver does an
explicit close, line numbers increase across ARGV files (but see examples aaier).
Localizing $. has the effect of also localizing Perl's notion of "the last read filehandle".

(Mnemonic: many programs use "." to mean the current line number.)

08-0Oct-1996 Version 5.003 99

perlvar Perl Programmers Reference Guide perlvar

input_record_separator HANDLE EXPR

$INPUT_RECORD_SEPARATOR

$RS

$/ The input record separator, newline by default. Worksdikk's RS variable, including treating
empty lines as delimiters if set to the null string. (Note: An empty line cannot contain any
spaces or tabs.) You may set it to a multicharacter string to match a multi—-character delimiter.
Note that setting it t&n\n" means something slightly different than setting it'tq if the file
contains consecutive empty lines. Setting It'towill treat two or more consecutive empty lines
as a single empty line. Setting it'fm\n" will blindly assume that the next input character
belongs to the next paragraph, even if it's a newline. (Mnemonic: / is used to delimit line
boundaries when quoting poetry.)

undef $/;
$ =<FH>; # whole file now here
sA\n[\t]+/ /g;

autoflush HANDLE EXPR

$OUTPUT_AUTOFLUSH

3| If set to nonzero, forces a flush after every write or print on the currently selected output channel.
Default is O (regardless of whether the channel is actually buffered by the system%jr not;
only tells you whether you've asked Perl to explicitly flush after each write). Note that
STDOUT will typically be line buffered if output is to the terminal and block buffered otherwise.
Setting this variable is useful primarily when you are outputting to a pipe, such as when you are
running a Perl script under rsh and want to see the output as it's happening. This has no effect
on input buffering. (Mnhemonic: when you want your pipes to be piping hot.)

output_field_separator HANDLE EXPR

$OUTPUT_FIELD_SEPARATOR

$OFS

$, The output field separator for the print operator. Ordinarily the print operator simply prints out
the comma separated fields you specify. In order to get behavior mossvkkaset this variable
as you would seawk's OFS variable to specify what is printed between fields. (Mnemonic:
what is printed when there is a , in your print statement.)

output_record_separator HANDLE EXPR

$OUTPUT_RECORD_SEPARATOR

$ORS

$\ The output record separator for the print operator. Ordinarily the print operator simply prints out
the comma separated fields you specify, with no trailing newline or record separator assumed. In
order to get behavior more likevk, set this variable as you would satk's ORS variable to
specify what is printed at the end of the print. (Mnemonic: you$sét instead of adding \n at
the end of the print. Also, it's just likg, but it's what you get "back" from Perl.)

$LIST_SEPARATOR
$" This is like '$," except that it applies to array values interpolated into a double—quoted string
(or similar interpreted string). Default is a space. (Mnemonic: obvious, | think.)

$SUBSCRIPT_SEPARATOR
$SUBSEP
$; The subscript separator for multi-dimensional array emulation. If you refer to a hash element as

$foo{$a,$b,$c}
it really means
$foo{join($;, $a, $b, $c)}
But don‘t put

100

Version 5.003 08-0ct—-1996

perlvar Perl Programmers Reference Guide perlvar

@foo{$a,$b,$c} # a slice——note the @
which means
($foo{$a},Sfoo{$b},$foo{$c})
Default is "\034", the same as SUBSERwk. Note that if your keys contain binary data there

might not be any safe value fd§;". (Mnemonic: comma (the syntactic subscript separator) is
a semi—-semicolon. Yeah, | know, it's pretty lame, 8t " is already taken for something more
important.)

Consider using "real" multi-dimensional arrays in Perl 5.

$OFMT

St The output format for printed numbers. This variable is a half-hearted attempt to eanddste
OFMT variable. There are times, however, whaik and Perl have differing notions of what is
in fact numeric. The initial value is 9@, wheren is the value of the macro DBL_DIG from
your system'dloat.h. This is different fromawk's default OFMT setting of %.6g, so you need
to set $#" explicitly to getawk's value. (Mnemonic: # is the number sign.)

Use of '$#" is deprecated in Perl 5.

format_page_number HANDLE EXPR

$FORMAT_PAGE_NUMBER

$% The current page number of the currently selected output channel. (Mnemonic: % is page
number innroff.)

format_lines_per_page HANDLE EXPR

$FORMAT_LINES_PER_PAGE

$= The current page length (printable lines) of the currently selected output channel. Default is 60.
(Mnemonic: = has horizontal lines.)

format_lines_left HANDLE EXPR

$FORMAT_LINES_LEFT

$- The number of lines left on the page of the currently selected output channel. (Mnemonic:
lines_on_page - lines_printed.)

format_name HANDLE EXPR

$FORMAT_NAME

$~ The name of the current report format for the currently selected output channel. Default is name
of the filehandle. (Mnemonic: brother t§"".)

format_top_name HANDLE EXPR

$FORMAT_TOP_NAME

" The name of the current top—of-page format for the currently selected output channel. Default is
name of the filehandle with _TOP appended. (Mnemonic: points to top of page.)

format_line_break characters HANDLE EXPR

$FORMAT_LINE_BREAK_CHARACTERS

$: The current set of characters after which a string may be broken to fill continuation fields
(starting with 7) in a format. Default is " \n-", to break on whitespace or hyphens. (Mnemonic:
a "colon" in poetry is a part of a line.)

format_formfeed HANDLE EXPR
$FORMAT_FORMFEED

$"L What formats output to perform a formfeed. Default is \f.

$ACCUMULATOR

$MA The current value of thevrite() accumulator forformat() lines. A format contains
formline() commands that put their result ifBdA. After calling its formatwrite()

prints out the contents §MA and empties. So you never actually see the conteftsfotinless

08-0Oct-1996 Version 5.003 101

perlvar

Perl Programmers Reference Guide perlvar

you callformline() yourself and then look at it. Sperlformandformline()

$CHILD_ERROR

$? The status returned by the last pipe close, backtich €command, orsystem() operator.
Note that this is the status word returned bywlaét() system call, so the exit value of the
subprocess is actuall$$? >> 8). Thus on many systen? & 255 gives which signal, if
any, the process died from, and whether there was a core dump. (Mnemonic: sistilantb
ksh.)
Inside anENDsubroutine$? contains the value that is going to be giveexi() . You can
modify $? in anENDsubroutine to change the exit status of the script.

$OS_ERROR

$ERRNO

$! If used in a numeric context, yields the current value of errno, with all the usual caveats. (This

means that you shouldn‘t depend on the valu&Bf "to be anything in particular unless you‘ve
gotten a specific error return indicating a system error.) If used in a string context, yields the
corresponding system error string. You can assigf!to 'In order to seerrno if, for instance,

you want $!" to return the string for errar, or you want to set the exit value for thie()

operator. (Mnemonic: What just went bang?)

$EXTENDED_OS_ERROR

$"E

More specific information about the last system error than that provid&d byf available. (If

not, it's just$! again.) At the moment, this differs froph only under VMS, where it provides
the VMS status value from the last system error. The caveats mentioned in the descrijition of
apply here, too. (Mnemonic: Extra error explanation.)

$EVAL_ERROR

$@ The Perl syntax error message from thedasi() command. If null, the lagival() parsed
and executed correctly (although the operations you invoked may have failed in the normal
fashion). (Mnemonic: Where was the syntax error "at"?)
Note that warning messages are not collected in this variable. You can, however, set up a routine
to process warnings by setti6@IG{_ WARN__} below.

$PROCESS_ID

$PID

$$ The process number of the Perl running this script. (Mnemonic: same as shells.)

$REAL_USER_ID

$UID

$< The real uid of this process. (Mnemonic: it's the uid you ceR@M, if you're running setuid.)

$EFFECTIVE_USER_ID

$EUID
$

The effective uid of this process. Example:

$< = $>; # set real to effective uid
($<,$>) = ($>,$<); # swap real and effective uid

(Mnemonic: it's the uid you wenkQ, if you're running setuid.) Note$<" and '$>" can only
be swapped on machines supporsegreuid()

$REAL_GROUP_ID

$GID
$(

The real gid of this process. If you are on a machine that supports membership in multiple
groups simultaneously, gives a space separated list of groups you are in. The first number is the
one returned bgetgid() , and the subsequent onesdgstgroups() , one of which may be

the same as the first number. (Mnemonic: parentheses are BB®OtdPthings. The real gid

102

Version 5.003 08-0ct—-1996

perlvar

Perl Programmers Reference Guide perlvar

is the group yolLEFT, if you‘re running setgid.)

$EFFECTIVE_GROUP_ID

$EGID
$)

The effective gid of this process. If you are on a machine that supports membership in multiple
groups simultaneously, gives a space separated list of groups you are in. The first number is the
one returned bgetegid() , and the subsequent onesdstgroups() , one of which may

be the same as the first number. (Mnemonic: parentheses are US&DtP things. The
effective gid is the group thatRIGHT for you, if you‘re running setgid.)

Note: '$<", "$>", "$(" and'$)" can only be set on machines that support the corresponding
setfre][ug]id() routine. $(" and '$)" can only be swapped on machines supporting
setregid() . Because Perl doesn't currently usiegroups() , YOu can't set your group
vector to multiple groups.

$PROGRAM_NAME

$0

el

Contains the name of the file containing the Perl script being executed. Assigni®@'to "
modifies the argument area that the ps(1) program sees. This is more useful as a way of
indicating the current program state than it is for hiding the program you‘re running. (Mnemonic:
same ash andksh.)

The index of the first element in an array, and of the first character in a substring. Default is O,
but you could set it to 1 to make Perl behave moreaiklke (or Fortran) when subscripting and
when evaluating thmdex() andsubstr() functions. (Mnemonic: [begins subscripts.)

As of Perl 5, assignment t&$[" is treated as a compiler directive, and cannot influence the
behavior of any other file. Its use is discouraged.

$PERL_VERSION

$] The string printed out when you spgrl —=v . (This is currentlyBROKEN. It can be used to
determine at the beginning of a script whether the perl interpreter executing the script is in the
right range of versions. If used in a numeric context, returns the version + patchlevel / 1000.
Example:
see if getc is available
($version,$patchlevel) =
$] =~ /(\d+\.\d+).*\nPatch level: (\d+)/;
print STDERR "(No filename completion available.)\n"
if $version * 1000 + $patchlevel < 2016;
or, used numerically,
warn "No checksumming\n" if $] < 3.019;
(Mnemonic: Is this version of perl in the right bracket?)
$DEBUGGING
$'D The current value of the debugging flags. (Mnemonic: valuéagwitch.)
$SYSTEM_FD_MAX
$F The maximum system file descriptor, ordinarily 2. System file descriptors are passed to
exec() ed processes, while higher file descriptors are not. Also, durirgpem() , system
file descriptors are preserved even if thygen() fails. (Ordinary file descriptors are closed
before theopen() is attempted.) Note that the close—on—exec status of a file descriptor will be
decided according to the value®f at the time of the open, not the time of the exec.
$"H The current set of syntax checks enabledis®y strict . See the documentation sfict

for more details.

08-0Oct-1996

Version 5.003 103

perlvar Perl Programmers Reference Guide perlvar

$INPLACE_EDIT

$M The current value of the inplace—edit extension. WUsdef to disable inplace editing.
(Mnemonic: value of-i switch.)

$OSNAME

$"0 The name of the operating system under which this copy of Perl was built, as determined during
the configuration process. The value is identic§iGonfig{'osname}.

$PERLDB

$"P The internal flag that the debugger clears so that it doesn‘t debug itself. You could conceivably
disable debugging yourself by clearing it.

$BASETIME

$T The time at which the script began running, in seconds since the epoch (beginning of 1970). The
values returned by theM, —A and-C filetests are based on this value.

SWARNING

W The current value of the warning switch, either TRUE or FALSE. (Mnemonic: related tathe
switch.)

$EXECUTABLE_NAME

$"X The name that the Perl binary itself was executed as, fromr@/§0]

$ARGV contains the name of the current file when reading from <>,

@ARGV The array @ARGV contains the command line arguments intended for the script. Note that
$#ARGV is the generally number of arguments minus one, sBARGV[0] is the first
argumentNOTthe command name. Se&0" for the command name.

@INC The array @INC contains the list of places to look for Perl scripts to be evaluated diy the
EXPR require , oruse constructs. It initially consists of the arguments to ahgommand
line switches, followed by the default Perl library, probalbisr/local/lib/perl, followed by ".",
to represent the current directory. If you need to modify this at runtime, you should use the

lib pragma in order to also get the machine-dependent library properly loaded:

use lib '/mypath/libdir/’;
use SomeMod;

%INC The hash %INC contains entries for each filename that has been includkd aigzequire
The key is the filename you specified, and the value is the location of the file actually found. The
require command uses this array to determine whether a given file has already been included.
SENV{expr}
The hash %ENV contains your current environment. Setting a valiENWhchanges the
environment for child processes.
$SIG{expr}
The hash %SIG is used to set signal handlers for various signals. Example:

sub handler { # 1st argument is signal name
local($sig) = @_;
print "Caught a SIG$sig——shutting down\n";
close(LOG);
exit(0);

}

$SIG{INT’} = 'handler’;
$SIG{'QUIT’} = 'handler’;

$SIG{INT’} = 'DEFAULT’; # restore default action
$SIG{'QUIT’} = 'IGNORE; # ignore SIGQUIT

104

Version 5.003 08-0ct—-1996

perlvar Perl Programmers Reference Guide perlvar

The %SIG array only contains values for the signals actually set within the Perl script. Here are
some other examples:

$SIG{PIPE} = Plumber; # SCARY!!

$SIG{"PIPE"} = "Plumber"; # just fine, assumes main::Plumber

$SIG{"PIPE"} = \&Plumber; # just fine; assume current Plumber

$SIG{"PIPE"} = Plumber(); # oops, what did Plumber() return??
The one marked scary is problematic because it's a bareword, which means sometimes it's a
string representing the function, and sometimes it's going to call the subroutine call right then
and there! Best to be sure and quote it or take a reference to it. *Plumber works too. See
perlsub
Certain internal hooks can be also set using the %SIG hash. The routine indicated by
$SIG{_WARN__} is called when a warning message is about to be printed. The warning
message is passed as the first argument. The presence of a _ WARN__ hook causes the
ordinary printing of warnings to STDERR to be suppressed. You can use this to save warnings
in a variable, or turn warnings into fatal errors, like this:

local $SIG{__WARN__} = sub { die $_[0] };

eval $proggie;
The routine indicated b$SIG{_DIE__} is called when a fatal exception is about to be
thrown. The error message is passed as the first argument. When a _ DIE__ hook routine
returns, the exception processing continues as it would have in the absence of the hook, unless
the hook routine itself exits via goto , a loop exit, or adie() . The _ DIE__ handler is
explicitly disabled during the call, so that you can die from a _ DIE__ handler. Similarly for
_ WARN__.

08-0Oct-1996 Version 5.003 105

perlsub Perl Programmers Reference Guide perlsub

NAME

SYNOPSIS

perlsub — Perl subroutines

To declare subroutines:
sub NAME; # A "forward" declaration.
sub NAME(PROTO); # ditto, but with prototypes
sub NAME BLOCK # A declaration and a definition.

sub NAME(PROTO) BLOCK # ditto, but with prototypes
To define an anonymous subroutine at runtime:

$subref = sub BLOCK;
To import subroutines:

use PACKAGE qgw(NAME1 NAME2 NAME3);
To call subroutines:

NAME(LIST); # & is optional with parens.
NAME LIST,; # Parens optional if predeclared/imported.
&NAME; # Passes current @ __ to subroutine.

DESCRIPTION

Like many languages, Perl provides for user—defined subroutines. These may be located anywhere in the
main program, loaded in from other files via thee, require , oruse keywords, or even generated on the

fly using eval or anonymous subroutines (closures). You can even call a function indirectly using a
variable containing its name or a CODE reference to it, #san= \&function.

The Perl model for function call and return values is simple: all functions are passed as parameters one single
flat list of scalars, and all functions likewise return to their caller one single flat list of scalars. Any arrays or
hashes in these call and return lists will collapse, losing their identities—but you may always use
pass—-by-reference instead to avoid this. Both call and return lists may contain as many or as few scalar
elements as you'd like. (Often a function without an explicit return statement is called a subroutine, but
there's really no difference from the language's perspective.)

Any arguments passed to the routine come in as the array @_. Thus if you called a function with two
arguments, those would be storedif0] and$_[1]. The array @_is a local array, but its values are
implicit references (predatingerlref) to the actual scalar parameters. The return value of the subroutine is
the value of the last expression evaluated. Alternatively, a return statement may be used to specify the
returned value and exit the subroutine. If you return one or more arrays and/or hashes, these will be flattened
together into one large indistinguishable list.

Perl does not have named formal parameters, but in practice all you do is assigr()toliat of these. Any

variables you use in the function that aren‘t declared private are global variables. For the gory details on
creating private variables, sé®rivate Variables viamy() " and "Temporary Values vidocal() ". To

create protected environments for a set of functions in a separate package (and probably a separate file), see
Packages in perimod

Example:

sub max {
my $max = shift(@_);
foreach $foo (@_) {
$max = $foo if $max < $foo;

}

return $max;

106

Version 5.003 08-0ct—-1996

perlsub Perl Programmers Reference Guide perlsub

$bestday = max($mon,$tue,$wed, $thu,$fri);
Example:

get a line, combining continuation lines
that start with whitespace

sub get_line {
$thisline = $lookahead; # GLOBAL VARIABLES!
LINE: while ($lookahead = <STDIN>) {
if ($lookahead =~ /[\t]/) {
$thisline .= $lookahead;
}
else {
last LINE;
}
}
$thisline;
}

$lookahead = <STDIN>; # get first line
while ($_ = get_line()) {

}

Use array assignment to a local list to name your formal arguments:

sub maybeset {

my($key, $value) = @_;

$Foo{$key} = $value unless $Foo{Skey};
}

This also has the effect of turning call-by-reference into call-by-value, since the assignment copies the
values. Otherwise a function is free to do in—place modifications of @__ and change its caller's values.

upcase_in($vl, $v2); # this changes $v1 and $v2
sub upcase_in {

for (@_) {tr/la—z/A-2/}
}

You aren‘t allowed to modify constants in this way, of course. If an argument were actually literal and you
tried to change it, you'd take a (presumably fatal) exception. For example, this won'‘t work:

upcase_in("frederick™);

It would be much safer if thepcase_in() function were written to return a copy of its parameters
instead of changing them in place:

($v3, $v4) = upcase($vl, $v2); # this doesn't
sub upcase {
my @parms = @_;
for (@parms) { tr/fa-z/A-2/ }
wantarray checks if we were called in list context
return wantarray ? @parms : $parms[0];

}

Notice how this (unprototyped) function doesn‘t care whether it was passed real scalars or arrays. Perl will
see everything as one big long flat @_ parameter list. This is one of the ways where Perl's simple
argument-passing style shines. Tpease() function would work perfectly well without changing the
upcase() definition even if we fed it things like this:

08-0Oct-1996 Version 5.003 107

perlsub Perl Programmers Reference Guide perlsub

@newlist = upcase(@listl, @list2);
@newlist = upcase(split /:/, $var);

Do not, however, be tempted to do this:

(@a, @b) = upcase(@listl, @list2);

Because like its flat incoming parameter list, the return list is also flat. So all you have managed to do here is
stored everything in @a and made @b an empty list. See for alternatives.

A subroutine may be called using th&"' "prefix. The &" is optional in Perl 5, and so are the parens if the
subroutine has been predeclared. (Note, however, tha&this NOT optional when you‘re just naming the
subroutine, such as when it's used as an argumetdsgfioed() orundef() . Nor is it optional when
you want to do an indirect subroutine call with a subroutine name or reference usiifgstiieef() or
&{$subref}() constructs. Segerlreffor more on that.)

Subroutines may be called recursively. If a subroutine is called usingthéotm, the argument list is
optional, and if omitted, no @_ array is set up for the subroutine: the @_ array at the time of the call is
visible to subroutine instead. This is an efficiency mechanism that new users may wish to avoid.

&foo(1,2,3); # pass three arguments

foo(1,2,3); # the same

foo(); # pass a null list

&foo(); # the same

&foo; # foo() get current args, like foo(@_) !!

foo; # like foo() IFF sub foo pre—declared, else "foo"

Not only does the&" form make the argument list optional, but it also disables any prototype checking on
the arguments you do provide. This is partly for historical reasons, and partly for having a convenient way to
cheat if you know what you‘re doing. See the section on Prototypes below.

Private Variables via my()

Synopsis:
my $foo; # declare $foo lexically local
my (@wid, %get); # declare list of variables local
my $foo = "flurp”; # declare $foo lexical, and init it
my @oof = @bar; # declare @oof lexical, and init it

A "my" declares the listed variables to be confined (lexically) to the enclosing block, subreutihe,or
do/require/use ‘d file. If more than one value is listed, the list must be placed in parens. All listed
elements must be legal lvalues. Only alphanumeric identifiers may be lexically scoped—magical builtins
like $/ must currently be localized with "local" instead.

Unlike dynamic variables created by the "local" statement, lexical variables declared with "my" are totally
hidden from the outside world, including any called subroutines (even if it's the same subroutine called from
itself or elsewhere—every call gets its own copy).

(An eval() , however, can see the lexical variables of the scope it is being evaluated in so long as the
names aren‘t hidden by declarations withingleal() itself. Seeerlref.)

The parameter list tmy() may be assigned to if desired, which allows you to initialize your variables. (If
no initializer is given for a particular variable, it is created with the undefined value.) Commonly this is used
to name the parameters to a subroutine. Examples:

$arg = "fred"; # "global" variable
$n = cube_root(27);
print "$arg thinks the root is $n\n";

fred thinks the root is 3

108 Version 5.003 08-0Oct-1996

perlsub Perl Programmers Reference Guide perlsub

sub cube_root {
my $arg = shift; # name doesn’t matter
$arg **= 1/3;
return $arg;

}

The "my" is simply a modifier on something you might assign to. So when you do assign to the variables in
its argument list, the "my" doesn‘t change whether those variables is viewed as a scalar or an array. So

my ($foo) = <STDIN>;
my @FOO = <STDIN>;

both supply a list context to the righthand side, while
my $foo = <STDIN>;

supplies a scalar context. But the following only declares one variable:
my $foo, $bar =1,

That has the same effect as

my $foo;
$bar = 1;

The declared variable is not introduced (is not visible) until after the current statement. Thus,
my $x = $x;

can be used to initialize the n@x with the value of the ol@x, and the expression
my $x = 123 and $x == 123

is false unless the offk happened to have the value 123.

Some users may wish to encourage the use of lexically scoped variables. As an aid to catching implicit
references to package variables, if you say

use strict 'vars’;

then any variable reference from there to the end of the enclosing block must either refer to a lexical
variable, or must be fully qualified with the package name. A compilation error results otherwise. An inner

block may countermand this with "no strict ‘vars™.

A my() has both a compile-time and a run—time effect. At compile time, the compiler takes notice of it; the
principle usefulness of this is to quiase strict ‘vars’ . The actual initialization doesn‘t happen
until run time, so gets executed every time through a loop.

Variables declared with "my" are not part of any package and are therefore never fully qualified with the
package name. In particular, you're not allowed to try to make a package variable (or other global) lexical:

my $pack::var; # ERROR! lllegal syntax
my$; # also illegal (currently)

In fact, a dynamic variable (also known as package or global variables) are still accessible using the fully
qualified :: notation even while a lexical of the same name is also visible:

package main;

local $x = 10;

my $x = 20;

print "$x and $::x\n";

That will print out 20 and 10.

You may declare "my" variables at the outer most scope of a file to totally hide any such identifiers from the
outside world. This is similar to C's static variables at the file level. To do this with a subroutine requires

08-0Oct-1996 Version 5.003 109

perlsub Perl Programmers Reference Guide perlsub

the use of a closure (anonymous function). If a block (such egad) , function, orpackage) wants to
create a private subroutine that cannot be called from outside that block, it can declare a lexical variable
containing an anonymous sub reference:

my $secret_version ='1.001-beta’;
my $secret_sub = sub { print $secret_version };
&$secret_sub();

As long as the reference is never returned by any function within the module, no outside module can see the
subroutine, since its hame is not in any package's symbol table. Remember that REAhdtY called
$some_pack::secret_version or anything; it's justsecret_version, unqualified and

unqualifiable.

This does not work with object methods, however; all object methods have to be in the symbol table of some
package to be found.

Just because the lexical variable is lexically (also called statically) scoped doesn‘t mean that within a
function it works like a C static. It normally works more like a C auto. But here's a mechanism for giving a
function private variables with both lexical scoping and a static lifetime. If you do want to create something
like C's static variables, just enclose the whole function in an extra block, and put the static variable outside
the function but in the block.

{
my $secret_val = 0;
sub gimme_another {
return ++$secret_val;
}
}

$secret_val now becomes unreachable by the outside
world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate filereguire oruse, then this is probably just fine.

If it's all in the main program, you'll need to arrange formimg) to be executed early, either by putting the
whole block above your pain program, or more likely, merely placing a BEGIN sub around it to make sure it
gets executed before your program starts to run:

sub BEGIN {
my $secret_val = 0;
sub gimme_another {
return ++$secret_val;

}
}

Seeperlrun about the BEGIN function.

Temporary Values via local()

NOTE: In general, you should be using "my" instead of "local", because it's faster and safer. Exceptions to
this include the global punctuation variables, filehandles and formats, and direct manipulation of the Perl
symbol table itself. Format variables often use "local" though, as do other variables whose current value
must be visible to called subroutines.

Synopsis:
local $foo; # declare $foo dynamically local
local (@wid, %get); # declare list of variables local
local $foo = "flurp"; # declare $foo dynamic, and init it
local @oof = @bar; # declare @oof dynamic, and init it
local *FH; # localize $FH, @FH, %FH, &FH ...
local *merlyn = *randal; # now $merlyn is really $randal, plus

110

Version 5.003 08-0ct—-1996

perlsub Perl Programmers Reference Guide perlsub

@merlyn is really @randal, etc
local *merlyn = 'randal’; # SAME THING: promote 'randal’ to *randal
local *merlyn = \$randal; # just alias $merlyn, not @merlyn etc

A local() modifies its listed variables to be local to the enclosing block, (or subroetiak} or do)
andany called from within that blockA local() just gives temporary values to global (meaning package)
variables. This is known as dynamic scoping. Lexical scoping is done with "my", which works more like
C's auto declarations.

If more than one variable is givenltral() , they must be placed in parens. All listed elements must be
legal Ivalues. This operator works by saving the current values of those variables in its argument list on a
hidden stack and restoring them upon exiting the block, subroutine or eval. This means that called
subroutines can also reference the local variable, but not the global one. The argument list may be assigned
to if desired, which allows you to initialize your local variables. (If no initializer is given for a particular
variable, it is created with an undefined value.) Commonly this is used to name the parameters to a
subroutine. Examples:

for$i(0..9){
$digits{$i} = $i;
}
assume this function uses global %digits hash
parse_num();

now temporarily add to %digits hash

if ($basel2) {
(NOTE: not claiming this is efficient!)
local %digits = (%digits, 't' => 10, e’ => 11);
parse_num(); # parse_num gets this new %digits!

}
old %digits restored here

Becausdocal() is a run—-time command, it gets executed every time through a loop. In releases of Perl
previous to 5.0, this used more stack storage each time until the loop was exited. Perl now reclaims the
space each time through, but it's still more efficient to declare your variables outside the loop.

A local is simply a modifier on an Ivalue expression. When you assign to a localized variable, the local
doesn't change whether its list is viewed as a scalar or an array. So

local($foo) = <STDIN>;
local @FOO = <STDIN>;

both supply a list context to the righthand side, while
local $foo = <STDIN>;
supplies a scalar context.

Passing Symbol Table Entries (typeglobs)
[Note: The mechanism described in this section was originally the only way to simulate pass—-by-reference
in older versions of Perl. While it still works fine in modern versions, the new reference mechanism is
generally easier to work with. See below.]

Sometimes you don‘t want to pass the value of an array to a subroutine but rather the name of it, so that the
subroutine can modify the global copy of it rather than working with a local copy. In perl you can refer to all
objects of a particular name by prefixing the name with a*ta: . This is often known as a "type glob",

since the star on the front can be thought of as a wildcard match for all the funny prefix characters on
variables and subroutines and such.

When evaluated, the type glob produces a scalar value that represents all the objects of that name, including
any filehandle, format or subroutine. When assigned to, it causes the name mentioned to refer to whatever
"*" value was assigned to it. Example:

08-0Oct-1996 Version 5.003 111

perlsub Perl Programmers Reference Guide perlsub

sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {
$elem *= 2;
}
}

doubleary(*foo);
doubleary(*bar);

Note that scalars are already passed by reference, so you can modify scalar arguments without using this
mechanism by referring explicitly [0] etc. You can modify all the elements of an array by passing all

the elements as scalars, but you have to use the * mechanism (or the equivalent reference mechanism) to
push, pop or change the size of an array. It will certainly be faster to pass the typeglob (or reference).

Even if you don't want to modify an array, this mechanism is useful for passing multiple arrays in a single
LIST, since normally the LIST mechanism will merge all the array values so that you can't extract out the
individual arrays. For more on typeglobs, $gpeglobs in perldata

Pass by Reference
If you want to pass more than one array or hash into a function—or return them from it—and have them
maintain their integrity, then you‘re going to have to use an explicit pass—by-reference. Before you do that,
you need to understand references as detailgzbriinef. This section may not make much sense to you
otherwise.

Here are a few simple examples. First, let's pass in several arrays to a function and have it pop all of then,
return a new list of all their former last elements:

@tailings = popmany (\@a, \@b, \@c, \@d);

sub popmany {
my $aref;
my @retlist = ();
foreach $aref (@_) {
push @retlist, pop @$aref;
}

return @retlist;

}

Here's how you might write a function that returns a list of keys occurring in all the hashes passed to it:

@common = inter(\%foo, \%bar, \%joe);
sub inter {
my ($k, $href, %seen); # locals
foreach $href (@_) {
while ($k = each %$href) {
$seen{$k}++;
}
}
return grep { $seen{$_} == @_ } keys %seen;
}

So far, we're just using the normal list return mechanism. What happens if you want to pass or return a hash?
Well, if you're only using one of them, or you don‘t mind them concatenating, then the normal calling
convention is ok, although a little expensive.

Where people get into trouble is here:

(@a, @b) = func(@c, @d);
or
(Y%a, %b) = func(%c, %d);

112 Version 5.003 08-0Oct-1996

perlsub Perl Programmers Reference Guide perlsub

That syntax simply won‘t work. It just sets @a or %a and clears the @b or %b. Plus the function didn‘t get
passed into two separate arrays or hashes: it got one long list in @_, as always.

If you can arrange for everyone to deal with this through references, it's cleaner code, although not so nice to
look at. Here's a function that takes two array references as arguments, returning the two array elements in
order of how many elements they have in them:

($aref, $bref) = func(\@c, \@d);
print "@%aref has more than @$brefin";

sub func {
my ($cref, $dref) = @_;
if (@$cref > @$dref) {
return ($cref, $dref);
}else {
return ($dref, $cref);
}
}

It turns out that you can actually do this also:

(*a, *b) = func(\@c, \@d);
print "@a has more than @b\n";

sub func {
local (*c, *d) = @_;
if (@c > @d) {
return (\@c, \@d);
}else {
return \@d, \@c);
}
}

Here we're using the typeglobs to do symbol table aliasing. It's a tad subtle, though, and also won'‘t work if
you'‘re usingmy() variables, since only globals (well, alodal() s) are in the symbol table.

If you're passing around filehandles, you could usually just use the bare typeglob, like *STDOUT, but
typeglobs references would be better because they'll still work properly usdestrict ‘refs’

For example:
splutter(*STDOUT);
sub splutter {

my $fh = shift;

print $th "her um well a hmmm\n";

}
$rec = get_rec(*STDIN);
sub get_rec {
my $fh = shift;
return scalar <$fh>;

}
If you‘re planning on generating new filehandles, you could do this:
sub openit {
my $name = shift;
local *FH;

return open (FH, $path) ? *FH : undef;
}

Although that will actually produce a small memory leak. See the bottoopai() for a somewhat
cleaner way using the FileHandle functions supplied with the POSIX package.

08-0Oct-1996 Version 5.003 113

perlsub Perl Programmers Reference Guide perlsub

Prototypes

As of the 5.002 release of perl, if you declare
sub mypush \@ @)

thenmypush() takes arguments exactly lifrish() does. The declaration of the function to be called
must be visible at compile time. The prototype only affects the interpretation of new-style calls to the
function, where new-style is defined as not using&tlvharacter. In other words, if you call it like a builtin
function, then it behaves like a builtin function. If you call it like an old-fashioned subroutine, then it
behaves like an old-fashioned subroutine. It naturally falls out from this rule that prototypes have no
influence on subroutine references likéoo or on indirect subroutine calls lik&{$subref}.

Method calls are not influenced by prototypes either, because the function to be called is indeterminate at
compile time, since it depends on inheritance.

Since the intent is primarily to let you define subroutines that work like builtin commands, here are the
prototypes for some other functions that parse almost exactly like the corresponding builtins.

Declared as Called as

sub mylink ($%$) mylink $old, $new

sub myvec ($$3%) myvec $var, $offset, 1

sub myindex ($%$;$) myindex &getstring, "substr"

sub mysyswrite ($$%$;%) mysyswrite $buf, 0, length($buf) — $off, $off
sub myreverse (@) myreverse $a,$b,$c

sub myjoin ($@) myjoin ":",%a,$b,$c

sub mypop (\@) mypop @array

sub mysplice (\@$$@) mysplice @array,@array,0,@pushme
sub mykeys (\%) mykeys %{$hashref}

sub myopen (*;$) myopen HANDLE, $name

sub mypipe (**) mypipe READHANDLE, WRITEHANDLE
sub mygrep (&@) mygrep { /foo/ } $a,$b,$c

sub myrand ($) myrand 42

sub mytime () mytime

Any backslashed prototype character represents an actual argument that absolutely must start with that
character. The value passed to the subroutine (as p@r) ofill be a reference to the actual argument given
in the subroutine call, obtained by applyingo that argument.

Unbackslashed prototype characters have special meanings. Any unbackslashed @ or % eats all the rest of
the arguments, and forces list context. An argument representedobges scalar context. A% requires

an anonymous subroutine, which, if passed as the first argument, does not require the "sub" keyword or a

subsequent comma. A * does whatever it has to do to turn the argument into a reference to a symbol table

entry.

A semicolon separates mandatory arguments from optional arguments. (It is redundant before @ or %.)

Note how the last three examples above are treated specially by thempsigsep() is parsed as a true list
operator,myrand() is parsed as a true unary operator with unary precedence the seand(as , and
mytime() is truly argumentless, just likeme() . That is, if you say

mytime +2;
you'll getmytime() + 2, not mytime(2), which is how it would be parsed without the prototype.
The interesting thing aboétis that you can generate new syntax with it:

sub try (&@) {
my($try,$catch) = @_;
eval { &$try };
if ($@) {

114

Version 5.003 08-0ct—-1996

perlsub Perl Programmers Reference Guide perlsub

local $ =3$@;
&$catch;

}

}
sub catch (&) { @_}

try {
die "phooey";
} catch {
/phooey/ and print "unphooey\n";
¥
That prints "unphooey”. (Yes, there are still unresolved issues having to do with the visibility of @ _. I'm
ignoring that question for the moment. (But note that if we make @_ lexically scoped, those anonymous
subroutines can act like closures... (Gee, is this sounding a little Lispish? (Nevermind.))))

And here's a reimplementation of grep:

sub mygrep (&@) {
my $code = shift;
my @result;
foreach $_ (@_) {
push(@result, $_) if &$code;
}

@result;
}

Some folks would prefer full alphanumeric prototypes. Alphanumerics have been intentionally left out of
prototypes for the express purpose of someday in the future adding named, formal parameters. The current
mechanism's main goal is to let module writers provide better diagnostics for module users. Larry feels the
notation quite understandable to Perl programmers, and that it will not intrude greatly upon the meat of the
module, nor make it harder to read. The line noise is visually encapsulated into a small pill that's easy to
swallow.

It's probably best to prototype new functions, not retrofit prototyping into older ones. That's because you
must be especially careful about silent impositions of differing list versus scalar contexts. For example, if
you decide that a function should take just one parameter, like this:

sub func ($) {
my $n = shift;
print "you gave me $n\n";
}
and someone has been calling it with an array or expression returning a list:
func(@foo);

func(split /:/);
Then you'‘ve just supplied an automagialar() in front of their argument, which can be more than a bit
surprising. The old @foo which used to hold one thing doesn't get passed in. Instdadcthe now

gets passed in 1, that is, the humber of elments in @foo. Arsplit@ gets called in a scalar context
and starts scribbling on your @__ parameter list.

This is all very powerful, of course, and should only be used in moderation to make the world a better place.

Overriding Builtin Functions
Many builtin functions may be overridden, though this should only be tried occasionally and for good
reason. Typically this might be done by a package attempting to emulate missing builtin functionality on a
non-Unix system.

08-0Oct-1996 Version 5.003 115

perlsub Perl Programmers Reference Guide perlsub

Overriding may only be done by importing the name from a module—ordinary predeclaration isn‘t good
enough. However, theubs pragma (compiler directive) lets you, in effect, predeclare subs via the import
syntax, and these names may then override the builtin ones:

use subs 'chdir’, 'chroot’, ‘chmod’, 'chown’;
chdir $somewhere;
sub chdir { ... }

Library modules should not in general export builtin names like "open" or "chdir" as part of their default
@EXPORT list, since these may sheak into someone else's namespace and change the semantics
unexpectedly. Instead, if the module adds the name to the @EXPORT_OK list, then it's possible for a user
to import the name explicitly, but not implicitly. That is, they could say

use Module 'open’;
and it would import the open override, but if they said
use Module;

they would get the default imports without the overrides.

Autoloading

If you call a subroutine that is undefined, you would ordinarily get an immediate fatal error complaining that
the subroutine doesn‘t exist. (Likewise for subroutines being used as methods, when the method doesn‘t
exist in any of the base classes of the class package.) If, however, thefdJiIEF@NOABubroutine defined

in the package or packages that were searched for the original subroutine, tAehrhAODARubroutine is

called with the arguments that would have been passed to the original subroutine. The fully qualified name
of the original subroutine magically appears in $&UTOLOADvariable in the same package as the
AUTOLOADoutine. The name is not passed as an ordinary argument because, er, well, just because, that's
why...

Most AUTOLOADoutines will load in a definition for the subroutine in question using eval, and then execute
that subroutine using a special form of "goto" that erases the stack frameA\bfTiid OADoutine without a

trace. (See the standafditoLoader module, for example.) But aAUTOLOADoutine can also just
emulate the routine and never define it. For example, let's pretend that a function that wasn'‘t defined should
just callsystem() with those arguments. All you‘d do is this:

sub AUTOLOAD {
my $program = SAUTOLOAD;
$program =~ s/.*:://;
system($program, @_);

}

date();

who(am’, 'i");

Is(=I);

In fact, if you preclare the functions you want to call that way, you don‘t even need the parentheses:

use subs qw(date who Is);

date;

who "am"”, "i";

Is —I;
A more complete example of this is the standard Shell module, which can treat undefined subroutine calls as
calls to Unix programs.

Mechanisms are available for modules writers to help split the modules up into autoloadable files. See the
standard AutoLoader module describedhirtoLoaderand inAutoSplif the standard SelfLoader modules in
SelfLoadeyand the document on adding C functions to perl cogerixs

116

Version 5.003 08-0ct—-1996

perlsub Perl Programmers Reference Guide perlsub

SEE ALSO

Seeperlref for more on references. Sperixsif you'd like to learn about calling C subroutines from perl.
See perlmodto learn about bundling up your functions in separate files.

08-0Oct-1996 Version 5.003 117

perimod Perl Programmers Reference Guide perimod

NAME

perlmod — Perl modules (packages)

DESCRIPTION

Packages

Perl provides a mechanism for alternative nhamespaces to protect packages from stomping on each other's
variables. In fact, apart from certain magical variables, there's really no such thing as a global variable in
Perl. The package statement declares the compilation unit as being in the given namespace. The scope of
the package declaration is from the declaration itself through the end of the enclosing block (the same scope
as thelocal() operator). All further unqualified dynamic identifiers will be in this namespace. A
package statement only affects dynamic variables—including those you‘veoasd(d on—but not

lexical variables created withy() . Typically it would be the first declaration in a file to be included by the
require or use operator. You can switch into a package in more than one place; it merely influences
which symbol table is used by the compiler for the rest of that block. You can refer to variables and
filehandles in other packages by prefixing the identifier with the package name and a double colon:
$Package::Variable. If the package name is null, theain package is assumed. That$ssail

is equivalent tébmain::sail.

(The old package delimiter was a single quote, but double colon is now the preferred delimiter, in part
because it's more readable to humans, and in part because it's more reaeafslestnacros. It also makes
C++ programmers feel like they know what's going on.)

Packages may be nested inside other pack&@4TER::INNER::var. This implies nothing about the

order of name lookups, however. All symbols are either local to the current package, or must be fully
qualified from the outer package name down. For instance, there is nowhere within gackagfethat
$INNER::var refers toSOUTER::INNER::var. It would treat packagtNNER as a totally separate
global package.

Only identifiers starting with letters (or underscore) are stored in a package's symbol table. All other
symbols are kept in packageain, including all of the punctuation variables lige. In addition, the
identifiers STDIN, STDOUT, STDERR, ARGV, ARGVOUT, ENV, INC and SIG are forced to be in
packagemain, even when used for other purposes than their built-in one. Note also that, if you have a
package calledh s ory, then you can‘t use the qualified form of an identifier because it will be interpreted
instead as a pattern match, a substitution, or a translation.

(Variables beginning with underscore used to be forced into package main, but we decided it was more
useful for package writers to be able to use leading underscore to indicate private variables and method
names$_ is still global though.)

Eval() ed strings are compiled in the package in whichehal() was compiled. (Assignments to
$SIG{}, however, assume the signal handler specified is imtia package. Qualify the signal handler
name if you wish to have a signal handler in a package.) For an example, egantdbeplin the Perl
library. It initially switches to théB package so that the debugger doesn't interfere with variables in the
script you are trying to debug. At various points, however, it temporarily switches back tuaitihe
package to evaluate various expressions in the context afdhe package (or wherever you came from).
Seeperldebug

Seeperlsubfor other scoping issues relatedng() andlocal() , orperlrefregarding closures.

Symbol Tables

The symbol table for a package happens to be stored in the associative array of that name appended with two
colons. The main symbol table‘'s name is tBumain:: , or%:: for short. Likewise symbol table for the
nested package mentioned earlier is nat&@UTER::INNER:: .

The value in each entry of the associative array is what you are referring to when you trearibe
typeglob notation. In fact, the following have the same effect, though the first is more efficient because it
does the symbol table lookups at compile time:

118

Version 5.003 08-0ct—-1996

perimod Perl Programmers Reference Guide perimod

local(*main::foo) = *main::bar; local($main::{'foo’}) =

$main::{’bar’};
You can use this to print out all the variables in a package, for instance. lderagsar.plfrom the Perl
library:

package dumpvar;
sub main::dumpvar {
($package) = @_;
local(*stab) = eval("*${package}::");
while (($key,$val) = each(%stab)) {
local(*entry) = $val;
if (defined $entry) {
print "\$$key = '$entry’\n";
}

if (defined @entry) {
print "\@$key = (\n";
foreach $num ($[.. $#entry) {
print " $num\t™,$entry[$num],"\n";
}
print ")\n";
}
if ($key ne "${package}::" && defined %entry) {
print "\%$key = (\n";
foreach $key (sort keys(%entry)) {
print" $key\t" $entry{$key},"\n";
}
print ")\n";
}
}
}

Note that even though the subroutine is compiled in packaggvar , the name of the subroutine is
qualified so that its name is inserted into package .

Assignment to a typeglob performs an aliasing operation, i.e.,
*dick = *richard;
causes variables, subroutines and file handles accessible via the idectified to also be accessible via

the identifierdick . If you only want to alias a particular variable or subroutine, you can assign a reference
instead:

*dick = \$richard;

makes $richard and $dick the same variable, but leaves @richard and @dick as separate arrays.
Tricky, eh?

This mechanism may be used to pass and return cheap references into or from subroutines if you won‘t want
to copy the whole thing.

%some_hash = ();

*some_hash = fn(\%another_hash);

sub fn {
local *hashsym = shift;
now use %hashsym normally, and you
will affect the caller’'s %another_hash
my %nhash = (); # do what you want

08-0Oct-1996 Version 5.003 119

perimod Perl Programmers Reference Guide perimod

return \%nhash;

}

On return, the reference wil overwrite the hash slot in the symbol table specified by the *some_hash
typeglob. This is a somewhat tricky way of passing around references cheaply when you won'‘t want to have
to remember to dereference variables explicitly.

Another use of symbol tables is for making "constant" scalars.
*P| =\3.14159265358979;
Now you cannot alteBPl, which is probably a good thing all in all.

Package Constructors and Destructors

There are two special subroutine definitions that function as package constructors and destructors. These are
the BEGIN andENDroutines. Theub is optional for these routines.

A BEGIN subroutine is executed as soon as possible, that is, the moment it is completely defined, even
before the rest of the containing file is parsed. You may have muBp®@N blocks within a file—they

will execute in order of definition. Becaus@BBGIN block executes immediately, it can pull in definitions

of subroutines and such from other files in time to be visible to the rest of the file.

An ENDsubroutine is executed as late as possible, that is, when the interpreter is being exited, even if it is
exiting as a result of die() function. (But not if it's is being blown out of the water by a signal—you
have to trap that yourself (if you can).) You may have muliN®blocks within a file—they will execute

in reverse order of definition; that is: last in, first out (LIFO).

Inside anENDsubroutineb? contains the value that the script is going to pasxit)) . You can modify
$? to change the exit value of the script. Beware of charfifinlgy accident (eg, by running something via
system).

Note that when you use then and-p switches to PerBEGIN andENDwork just as they do iawk, as a
degenerate case.

Perl Classes

There is no special class syntax in Perl, but a package may function as a class if it provides subroutines that
function as methods. Such a package may also derive some of its methods from another class package by
listing the other package name in its @ISA array.

For more on this, sqeerlobj.

Perl Modules

A module is just a package that is defined in a library file of the same name, and is designed to be reusable.
It may do this by providing a mechanism for exporting some of its symbols into the symbol table of any
package using it. Or it may function as a class definition and make its semantics available implicitly through
method calls on the class and its objects, without explicit exportation of any symbols. Or it can do a little of
both.

For example, to start a normal module called Fred, create a file called Fred.pm and put this at the start of it:

package Fred;

use Exporter ();

@ISA = gqw(Exporter);

@EXPORT = gw(funcl func2);

@EXPORT_OK = qw($sally @listabob %harry func3);

Then go on to declare and use your variables in functions without any qualificatiorsxfeterand the
Perl Modules Filefor details on mechanics and style issues in module creation.

Perl modules are included into your program by saying

use Module;

120

Version 5.003 08-0ct—-1996

perimod Perl Programmers Reference Guide perimod

or
use Module LIST;
This is exactly equivalent to
BEGIN { require "Module.pm"; import Module; }
or
BEGIN { require "Module.pm"; import Module LIST; }
As a special case
use Module ();
is exactly equivalent to
BEGIN { require "Module.pm"; }

All Perl module files have the extensiopm. use assumes this so that you don‘t have to spell out
"Module.pnt in quotes. This also helps to differentiate new modules frompbldnd.ph files. Module

names are also capitalized unless they‘'re functioning as pragmas, "Pragmas" are in effect compiler
directives, and are sometimes called "pragmatic modules" (or even "pragmata” if you‘re a classicist).

Because these statement implies BEGIN block, the importation of semantics happens at the moment the

use statement is compiled, before the rest of the file is compiled. This is how it is able to function as a
pragma mechanism, and also how modules are able to declare subroutines that are then visible as list
operators for the rest of the current file. This will not work if you negpiire instead ofuse. With

require you can get into this problem:

require Cwd,; # make Cwd:: accessible
$here = Cwd::getcwd();
use Cwd; # import names from Cwad::
$here = getcwd();
require Cwd,; # make Cwd:: accessible
$here = getcwd(); # oops! no main::getcwd()

In generaluse Module (); is recommended oveequire Module;

Perl packages may be nested inside other package names, so we can have package names:containing
But if we used that package name directly as a filename it would makes for unwieldy or impossible
filenames on some systems. Therefore, if a module's name i§,esdySoundex |, then its definition is
actually found in the library fil&ext/Soundex.pm

Perl modules always have.jam file, but there may also be dynamically linked executables or autoloaded
subroutine definitions associated with the module. If so, these will be entirely transparent to the user of the
module. It is the responsibility of thpm file to load (or arrange to autoload) any additional functionality.

The POSIX module happens to do both dynamic loading and autoloading, but the user canusest say
POSIXto get it all.

For more information on writing extension modules, pegxsandperlguts

NOTE

Perl does not enforce private and public parts of its modules as you may have been used to in other
languages like C++, Ada, or Modula-17. Perl doesn‘t have an infatuation with enforced privacy. It would
prefer that you stayed out of its living room because you weren't invited, not because it has a shotgun.

The module and its user have a contract, part of which is common law, and part of which is "written". Part
of the common law contract is that a module doesn‘t pollute any namespace it wasn'‘t asked to. The written
contract for the module (AKA documentation) may make other provisions. But then you know when you
use RedefineTheWorld that you‘re redefining the world and willing to take the consequences.

08-0Oct-1996 Version 5.003 121

perimod Perl Programmers Reference Guide perimod

THE PERL MODULE LIBRARY

A number of modules are included the the Perl distribution. These are described below, and afirand in
You may also discover files in the library directory that end in eijsleor .ph. These are old libraries
supplied so that old programs that use them still run. .phéles will all eventually be converted into
standard modules, and thph files made byh2ph will probably end up as extension modules madbaZxs
(Some.ph values may already be available through the POSIX module.)plZpm file in the distribution
may help in your conversion, but it's just a mechanical process, so is far from bulletproof.

Pragmatic Modules

They work somewhat like pragmas in that they tend to affect the compilation of your program, and thus will
usually only work well when used withinuse , orno. These are locally scoped, so an inner BLOCK may
countermand any of these by saying

no integer;
no strict 'refs’;

which lasts until the end of that BLOCK.

The following programs are defined (and have their own documentation).

diagnostics Pragma to produce enhanced diagnostics

integer Pragma to compute arithmetic in integer instead of double
less Pragma to request less of something from the compiler
ops Pragma to restrict use of unsafe opcodes

overload Pragma for overloading operators

sigtrap Pragma to enable stack backtrace on unexpected signals
strict Pragma to restrict unsafe constructs

subs Pragma to predeclare sub names

vars Pragma to predeclare global symbols

Standard Modules

Standard, bundled modules are all expected to behave in a well-defined manner with respect to namespace
pollution because they use the Exporter module. See their own documentation for details.

AnyDBM_File provide framework for multiple DBMs
AutoLoader load functions only on demand
AutoSplit split a package for autoloading

Benchmark benchmark running times of code

Carp warn of errors (from perspective of caller)
Config access Perl configuration option

Cwd get pathname of current working directory
DB_File Perl access to Berkeley DB

Devel::SelfStubber
generate stubs for a SelfLoading module

DynalLoader Dynamically load C libraries into Perl code

English use nice English (awk) names for ugly punctuation variables

122 Version 5.003 08-0Oct-1996

perimod

Perl Programmers Reference Guide perimod

Env

Exporter

perl module that imports environment variables

provide import/export controls for Perl modules

ExtUtils::Liblist determine libraries to use and how to use them

ExtUtils::MakeMaker

create an extension Makefile

ExtUtils::Manifest

utilities to write and check a MANIFEST file

ExtUtils::Mkbootstrap

make a bootstrap file for use by Dynaloader

ExtUtils::Miniperl

Fentl

File::Basename

File::CheckTree

File::Find
FileHandle
File::Path
Getopt::Long
Getopt::Std
I18N::Collate
IPC::Open2
IPC::Open3
Net::Ping
POSIX
SelfLoader
Safe

Socket
Test::Harness

Text::Abbrev

IGOOD QUESTION!!
load the C Fcntl.h defines

parse file specifications

run many filetest checks on a tree

traverse afile tree

supply object methods for filehandles

create or remove a series of directories

extended getopt processing

Process single—character switches with switch clustering
compare 8-bit scalar data according to the current locale
a process for both reading and writing

open a process for reading, writing, and error handling
check a host for upness

Perl interface to IEEE Std 1003.1

load functions only on demand

Creation controlled compartments in which perl code can be evaluated.
load the C socket.h defines and structure manipulators
run perl standard test scripts with statistics

create an abbreviation table from a list

To find outall the modules installed on your system, including those without documentation or outside the
standard release, do this:

find ‘perl —e "print "@INC™* —name *.pm’ —print

They should all have their own documentation installed and accessible via your system man(1) command. If
that fails, try theperldocprogram.

08-0Oct-1996

Version 5.003 123

perimod Perl Programmers Reference Guide perimod

Extension Modules

CPAN

Extension modules are written in C (or a mix of Perl and C) and get dynamically loaded into Perl if and
when you need them. Supported extension modules include the Socket, Fcntl, and POSIX modules.

Many popular C extension modules do not come bundled (at least, not completely) due to their size,
volatility, or simply lack of time for adequate testing and configuration across the multitude of platforms on

which Perl was beta-tested. You are encouraged to look for them in archie(1L), the Perl FAQ or
Meta—-FAQ, the WWW page, and even with their authors before randomly posting asking for their present
condition and disposition.

CPAN stands for the Comprehensive Perl Archive Network. This is a globally replicated collection of all
known Perl materials, including hundreds of unbundled modules. Here are the major categories of modules:

° Language Extensions and Documentation Tools

° Development Support

° Operating System Interfaces

° Networking, Device Control (modems) and InterProcess Communication
° Data Types and Data Type Utilities

° Database Interfaces

° User Interfaces

° Interfaces to / Emulations of Other Programming Languages

° File Names, File Systems and File Locking (see also File Handles)
° String Processing, Language Text Processing, Parsing and Searching
° Option, Argument, Parameter and Configuration File Processing

° Internationalization and Locale

° Authentication, Security and Encryption

e World Wide Web, HTML, HTTP, CGI, MIME

° Server and Daemon Utilities

° Archiving and Compression

° Images, Pixmap and Bitmap Manipulation, Drawing and Graphing
° Mail and Usenet News

° Control Flow Utilities (callbacks and exceptions etc)

° File Handle and Input/Output Stream Ultilities

° Miscellaneous Modules

The registered CPAN sites as of this writing include the following. You should try to choose one close to
you:

° ftp://ftp.sterling.com/programming/languages/perl/
° ftp://ftp.sedl.org/pub/mirrors/CPAN/
° ftp://ftp.uoknor.edu/mirrors/CPAN/

124

Version 5.003 08-0ct—-1996

perimod Perl Programmers Reference Guide perimod

° ftp://ftp.delphi.com/pub/mirrors/packages/perl/CPAN/

° ftp://uiarchive.cso.uiuc.edu/pub/lang/perl/CPAN/

° ftp://ftp.cis.ufl.edu/pub/perl/CPAN/

° ftp://ftp.switch.ch/mirror/CPAN/

° ftp://ftp.sunet.se/pub/lang/perl/CPAN/

° ftp://ftp.ci.uminho.pt/pub/lang/perl/

° ftp://ftp.cs.ruu.nl/pub/PERL/CPAN/

° ftp://ftp.demon.co.uk/pub/mirrors/perl/CPAN/

° ftp://ftp.rz.ruhr—uni-bochum.de/pub/programming/languages/perl/CPAN/
° ftp://ftp.leo.org/pub/comp/programming/languages/perl/CPAN/

° ftp://ftp.pasteur.fr/pub/computing/unix/perl/CPAN/

° ftp://ftp.ibp.fr/pub/perl/CPAN/

° ftp://ftp.funet.fi/pub/languages/perl/CPAN/

° ftp://ftp.tekotago.ac.nz/pub/perl/CPAN/

° ftp://ftp.mame.mu.oz.au/pub/perl/CPAN/

° ftp://coombs.anu.edu.au/pub/perl/

° ftp://dongpo.math.ncu.edu.tw/perl/CPAN/

° ftp://ftp.lab.kdd.co.jp/lang/perl/CPAN/

° ftp://ftp.is.co.za/programming/perl/CPAN/

For an up—to—date listing of CPAN sites, &ép://www.perl.com/perl/CPANr ftp://ftp.perl.com/perll

Modules: Creation, Use and Abuse

(The following section is borrowed directly from Tim Bunce's modules file, available at your nearest CPAN
site.)

Perl 5 implements a class using a package, but the presence of a package doesn‘t imply the presence of a
class. A package is just a namespace. A class is a package that provides subroutines that can be used as
methods. A method is just a subroutine that expects, as its first argument, either the name of a package (for
"static" methods), or a reference to something (for "virtual" methods).

A module is a file that (by convention) provides a class of the same name (sans the .pm), plus an import
method in that class that can be called to fetch exported symbols. This module may implement some of its
methods by loading dynamic C or C++ objects, but that should be totally transparent to the user of the
module. Likewise, the module might set up an AUTOLOAD function to slurp in subroutine definitions on
demand, but this is also transparent. Only the .pm file is required to exist.

Guidelines for Module Creation

Do similar modules already exist in some form?

If so, please try to reuse the existing modules either in whole or by inheriting useful features into a new
class. |If this is not practical try to get together with the module authors to work on extending or
enhancing the functionality of the existing modules. A perfect example is the plethora of packages in
perl4 for dealing with command line options.

If you are writing a module to expand an already existing set of modules, please coordinate with the
author of the package. It helps if you follow the same naming scheme and module interaction scheme
as the original author.

08-0Oct-1996 Version 5.003 125

perimod

Perl Programmers Reference Guide perimod

Try to design the new module to be easy to extend and reuse.

Use blessed references. Use the two argument form of bless to bless into the class name given as the
first parameter of the constructor, e.g.:

sub new {
my $class = shift;
return bless {}, $class;

}

or even this if you'd like it to be used as either a static or a virtual method.

sub new {
my $self = shift;
my $class = ref($self) || $self;
return bless {}, $class;

}

Pass arrays as references so more parameters can be added later (it's also faster). Convert functions
into methods where appropriate. Split large methods into smaller more flexible ones. Inherit methods
from other modules if appropriate.

Avoid class name tests likdie "Invalid" unless ref $ref eq ‘FOO’ . Generally you
can delete theef) ‘FOO’ " part with no harm at all. Let the objects look after themselves! Generally,
avoid hardwired class names as far as possible.

Avoid $r—>Class::func() where using@ISA=gw(... Class ...) and $r—>func()
would work (seerlbotfor more details).

Use autosplit so little used or newly added functions won‘t be a burden to programs which don‘t use
them. Add test functions to the module after _ END___ either using AutoSplit or by saying:

eval join(”,<main::DATA>) || die $@ unless caller();

Does your module pass the ‘empty sub—class’ test? If you@8JJBCLASS::ISA =

gw(YOURCLASS);" your applications should be able to use SUBCLASS in exactly the same way as
YOURCLASS. For example, does your application still work if you chan§ebj = new
YOURCLASSijnto: $obj = new SUBCLASS; ?

Avoid keeping any state information in your packages. It makes it difficult for multiple other packages
to use yours. Keep state information in objects.

Always use-w. Try touse strict; (oruse strict qw(...);). Remember that you can add
no strict qw(...); to individual blocks of code which need less strictness. Always-wse
Always use-w! Follow the guidelines in the perlstyle(1) manual.

Some simple style guidelines

The perlstyle manual supplied with perl has many helpful points.

Coding style is a matter of personal taste. Many people evolve their style over several years as they
learn what helps them write and maintain good code. Here's one set of assorted suggestions that seem
to be widely used by experienced developers:

Use underscores to separate words. It is generally easier tSvaachames_like_this than
$VarNamesLikeThis, especially for non—native speakers of English. It's also a simple rule that
works consistently with VAR_NAMES_LIKE_THIS.

Package/Module names are an exception to this rule. Perl informally reserves lowercase module names
for ‘pragma’ modules like integer and strict. Other modules normally begin with a capital letter and
use mixed case with no underscores (need to be short and portable).

You may find it helpful to use letter case to indicate the scope or nature of a variable. For example:

126

Version 5.003 08-0ct—-1996

perimod

Perl Programmers Reference Guide perimod

$ALL_CAPS_HERE constants only (beware clashes with perl vars)
$Some_Caps_Here package-wide global/static
$no_caps_here function scope my() or local() variables

Function and method names seem to work best as all lowercas&oBjgzas_string()

You can use a leading underscore to indicate that a variable or function should not be used outside the
package that defined it.

Select what to export.

Do NOT export method names!
Do NOT export anything else by default without a good reason!

Exports pollute the namespace of the module user. If you must export try to use @EXPORT_OK in
preference to @EXPORT and avoid short or common names to reduce the risk of name clashes.

Generally anything not exported is still accessible from outside the module using the
ModuleName::item_name (@blessed_ref->method) syntax. By convention you can use a
leading underscore on names to informally indicate that they are ‘internal’ and not for public use.

(It is actually possible to get private functions by sayimy. $subref = sub { ... };
&S$subref;. But there's no way to call that directly as a method, since a method must have a name
in the symbol table.)

As a general rule, if the module is trying to be object oriented then export nothing. If it's just a
collection of functions then @EXPORT_OK anything but use @EXPORT with caution.

Select a name for the module.

This name should be as descriptive, accurate and complete as possible. Avoid any risk of ambiguity.
Always try to use two or more whole words. Generally the name should reflect what is special about
what the module does rather than how it does it. Please use nested module names to informally group
or categorise a module. A module should have a very good reason not to have a nested name. Module
names should begin with a capital letter.

Having 57 modules all called Sort will not make life easy for anyone (though having 23 called
Sort::Quick is only marginally better :-). Imagine someone trying to install your module alongside
many others. If in any doubt ask for suggestions in comp.lang.perl.misc.

If you are developing a suite of related modules/classes it's good practice to use nested classes with a
common prefix as this will avoid namespace clashes. For example: Xyz::Control, Xyz::View,
Xyz::Model etc. Use the modules in this list as a haming guide.

If adding a new module to a set, follow the original author's standards for naming modules and the
interface to methods in those modules.

To be portable each component of a module nhame should be limited to 11 characters. If it might be
used on DOS then try to ensure each is unique in the first 8 characters. Nested modules make this
easier.

Have you got it right?

How do you know that you‘ve made the right decisions? Have you picked an interface design that will
cause problems later? Have you picked the most appropriate name? Do you have any questions?

The best way to know for sure, and pick up many helpful suggestions, is to ask someone who knows.
Comp.lang.perl.misc is read by just about all the people who develop modules and it's the best place to
ask.

All you need to do is post a short summary of the module, its purpose and interfaces. A few lines on
each of the main methods is probably enough. (If you post the whole module it might be ignored by
busy people - generally the very people you want to read it!)

08-0Oct-1996 Version 5.003 127

perimod

Perl Programmers Reference Guide perimod

Don‘t worry about posting if you can't say when the module will be ready - just say so in the message.
It might be worth inviting others to help you, they may be able to complete it for you!

README and other Additional Files.

It's well known that software developers usually fully document the software they write. If, however,
the world is in urgent need of your software and there is not enough time to write the full
documentation please at least provide a README file containing:

A description of the module/package/extension etc.

A copyright notice — see below.

Prerequisites — what else you may need to have.

How to build it — possible changes to Makefile.PL etc.

How to install it.

Recent changes in this release, especially incompatibilities

Changes / enhancements you plan to make in the future.

If the README file seems to be getting too large you may wish to split out some of the sections into
separate files: INSTALL, Copying, ToDo etc.

Adding a Copyright Notice.

How you choose to license your work is a personal decision. The general mechanism is to assert
your Copyright and then make a declaration of how others may copy/use/modify your work.

Perl, for example, is supplied with two types of license: The GNU GPL and The Artistic License
(see the files README, Copying and Artistic). Larry has good reasons for NOT just using the
GNU GPL.

My personal recommendation, out of respect for Larry, Perl and the perl community at large is to
simply state something like:

Copyright (c) 1995 Your Name. All rights reserved.
This program is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.

This statement should at least appear in the README file. You may also wish to include it in a
Copying file and your source files. Remember to include the other words in addition to the
Copyright.

Give the module a version/issue/release number.

To be fully compatible with the Exporter and MakeMaker modules you should store your
module’s version number in a non—-my package variable c8#ERSION. This should be a
valid floating point number with at least two digits after the decimal (ie hundredths, e.g,
$VERSION ="0.01"). Don‘t use a "1.3.2" style version. See Exporter.pm in Perl5.001m or
later for details.

It may be handy to add a function or method to retrieve the number. Use the number in
announcements and archive file names when releasing the module (ModuleName-1.02.tar.Z).
See perldoc ExtUtils::MakeMaker.pm for details.

How to release and distribute a module.

It's good idea to post an announcement of the availability of your module (or the module itself if
small) to the comp.lang.perl.announce Usenet newsgroup. This will at least ensure very wide
once-—off distribution.

If possible you should place the module into a major ftp archive and include details of it's
location in your announcement.

128

Version 5.003 08-0ct—-1996

perimod Perl Programmers Reference Guide perimod

Some notes about ftp archives: Please use a long descriptive file name which includes the
version number. Most incoming directories will not be readable/listable, i.e., you won't be able
to see your file after uploading it. Remember to send your email notification message as soon as
possible after uploading else your file may get deleted automatically. Allow time for the file to
be processed and/or check the file has been processed before announcing its location.

FTP Archives for Perl Modules:

Follow the instructions and links on
http://franz.ww.tu—-berlin.de/modulelist

or upload to one of these sites:

ftp:/ffranz.ww.tu-berlin.de/incoming
ftp://ftp.cis.ufl.edu/incoming

and notify upload@franz.ww.tu—berlin.de.

By using the WWW interface you can ask the Upload Server to mirror your modules from your
ftp or WWW site into your own directory on CPAN!

Please remember to send me an updated entry for the Module list!

Take care when changing a released module.

Always strive to remain compatible with previous released versions (see 2.2 above) Otherwise
try to add a mechanism to revert to the old behaviour if people rely on it. Document incompatible
changes.

Guidelines for Converting Perl 4 Library Scripts into Modules

There is no requirement to convert anything.
If it ain‘t broke, don‘t fix it! Perl 4 library scripts should continue to work with no problems. You may
need to make some minor changes (like escaping non-array @'s in double quoted strings) but there is
no need to convert a .pl file into a Module for just that.

Consider the implications.
All the perl applications which make use of the script will need to be changed (slightly) if the script is
converted into a module. Is it worth it unless you plan to make other changes at the same time?

Make the most of the opportunity.
If you are going to convert the script to a module you can use the opportunity to redesign the interface.
The ‘Guidelines for Module Creation’ above include many of the issues you should consider.

The pl2pm utility will get you started.

This utility will read *.pl files (given as parameters) and write corresponding *.pm files. The pl2pm
utilities does the following:

° Adds the standard Module prologue lines
° Converts package specifiers from ' to ::

° Converts die(...) to croak(...)

° Several other minor changes

Being a mechanical process pl2pm is not bullet proof. The converted code will need careful checking,
especially any package statements. Don‘t delete the original .pl file till the new .pm one works!

Guidelines for Reusing Application Code

Complete applications rarely belong in the Perl Module Library.

08-0Oct-1996 Version 5.003 129

perimod Perl Programmers Reference Guide perimod

Many applications contain some perl code which could be reused.
Help save the world! Share your code in a form that makes it easy to reuse.
Break-out the reusable code into one or more separate module files.

Take the opportunity to reconsider and redesign the interfaces.
In some cases the ‘application’ can then be reduced to a small

fragment of code built on top of the reusable modules. In these cases the application could invoked as:
perl —e 'use Module::Name; method(@ARGV)' ...

or
perl -mModule::Name ... (in perl5.002)

130 Version 5.003 08-0Oct-1996

perlform Perl Programmers Reference Guide perlform

NAME
perlform — Perl formats

DESCRIPTION

Perl has a mechanism to help you generate simple reports and charts. To facilitate this, Perl helps you code
up your output page close to how it will look when it's printed. It can keep track of things like how many
lines on a page, what page you‘re on, when to print page headers, etc. Keywords are borrowed from
FORTRAN:format() to declare anevrite() to execute; see their entriesgarlfunc Fortunately, the

layout is much more legible, more like BASIC's PRINT USING statement. Think of it as a poor man's
nroff(1).

Formats, like packages and subroutines, are declared rather than executed, so they may occur at any point in
your program. (Usually it's best to keep them all together though.) They have their own namespace apart
from all the other "types" in Perl. This means that if you have a function named "Foo", it is not the same
thing as having a format named "Foo". However, the default name for the format associated with a given
filehandle is the same as the name of the filehandle. Thus, the default format for STDOUT is name
"STDOUT", and the default format for filehandle TEMP is name "TEMP". They just look the same. They
aren't.

Output record formats are declared as follows:

format NAME =
FORMLIST

If name is omitted, format "STDOUT" is defined. FORMLIST consists of a sequence of lines, each of which
may be of one of three types:

1. A comment, indicated by putting a ‘#’ in the first column.
2. A'picture” line giving the format for one output line.
3. Anargument line supplying values to plug into the previous picture line.

Picture lines are printed exactly as they look, except for certain fields that substitute values into the line.
Each field in a picture line starts with either "@" (at) or """ (caret). These lines do not undergo any kind of
variable interpolation. The at field (not to be confused with the array marker @) is the normal kind of field,;
the other kind, caret fields, are used to do rudimentary multi-line text block filling. The length of the field is
supplied by padding out the field with multiple "<", ">", or "|" characters to specify, respectively, left
justification, right justification, or centering. If the variable would exceed the width specified, it is truncated.

As an alternate form of right justification, you may also use "#" characters (with an optional ".") to specify a
numeric field. This way you can line up the decimal points. If any value supplied for these fields contains a
newline, only the text up to the newline is printed. Finally, the special field "@*" can be used for printing
multi-line, non—truncated values; it should appear by itself on a line.

The values are specified on the following line in the same order as the picture fields. The expressions

providing the values should be separated by commas. The expressions are all evaluated in a list context
before the line is processed, so a single list expression could produce multiple list elements. The expressions
may be spread out to more than one line if enclosed in braces. If so, the opening brace must be the first
token on the first line.

Picture fields that begin with » rather than @ are treated specially. With a # field, the field is blanked out if
the value is undefined. For other field types, the caret enables a kind of fill mode. Instead of an arbitrary
expression, the value supplied must be a scalar variable name that contains a text string. Perl puts as much
text as it can into the field, and then chops off the front of the string so that the next time the variable is
referenced, more of the text can be printed. (Yes, this means that the variable itself is altered during
execution of thewrite() call, and is not returned.) Normally you would use a sequence of fields in a
vertical stack to print out a block of text. You might wish to end the final field with the text "...", which will

08-0Oct-1996 Version 5.003 131

perlform Perl Programmers Reference Guide perlform

appear in the output if the text was too long to appear in its entirety. You can change which characters are
legal to break on by changing the variaBle (that's $SFORMAT_LINE_BREAK_CHARACTERS/ou‘re
using the English module) to a list of the desired characters.

Using caret fields can produce variable length records. If the text to be formatted is short, you can suppress
blank lines by putting a "~" (tilde) character anywhere in the line. The tilde will be translated to a space
upon output. If you put a second tilde contiguous to the first, the line will be repeated until all the fields on
the line are exhausted. (If you use a field of the at variety, the expression you supply had better not give the
same value every time forever!)

Top-of-form processing is by default handled by a format with the same name as the current filehandle
with "_TOP" concatenated to it. It's triggered at the top of each pagewrBee

Examples:

a report on the /etc/passwd file
format STDOUT _TOP =
Passwd File
Name Login Office Uid Gid Home

format STDOUT =
@<<<<<<<< @||[|]]] @<L L@ >>>> @>>>> @ <<LKLKLKLKLKLKLKLKLLKLL LKL
$name, $login, $office,$uid,$gid, $home

a report from a bug report form
format STDOUT _TOP =
Bug Reports

@<<<KKKLIKK LKL LL L @]]| @>>>>>>>>>>>>>5>>5>>>>>>
$system, $%, $date
format STDOUT =
Subject: @<<<<KLLLLILLLKL
$subject
Index: @<<<<LLLLLLLLLLLLLLLLLLLLLLLL ML
$index, $description

Priority: @<<<<<<<<<< Date: @<<<<<<< A<<<L<LLLLLLLLLLLLLLLLLLLLLLLL
$priority, $date, S$description
From: @<<<<<<<<<<<<<<<LLLLLLLLLLLLLLL ALLLLLLLLLLLLLLLLLLLLLLLLLLLL

$from, $description
Assigned t0: @<<<<<KLKLKLKLLKLKLLKLLLLLLLLL ALLLLLLLLLLLLLLLLLLLLLLLLLLLL
$programmer, $description

~ NLLLLLLLLLLLLLLLLLLLLLLLLLLLL
$description

~ NLLLLLLLLLLLLLLLLLLLLLLLLLLLL
$description

~ NLLLLLLLLLLLLLLLLLLLLLLLLLLLL
$description

~ NLLLLLLLLLLLLLLLLLLLLLLLLLLLL
$description

~ NLLLLLLLLLLLLLLLLLLLLLLL, .
$description

It is possible to intermiprint() s withwrite() s on the same output channel, but you'll have to handle

132

Version 5.003 08-0ct—-1996

perlform Perl Programmers Reference Guide perlform

$- (JFORMAT_LINES_LEFT)yourself.

Format Variables

The current format name is stored in the varighbte(SFORMAT_NAME),and the current top of form
format name is in$" ($FORMAT_TOP_NAME).The current output page number is stored$¥
(SFORMAT_PAGE_NUMBERNd the number of lines on the page i$3n
($FORMAT_LINES_PER_PAGE) Whether to autoflush output on this handle is store] in
($OUTPUT_AUTOFLUSH). The string output before each top of page (except the first) is stofd in
($FORMAT_FORMFEED).These variables are set on a per—filehandle basis, so you'll neel¢t()

into a different one to affect them:

select((select(OUTF),
$~ ="My_Other_Format",
$" ="My_Top_Format"
)[oD);

Pretty ugly, eh? It's a common idiom though, so don't be too surprised when you see it. You can at least
use a temporary variable to hold the previous filehandle: (this is a much better approach in general, because
not only does legibility improve, you now have intermediary stage in the expression to single-step the
debugger through):

$ofth = select(OUTF);

$~ ="My_Other_Format";
$" = "My_Top_Format";
select($ofh);

If you use the English module, you can even read the variable names:

use English;

$ofth = select(OUTF);

$FORMAT_NAME ="My _Other_Format";
$FORMAT_TOP_NAME ="My_Top_Format";
select($ofh);

But you still have those funrgelect() s. So just use the FileHandle module. Now, you can access these
special variables using lower—-case method names instead:

use FileHandle;
format_name OUTF "My_Other_Format";
format_top_name OUTF "My_Top_Format";

Much better!

NOTES
Since the values line may contain arbitrary expressions (for at fields, not caret fields), you can farm out
more sophisticated processing to other functions slkantf() or one of your own. For example:
format Ident =
@<<<LLLLLLLLLLLKL
&commify($n)

To get a real at or caret into the field, do this:

format ldent =
| have an @ here.

@

To center a whole line of text, do something like this:

08-0Oct-1996 Version 5.003 133

perlform Perl Programmers Reference Guide perlform

format ldent =

TR

"Some text line"

There is no builtin way to say "float this to the right hand side of the page, however wide it is." You have to

specify where it goes. The truly desperate can generate their own format on the fly, based on the current
number of columns, and thewal() it

$format = "format STDOUT = \n";
NV < x $eols . "\n';

.'$entry’ . "\n";
MWLt x ($eols-8) . '~~\n";
.'$entry’ . "\n";

"\n";

print $format if $Debugging;
eval $format;

die $@ if $@;
Which would generate a format looking something like this:

format STDOUT =
ALL
$entry

ALL LK ~~
$entry

Here's a little program that's somewhat like fmt(1):

format =
NLL ~~

$

$/=",

while (<>) {
sN\s*\n\s*/ /g;
write;

}

Footers

While $SFORMAT_TOP_NAMébntains the name of the current header format, there is no corresponding
mechanism to automatically do the same thing for a footer. Not knowing how big a format is going to be
until you evaluate it is one of the major problems. It's on the TODO list.

Here's one strategy: If you have a fixed-size footer, you can get footers by checking
$FORMAT_LINES_LEFThefore eachwrite() and print the footer yourself if necessary.

Here's another strategy; open a pipe to yourself, ugiemp(MESELF, "|-") (seeopen()) and always
write() to MESELF instead of STDOUT. Have your child process massage its STDIN to rearrange
headers and footers however you like. Not very convenient, but doable.

Accessing Formatting Internals

For low-level access to the formatting mechanism. you mayfarsdine() and acces$"A (the
$SACCUMULATOWRariable) directly.

For example:

$str = formline <<’END’, 1,2,3;

134 Version 5.003 08-0Oct-1996

perlform Perl Programmers Reference Guide perlform

@<<< @||| @>>>
END
print "Wow, | just stored ‘$"A’ in the accumulator'\n";
Or to make amswrite() subroutine which is tarite() whatsprintf() is toprintf() , do this:
use Carp;
sub swrite {

croak "usage: swrite PICTURE ARGS" unless @_;
my $format = shift;

A=

formline($format,@_);

return $"A;

}

$string = swrite(<<’END’, 1, 2, 3);
Check me out

@<<< @l @>>>
END
print $string;
WARNING

Lexical variables (declared with "my") are not visible within a format unless the format is declared within
the scope of the lexical variable. (They weren‘t visible at all before version 5.001.) Furthermore, lexical
aliases will not be compiled correctly: segfor other issues.

08-0Oct-1996 Version 5.003 135

perlil8n Perl Programmers Reference Guide perlil8n

NAME

perl18n — Perl i18n (internalization)

DESCRIPTION

Perl supports the language—specific notions of data like "is this a letter" and "which letter comes first". These
are very important issues especially for languages other than English — but also for English: it would be
very naive indeed to think thAt-Za-z defines all the letters.

Perl understands the language-specific data via the standardized (ISO C, XPG4, POSIX 1.c) method called
"the locale system". The locale system is controlled per application using several environment variables.

USING LOCALES

If your operating system supports the locale system and you have installed the locale system and you have
set your locale environment variables correctly (please see below) before running Perl, Perl will understand
your data correctly.

In runtime you can switch locales using B@SIX::setlocale()
use POSIX gw(setlocale LC_CTYPE);

query and save the old locale.
$old_locale = setlocale(LC_CTYPE);

setlocale(LC_CTYPE, "fr_CA.ISO8859-1");
for LC_CTYPE now in locale "French, Canada, codeset ISO 8859-1"

setlocale(LC_CTYPE, "),
for LC_CTYPE now in locale what the LC_ALL / LC_CTYPE / LANG define.
see below for documentation about the LC_ALL /LC_CTYPE / LANG.

restore the old locale
setlocale(LC_CTYPE, $old_locale);

The first argument oetlocale() is called the category and the second argument the locale. The
category tells in what area of data processing we want to apply language—specific rules, the locale tells in
what language—country/territory—codeset. For further information about the categories, please consult your
setlocale(3)manual. For the locales available in your system, also consuetloeale(3)manual and see
whether it leads you to the list of the available locales (search f@BEReALSO section). If that fails, try

out in command line the following commands:

locale —a
nisinfo

Is /usr/lib/nis/loc
Is /usr/lib/locale
Is /usr/lib/nls

and see whether they list something resembling these

en_US.1ISO8859-1 de_DE.ISO8859-1 ru_RU.ISO8859-5
en_US de DE ru RU

english german russian
english.iso88591 german.iso88591 russian.iso88595

Sadly enough even if the calling interface has been standardized the names of the locales are not.

CHARACTER TYPES

Starting from Perl version 5.002 perl has obeyed the LC_CTYPE environment variable which controls
application's notions on which characters are alphabetic characters. This affects in Perl the regular
expression metanotation

\w

136

Version 5.003 08-0ct—-1996

perlil8n Perl Programmers Reference Guide perlil8n

which stands for alphanumeric characters, that is, alphabetic and numeric characters. Depending on your
locale settings, characters likel , _, x, can be understood &8 characters.

COLLATION

Starting from Perl version 5.003_06 perl has obeyed the LC_COLLATE environment variable which
controls application's notions on the ordering (collation) of the chara@aises in most Latin alphabets
follow the A but where do thé& andD belong?

Here is a code snippet that will tell you what are the alphanumeric characters in the current locale, in the
locale order:

perl —le 'print sort grep Aw/, map { chr() } 0..255’
As noted above, this will work only for Perl versions 5.003_06 and up.

NOTE: in the pre—5.003_06 Perl releases the per—locale collation was possible usir@th@ollate

library module. This is now mildly obsolete and to be avoided.LTheCOLLATEfunctionality is integrated

into the Perl core language and one can use scalar data completely normally — there is no need to juggle
with the scalar references Ia8N::Collate

ENVIRONMENT

PERL_BADLANG

A string that controls whether Perl warns in its startup about failed language-specific
"locale" settings. This can happen if the locale support in the operating system is lacking is
some way. If this string has an integer value differing from zero, Perl will not complain.
NOTE: this is just hiding the warning message: the message tells about some problem in
your system's locale support and you should investigate what the problem is.

The following environment variables are not specific to Perl: they are part of the standardized (ISO C,
XPG4, POSIX 1.c) setlocale method to control an application‘s opinion on data.

LC _ALL LC_ALL is the "override—all" locale environment variable. If it is set, it overrides all the
rest of the locale environment variables.

LC_CTYPE LC_ALL controls the classification of characters, see above.

If this is unset and theC_ALL is set, thdeC_ALL is used as theC_CTYPE If both this
and theLC_ALL are unset but theANGis set, thedLANGis used as theC_CTYPE If
none of these three is set, the default lot@le is used as theC_CTYPE

LC_COLLATE LC_ALL controls the collation of characters, see above.

If this is unset and theC_ALL is set, thdeC_ALL is used as theC_CTYPE If both this
and theLC_ALL are unset but theANGis set, the.ANGis used as theC_COLLATE If
none of these three is set, the default lot@le is used as theC_COLLATE

LANG LC_ALL is the "catch-all" locale environment variable. If it is set, it is used as the last
resort if neither of th&C_ALL and the category-specificC_... are set.

There are further locale—controlling environment variall€s MESSAGES, LC_MONETARY,
LC_NUMERIC, LC_TIME) but Perldoes notcurrently obey them.

08-0Oct-1996 Version 5.003 137

perlref

Perl Programmers Reference Guide perlref

NAME

perlref — Perl references and nested data structures

DESCRIPTION

Before release 5 of Perl it was difficult to represent complex data structures, because all references had to be
symbolic, and even that was difficult to do when you wanted to refer to a variable rather than a symbol table
entry. Perl 5 not only makes it easier to use symbolic references to variables, but lets you have "hard"
references to any piece of data. Any scalar may hold a hard reference. Since arrays and hashes contain
scalars, you can now easily build arrays of arrays, arrays of hashes, hashes of arrays, arrays of hashes of
functions, and so on.

Hard references are smart—they keep track of reference counts for you, automatically freeing the thing
referred to when its reference count goes to zero. (Note: The reference counts for values in self-referential
or cyclic data structures may not go to zero without a little help; see

Two-Phased Garbage Collection in perldby a detailed explanation. If that thing happens to be an object,

the object is destructed. Seerlobjfor more about objects. (In a sense, everything in Perl is an object, but
we usually reserve the word for references to objects that have been officially "blessed" into a class
package.)

A symbolic reference contains the name of a variable, just as a symbolic link in the filesystem merely
contains the name of a file. Thglob notation is a kind of symbolic reference. Hard references are more
like hard links in the file system: merely another way at getting at the same underlying object, irrespective of
its name.

"Hard" references are easy to use in Perl. There is just one overriding principle: Perl does no implicit
referencing or dereferencing. When a scalar is holding a reference, it always behaves as a scalar. It doesn't
magically start being an array or a hash unless you tell it so explicitly by dereferencing it.

References can be constructed several ways.

1. By using the backslash operator on a variable, subroutine, or value. (This works much Bke the
(address—of) operator works in C.) Note that this typically crest&3THERreference to a variable,
since there's already a reference to the variable in the symbol table. But the symbol table reference
might go away, and you'll still have the reference that the backslash returned. Here are some
examples:

$scalarref = \$foo;
$arrayref = \@ARGV;,
$hashref =\%ENV;
$coderef =\&handler;
$globref =*STDOUT;

2. Areference to an anonymous array can be constructed using square brackets:
$arrayref = [1, 2, ['a’, 'b’, 'c'];

Here we've constructed a reference to an anonymous array of three elements whose final element is
itself reference to another anonymous array of three elements. (The multidimensional syntax described
later can be used to access this. For example, after the &aorsref->[2][1] would have

the value "b".)

Note that taking a reference to an enumerated list is not the same as using square brackets—instead it's
the same as creating a list of references!

@list = (\$a, \@b, \%c);
@list = \($a, @b, %c); # same thing!

As a special cas&@foo) returns a list of references to the contents@dbo, not a reference to
@foo itself. Likewise for%foo.

138

Version 5.003 08-0ct—-1996

perlref Perl Programmers Reference Guide perlref

3. Areference to an anonymous hash can be constructed using curly brackets:

$hashref = {
'Adam’ =>'Eve’,
'Clyde’ =>'Bonnie’,
¥
Anonymous hash and array constructors can be intermixed freely to produce as complicated a structure
as you want. The multidimensional syntax described below works for these too. The values above are
literals, but variables and expressions would work just as well, because assignment operators in Perl
(even withinlocal() ormy()) are executable statements, not compile-time declarations.

Because curly brackets (braces) are used for several other things including BLOCKS, you may
occasionally have to disambiguate braces at the beginning of a statement by putting raturn

in front so that Perl realizes the opening brace isn't starting a BLOCK. The economy and mnemonic
value of using curlies is deemed worth this occasional extra hassle.

For example, if you wanted a function to make a new hash and return a reference to it, you have these
options:

sub hashem { {@_1}} #silently wrong
sub hashem { H@_}} #o0k
sub hashem {return{ @_}} # ok

4. Areference to an anonymous subroutine can be constructed bysubivgthout a subname:
$coderef = sub { print "Boink!\n" };

Note the presence of the semicolon. Except for the fact that the code inside isn‘t executed
immediately, asub {} is not so much a declaration as it is an operator,dikg¢ or eval{}

(However, no matter how many times you execute that line (unless you‘reemafh..")),
$coderef will still have a reference to tf@2AMEanonymous subroutine.)

Anonymous subroutines act as closures with respechy) variables, that is, variables visible
lexically within the current scope. Closure is a notion out of the Lisp world that says if you define an
anonymous function in a particular lexical context, it pretends to run in that context even when it's
called outside of the context.

In human terms, it's a funny way of passing arguments to a subroutine when you define it as well as
when you call it. It's useful for setting up little bits of code to run later, such as callbacks. You can
even do object-oriented stuff with it, though Perl provides a different mechanism to do that
already—seeerlobj.

You can also think of closure as a way to write a subroutine template without using eval. (In fact, in
version 5.000, eval was tlomly way to get closures. You may wish to use "require 5.001" if you use
closures.)

Here's a small example of how closures works:

sub newprint {
my $x = shift;
return sub { my $y = shift; print "$x, $y'\n"; };
}
$h = newprint("Howdy");
$g = newprint("Greetings");

Time passes...

&3$h("world");
&3$g("earthlings");

08-0Oct-1996 Version 5.003 139

perlref

Perl Programmers Reference Guide perlref

This prints

Howdy, world!
Greetings, earthlings!

Note particularly tha$x continues to refer to the value passed mawprint() despitethe fact that
the "my $x" has seemingly gone out of scope by the time the anonymous subroutine runs. That's
what closure is all about.

This only applies to lexical variables, by the way. Dynamic variables continue to work as they have
always worked. Closure is not something that most Perl programmers need trouble themselves about
to begin with.

References are often returned by special subroutines called constructors. Perl objects are just
references to a special kind of object that happens to know which package it's associated with.
Constructors are just special subroutines that know how to create that association. They do so by
starting with an ordinary reference, and it remains an ordinary reference even while it's also being an
object. Constructors are customarily nameud() , but don‘t have to be:

$objref = new Doggie (Tail => 'short’, Ears =>'long’);

References of the appropriate type can spring into existence if you dereference them in a context that
assumes they exist. Since we haven't talked about dereferencing yet, we can‘t show you any examples
yet.

References to filehandles can be created by taking a reference to a typeglob. This is currently the best
way to pass filehandles into or out of subroutines, or to store them in larger data structures.

splutter(*STDOUT);
sub splutter {
my $fh = shift;

print $th "her um well a hmmm\n";

}

$rec = get_rec(*STDIN);
sub get_rec {
my $fh = shift;
return scalar <$fh>;

}

That's it for creating references. By now you'‘re probably dying to know how to use references to get back to
your long-lost data. There are several basic methods.

1.

Anywhere you'd put an identifier (or chain of identifiers) as part of a variable or subroutine name, you
can replace the identifier with a simple scalar variable containing a reference of the correct type:

$bar = $$scalarref;
push(@$arrayref, $filename);
$$arrayref[0] = "January";
$Shashref{"KEY"} = "VALUE";
&$coderef(1,2,3);

print $globref "output\n”;

It's important to understand that we are specificdlDT dereferencing$arrayref[0] or
$hashref{"KEY"} there. The dereference of the scalar variable hagpieER©OREIt does any key
lookups. Anything more complicated than a simple scalar variable must use methods 2 or 3 below.
However, a "simple scalar" includes an identifier that itself uses method 1 recursively. Therefore, the
following prints "howdy".

$refrefref = \W'howdy";
print $$$$refrefref;

140

Version 5.003 08-0ct—-1996

perlref Perl Programmers Reference Guide perlref

2. Anywhere you'd put an identifier (or chain of identifiers) as part of a variable or subroutine name, you
can replace the identifier with a BLOCK returning a reference of the correct type. In other words, the
previous examples could be written like this:

$bar = ${$scalarref}

push(@{$arrayref}, $filename);

${$arrayref}[0] = "January";

${$hashref{"KEY"} = "VALUE";

&{$coderef}(1,2,3);

$globref->print("output\n"); # iff you use FileHandle

Admittedly, it's a little silly to use the curlies in this case, but the BLOCK can contain any arbitrary
expression, in particular, subscripted expressions:

&{ $dispatch{$index} }(1,2,3); # call correct routine

Because of being able to omit the curlies for the simple cak®xof people often make the mistake of
viewing the dereferencing symbols as proper operators, and wonder about their precedence. If they
were, though, you could use parens instead of braces. That's not the case. Consider the difference
below; case 0 is a short—hand version of ca®QIl case 2:

$$hashref{"KEY"} ="VALUE"; # CASE 0
${$hashref}{"KEY"} = "VALUE"; # CASE 1
${$hashref{"KEY"}} = "VALUE"; # CASE 2
${$hashref—>{"KEY"}} = "VALUE"; # CASE 3

Case 2 is also deceptive in that you'‘re accessing a variable called %hashref, not dereferencing through
$hashref to the hash it's presumably referencing. That would be case 3.

3. The case of individual array elements arises often enough that it gets cumbersome to use method 2. As
a form of syntactic sugar, the two lines like that above can be written:

$arrayref->[0] = "January";
$hashref->{"KEY"} = "VALUE";

The left side of the array can be any expression returning a reference, including a previous dereference.
Note thatbarray[$x] is NOTthe same thing #array—>[$x] here:

sarray[$x]->{'fo0"}->[0] = "January";

This is one of the cases we mentioned earlier in which references could spring into existence when in
an lvalue context. Before this stateme®array[$x] may have been undefined. If so, it's
automatically defined with a hash reference so that we can looKfag'} in it. Likewise
$array[$x]—>{"foo"} will automatically get defined with an array reference so that we can look
up[0] init.

One more thing here. The arrow is optioBEITWEENbrackets subscripts, so you can shrink the
above down to

$array[$x]{"foo"}[0] = "January";

Which, in the degenerate case of using only ordinary arrays, gives you multidimensional arrays just
like C's:
$score[$x][$y][$z] += 42;

Well, okay, not entirely like C's arrays, actually. C doesn‘t know how to grow its arrays on demand.
Perl does.

4. If a reference happens to be a reference to an object, then there are probably methods to access the
things referred to, and you should probably stick to those methods unless you're in the class package
that defines the object's methods. In other words, be nice, and don't violate the object’'s encapsulation

08-0Oct-1996 Version 5.003 141

perlref Perl Programmers Reference Guide perlref

without a very good reason. Perl does not enforce encapsulation. We are not totalitarians here. We do
expect some basic civility though.

Theref() operator may be used to determine what type of thing the reference is pointing perlfoee

Thebless() operator may be used to associate a reference with a package functioning as an object class.
Seeperlobj.

A typeglob may be dereferenced the same way a reference can, since the dereference syntax always indicates
the kind of reference desired. $fffoo} and${\$foo} both indicate the same scalar variable.

Here's a trick for interpolating a subroutine call into a string:
print "My sub returned @{[mysub(1,2,3)]} that time.\n",

The way it works is that when th@{...} is seen in the double—quoted string, it's evaluated as a block.
The block creates a reference to an anonymous array containing the results of theysulibi@d,2,3)

So the whole block returns a reference to an array, which is then dereferer@éd.by and stuck into the
double—quoted string. This chicanery is also useful for arbitrary expressions:

print "That yields @{[$n + 5]} widgets\n";

Symbolic references

We said that references spring into existence as necessary if they are undefined, but we didn‘t say what
happens if a value used as a reference is already definet§Nvilita hard reference. If you use it as a
reference in this case, it'll be treated as a symbolic reference. That is, the value of the scalar is taken to be
the NAME of a variable, rather than a direct link to a (possibly) anonymous value.

People frequently expect it to work like this. So it does.

$name = "foo";

$$name = 1; # Sets $foo

${$name} = 2; # Sets $foo

${$name x 2} = 3; # Sets $foofoo

$name—>[0] = 4; # Sets $foo[0]

@%name = (); # Clears @foo

&$name(); # Calls &foo() (as in Perl 4)
$pack = "THAT";

${"${pack}::$name"} = 5; # Sets $THAT::foo without eval

This is very powerful, and slightly dangerous, in that it's possible to intend (with the utmost sincerity) to use
a hard reference, and accidentally use a symbolic reference instead. To protect against that, you can say

use strict 'refs’;

and then only hard references will be allowed for the rest of the enclosing block. An inner block may
countermand that with

no strict 'refs’;

Only package variables are visible to symbolic references. Lexical variables (declareg/(vijraren‘t in
a symbol table, and thus are invisible to this mechanism. For example:

local($value) = 10;

$ref = \$value;

{
my $value = 20;
print $$ref;

}

This will still print 10, not 20. Remember tHatal() affects package variables, which are all "global" to
the package.

142 Version 5.003 08-0Oct-1996

perlref

Perl Programmers Reference Guide perlref

Not-so—symbolic references

A new feature contributing to readability in 5.001 is that the brackets around a symbolic reference behave
more like quotes, just as they always have within a string. That is,

$push ="pop on ";
print "${push}over";

has always meant to print "pop on over", despite the fact that push is a reserved word. This has been
generalized to work the same outside of quotes, so that

print ${push} . "over";
and even
print ${ push } . "over";

will have the same effect. (This would have been a syntax error in 5.000, though Perl 4 allowed it in the
spaceless form.) Note that this construahas considered to be a symbolic reference when you're using
strict refs:

use strict 'refs’;
${ bareword }; # Okay, means $bareword.
${ "bareword" }; # Error, symbolic reference.

Similarly, because of all the subscripting that is done using single words, we've applied the same rule to any
bareword that is used for subscripting a hash. So now, instead of writing

$array{ "aaa" H{ "bbb" ¥ "ccc"
you can just write
$array{ aaa }{ bbb { ccc }

and not worry about whether the subscripts are reserved words. In the rare event that you do wish to do
something like

$array{ shift }
you can force interpretation as a reserved word by adding anything that makes it more than a bareword:

Sarray{ shift() }
$array{ +shift }
Sarray{ shift @_}

The—w switch will warn you if it interprets a reserved word as a string. But it will no longer warn you about
using lowercase words, since the string is effectively quoted.

WARNING

You may not (usefully) use a reference as the key to a hash. It will be converted into a string:
$x{\$a } = $a;

If you try to dereference the key, it won‘t do a hard dereference, and you won'‘t accomplish what you‘re
attempting. You might want to do something more like

$r=\@a;
$x{ $r} = $r;

And then at least you can use tsdues() , which will be real refs, instead of thkeys() , which won't.

SEE ALSO

Besides the obvious documents, source code can be instructive. Some rather pathological examples of the
use of references can be found intilep/ref.tregression test in the Perl source directory.

08-0Oct-1996 Version 5.003 143

perlref Perl Programmers Reference Guide perlref

See alsgerldscandperllol for how to use references to create complex data structuregedaolj for how
to use them to create objects.

144 Version 5.003 08-0Oct-1996

perldsc Perl Programmers Reference Guide perldsc

NAME
perldsc — Perl Data Structures Cookbook

DESCRIPTION

The single feature most sorely lacking in the Perl programming language prior to its 5.0 release was complex
data structures. Even without direct language support, some valiant programmers did manage to emulate
them, but it was hard work and not for the faint of heart. You could occasionally get away with the
$m{$LoL,$b} notation borrowed fromawk in which the keys are actually more like a single concatenated
string "LoLb", but traversal and sorting were difficult. More desperate programmers even hacked
Perl's internal symbol table directly, a strategy that proved hard to develop and maintain—to put it mildly.

The 5.0 release of Perl let us have complex data structures. You may now write something like this and all
of a sudden, you'‘d have a array with three dimensions!

for $x (1 .. 10) {
for $y (1 .. 10) {
for $z (1 .. 10) {
SLoL[$X][By][$z] =
X ** By + $z;

}

Alas, however simple this may appear, underneath it's a much more elaborate construct than meets the eye!

How do you print it out? Why can‘t you just spgint @LoL ? How do you sort it? How can you pass it
to a function or get one of these back from a function? Is is an object? Can you save it to disk to read back
later? How do you access whole rows or columns of that matrix? Do all the values have to be numeric?

As you see, it's quite easy to become confused. While some small portion of the blame for this can be
attributed to the reference—based implementation, it's really more due to a lack of existing documentation
with examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the many different sorts of data
structures you might want to develop. It should also serve as a cookbook of examples. That way, when you
need to create one of these complex data structures, you can just pinch, pilfer, or purloin a drop—in example
from here.

Let's look at each of these possible constructs in detail. There are separate documents on each of the
following:

e arrays of arrays

¢ hashes of arrays

e arrays of hashes

e hashes of hashes

e more elaborate constructs

e recursive and self-referential data structures
e objects

But for now, let's look at some of the general issues common to all of these types of data structures.

REFERENCES

The most important thing to understand about all data structures in Perl — including multidimensional
arrays—is that even though they might appear otherwise,@RRRAS and%HASESs are all internally
one-dimensional. They can only hold scalar values (meaning a string, number, or a reference). They cannot
directly contain other arrays or hashes, but instead camti@rencedo other arrays or hashes.

You can't use a reference to a array or hash in quite the same way that you would a real array or hash. For C
or C++ programmers unused to distinguishing between arrays and pointers to the same, this can be

08-0Oct-1996 Version 5.003 145

perldsc Perl Programmers Reference Guide perldsc

confusing. If so, just think of it as the difference between a structure and a pointer to a structure.

You can (and should) read more about references in the perlref(1) man page. Briefly, references are rather
like pointers that know what they point to. (Objects are also a kind of reference, but we won'‘t be needing
them right away—if ever.) This means that when you have something which looks to you like an access to a
two—or—-more—dimensional array and/or hash, what's really going on is that the base type is merely a
one—dimensional entity that contains references to the next level. It's just that yosegaas though it

were a two—dimensional one. This is actually the way almost all C multidimensional arrays work as well.

$list[7][12] # array of arrays
$list[7]{string} # array of hashes
$hash{string}{7] # hash of arrays
$hash{string}{’another string’} # hash of hashes

Now, because the top level only contains references, if you try to print out your array in with a simple
print() function, you'll get something that doesn't look very nice, like this:

@LoL =([2, 3], [4,5,7],[0]);
print $LoL[1][2];
7
print @LoL;
ARRAY (0x83c38)ARRAY (0x8b194)ARRAY (0x8b1d0)

That's because Perl doesn't (ever) implicitly dereference your variables. If you want to get at the thing a
reference is referring to, then you have to do this yourself using either prefix typing indicators, like
${$blah}, @{$blah}, @{$blah[$i]}, or else postfix pointer arrows, liga—>[3],

$h—>{fred}, or evenfob—>method()—>[3]

COMMON MISTAKES

The two most common mistakes made in constructing something like an array of arrays is either accidentally
counting the number of elements or else taking a reference to the same memory location repeatedly. Here's
the case where you just get the count instead of a nested array:

for $i (1..10) {

@list = somefunc($i);

$LoL[$i] = @list; # WRONG!
}

That's just the simple case of assigning a list to a scalar and getting its element count. If that's what you
really and truly want, then you might do well to consider being a tad more explicit about it, like this:

for $i (1..10) {
@list = somefunc($i);
$counts[$i] = scalar @list;

}

Here's the case of taking a reference to the same memory location again and again:

for $i (1..10) {

@list = somefunc($i);

$LoL[$i] = \@list; # WRONG!
}

So, just what's the big problem with that? It looks right, doesn‘t it? After all, | just told you that you need an
array of references, so by golly, you‘'ve made me one!

Unfortunately, while this is true, it's still broken. All the references in @LoL refer tvghesame plage
and they will therefore all hold whatever was last in @list! It's similar to the problem demonstrated in the
following C program:

#include <pwd.h>

146

Version 5.003 08-0ct—-1996

perldsc Perl Programmers Reference Guide perldsc

main() {
struct passwd *getpwnam(), *rp, *dp;
rp = getpwnam('root");
dp = getpwnam("daemon");

printf("daemon name is %s\nroot name is %s\n",
dp—>pw_name, rp—>pw_name);
}
Which will print

daemon name is daemon
root name is daemon

The problem is that bottp anddp are pointers to the same location in memory! In C, you'd have to
remember tanalloc() yourself some new memory. In Perl, you'll want to use the array constfuctar
the hash construct§y instead. Here's the right way to do the preceding broken code fragments:

for $i (1..10) {
@list = somefunc($i);
$LoL[$i] = [@list];

}

The square brackets make a reference to a new array witpyeof what's in @list at the time of the
assignment. This is what you want.

Note that this will produce something similar, but it's much harder to read:

for $i (1..10) {
@list=0 .. $i;
@{$SLoL[$i]} = @list;
}

Is it the same? Well, maybe so—and maybe not. The subtle difference is that when you assign something in
square brackets, you know for sure it's always a brand new reference withcapyaf the data. Something

else could be going on in this new case with@¥$LoL[$i]}} dereference on the left-hand-side of the
assignment. It all depends on whetfieoL[$i] had been undefined to start with, or whether it already
contained a reference. If you had already populated @LoL with references, as in

$LoL[3] = \@another_list;

Then the assignment with the indirection on the left—-hand-side would use the existing reference that was
already there:

@{$LoL[3]} = @list;

Of course, thisvould have the "interesting" effect of clobbering @another_list. (Have you ever noticed how
when a programmer says something is "interesting”, that rather than meaning "intriguing”, they‘re
disturbingly more apt to mean that it's "annoying", "difficult”", or both? :-)

So just remember to always use the array or hash constructor§ with{} , and you'll be fine, although
it's not always optimally efficient.

Surprisingly, the following dangerous—-looking construct will actually work out fine:

for $i (1..10) {
my @list = somefunc($i);
$LoL[$i] = \@list;

}

That's becauseny() is more of a run—time statement than it is a compile-time declana¢giose This
means that theny() variable is remade afresh each time through the loop. So even thdagksias
though you stored the same variable reference each time, you actually did not! This is a subtle distinction

08-0Oct-1996 Version 5.003 147

perldsc Perl Programmers Reference Guide perldsc

that can produce more efficient code at the risk of misleading all but the most experienced of programmers.
So | usually advise against teaching it to beginners. In fact, except for passing arguments to functions, |
seldom like to see the gimme—-a-reference operator (backslash) used much at all in code. Instead, | advise
beginners that they (and most of the rest of us) should try to use the much more easily understood
constructorg] and{} instead of relying upon lexical (or dynamic) scoping and hidden reference—counting

to do the right thing behind the scenes.

In summary:
$LoL[$i] = [@list]; # usually best
$LoL[$i] = \@list; # perilous; just how my() was that list?
@{ $LoL[$i] } = @list; # way too tricky for most programmers

CAVEAT ON PRECEDENCE

Speaking of things liké&{$SLoL[$i]}, the following are actually the same thing:

Slistref->[2][2] # clear
$$listref[2][2] # confusing

That's because Perl's precedence rules on its five prefix dereferencers (which look like someone $wvearing:
@ * % &) make them bind more tightly than the postfix subscripting brackets or braces! This will no
doubt come as a great shock to the C or C++ programmer, who is quite accustomed*afilisintp mean
what's pointed to by théth element ofa. That is, they first take the subscript, and only then dereference
the thing at that subscript. That's fine in C, but this isn‘t C.

The seemingly equivalent construct in P&8listref[$i] first does the deref dflistref, making
it take $listref as a reference to an array, and then dereference that, and finally tell ydu Wa&ie of
the array pointed to b$LoL. If you wanted the C notion, you‘d have to widSLoL[$i]} to force the
$LoL[$i] to get evaluated first before the lead$hdereferencer.

WHY YOU SHOULD ALWAYS use strict

If this is starting to sound scarier than it's worth, relax. Perl has some features to help you avoid its most
common pitfalls. The best way to avoid getting confused is to start every program like this:

#l/usr/bin/perl —w
use strict;

This way, you'll be forced to declare all your variables witia) and also disallow accidental "symbolic
dereferencing". Therefore if you'd done this:

my $listref = [
["fred", "barney", "pebbles”, "bambam", "dino",],
["homer", "bart", "marge", "maggie",],
["george”, "jane", "alroy", "judy”,],

I;

print $listref[2][2];

The compiler would immediately flag that as an ermmbrcompile time because you were accidentally
accessing@listref , an undeclared variable, and it would thereby remind you to instead write:

print $listref->[2][2]

DEBUGGING

Before 5.002, the standard Perl debugger didn‘t do a very nice job of printing out complex data structures.
With version 5.002 or above, the debugger includes several new features, including command line editing as
well as thex command to dump out complex data structures. For example, given the assignbbenht to

above, here's the debugger output:

DB<1> X $LoL
$LoL = ARRAY(0x13b5a0)

148

Version 5.003 08-0ct—-1996

perldsc Perl Programmers Reference Guide perldsc

0 ARRAY(0x1f0a24)
0 'fred’
1 ’barney’
2 ’pebbles’
3 ’hambany’
4 ’'dino’

1 ARRAY(0x13b558)
0 ’homer’
1 ’bart’
2 'marge’
3 'maggie’

2 ARRAY(0x13b540)
0 'george’
1 ’jane’
2 ’'alroy’
3 ’judy’

There's also a lower—cagecommand which is nearly the same.

CODE EXAMPLES

Presented with little comment (these will get their own man pages someday) here are short code examples
illustrating access of various types of data structures.

LISTS OF LISTS

Declaration of a LIST OF LISTS

@LoL =(
["fred", "barney"],

["george”, "jane", "elroy"],
["homer", "marge", "bart"],
)i
Generation of a LIST OF LISTS

reading from file
while (<>) {

push @LoL, [split];
}

calling a function
for$i(1..10){
$LoL[$i] = [somefunc($i)];
}
using temp vars
for$i(1..10)¢{
@tmp = somefunc($i);
$SLoL[$i] =[@tmp];
}

add to an existing row

push @{ $LoL[0] }, "wilma", "betty";
Access and Printing of a LIST OF LISTS

one element

$LoL[0][0] = "Fred™;

another element
$LoL[1][1] =~ s/(\w)\u$1/;

08-0Oct-1996 Version 5.003 149

perldsc Perl Programmers Reference Guide

perldsc

print the whole thing with refs
for $aref (@LoL) {

print "\t [@$aref],\n";
}

print the whole thing with indices
for $i (0 .. $#LoL) {

print "\t [@{$LoL[$i]}].\n";
}

print the whole thing one at a time
for $i (0 .. $#LoL) {
for $j (0 .. $#{SLoL[$i]}) {
print "elt $i $j is $LoL[$i][$j]\n";
}

}
HASHES OF LISTS

Declaration of a HASH OF LISTS
%HoL = (
"flintstones" => ["fred", "barney"],
"jetsons” => ["george", "jane", "elroy"],
"simpsons" => ["homer", "marge"”, "bart"],
)i
Generation of a HASH OF LISTS

reading from file
flintstones: fred barney wilma dino
while (<>) {
next unless s/™(.*?):\s*//;
$HoL{$1} = [split];
}

reading from file; more temps

flintstones: fred barney wilma dino

while ($line = <>) {
($who, $rest) = split /:\s*/, $line, 2;
@fields = split ' *, $rest;
$HoL{$who} = [@fields];

}

calling a function that returns a list

for $group ("simpsons", "jetsons", "flintstones") {
$HoL{$group} = [get_family($group) ;

}

likewise, but using temps

for $group ("simpsons", "jetsons", "flintstones") {
@members = get_family($group);
$HoL{$group} = [@members];

}

append new members to an existing family
push @{ $HoL{"flintstones"} }, "wilma", "betty";
Access and Printing of a HASH OF LISTS

one element
$HoL{flintstones}[0] = "Fred";

150 Version 5.003

08-0Oct-1996

perldsc Perl Programmers Reference Guide

perldsc

another element
$HoL{simpsons}[1] =~ s/(\Ww)\u$1/;

print the whole thing
foreach $family (keys %HoL) {

print "$family: @{ $HoL{$family} \n"
}

print the whole thing with indices
foreach $family (keys %HoL) {
print "family: ";
foreach $i (0 .. $#{ SHoL{$family}) {
print " $i = $HoL{$family}[$i]";
}
print "\n";

}

print the whole thing sorted by number of members

foreach $family (sort { @{$HoL{$b}} <=> @{$HoL{$h}} } keys %HoL) {

print "$family: @{ $HoL{$family} \n"
}

print the whole thing sorted by number of members and name
foreach $family (sort { @{$HoL{$b}} <=> @{$HoL{$a}} } keys %HoL) {

print "$family: ", join(", ", sort @{ $HoL{$family}), "\n";
}
LISTS OF HASHES

Declaration of a LIST OF HASHES
@LoH = (
{

Lead =>"fred",
Friend =>"barney",

Lead =>"george",
Wife =>"jane",

Son =>"elroy",
h
{
Lead =>"homer",
Wife =>"marge",
Son =>"bart",
}

);
Generation of a LIST OF HASHES
reading from file
format: LEAD=fred FRIEND=barney
while (<>) {
$rec = {};
for $field (split) {
(Skey, $value) = split /=/, $field;
$rec—>{$key} = $value;

}
push @LoH, $rec;
}

08-0ct-1996 Version 5.003

151

perldsc Perl Programmers Reference Guide perldsc

reading from file
format: LEAD=fred FRIEND=barney
no temp
while (<>) {
push @LoH, { split \s+=]/};
}

calling a function that returns a key,value list, like
"lead","fred","daughter”,"pebbles"”
while (%fields = getnextpairset()) {
push @LoH, { %fields };
}

likewise, but using no temp vars
while (<>) {

push @LoH, { parsepairs($_) };
}

add key/value to an element
$LoH[O0]{pet} = "dino";
$LoH[2]{pet} = "santa’s little helper";

Access and Printing of a LIST OF HASHES

one element
$LoH[0{lead} = "fred";

another element
$LoH[1}{lead} =~ s/(\w)\u$1/;

print the whole thing with refs
for $href (@LoH) {

print "{ *;

for $role (keys %S$href) {

print "$role=$href->{$role} ";

}

print "A\n";
}

print the whole thing with indices
for $i (0 .. $#LoH) {
print "$iis { *;
for $role (keys %{ $LoH[$i] }) {
print "$role=$LoH[$i]{$role} ";
}
print "An";
}

print the whole thing one at a time
for $i (0 .. $#LoH) {
for $role (keys %{ $LoH[$i] }) {
print "elt $i $role is $LoH[$i]{$role}\n";
}
}

HASHES OF HASHES

Declaration of a HASH OF HASHES

%HoH = (
"flintstones" => {

152 Version 5.003 08-0Oct-1996

perldsc Perl Programmers Reference Guide

perldsc

"lead" =>"fred",

"pal" =>"barney",
}1
“jetsons" =>{
"lead" =>"george",
"wife" =>"jane",
"his boy" => "elroy",
}1

"simpsons" =>{
"lead" =>"homer",
"wife" =>"marge",
"kid" =>"bart",
12
);
Generation of a HASH OF HASHES

reading from file
flintstones: lead=fred pal=barney wife=wilma pet=dino
while (<>) {
next unless s/™(.*?):\s*//;
$who = $1;
for $field (split) {
(Skey, $value) = split /=/, $field;
$HoH{$who}{$key} = $value;
}

reading from file; more temps
while (<>) {
next unless s/™(.*?):\s*//;
$who = $1;
$rec = {};
$HoH{$who} = $rec;
for $field (split) {
(Skey, $value) = split /=/, $field;
$rec—>{$key} = $value;
}
}

calling a function that returns a key,value hash
for $group ("simpsons", "jetsons", "flintstones") {
$HoH{$group} = { get_family($group) };

likewise, but using temps

for $group ("simpsons", "jetsons", "flintstones") {
%members = get_family($group);
$HoH{$group} = { Yomembers };

}

append new members to an existing family
%new_folks = (
"wife" => "wilma",
"pet" =>"dino";
)i
for $what (keys %new_folks) {
$HoH({flintstonesH{$what} = $new_folks{$what};

08-0ct-1996 Version 5.003

153

perldsc Perl Programmers Reference Guide perldsc

}

Access and Printing of a HASH OF HASHES

one element
$HoH({flintstonesH{wife} = "wilma";

another element
$HoH{simpsons}{lead} =~ s/(\w)\u$1/;

print the whole thing
foreach $family (keys %HoH) {
print "$family: { *;
for $role (keys %{ $HoH{$family} }) {
print "$role=$HoH{$family{$role} ";
}
print "An";
}

print the whole thing somewhat sorted
foreach $family (sort keys %HoH) {

print "$family: { *;

for $role (sort keys %{ $HoH{$family} }) {

print "$role=$HoH{$family{$role} *;

}

print "A\n";
}

print the whole thing sorted by number of members
foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$b}} } keys %HoH) {
print "$family: { *;
for $role (sort keys %{ $HoH{$family} }) {
print "$role=$HoH{$family{$role} *;
}
print "A\n";
}

establish a sort order (rank) for each role

$i=0;

for (gw(lead wife son daughter pal pet)) { $rank{$_} = ++$i }

now print the whole thing sorted by number of members

foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$b}} } keys %HoH) {
print "$family: { *;
and print these according to rank order
for $role (sort { $rank{$a} <=> Srank{$b} keys %{ SHoH{Sfamily} } }) {

print "$role=$HoH{$family{$role} ";

}
print "A\n";

}

MORE ELABORATE RECORDS

Declaration of MORE ELABORATE RECORDS
Here's a sample showing how to create and use a record whose fields are of many different sorts:

$rec ={
TEXT => $string,
SEQUENCE =>[@old_values],
LOOKUP =>{%some_table },

154 Version 5.003 08-0Oct-1996

perldsc Perl Programmers Reference Guide

perldsc

THATCODE =>\&some_function,
THISCODE =>sub {$_[0] **$_[1] },
HANDLE =>*STDOUT,

%

print $rec—>{TEXT};

print $rec—>{LIST}[O];
$last = pop @ { $rec—>{SEQUENCE} };

print $rec—>{LOOKUPH"key"};
($first_k, $first_v) = each %{ $rec—>{LOOKUP} };

$answer = &{ $rec—>{THATCODE} }($arg);
$answer = &{ $rec—>{THISCODE} }($arg1, $arg2);

careful of extra block braces on fh ref
print { $rec—>{HANDLE} } "a string\n";

use FileHandle;
$rec—>{HANDLE}->autoflush(1);
$rec—>{HANDLE}->print(" a string\n");

Declaration of a HASH OF COMPLEX RECORDS
%TV = (
"flintstones" => {
series => "flintstones”,
nights =>[qw(monday thursday friday)],
members =>|
{name => "fred", role =>"lead", age => 36, },
{ name => "wilma", role =>"wife", age => 31, },
{ name => "pebbles", role => "kid", age => 4,1},
1,
h

"jetsons" =>{
series => "jetsons",
nights =>[qw(wednesday saturday)],
members =>|
{ name => "george", role =>"lead", age =>41,},
{ name => "jane", role =>"wife", age => 39, },
{ name => "elroy", role =>"kid", age => 9, },
1,
h

"simpsons" =>{
series => "simpsons",
nights =>[gqw(monday)],
members =>|
{ name => "homer", role => "lead", age => 34, },
{ name => "marge", role => "wife", age => 37, },
{ name => "bart", role =>"kid", age => 11, },
1,
h
)i
Generation of a HASH OF COMPLEX RECORDS

reading from file
this is most easily done by having the file itself be

08-0ct-1996 Version 5.003

155

perldsc Perl Programmers Reference Guide perldsc

in the raw data format as shown above. perl is happy
to parse complex datastructures if declared as data, so
sometimes it's easiest to do that

here’s a piece by piece build up
$rec = {};

$rec—>{series} = "flintstones";
$rec—>{nights} = [find_days() ;

@members = ();
assume this file in field=value syntax
while (<>) {
%fields = split /\s=]+/;
push @members, { %fields };
}

$rec—>{members} = [@members];

now remember the whole thing
$TV{ $rec—>{series} } = $rec;

TR R R B B B B B B T B T A
now, you might want to make interesting extra fields that
include pointers back into the same data structure so if
change one piece, it changes everywhere, like for examples
if you wanted a {kids} field that was an array reference
to a list of the kids’ records without having duplicate
records and thus update problems.
TR R R B B B B B B T B T A
foreach $family (keys %TV) {
$rec = $TV{$family}; # temp pointer
@kids = ();
for $person (@{$rec—>{members}}) {
if ($person—>{role} =~ /kid|son|daughter/) {
push @kids, $person;
}

}
REMEMBER: $rec and $TV{$family} point to same data!!

$rec—>{kids} = [@kids];
}

you copied the list, but the list itself contains pointers
to uncopied objects. this means that if you make bart get
older via

$TV{simpsons}{kids}[0{age}++;

then this would also change in
print $TV{simpsons}{members}[2]{age};

because $TV{simpsons}kids}[0] and $TV{simpsons}{members}[2]
both point to the same underlying anonymous hash table

print the whole thing
foreach $family (keys %TV) {
print "the $family";
print " is on during @{ $TV{$family{nights} }\n";
print "its members are:\n";
for $who (@{ $TV{$family}{members} }) {
print " $who—->{name} ($who—>{role}), age $who->{age}\n";

156 Version 5.003 08-0Oct-1996

perldsc Perl Programmers Reference Guide perldsc

}
print "it turns out that $TV{$family}{'lead’} has ";

print scalar (@{ $TV{$family}kids} }), " kids named ";
print join (", ", map {$_—>{name} } @{ $TV{$family}{kids} });
print "\n";

}

Database Ties

You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first problem is
that all but GDBM and Berkeley DB have size limitations, but beyond that, you also have problems with
how references are to be represented on disk. One experimental module that does attempt to partially
address this need is the MLDBM module. Check your nearest CPAN site as descpiéechaufor source

code to MLDBM.

SEE ALSO

perlref(1), perllol(1), perldata(1), perlobj(1)
AUTHOR

Tom Christiansentchrist@perl.cors

Last update: Mon Jul 8 05:22:49 MDT 1996

08-0Oct-1996 Version 5.003 157

perllol Perl Programmers Reference Guide perliol

NAME
perlLoL — Manipulating Lists of Lists in Perl

DESCRIPTION

Declaration and Access of Lists of Lists

The simplest thing to build is a list of lists (sometimes called an array of arrays). It's reasonably easy to
understand, and almost everything that applies here will also be applicable later on with the fancier data
structures.

A list of lists, or an array of an array if you would, is just a regular old array @LoL that you can get at with
two subscripts, lik&LoL[3][2]. Here's a declaration of the array:

assign to our array a list of list references
@LoL =(

["fred", "barney"],

["george”, "jane", "elroy"],

["homer", "marge", "bart"],
)i
print $LoL[2][2];
bart

Now you should be very careful that the outer bracket type is a round one, that is, parentheses. That's
because you're assigning to an @list, so you need parens. If you wantatbtlterdee an @LoL, but rather
just a reference to it, you could do something more like this:

assign a reference to list of list references
$ref to_LoL =]
["fred", "barney", "pebbles”, "bambam", "dino",],

["homer", "bart", "marge", "maggie",],

alroy", "judy",],

["george”, "jane",
I;
print $ref_to_LoL->[2][2];

Notice that the outer bracket type has changed, and so our access syntax has also changed. That's because

unlike C, in perl you can't freely interchange arrays and references th&refoto_LoL is a reference to
an array, whereas @LoL is an array proper. Likevfikel[2] is not an array, but an array ref. So how
come you can write these:

$LoL[2][2]
$ref_to_LoL—>[2][2]

instead of having to write these:

$LoL[2]->[2]
$ref_to_LoL—>[2]->[2]

Well, that's because the rule is that on adjacent brackets only (whether square or curly), you are free to omit
the pointer dereferencing arrow. But you cannot do so for the very first one if it's a scalar containing a
reference, which means tt#ref to LoL always needs it.

Growing Your Own

That's all well and good for declaration of a fixed data structure, but what if you wanted to add new elements
on the fly, or build it up entirely from scratch?

First, let's look at reading it in from a file. This is something like adding a row at a time. We'll assume that
there's a flat file in which each line is a row and each word an element. If you're trying to develop an @LoL
list containing all these, here's the right way to do that:

158 Version 5.003 08-0Oct-1996

perllol Perl Programmers Reference Guide perliol

while (<>) {

@tmp = split;

push @LoL, [@tmp];
}

You might also have loaded that from a function:

for$i(1..10){
$LoL[$i] = [somefunc($i) ;
}

Or you might have had a temporary variable sitting around with the list in it.

for$i(1..10){
@tmp = somefunc($i);
$SLoL[$i] =[@tmp];

}

It's very important that you make sure to use [fhelist reference constructor. That's because this will be
very wrong:

$LoL[$i] = @tmp;

You see, assigning a named list like that to a scalar just counts the number of elements in @tmp, which
probably isn‘t what you want.

If you are running undarse strict , you'll have to add some declarations to make it happy:

use strict;
my(@LoL, @tmp),
while (<>) {
@tmp = split;
push @LoL, [@tmp];
}

Of course, you don‘t need the temporary array to have a name at all:

while (<>) {
push @LoL, [split];
}

You also don‘t have to useush() . You could just make a direct assignment if you knew where you
wanted to put it:

my (@LoL, $i, $line);
for$i (0..10){

$line = <>;

$SLoL[$i] = [split’’, $line ;
}

or even just

my (@LoL, $i);
for $i (0..10){

SLoOL[$i] =[split’’, <> 1;
}

You should in general be leery of using potential list functions in a scalar context without explicitly stating
such. This would be clearer to the casual reader:

my (@LoL, $i);
for$i (0..10){
$SLoL[$i] = [split *’, scalar(<>)];

08-0Oct-1996 Version 5.003 159

perllol Perl Programmers Reference Guide perliol

}
If you wanted to have $ref_to_LoL variable as a reference to an array, you'd have to do something like
this:
while (<>) {
push @$ref_to_LolL, [split];
}

Actually, if you were using strict, you'd not only have to decléref to LoL as you had to declare
@LoL, but you‘dalso having to initialize it to a reference to an empty list. (This was a bug in 5.001m that's
been fixed for the 5.002 release.)

my $ref to_LoL =T];
while (<>) {

push @$ref_to_LoL, [split];
}

Ok, now you can add new rows. What about adding new columns? If you‘re just dealing with matrices, it's
often easiest to use simple assignment:

for $x (1 .. 10) {
for $y (1 .. 10) {
SLoL[$x][By] = func($x, By);
}

}

for$x (3,7,9){
$LoL[$x][20] += func2($x);
}

It doesn't matter whether those elements are already there or not: it'll gladly create them for you, setting
intervening elements tendef as need be.

If you just wanted to append to a row, you‘d have to do something a bit funnier looking:

add new columns to an existing row
push @{ $LoL[0] }, "wilma", "betty";

Notice that Icouldn‘tjust say:
push $LoL[0], "wilma", "betty"; # WRONG!

In fact, that wouldn‘t even compile. How come? Because the argumamhi¢) must be a real array, not
just a reference to such.

Access and Printing

Now it's time to print your data structure out. How are you going to do that? Well, if you only want one of
the elements, it's trivial:

print $LoL[0][0];
If you want to print the whole thing, though, you can't just say
print @LoL; # WRONG

because you'll just get references listed, and perl will never automatically dereference things for you.
Instead, you have to roll yourself a loop or two. This prints the whole structure, using the shell-style
for() construct to loop across the outer set of subscripts.

for $aref (@LoL) {
print "\t [@$aref] \n";
}

160 Version 5.003 08-0Oct-1996

perllol Perl Programmers Reference Guide perliol

If you wanted to keep track of subscripts, you might do this:

for $i (0 .. $#LoL) {
print "\t elt $i is [@{$LoL[$i]}].\n";
}

or maybe even this. Notice the inner loop.

for $i (0 .. $#LoL) {
for $j (0 .. $#{$LoL[$i]}) {
print "elt $i $j is $SLoL[Si][$j]\n";
}
}

As you can see, it's getting a bit complicated. That's why sometimes is easier to take a temporary on your
way through:

for $i (0 .. $#LoL) {
$aref = $LoL[S$i];
for $j (0 .. $#{$aref}) {
print "elt $i $j is $LoL[$i][$j]\n";
}
}

Hm... that's still a bit ugly. How about this:

for $i (0 .. $#LoL) {
$aref = $LoL[S$i];
$n = @%aref - 1;
for $j (0..%n){
print "elt $i $j is $LoL[$i][$j]\n";
}

Slices
If you want to get at a slice (part of a row) in a multidimensional array, you're going to have to do some
fancy subscripting. That's because while we have a nice synonym for single elements via the pointer arrow
for dereferencing, no such convenience exists for slices. (Remember, of course, that you can always write a
loop to do a slice operation.)

Here's how to do one operation using a loop. We'll assume an @LoL variable as before.

@part = ();
$x = 4;
for (By = 7; Sy < 13; $y++) {
push @part, SLoL[$xX][$By];
}

That same loop could be replaced with a slice operation:
@part = @{ $LoL[4] }[7..12];
but as you might well imagine, this is pretty rough on the reader.

Ah, but what if you wanted ®vo—-dimensional slicesuch as havin§jx run from 4..8 an&y run from 7 to
12? Hm... here's the simple way:

@newLoL = ();
for ($startx = $x = 4; $x <= 8; $x++) {
for ($starty = By = 7; $x <= 12; $y++) {
$newLoL[$x — $startx][$y — $starty] = $SLoL[$X][$y];
}

08-0Oct-1996 Version 5.003 161

perllol Perl Programmers Reference Guide perliol

}

We can reduce some of the looping through slices

for ($x = 4; $x <= 8; $x++) {
push @newLoL, [@{ $LoL[$x]}[7..121]];
}

If you were into Schwartzian Transforms, you would probably have selected map for that
@newlLoL =map {[@{ $LoL[$_]}[7..12]]}4 .. 8;

Although if your manager accused of seeking job security (or rapid insecurity) through inscrutable code, it
would be hard to argue. :-) If | were you, I'd put that in a function:

@newlLol = splice_2D(\@LoL,4=>8,7 =>12);
sub splice_2D {
my $lrr = shift; # ref to list of list refs!
my ($x_lo, $x_hi,
$y_lo, $y_hi) = @_;

return map {

[@{S$Irr—>[$_]}[$y_lo..$y _hi]]

} $x_lo .. $x_hi;
}
SEE ALSO
perldata(1), perlref(1), perldsc(1)
AUTHOR

Tom Christiansentchrist@perl.corm
Last udpate: Sat Oct 7 19:35:26 MDT 1995

162 Version 5.003 08-0Oct-1996

perlobj

Perl Programmers Reference Guide perlobj

NAME

perlobj — Perl objects

DESCRIPTION

First of all, you need to understand what references are in Perpefesfor that.

Here are three very simple definitions that you should find reassuring.

1. Anobjectis simply a reference that happens to know which class it belongs to.

2. Aclass is simply a package that happens to provide methods to deal with object references.

3. A method is simply a subroutine that expects an object reference (or a package name, for static
methods) as the first argument.

We'll cover these points now in more depth.

An Object is Simply a Reference

Unlike say C++, Perl doesn‘t provide any special syntax for constructors. A constructor is merely a
subroutine that returns a reference to something "blessed" into a class, generally the class that the subroutine
is defined in. Here is a typical constructor:

package Critter;
sub new { bless {} }

The{} constructs a reference to an anonymous hash containing no key/value paitdes$f)e takes

that reference and tells the object it references that it's now a Critter, and returns the reference. This is for
convenience, since the referenced object itself knows that it has been blessed, and its reference to it could
have been returned directly, like this:

sub new {
my $self = {};
bless $self;
return $self;

}

In fact, you often see such a thing in more complicated constructors that wish to call methods in the class as
part of the construction:

sub new {
my $self = {}
bless $self;
$self->initialize();
return $self;

}

If you care about inheritance (and you should;Medules: Creation, Use and Abuse in perlidten you
want to use the two-arg form of bless so that your constructors may be inherited:

sub new {
my $class = shift;
my $self = {};
bless $self, $class
$self->initialize();
return $self;

}
Or if you expect people to call not JUSLASS—>new() but also$obj—>new() , then use something like
this. Theinitialize() method used will be of whatevclass we blessed the object into:

sub new {

08-0Oct-1996 Version 5.003 163

perlobj Perl Programmers Reference Guide perlobj

my $this = shift;
my $class = ref($this) || $this;
my $self = {};

bless $self, $class
$self->initialize();
return $self;

}

Within the class package, the methods will typically deal with the reference as an ordinary reference.
Outside the class package, the reference is generally treated as an opaque value that may only be accessed
through the class's methods.

A constructor may re-bless a referenced object currently belonging to another class, but then the new class is
responsible for all cleanup later. The previous blessing is forgotten, as an object may only belong to one
class at a time. (Although of course it's free to inherit methods from many classes.)

A clarification: Perl objects are blessed. References are not. Objects know which package they belong to.
References do not. Theess() function simply uses the reference in order to find the object. Consider
the following example:

$a={}

$b = $a;

bless $a, BLAH;

print "\$b is a ", ref($b), "\n";

This reportspb as being a BLAH, so obviousbless() operated on the object and not on the reference.

A Class is Simply a Package

Unlike say C++, Perl doesn'‘t provide any special syntax for class definitions. You just use a package as a
class by putting method definitions into the class.

There is a special array within each package called @ISA which says where else to look for a method if you
can't find it in the current package. This is how Perl implements inheritance. Each element of the @ISA
array is just the name of another package that happens to be a class package. The classes are searched (depth
first) for missing methods in the order that they occur in @ISA. The classes accessible through @ISA are
known as base classes of the current class.

If a missing method is found in one of the base classes, it is cached in the current class for efficiency.
Changing @ISA or defining new subroutines invalidates the cache and causes Perl to do the lookup again.

If a method isn‘t found, but an AUTOLOAD routine is found, then that is called on behalf of the missing
method.

If neither a method nor an AUTOLOAD routine is found in @ISA, then one last try is made for the method
(or an AUTOLOAD routine) in a class called UNIVERSAL. (Several commonly used methods are
automatically supplied in the UNIVERSAL class; $&efault UNIVERSAL method$tr more details.) If

that doesn‘t work, Perl finally gives up and complains.

Perl classes only do method inheritance. Data inheritance is left up to the class itself. By and large, this is

not a problem in Perl, because most classes model the attributes of their object using an anonymous hash,
which serves as its own little namespace to be carved up by the various classes that might want to do

something with the object.

A Method is Simply a Subroutine

Unlike say C++, Perl doesn't provide any special syntax for method definition. (It does provide a little
syntax for method invocation though. More on that later.) A method expects its first argument to be the
object or package it is being invoked on. There are just two types of methods, which we'll call static and
virtual, in honor of the two C++ method types they most closely resemble.

A static method expects a class name as the first argument. It provides functionality for the class as a whole,
not for any individual object belonging to the class. Constructors are typically static methods. Many static

164 Version 5.003 08-0Oct-1996

perlobj Perl Programmers Reference Guide perlobj

methods simply ignore their first argument, since they already know what package they‘re in, and don‘t care
what package they were invoked via. (These aren‘'t necessarily the same, since static methods follow the
inheritance tree just like ordinary virtual methods.) Another typical use for static methods is to look up an
object by name:

sub find {
my ($class, $name) = @_;
$objtable{$name};

}

A virtual method expects an object reference as its first argument. Typically it shifts the first argument into a
"self" or "this" variable, and then uses that as an ordinary reference.

sub display {
my $self = shift;
my @keys = @_ ? @_ : sort keys %$self;
foreach $key (@keys) {
print "\t$key => $self->{$key\n";
}
}

Method Invocation

There are two ways to invoke a method, one of which you'‘re already familiar with, and the other of which
will look familiar. Perl 4 already had an "indirect object" syntax that you use when you say

print STDERR "help!'\n";

This same syntax can be used to call either static or virtual methods. We'll use the two methods defined
above, the static method to lookup an object reference and the virtual method to print out its attributes.

$fred = find Critter "Fred";
display $fred 'Height’, "Weight’;

These could be combined into one statement by using a BLOCK in the indirect object slot:
display {find Critter "Fred"} 'Height’, 'Weight’;

For C++ fans, there's also a syntax using —> notation that does exactly the same thing. The parentheses are
required if there are any arguments.

$fred = Critter—>find("Fred");
$fred—>display('Height’, "Weight’);

or in one statement,
Critter—>find("Fred")—>display('Height’, 'Weight’);

There are times when one syntax is more readable, and times when the other syntax is more readable. The
indirect object syntax is less cluttered, but it has the same ambiguity as ordinary list operators. Indirect object
method calls are parsed using the same rule as list operators: "If it looks like a function, it is a function".
(Presuming for the moment that you think two words in a row can look like a function name. C++
programmers seem to think so with some regularity, especially when the first word is "new".) Thus, the
parens of

new Critter ('Barney’, 1.5, 70)

are assumed to surround ALL the arguments of the method call, regardless of what comes after. Saying
new Critter 'Bam’ x 2), 1.4, 45

would be equivalent to

Critter—>new('Bam’ x 2), 1.4, 45

08-0Oct-1996 Version 5.003 165

perlobj Perl Programmers Reference Guide perlobj

which is unlikely to do what you want.

There are times when you wish to specify which class's method to use. In this case, you can call your
method as an ordinary subroutine call, being sure to pass the requisite first argument explicitly:

$fred = MyCritter::find("Critter", "Fred");
MyCritter::display($fred, 'Height’, "Weight’);

Note however, that this does not do any inheritance. If you merely wish to specify that PerlSShoRIH
looking for a method in a particular package, use an ordinary method call, but qualify the method name with
the package like this:

$fred = Critter—>MyCritter::find("Fred");
$fred—>MyCritter::display('Height’, "Weight’);

If you're trying to control where the method search begmsyou‘re executing in the class itself, then you
may use the SUPER pseudoclass, which says to start looking in your base class's @ISA list without having
to explicitly name it:

$self->SUPER::display('Height’, 'Weight');
Please note that tf®UPER:: construct i©only meaningful within the class.

Sometimes you want to call a method when you don‘t know the method name ahead of time. You can use
the arrow form, replacing the method name with a simple scalar variable containing the method name:

$method = $fast ? "findfirst" : "findbest";
$fred->$method(@args);

Default UNIVERSAL methods

The UNIVERSAL package automatically contains the following methods that are inherited by all other
classes:

isa (CLASS)
isa returnstrueif its object is blessed into a sub—clas€boASS

isa is also exportable and can be called as a sub with two arguments. This allows the ability to check
what a reference points to. Example

use UNIVERSAL gw(isa);
if(isa($ref, ' ARRAY")) {

}
can (METHOD)

can checks to see if its object has a method cadEX'HODIf it does then a reference to the sub is
returned, if it does not thamdefis returned.

VERSION ([VERSION])

VERSIONreturns the VERSION number of the class (package). If an argument is given then it will
check that the current version is not less that the given argument. This method is normally called as a
static method. This method is also called wherMBRSIONform ofuse is used.

use A 1.2 gw(some imported subs);
A->require_version(1.2);

class ()
class returns the class name of its object.

166 Version 5.003 08-0Oct-1996

perlobj Perl Programmers Reference Guide perlobj

is_instance ()
is_instance returns true if its object is an instance of some class, false if its object is the class
(package) itself. Example

A—>is_instance(); # False

$var = 'A’;
$var—>is_instance(); # False

$ref = bless [], 'A’;
$ref->is_instance(); # True

NOTE: can directly uses Perl‘s internal code for method lookup,iaad uses a very similar method and
cache-ing strategy. This may cause strange effects if the Perl code dynamically changes @ISA in any
package.

You may add other methods to the UNIVERSAL class via Perl or XS code.

Destructors
When the last reference to an object goes away, the object is automatically destroyed. (This may even be
after you exit, if you‘ve stored references in global variables.) If you want to capture control just before the
object is freed, you may define a DESTROY method in your class. It will automatically be called at the
appropriate moment, and you can do any extra cleanup you need to do.

Perl doesn't do nested destruction for you. If your constructor reblessed a reference from one of your base
classes, your DESTROY may need to call DESTROY for any base classes that need it. But this only applies
to reblessed objects—an object reference that is mE@NTAINEDIn the current object will be freed and
destroyed automatically when the current object is freed.

WARNING
An indirect object is limited to a name, a scalar variable, or a block, because it would have to do too much
lookahead otherwise, just like any other postfix dereference in the language. The left side of —> is not so
limited, because it's an infix operator, not a postfix operator.

That means that below, A and B are equivalent to each other, and C and D are equivalent, but AB and CD
are different:

A: method $obref->{"fieldname"}

B: (method $obref)—>{"fieldname"}
C: $obref->{"fieldname"}->method()
D: method {$obref->{"fieldname"}}

Summary
That's about all there is to it. Now you just need to go off and buy a book about object-oriented design
methodology, and bang your forehead with it for the next six months or so.

Two—-Phased Garbage Collection
For most purposes, Perl uses a fast and simple reference—based garbage collection system. For this reason,
there's an extra dereference going on at some level, so if you haven‘t built your Perl executable using your C
compiler's-0 flag, performance will suffer. If yobhavebuilt Perl withcc —O , then this probably won‘t
matter.

A more serious concern is that unreachable memory with a non-zero reference count will not normally get
freed. Therefore, this is a bad idea:

{
my $a;
$a = \$a;

08-0Oct-1996 Version 5.003 167

perlobj Perl Programmers Reference Guide perlobj

Even thoughta shouldgo away, it can‘t. When building recursive data structures, you'll have to break the
self-reference yourself explicitly if you don‘t care to leak. For example, here's a self-referential node such
as one might use in a sophisticated tree structure:

sub new_node {

my $self = shift;
my $class = ref($self) || $self;
my $node = {};

$node—>{LEFT} = $node->{RIGHT} = $node;
$node—>{DATA}=[@_;
return bless $node => $class;

}

If you create nodes like that, they (currently) won't go away unless you break their self reference yourself.
(In other words, this is not to be construed as a feature, and you shouldn‘t depend on it.)

Almost.

When an interpreter thread finally shuts down (usually when your program exits), then a rather costly but
complete mark—and-sweep style of garbage collection is performed, and everything allocated by that thread
gets destroyed. This is essential to support Perl as an embedded or a multithreadable language. For
example, this program demonstrates Perl‘s two—phased garbage collection:

#1/usr/bin/perl
package Subtle;

sub new {
my $test;
$test = \$test;
warn "CREATING " . \$test;
return bless \$test;

}
sub DESTROY {

my $self = shift;

warn "DESTROYING $self";
}

package main;

warn "starting program";

{
my $a = Subtle->new;
my $b = Subtle->new;
$$a = 0; # break selfref
warn "leaving block";

}

warn "just exited block";
warn "time to die...";
exit;

When run agtmp/test the following output is produced:

starting program at /tmp/test line 18.

CREATING SCALAR(0x8e5b8) at /tmp/test line 7.
CREATING SCALAR(0x8e57c) at /tmp/test line 7.

leaving block at /tmp/test line 23.

DESTROYING Subtle=SCALAR(0x8e5b8) at /tmp/test line 13.
just exited block at /tmp/test line 26.

168 Version 5.003 08-0Oct-1996

perlobj Perl Programmers Reference Guide perlobj

time to die... at /tmp/test line 27.
DESTROYING Subtle=SCALAR(0x8e57c) during global destruction.

Notice that "global destruction" bit there? That's the thread garbage collector reaching the unreachable.

Objects are always destructed, even when regular refs aren‘t and in fact are destructed in a separate pass
before ordinary refs just to try to prevent object destructors from using refs that have been themselves
destructed. Plain refs are only garbage collected if the destruct level is greater than 0. You can test the
higher levels of global destruction by setting the PERL_DESTRUCT_LEVEL environment variable,
presuming-DDEBUGGIN®as enabled during perl build time.

A more complete garbage collection strategy will be implemented at a future date.

SEE ALSO

You should also check operlbotfor other object tricks, traps, and tips, as welbadmodfor some style
guides on constructing both modules and classes.

08-0Oct-1996 Version 5.003 169

perltie Perl Programmers Reference Guide perltie

NAME
perltie — how to hide an object class in a simple variable

SYNOPSIS
tie VARIABLE, CLASSNAME, LIST

$object = tied VARIABLE
untie VARIABLE

DESCRIPTION

Prior to release 5.0 of Perl, a programmer coulddieopen() to magically connect an on—disk database

in the standard Unix dbm(3x) format to a %HASH in their program. However, their Perl was either built
with one particular dbm library or another, but not both, and you couldn‘t extend this mechanism to other
packages or types of variables.

Now you can.

Thetie() function binds a variable to a class (package) that will provide the implementation for access
methods for that variable. Once this magic has been performed, accessing a tied variable automatically
triggers method calls in the proper class. All of the complexity of the class is hidden behind magic methods
calls. The method names are in ALL CAPS, which is a convention that Perl uses to indicate that they‘re
called implicitly rather than explicitly—just like tH#EGIN() andEND() functions.

In thetie() call, VARIABLE is the name of the variable to be enchant€dASSNAMES the name of a
class implementing objects of the correct type. Any additional arguments inSHheare passed to the
appropriate constructor method for that class—meafIESCALAR() , TIEARRAY() , TIEHASH() or
TIEHANDLE() . (Typically these are arguments such as might be passed dobrttieit() function of

C.) The object returned by the "new" method is also returned liefhe function, which would be useful

if you wanted to access other method€IPASSNAME(You don't actually have to return a reference to a
right "type" (e.g. HASH oCLASSNAMESo long as it's a properly blessed object.) You can also retrieve a
reference to the underlying object usingtied() function.

Unlike dbmopen() , thetie() function will notuse orrequire a module for you—you need to do that
explicitly yourself.

Tying Scalars
A class implementing a tied scalar should define the following methods: TIESCALAR, FETCH, STORE,
and possibly DESTROY.

Let's look at each in turn, using as an example a tie class for scalars that allows the user to do something
like:

tie $his_speed, 'Nice’, getppid();
tie $my_speed, 'Nice’, $3;

And now whenever either of those variables is accessed, its current system priority is retrieved and returned.
If those variables are set, then the process's priority is changed!

We'll use Jarkko HietaniemiJarkko.Hietaniemi@hut.fi*s BSD::Resource class (hot included) to access
the PRIO_PROCESS, PRIO_MIN, and PRIO_MAX constants from your system, as well as the
getpriority() andsetpriority() system calls. Here's the preamble of the class.

package Nice;

use Carp;

use BSD::Resource;

use strict;

$Nice::DEBUG = 0 unless defined $Nice::DEBUG;

170 Version 5.003 08-0Oct-1996

perltie Perl Programmers Reference Guide perltie

TIESCALAR classname, LIST

This is the constructor for the class. That means it is expected to return a blessed reference to a new
scalar (probably anonymous) that it's creating. For example:

sub TIESCALAR {
my $class = shift;
my $pid = shift || $$; # 0 means me

if ($pid !~ /MN\d+$/) {
carp "Nice::Tie::Scalar got non—numeric pid $pid" if $MW;
return undef;

}

unless (kill 0, $pid) { # EPERM or ERSCH, no doubt
carp "Nice::Tie::Scalar got bad pid $pid: $!" if $"W;
return undef;

}

return bless \$pid, $class;

}

This tie class has chosen to return an error rather than raising an exception if its constructor should fail.
While this is howndbmopen() works, other classes may well not wish to be so forgiving. It checks
the global variabl§"Wto see whether to emit a bit of noise anyway.

FETCH this

This method will be triggered every time the tied variable is accessed (read). It takes no arguments
beyond its self reference, which is the object representing the scalar we're dealing with. Since in this
case we're just using a SCALAR ref for the tied scalar object, a sifgkdf allows the method to

get at the real value stored there. In our example below, that real value is the process ID to which
we've tied our variable.

sub FETCH {
my $self = shift;
confess "wrong type" unless ref $self;
croak "usage error" if @_;
my $nicety;
local($!) = 0;
$nicety = getpriority(PRIO_PROCESS, $$self);
if ($!) { croak "getpriority failed: $!" }
return $nicety;

}

This time we've decided to blow up (raise an exception) if the renice fails—there's no place for us to
return an error otherwise, and it's probably the right thing to do.

STORE this, value

This method will be triggered every time the tied variable is set (assigned). Beyond its self reference,
it also expects one (and only one) argument—the new value the user is trying to assign.

sub STORE {
my $self = shift;
confess "wrong type" unless ref $self;
my $new_nicety = shift;
croak "usage error" if @_;
if ($new_nicety < PRIO_MIN) {
carp sprintf
"WARNING: priority %d less than minimum system priority %d",

08-0Oct-1996 Version 5.003 171

perltie Perl Programmers Reference Guide perltie

$new_nicety, PRIO_MIN if $"W;
$new_nicety = PRIO_MIN;
}

if ($new_nicety > PRIO_MAX) {
carp sprintf
"WARNING: priority %d greater than maximum system priority %d",
$new_nicety, PRIO_MAX if $"W;
$new_nicety = PRIO_MAX;
}

unless (defined setpriority(PRIO_PROCESS, $$self, $new_nicety)) {
confess "setpriority failed: $!";
}

return $new_nicety;

}
DESTROY this

This method will be triggered when the tied variable needs to be destructed. As with other object
classes, such a method is seldom necessary, since Perl deallocates its moribund object's memory for
you automatically—this isn‘t C++, you know. We'll use a DESTROY method here for debugging
purposes only.

sub DESTROY {

my $self = shift;

confess "wrong type" unless ref $self;

carp "[Nice::DESTROY pid $$self]" if $Nice::DEBUG;
}

That's about all there is to it. Actually, it's more than all there is to it, since we‘ve done a few nice things
here for the sake of completeness, robustness, and general aesthetics. Simpler TIESCALAR classes are
certainly possible.

Tying Arrays

A class implementing a tied ordinary array should define the following methods: TIEARRAY, FETCH,
STORE, and perhaps DESTROY.

WARNING : Tied arrays arencomplete They are also distinctly lacking something for 8#ARRAY
access (which is hard, as it's an Ivalue), as well as the other obvious array functigmssti@Qe , pop() ,
shift() , unshift() , andsplice()

For this discussion, we'll implement an array whose indices are fixed at its creation. If you try to access
anything beyond those bounds, you'll take an exception. (Well, if you access an individual element; an
aggregate assignment would be missed.) For example:

require Bounded_Array;
tie @ary, 'Bounded_Array’, 2;
$|=1;
for $i (0 .. 10) {
print "setting index $i: ";
$ary[$i] = 10 * $i;
$ary[$i] = 10 * $i;
print "value of elt $i now $ary[$i]\n";

}

The preamble code for the class is as follows:

package Bounded_Array;
use Carp;
use strict;

172 Version 5.003 08-0Oct-1996

perltie Perl Programmers Reference Guide perltie

TIEARRAY classname, LIST

This is the constructor for the class. That means it is expected to return a blessed reference through
which the new array (probably an anonymous ARRAY ref) will be accessed.

In our example, just to show you that you do@ally have to return an ARRAY reference, we'll
choose a HASH reference to represent our object. A HASH works out well as a generic record type:
the {BOUND]} field will store the maximum bound allowed, and {ARRAY} field will hold the true
ARRAY ref. If someone outside the class tries to dereference the object returned (doubtless thinking it
an ARRAY ref), they'll blow up. This just goes to show you that you should respect an object's
privacy.

sub TIEARRAY {

my $class = shift;

my $bound = shift;

confess "usage: tie(\@ary, 'Bounded_Array’, max_subscript)"
if @_ || $bound =~ \D/;

return bless {
BOUND => $bound,
ARRAY =>1],

}, $class;

}

FETCH this, index

This method will be triggered every time an individual element the tied array is accessed (read). It
takes one argument beyond its self reference: the index whose value we're trying to fetch.

sub FETCH {
my($self,$idx) = @_;
if ($idx > $self->{BOUND}) {
confess "Array OOB: $idx > $self->{BOUND}";
}

return $self->{ARRAY}[$idx];
}

As you may have noticed, the name of the FETCH method (et al.) is the same for all accesses, even
though the constructors differ in names (TIESCALAR vs TIEARRAY). While in theory you could
have the same class servicing several tied types, in practice this becomes cumbersome, and it's easiest
to simply keep them at one tie type per class.

STORE this, index, value

This method will be triggered every time an element in the tied array is set (written). It takes two
arguments beyond its self reference: the index at which we're trying to store something and the value
we're trying to put there. For example:

sub STORE {
my($self, $idx, $value) = @_;
print "[STORE $value at $idx]\n" if _debug;
if ($idx > $self->{BOUND}) {
confess "Array OOB: $idx > $self->{BOUND}";
}
return $self->{ARRAY}[$idx] = $value;

}
DESTROY this

This method will be triggered when the tied variable needs to be destructed. As with the scalar tie
class, this is almost never needed in a language that does its own garbage collection, so this time we'll
just leave it out.

08-0Oct-1996 Version 5.003 173

perltie

Perl Programmers Reference Guide perltie

The code we presented at the top of the tied array class accesses many elements of the array, far more than
we've set the bounds to. Therefore, it will blow up once they try to access beyond the 2nd element of @ary,
as the following output demonstrates:

setting index O: value of elt 0 now 0

setting index 1: value of elt 1 now 10

setting index 2: value of elt 2 now 20

setting index 3: Array OOB: 3 > 2 at Bounded_Array.pm line 39
Bounded_Array::FETCH called at testba line 12

Tying Hashes

As the first Perl data type to be tied (skenopen()), associative arrays have the most complete and useful
tie() implementation. A class implementing a tied associative array should define the following methods:
TIEHASH is the constructor. FETCH and STORE access the key and value pairs. EXISTS reports whether
a key is present in the hash, and DELETE deletes one. CLEAR empties the hash by deleting all the key and
value pairs. FIRSTKEY and NEXTKEY implement tkeys() andeach() functions to iterate over all

the keys. And DESTROY is called when the tied variable is garbage collected.

If this seems like a lot, then feel free to merely inherit from the standard Tie::Hash module for most of your
methods, redefining only the interesting ones. BeeHashfor details.

Remember that Perl distinguishes between a key not existing in the hash, and the key existing in the hash but
having a corresponding value ohdef . The two possibilities can be tested with thests() and
defined() functions.

Here's an example of a somewhat interesting tied hash class: it gives you a hash representing a particular
user's dotfiles. You index into the hash with the name of the file (minus the dot) and you get back that
dotfile's contents. For example:

use DotFiles;

tie %dot, 'DotFiles’;

if ($dot{profile} =~ IMANPATH/ ||
$dot{login} =~ /MANPATH/ ||
$dot{cshrc} =~/MANPATH/)

{

}

Or here's another sample of using our tied class:

print "you seem to set your manpath\n";

tie %him, 'DotFiles’, 'daemon’;
foreach $f (keys %him) {
printf "daemon dot file %s is size %d\n",
$f, length $him{$f};
}

In our tied hash DotFiles example, we use a regular hash for the object containing several important fields, of
which only the{LIST} field will be what the user thinks of as the real hash.

USER

whose dot files this object represents
HOME

where those dotfiles live

CLOBBER
whether we should try to change or remove those dot files

174

Version 5.003 08-0ct—-1996

Tie::Hash

perltie

Perl Programmers Reference Guide perltie

LIST the hash of dotfile names and content mappings

Here's the start dDotfiles.pm

package DotFiles;

use Carp;

sub whowasi { (caller(1))[3] . '()’ }
my $DEBUG = 0;
sub debug { $DEBUG = @_ ? shift: 1}

For our example, we want to able to emit debugging info to help in tracing during development. We keep
also one convenience function around internally to help print out warniviggwasi() returns the
function name that calls it.

Here are the methods for the DotFiles tied hash.

TIEHASH classname, LIST

This is the constructor for the class. That means it is expected to return a blessed reference through
which the new object (probably but not necessarily an anonymous hash) will be accessed.

Here's the constructor:
sub TIEHASH {

}

my $self = shift;
my $user = shift || $>;
my $dotdir = shift || ;
croak "usage: @{[&whowasi]} [USER [DOTDIR]]" if @_;
$user = getpwuid($user) if user =~ /N\d+$/;
my $dir = (getpwnam($user))[7]
|| croak "@{[&whowasil}: no user $user";
$dir .= "/$dotdir" if $dotdir;

my $node = {
USER => $user,
HOME => %dir,
LIST =>{},

CLOBBER => 0,
%
opendir(DIR, $dir)
|| croak "@{[&whowasi]}: can’t opendir $dir: $!";
foreach $dot (grep /N\./ && —f "$dir/$_", readdir(DIR)) {
$dot =~ s/M\.JI;
$node—>{LISTH$dot} = undef;
}
closedir DIR;
return bless $node, $self;

It's probably worth mentioning that if you‘re going to filetest the return values out of a readdir, you‘d
better prepend the directory in question. Otherwise, since we diaitt) there, it would have
been testing the wrong file.

FETCH this, key

This method will be triggered every time an element in the tied hash is accessed (read). It takes one
argument beyond its self reference: the key whose value we're trying to fetch.

Here's the fetch for our DotFiles example.

sub FETCH {

08-0Oct-1996

Version 5.003 175

perltie

Perl Programmers Reference Guide

perltie

}

carp &whowasi if $DEBUG;
my $self = shift;

my $dot = shift;

my $dir = $self->{HOME};
my $file = "$dir/.$dot";

unless (exists $self->{LIST}->{$dot} || —f $file) {
carp "@{[&whowasi]}: no $dot file" if SDEBUG;
return undef;

}

if (defined $self->{LIST}->{$dot}) {
return $self—->{LIST}->{$dot};
}else {
return $self->{LIST}->{$dot} = ‘cat $dir/.$dot’;

}

It was easy to write by having it call the Unix cat(1) command, but it would probably be more portable
to open the file manually (and somewhat more efficient).
concept, we're not that concerned.

STORE this, key, value

This method will be triggered every time an element in the tied hash is set (written). It takes two
arguments beyond its self reference: the index at which we're trying to store something, and the value
we're trying to put there.

Of course, since dot files are a Unixy

Here in our DotFiles example, we'll be careful not to let them try to overwrite the file unless they‘ve

called theclobber()

sub STORE {

}

carp &whowasi if $DEBUG;

my $self = shift;

my $dot = shift;

my $value = shift;

my $file = $self->{HOME} . "/.$dot";
my $user = $self->{USER};

croak "@{[&whowasi]}: $file not clobberable"
unless $self->{CLOBBER};

open(F, "> $file") || croak "can't open $file: $!";
print F $value;
close(F);

If they wanted to clobber something, they might say:

$ob = tie %daemon_dots, 'daemon’;
$ob—>clobber(1);
$daemon_dots{signature} = "A true daemon\n";

method on the original object reference returnetidgy

Another way to lay hands on a reference to the underlying object is to usede function, so
they might alternately have set clobber using:

tie %daemon_dots, 'daemon’;
tied(%odaemon_dots)—>clobber(1);

The clobber method is simply:
sub clobber {

176

Version 5.003

08-0Oct-1996

perltie Perl Programmers Reference Guide perltie

my $self = shift;
$self->{CLOBBER} = @_ ? shift : 1;
}

DELETE this, key

This method is triggered when we remove an element from the hash, typically by using the
delete() function. Again, we'll be careful to check whether they really want to clobber files.

sub DELETE {
carp &whowasi if $DEBUG;

my $self = shift;
my $dot = shift;
my $file = $self->{HOME} . "/.$dot";
croak "@{[&whowasi]}: won't remove file $file"
unless $self->{CLOBBER};
delete $self->{LIST}->{$dot};
my $success = unlink($file);
carp "@{[&whowasi]}: can’t unlink $file: $!" unless $success;
$success;

}

The value returned by DELETE becomes the return value of the addléte() . If you want to
emulate the normal behavior délete() , you should return whatever FETCH would have returned

for this key. In this example, we have chosen instead to return a value which tells the caller whether
the file was successfully deleted.

CLEAR this
This method is triggered when the whole hash is to be cleared, usually by assigning the empty list to it.

In our example, that would remove all the user's dotfiles! It's such a dangerous thing that they‘ll have
to set CLOBBER to something higher than 1 to make it happen.

sub CLEAR {
carp &whowasi if $DEBUG;
my $self = shift;

croak "@{[&whowasi]}: won't remove all dotfiles for $self->{USER}"
unless $self->{CLOBBER} > 1;
my $dot;
foreach $dot (keys %{$self->{LIST}}) {
$self->DELETE($dot);
}
}

EXISTS this, key

This method is triggered when the user usesetists() function on a particular hash. In our
example, we'll look at th@ IST} hash element for this:

sub EXISTS {

carp &whowasi if $DEBUG;

my $self = shift;

my $dot = shift;

return exists $self->{LIST}->{$dot};
}

FIRSTKEY this

This method will be triggered when the user is going to iterate through the hash, suchkeys(a a
oreach() call

08-0Oct-1996 Version 5.003 177

perltie Perl Programmers Reference Guide perltie

sub FIRSTKEY {
carp &whowasi if $DEBUG;
my $self = shift;
my $a = keys %{$self->{LIST}}; # reset each() iterator
each %{$self->{LIST}}
}

NEXTKEY this, lastkey

This method gets triggered durindgeys() oreach() iteration. It has a second argument which is
the last key that had been accessed. This is useful if you‘re carrying about ordering or calling the
iterator from more than one sequence, or not really storing things in a hash anywhere.

For our example, we're using a real hash so we'll just do the simple thing, but we'll have to indirect
through the LIST field.

sub NEXTKEY ({
carp &whowasi if $DEBUG;
my $self = shift;
return each %{ $self->{LIST} }
}

DESTROY this

This method is triggered when a tied hash is about to go out of scope. You don'‘t really need it unless
you're trying to add debugging or have auxiliary state to clean up. Here's a very simple function:

sub DESTROY {
carp &whowasi if $DEBUG;
}

Note that functions such d&®ys() andvalues() ~may return huge array values when used on large
objects, like DBM files. You may prefer to use #aeh() function to iterate over such. Example:

print out history file offsets
use NDBM_File;
tie(%HIST, 'NDBM_File’, 'fusr/lib/news/history’, 1, 0);
while (($key,$val) = each %HIST) {
print $key, ' =, unpack('L’,$val), "\n";
}
untie(%HIST);

Tying FileHandles

This is partially implemented now.

A class implementing a tied filehandle should define the following methods: TIEHANDLE, PRINT and/or
READLINE, and possibly DESTROY.

It is especially useful when perl is embedded in some other program, where output to STDOUT and
STDERR may have to be redirected in some special way. See nvi and the Apache module for examples.

In our example we're going to create a shouting handle.
package Shout;

TIEHANDLE classname, LIST

This is the constructor for the class. That means it is expected to return a blessed reference of some
sort. The reference can be used to hold some internal information. We won‘t use it in out example.

sub TIEHANDLE { print "<shout>\n"; my $i; bless \$i, shift }

178 Version 5.003 08-0Oct-1996

perltie Perl Programmers Reference Guide perltie

PRINT this, LIST

This method will be triggered every time the tied handle is printed to. Beyond its self reference it also
expects the list that was passed to the print function.

sub PRINT { $r = shift; $$r++; print join($,,map(uc($_),@_)),$\}

READLINE this

This method will be called when the handle is read from. The method should return undef when there
iS no more data.

sub READLINE { $r = shift; "PRINT called $$r times\n"; }

DESTROY this

As with the other types of ties, this method will be called when the tied handle is about to be destroyed.
This is useful for debugging and possibly cleaning up.

sub DESTROY { print "</shout>\n" }
Here's how to use our little example:

tie(*FOO,’Shout’);
print FOO "hello\n™;

$a =4; $b = 6;
print FOO $a, " plus ", $b, " equals ", $a + $b, "\n";
print <FOO>;
SEE ALSO
SeeDB_File or Configfor some interestinge() implementations.

BUGS

Tied arrays aréencomplete They are also distinctly lacking something for $##\RRAYaccess (which is
hard, as it's an Ivalue), as well as the other obvious array functionspu®) , pop() , shift()
unshift() , andsplice()

You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first problem is
that all but GDBM and Berkeley DB have size limitations, but beyond that, you also have problems with
how references are to be represented on disk. One experimental module that does attempt to partially
address this need is the MLDBM module. Check your nearest CPAN site as descpiéechaufor source

code to MLDBM.

AUTHOR
Tom Christiansen

TIEHANDLE by Sven Verdoolaegeskimo@dns.ufsia.ac.be

08-0Oct-1996 Version 5.003 179

perlbot Perl Programmers Reference Guide perlbot

NAME
perlbot — Bag‘o Object Tricks (the BOT)

DESCRIPTION

The following collection of tricks and hints is intended to whet curious appetites about such things as the use
of instance variables and the mechanics of object and class relationships. The reader is encouraged to
consult relevant textbooks for discussion of Object Oriented definitions and methodology. This is not
intended as a tutorial for object-oriented programming or as a comprehensive guide to Perl‘s object oriented
features, nor should it be construed as a style guide.

The Perl motto still holds: There's more than one way to do it.
OO SCALING TIPS

1 Do not attempt to verify the type 8&elf. That'll break if the class is inherited, when the type of
$self is valid but its package isn‘t what you expect. See rule 5.

2 If an object-oriented (OO) or indirect—object (I0) syntax was used, then the object is probably the
correct type and there's no need to become paranoid about it. Perlisn't a paranoid language anyway.
If people subvert the OO or IO syntax then they probably know what they‘re doing and you should
let them do it. See rule 1.

3 Use the two—argument form bfess() . Let a subclass use your constructor. See
INHERITING A CONSTRUCTOR

4 The subclass is allowed to know things about its immediate superclass, the superclass is allowed to
know nothing about a subclass.

5 Don't be trigger happy with inheritance. A "using", "containing”, or "delegation” relationship (some
sort of aggregation, at least) is often more appropriate. GBEECT RELATIONSHIRS
USING RELATIONSHIP WITH SDBMNd"DELEGATION'

6 The object is the namespace. Make package globals accessible via the object. This will remove the
guess work about the symbol‘s home package C:#¢S CONTEXT AND THE OBJECT

7 IO syntax is certainly less noisy, but it is also prone to ambiguities which can cause difficult—to—find
bugs. Allow people to use the sure—thing OO syntax, even if you don't like it.

8 Do not use function—call syntax on a method. You‘re going to be bitten someday. Someone might
move that method into a superclass and your code will be broken. On top of that you‘re feeding the
paranoia in rule 2.

9 Don‘t assume you know the home package of a method. You‘re making it difficult for someone to
override that method. S&#INKING OF CODE REUSE
INSTANCE VARIABLES
An anonymous array or anonymous hash can be used to hold instance variables. Named parameters are also
demonstrated.

package Foo;

sub new {
my $type = shift;
my %params = @_;
my $self = {};
$self->{’High’} = $params{’High'};
$self->{’Low’} = $params{'Low’};
bless $self, $type;

}

package Bar;

180 Version 5.003 08-0Oct-1996

perlbot Perl Programmers Reference Guide perlbot

sub new {
my $type = shift;
my %params = @_;
my $self = [];
$self->[0] = $params{’Left’};
$self->[1] = $params{'Right’};
bless $self, $type;

}

package main;

$a = Foo—>new('High’ => 42, 'Low’ => 11);
print "High=$a—>{"High"\n";
print "Low=$a—->{"Low\n";
$b = Bar—>new('Left’ => 78, 'Right’ => 40);
print "Left=$b—>[0]\n";
print "Right=$b—>[1]\n";

SCALAR INSTANCE VARIABLES

An anonymous scalar can be used when only one instance variable is needed.

package Foo;

sub new {
my $type = shift;
my $self;
$self = shift;
bless \$self, $type;
}

package main;
$a = Foo—>new(42);
print "a=$$a\n";

INSTANCE VARIABLE INHERITANCE

This example demonstrates how one might inherit instance variables from a superclass for inclusion in the
new class. This requires calling the superclass's constructor and adding one's own instance variables to the
new object.

package Bar;

sub new {
my $type = shift;
my $self = {};
$self->{'buz’} = 42;
bless $self, $type;
}

package Foo;
@ISA = gw(Bar);

sub new {
my $type = shift;
my $self = Bar—>new;
$self->{'biz’} = 11,
bless $self, $type;

}

package main;

08-0Oct-1996 Version 5.003 181

perlbot Perl Programmers Reference Guide perlbot

$a = Foo—>new;
print "buz =", $a->{'buz’}, "\n";
print "biz = ", $a->{'biz’}, "\n";
OBJECT RELATIONSHIPS
The following demonstrates how one might implement "containing” and "using" relationships between
objects.

package Bar;

sub new {
my $type = shift;
my $self = {};
$self->{'buz’} = 42;
bless $self, $type;

}

package Foo;

sub new {
my $type = shift;
my $self = {};
$self->{'Bar’} = Bar—>new;
$self->{'biz’} = 11,
bless $self, $type;

}

package main;

$a = Foo—>new;
print "buz =", $a—>{'Bar’}->{’buz’}, "\n";
print "biz = ", $a->{'biz’}, "\n";
OVERRIDING SUPERCLASS METHODS
The following example demonstrates how to override a superclass method and then call the overridden

method. The&SUPER pseudo-class allows the programmer to call an overridden superclass method without
actually knowing where that method is defined.

package Buz;
sub goo { print "here’s the goo\n" }

package Bar; @ISA = qw(Buz);
sub google { print "google here\n" }

package Baz;
sub mumble { print "mumbling\n" }

package Foo;
@ISA = qw(Bar Baz);

sub new {
my $type = shift;
bless [], $type;

}

sub grr { print "grumble\n" }

sub goo {
my $self = shift;
$self->SUPER::goo();

sub mumble {
my $self = shift;

182 Version 5.003 08-0Oct-1996

perlbot Perl Programmers Reference Guide perlbot

$self->SUPER::mumble();

}
sub google {
my $self = shift;
$self->SUPER::google();
}

package main;

$foo = Foo—>new;
$foo—>mumble;
$foo—>grr;
$foo—>goo;
$foo—>google;

USING RELATIONSHIP WITH SDBM

This example demonstrates an interface for the SDBM class. This creates a "using" relationship between the
SDBM class and the new class Mydbm.

package Mydbm;

require SDBM_File;
require Tie::Hash;
@ISA = gw(Tie::Hash);

sub TIEHASH {
my $type = shift;
my $ref = SDBM_File->new(@_);
bless {'dom’ => $ref}, $type;
}
sub FETCH {
my $self = shift;
my $ref = $self->{’dbm’};
$ref->FETCH(@_);
}
sub STORE {
my $self = shift;
if (defined $_[0]){
my $ref = $self->{’dbm’};
$ref->STORE(@);
}else {
die "Cannot STORE an undefined key in Mydbm\n";

}
}

package main;
use Fentl gw(O_RDWR O_CREAT);

tie %foo, "Mydbm", "Sdbm", O_ RDWR|O_CREAT, 0640;
$foo{'bar’} = 123;

print "foo—bar = $foo{’bar’\n";

tie %bar, "Mydbm", "Sdbm?2", O_RDWR|O_CREAT, 0640;
$bar{'Cathy’} = 456;

print "bar—Cathy = $bar{’Cathy’\n";

08-0Oct-1996 Version 5.003 183

perlbot

Perl Programmers Reference Guide

perlbot

THINKING OF CODE REUSE

One strength of Object-Oriented languages is the ease with which old code can use new code.

The

following examples will demonstrate first how one can hinder code reuse and then how one can promote

code reuse.

This first example illustrates a class which uses a fully—qualified method call to access the "private” method
BAZ() . The second example will show that it is impossible to overridBAz€) method.

package FOO;

sub new {

my $type = shift;
bless {}, $type;

}
sub bar {

my $self = shift;
$self->FOO::private::BAZ;

}
package FOO::private;
sub BAZ {

print "in BAZ\n";

}
package main;

$a = FOO—>new;
$a—>bar:;

Now we try to override thBAZ() method. We would lik&OO::bar()

cannot happen becaus®0O::bar()
package FOO;

sub new {

explicitly callsFOO::private::BAZ()

my $type = shift;
bless {}, $type;

}
sub bar {

my $self = shift;
$self->FOO::private::BAZ;

}
package FOO::private;
sub BAZ {

print "in BAZ\n";

}

package GOOP;
@ISA = gw(FOO);
sub new {

my $type = shift;
bless {}, $type;

}
sub BAZ {

print "in GOOP::BAZ\n";

}

to call GOOP::BAZ() , but this

184

Version 5.003

08-0Oct-1996

perlbot Perl Programmers Reference Guide perlbot

package main;

$a = GOOP—>new;
$a—>bar;

To create reusable code we must modify class FOO, flattening class FOO::private. The next example shows
a reusable class FOO which allows the metB@DP::BAZ() to be used in place 6000::BAZ() .

package FOO;

sub new {
my $type = shift;
bless {}, $type;

}

sub bar {
my $self = shift;
$self->BAZ;

}

sub BAZ {
print "in BAZ\n";
}

package GOOP;
@ISA = gw(FOO);

sub new {
my $type = shift;
bless {}, $type;

}
sub BAZ {

print "in GOOP::BAZ\n";
}
package main;
$a = GOOP—>new;
$a->bar;

CLASS CONTEXT AND THE OBJECT

Use the object to solve package and class context problems. Everything a method needs should be available
via the object or should be passed as a parameter to the method.

A class will sometimes have static or global data to be used by the methods. A subclass may want to
override that data and replace it with new data. When this happens the superclass may not know how to find
the new copy of the data.

This problem can be solved by using the object to define the context of the method. Let the method look in
the object for a reference to the data. The alternative is to force the method to go hunting for the data ("Is it
in my class, or in a subclass? Which subclass?"), and this can be inconvenient and will lead to hackery. It is
better to just let the object tell the method where that data is located.

package Bar;

%fizzle = ("Password’ => 'XYZZY");

sub new {
my $type = shift;
my $self = {};
$self->{fizzle'} = \%fizzle;
bless $self, $type;

}

08-0Oct-1996 Version 5.003 185

perlbot Perl Programmers Reference Guide perlbot

sub enter {
my $self = shift;

Don't try to guess if we should use %Bar::fizzle
or %Foo::fizzle. The object already knows which
we should use, so just ask it.

#

my $fizzle = $self->{fizzle'};

print "The word is ", $fizzle->{'Password’}, "\n";

}

package Foo;
@ISA = gw(Bar);

%fizzle = ("Password’ => 'Rumple’);

sub new {
my $type = shift;
my $self = Bar—>new;
$self->{fizzle'} = \%fizzle;
bless $self, $type;

}

package main;

$a = Bar->new;
$b = Foo—>new;
$a—>enter;
$b—>enter;

INHERITING A CONSTRUCTOR

An inheritable constructor should use the second forilesfs() which allows blessing directly into a
specified class. Notice in this example that the object will be a BAR not a FOO, even though the constructor
is in class FOO.

package FOO;

sub new {
my $type = shift;
my $self = {};
bless $self, $type;
}

sub baz {
print "in FOO::baz()\n";
}

package BAR;
@ISA = gw(FOO);

sub baz {
print "in BAR::baz()\n";
}

package main;

$a = BAR—>new;
$a—>baz;

186 Version 5.003 08-0Oct-1996

perlbot Perl Programmers Reference Guide perlbot

DELEGATION
Some classes, such as SDBM_File, cannot be effectively subclassed because they create foreign objects.
Such a class can be extended with some sort of aggregation technique such as the "using" relationship
mentioned earlier or by delegation.

The following example demonstrates delegation usinglAROLOAD() function to perform
message-forwarding. This will allow the Mydbm object to behave exactly like an SDBM_File object. The
Mydbm class could now extend the behavior by adding cus®NCH() andSTORE() methods, if this is
desired.

package Mydbm;

require SDBM_File;

require Tie::Hash;

@ISA = gw(Tie::Hash);

sub TIEHASH {
my $type = shift;
my $ref = SDBM_File->new(@_);
bless {'delegate’ => $ref};

}

sub AUTOLOAD {
my $self = shift;

The Perl interpreter places the name of the
message in a variable called $AUTOLOAD.

DESTROY messages should never be propagated.
return if BAUTOLOAD =~ /::DESTROY$/;

Remove the package name.
$AUTOLOAD =~ s/"Mydbm:://;

Pass the message to the delegate.
$self->{'delegate’}->$AUTOLOAD(@_);

}

package main;

use Fentl gw(O_RDWR O_CREAT);

tie %foo, "Mydbm", "adbm", O_RDWR|O_CREAT, 0640;

$foo{'bar’} = 123;

print “foo—bar = $foo{’bar’\n";

08-0Oct-1996 Version 5.003 187

perlipc Perl Programmers Reference Guide perlipc

NAME
perlipc — Perl interprocess communication (signals, fifos, pipes, safe subprocesses, sockets, and semaphores)

DESCRIPTION

The basic IPC facilities of Perl are built out of the good old Unix signals, named pipes, pipe opens, the
Berkeley socket routines, and SysV IPC calls. Each is used in slightly different situations.

Signals

Perl uses a simple signal handling model: the %SIG hash contains names or references of user-installed
signal handlers. These handlers will be called with an argument which is the name of the signal that
triggered it. A signal may be generated intentionally from a particular keyboard sequence like control-C or
control-Z, sent to you from another process, or triggered automatically by the kernel when special events
transpire, like a child process exiting, your process running out of stack space, or hitting file size limit.

For example, to trap an interrupt signal, set up a handler like this. Notice how all we do is set a global
variable and then raise an exception. That's because on most systems libraries are not re—entrant, so calling
any print() functions (or even anything that needs to malloc(3) more memory) could in theory trigger a
memory fault and subsequent core dump.

sub catch_zap {

my $signame = shift;

$shucks++;

die "Somebody sent me a SIG$signame”;
}
$SIG{INT} = 'catch_zap’; # could fail in modules
$SIG{INT} = \&catch_zap; # best strategy

The names of the signals are the ones listed olitllbyl on your system, or you can retrieve them from
the Config module. Set up an @signame list indexed by number to get the name and a %signo table indexed
by name to get the number:

use Config;
defined $Config{sig_name} || die "No sigs?";
foreach $name (split(’ ’, $Config{sig_name})) {
$signo{$name} = $i;
$signame[$i] = $name;
$i++;

}
So to check whether signal 17 and SIGALRM were the same, just do this:

print "signal #17 = $signame[17]\n";
if ($signo{ALRM}) {

print "SIGALRM is $signo{ALRMAn";
}

You may also choose to assign the strit@NORE’ or ‘DEFAULT’ as the handler, in which case Perl

will try to discard the signal or do the default thing. Some signals can be neither trapped nor ignored, such as
the KILL and STOP (but not the TSTP) signals. One strategy for temporarily ignoring signals is to use a
local() statement, which will be automatically restored once your block is exited. (Remember that
local() values are "inherited" by functions called from within that block.)

sub precious {
local $SIG{INT} = IGNORE’;
&more_functions;

}

sub more_functions {

188 Version 5.003 08-0Oct-1996

perlipc

Perl Programmers Reference Guide perlipc

interrupts still ignored, for now...
}

Sending a signal to a negative process ID means that you send the signal to the entire Unix process—group.
This code send a hang—-up signal to all processes in the current processxgepiforthe current process
itself:

local $SIG{HUP} = 'IGNORE’;

kill HUP => -$$;

snazzy writing of: killCHUP’, -3)
}

Another interesting signal to send is signal number zero. This doesn‘t actually affect another process, but
instead checks whether it's alive or has changed its UID.

unless (kill 0 => $kid_pid) {
warn "something wicked happened to $kid_pid";
}

You might also want to employ anonymous functions for simple signal handlers:
$SIG{INT} = sub { die "\nOutta here'\n" };

But that will be problematic for the more complicated handlers that need to re—install themselves. Because
Perl's signal mechanism is currently based on the signal(3) function from the C library, you may sometimes
be so misfortunate as to run on systems where that function is "broken", that is, it behaves in the old
unreliable SysV way rather than the newer, more reasonable BSD and POSIX fashion. So you'll see
defensive people writing signal handlers like this:

sub REAPER {
$SIG{CHLD} = \&REAPER; # loathe sysV
$waitedpid = walit;

}

$SIG{CHLD} = \&REAPER,;

now do something that forks...

or even the more elaborate:

use POSIX ":wait_h";
sub REAPER {
my $child;
$SIG{CHLD} = \&REAPER; # loathe sysV
while ($child = waitpid(-1,WNOHANG)) {
$Kid_Status{$child} = $?;
}
}
$SIG{CHLD} = \&REAPER;
do something that forks...

Signal handling is also used for timeouts in Unix, While safely protected wittemadf} block, you set

a signal handler to trap alarm signals and then schedule to have one delivered to you in some number of
seconds. Then try your blocking operation, clearing the alarm when it's done but not before you‘ve exited
your eval{} block. If it goes off, you'll uselie() to jump out of the block, much as you might using
longjmp() orthrow() in other languages.

Here's an example:

eval {
local $SIG{ALRM} = sub { die "alarm clock restart" };
alarm 10;

08-0Oct-1996 Version 5.003 189

perlipc Perl Programmers Reference Guide perlipc

flock(FH, 2); # blocking write lock
alarm 0;
h
if (3@ and $@ !~ /alarm clock restart/) { die }

For more complex signal handling, you might see the standard POSIX module. Lamentably, this is almost
entirely undocumented, but thiéb/posix.tfile from the Perl source distribution has some examples in it.

Named Pipes

Using

A named pipe (often referred to as a FIFO) is an old Unix IPC mechanism for processes communicating on
the same machine. It works just like a regular, connected anonymous pipes, except that the processes
rendezvous using a filename and don‘t have to be related.

To create a named pipe, use the Unix command mknod(1) or on some systems, mkfifo(1). These may not be
in your normal path.

system return val is backwards, so && not ||
#
$ENV{PATH]} .= ":/etc:/usr/etc";
if (system('mknod’, $path, 'p’)
&& system(’'mkfifo’, $path))
{

}

A fifo is convenient when you want to connect a process to an unrelated one. When you open a fifo, the
program will block until there‘s something on the other end.

die "mk{nod,fifo} $path failed;

For example, let's say you'd like to have yasignaturefile be a named pipe that has a Perl program on the
other end. Now every time any program (like a mailer, newsreader, finger program, etc.) tries to read from
that file, the reading program will block and your program will supply the the new signature. We'll use the
pipe—-checking file testp to find out whether anyone (or anything) has accidentally removed our fifo.

chdir; # go home
$FIFO =".signature’;
$ENV{PATH]} .= ":/etc:/usr/games";

while (1) {
unless (—p $FIFO) {
unlink $FIFO;
system('mknod’, $FIFO, 'p’)
&& die "can’t mknod $FIFO: $!";
}

next line blocks until there’s a reader

open (FIFO, "> $FIFQ") || die "can't write $FIFO: $!";
print FIFO "John Smith (smith\@host.org)\n", ‘fortune -s’;
close FIFO;

sleep 2; # to avoid dup sigs

}
open() forIPC

Perl's basicopen() statement can also be used for unidirectional interprocess communication by either
appending or prepending a pipe symbol to the second argumegpen@ . Here's how to start something
up in a child process you intend to write to:

open(SPOOLER, "| cat —v | Ipr —h 2>/dev/null")

|| die "can’t fork: $!";
local $SIG{PIPE} = sub { die "spooler pipe broke" };
print SPOOLER "stuffin";

190

Version 5.003 08-0ct—-1996

perlipc Perl Programmers Reference Guide perlipc

close SPOOLER || die "bad spool: $! $?";
And here's how to start up a child process you intend to read from:

open(STATUS, "netstat —an 2>&1 |")
|| die "can’t fork: $!";
while (<STATUS>) {
next if /~(tcp|udp)/;
print;
}
close STATUS || die "bad netstat: $! $?";

If one can be sure that a particular program is a Perl script that is expecting filenames in @ARGYV, the clever
programmer can write something like this:

$ program f1 "cmd1|" - f2 "cmd2|" f3 < tmpfile

and irrespective of which shell it's called from, the Perl program will read from thé filee processmdi,
standard inputtpfile in this case), th& file, thecmd2command, and finally th& file. Pretty nifty, eh?

You might notice that you could use backticks for much the same effect as opening a pipe for reading:

print grep { !/ (tcp|udp)/ } ‘netstat —an 2>&1";
die "bad netstat" if $?;

While this is true on the surface, it's much more efficient to process the file one line or record at a time
because then you don't have to read the whole thing into memory at once. It also gives you finer control of
the whole process, letting you to kill off the child process early if you'd like.

Be careful to check both thepen() and theclose() return values. If you'revriting to a pipe, you

should also trap SIGPIPE. Otherwise, think of what happens when you start up a pipe to a command that
doesn't exist: thepen() will in all likelihood succeed (it only reflects therk() ‘s success), but then

your output will fail—spectacularly. Perl can't know whether the command worked because your command
is actually running in a separate process whoge() might have failed. Therefore, while readers of
bogus commands just return a quick end of file, writers to bogus command will trigger a signal they‘d better
be prepared to handle. Consider:

open(FH, "|bogus");
print FH "bang\n";
close FH;

Safe Pipe Opens

Another interesting approach to IPC is making your single program go multiprocess and communicate
between (or even amongst) yourselves. dpen() function will accept a file argument of eitHeq" or

"|-" to do a very interesting thing: it forks a child connected to the filehandle you've opened. The child is
running the same program as the parent. This is useful for safely opening a file when running under an
assumed UID or GID, for example. If you open a pigpminus, you can write to the filehandle you opened

and your kid will find it in his STDIN. If you open a pifi®m minus, you can read from the filehandle you
opened whatever your kid writes to his STDOUT.

use English;
my $sleep_count = 0;

do {
$pid = open(KID_TO_WRITE, "|-");
unless (defined $pid) {
warn "cannot fork: $!";
die "bailing out" if $sleep_count++ > 6;
sleep 10;

}
} until defined $pid;

08-0Oct-1996 Version 5.003 191

perlipc Perl Programmers Reference Guide perlipc

if ($pid) { # parent
print KID_TO_WRITE @some_data;
close(KID_TO_WRITE) || warn "kid exited $?";
}else{ # child
($EVID, $EGID) = ($UID, $GID); # suid progs only
open (FILE, "> /safe/file")
|| die "can’t open /safeffile: $!";
while (<STDIN>) {
print FILE; # child’s STDIN is parent’s KID
}
exit; # don'’t forget this

}

Another common use for this construct is when you need to execute something without the shell's
interference. Witlsystem() , it's straightforward, but you can‘t use a pipe open or backticks safely. That's
because there's no way to stop the shell from getting its hands on your arguments. Instead, use lower-level
control to callexec() directly.

Here's a safe backtick or pipe open for read:

add error processing as above
$pid = open(KID_TO_READ, "-|");

if ($pid) { # parent
while (<KID_TO_READ>) {
do something interesting

}
close(KID_TO_READ) || warn "kid exited $?";

}else{ #child
($EUID, $EGID) = ($UID, $GID); # suid only
exec($program, @options, @args)
|| die "can’t exec program: $!";
NOTREACHED
}

And here's a safe pipe open for writing:

add error processing as above
$pid = open(KID_TO_WRITE, "|-");
$SIG{ALRM} = sub { die "whoops, $program pipe broke" };

if ($pid) { # parent
for (@data) {
print KID_TO_WRITE;

}
close(KID_TO_WRITE) || warn "kid exited $?";

}else{ # child
($EUID, $EGID) = ($UID, $GID);
exec($program, @options, @args)
|| die "can’t exec program: $!";
NOTREACHED
}

Note that these operations are full Unix forks, which means they may not be correctly implemented on alien
systems. Additionally, these are not true multithreading. If you'd like to learn more about threading, see the
modulesfile mentioned below in the SEE ALSO section.

192 Version 5.003 08-0Oct-1996

perlipc Perl Programmers Reference Guide perlipc

Bidirectional Communication

While this works reasonably well for unidirectional communication, what about bidirectional
communication? The obvious thing you'd like to do doesn't actually work:

open(PROG_FOR_READING_AND_WRITING, "| some program |")
and if you forget to use thew flag, then you'll miss out entirely on the diagnostic message:
Can't do bidirectional pipe at —e line 1.

If you really want to, you can use the standspén2() library function to catch both ends. There's also
anopen3() for tridirectional 1/0 so you can also catch your child's STDERR, but doing so would then
require an awkwardelect() loop and wouldn‘t allow you to use normal Perl input operations.

If you look at its source, you'll see thapen2() uses low-level primitives like Unipipe() and

exec() to create all the connections. While it might have been slightly more efficient by using
socketpair() , it would have then been even less portable than it already is. ojd®() and
open3() functions are unlikely to work anywhere except on a Unix system or some other one purporting
to be POSIX compliant.

Here's an example of usirapen2() :

use FileHandle;

use IPC::Open2;

$pid = open2(*Reader, *Writer, "cat —u -n");
Writer—>autoflush(); # default here, actually
print Writer "stuffin®;

$got = <Reader>;

The problem with this is that Unix buffering is going to really ruin your day. Even though/Gier

filehandle is autoflushed, and the process on the other end will get your data in a timely manner, you can't
usually do anything to force it to actually give it back to you in a similarly quick fashion. In this case, we
could, because we gaeata-u flag to make it unbuffered. But very few Unix commands are designed to
operate over pipes, so this seldom works unless you yourself wrote the program on the other end of the
double-ended pipe.

A solution to this is the non—-standa@dmm.pllibrary. It uses pseudo-ttys to make your program behave
more reasonably:

require 'Comm.pl’;
$ph = open_proc(cat —n’);
for (1..10) {
print $ph "a line\n";
print "got back ", scalar <$ph>;

}
This way you don‘t have to have control over the source code of the program you‘re usinGoriime
library also hasexpect() andinteract() functions. Find the library (and hopefully its successor

IPC::Chat) at your nearest CPAN archive as detailed in the SEE ALSO section below.

Sockets: Client/Server Communication

While not limited to Unix—derived operating systems (e.g. WinSock on PCs provides socket support, as do
some VMS libraries), you may not have sockets on your system, in which case this section probably isn‘t
going to do you much good. With sockets, you can do both virtual circuits (i.e. TCP streams) and datagrams
(i.e. UDP packets). You may be able to do even more depending on your system.

The Perl function calls for dealing with sockets have the same names as the corresponding system calls in C,
but their arguments tend to differ for two reasons: first, Perl filehandles work differently than C file
descriptors. Second, Perl already knows the length of its strings, so you don‘t need to pass that information.

08-0Oct-1996 Version 5.003 193

perlipc Perl Programmers Reference Guide perlipc

One of the major problems with old socket code in Perl was that it used hard—coded values for some of the
constants, which severely hurt portability. If you ever see code that does anything like explicitly setting
$AF_INET = 2 , you know you're in for big trouble: An immeasurably superior approach is to use the
Socket module, which more reliably grants access to various constants and functions you'll need.

Internet TCP Clients and Servers

Use Internet-domain sockets when you want to do client-server communication that might extend to
machines outside of your own system.

Here's a sample TCP client using Internet—-domain sockets:

#l/usr/bin/perl -w

require 5.002;

use strict;

use Socket;

my ($remote,$port, Siaddr, $paddr, $proto, $line);

$remote = shift || localhost’;

$port = shift || 2345; # random port

if ($port =~ N\D/) { $port = getservbyname($port, 'tcp’) }

die "No port" unless $port;

$iaddr = inet_aton($remote) || die "no host: $remote”;
$paddr = sockaddr_in($port, $iaddr);

$proto = getprotobyname(tcp’);

socket(SOCK, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
connect(SOCK, $paddr) || die "connect: $!";

while ($line = <SOCK>) {

print $line;
}
close (SOCK) | die "close: $!";
exit;

And here's a corresponding server to go along with it. We'll leave the address as INADDR_ANY so that the
kernel can choose the appropriate interface on multihomed hosts. If you want sit on a particular interface
(like the external side of a gateway or firewall machine), you should fill this in with your real address
instead.

#!/usr/bin/perl —Tw

require 5.002;

use strict;

BEGIN { SENV{PATH} = '/usr/ucb:/bin’ }
use Socket;

use Carp;

sub logmsg { print "$0 $$: @_ at ", scalar localtime, "\n" }

my $port = shift || 2345;
my $proto = getprotobyname(’tcp’);
socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
setsockopt(Server, SOL_SOCKET, SO_REUSEADDR,

pack("l", 1)) || die "setsockopt: $!";
bind(Server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!";
listen(Server, SOMAXCONN) | die "listen: $!";

logmsg "server started on port $port”;

my $paddr;

194 Version 5.003 08-0Oct-1996

perlipc

Perl Programmers Reference Guide perlipc

$SIG{CHLD} = \&REAPER;

for (; $paddr = accept(Client,Server); close Client) {
my($port,$iaddr) = sockaddr_in($paddr);
my $name = gethostbyaddr($iaddr,AF_INET);

logmsg "connection from $name [",
inet_ntoa($iaddr), "]
at port $port";

print Client "Hello there, $name, it's now ",
scalar localtime, "\n";

}

And here's a multithreaded version. It's multithreaded in that like most typical servers, it spawns (forks) a
slave server to handle the client request so that the master server can quickly go back to service a new client.

#!/usr/bin/perl —Tw

require 5.002;

use strict;

BEGIN { SENV{PATH} = '/usr/ucb:/bin’ }
use Socket;

use Carp;

sub spawn; # forward declaration
sub logmsg { print "$0 $$: @_ at ", scalar localtime, "\n" }

my $port = shift || 2345;
my $proto = getprotobyname(’tcp’);
$port = $1 if $port =~ /(\d+)/; # untaint port number

socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";
setsockopt(Server, SOL_SOCKET, SO_REUSEADDR,

pack("l", 1)) || die "setsockopt: $!";
bind(Server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!";
listen(Server, SOMAXCONN) | die "listen: $!";

logmsg "server started on port $port”;

my $waitedpid = 0;
my $paddr;

sub REAPER {
$SIG{CHLD} = \&REAPER; # loathe sysV
$waitedpid = walit;
logmsg "reaped $waitedpid" . ($? ? " with exit $?" : ");
}

$SIG{CHLD} = \&REAPER;

for ($waitedpid = 0;
($paddr = accept(Client,Server)) || $waitedpid;
$waitedpid = 0, close Client)

next if $waitedpid,;
my($port,$iaddr) = sockaddr_in($paddr);
my $name = gethostbyaddr($iaddr,AF_INET);

logmsg "connection from $name [",
inet_ntoa($iaddr), "]

08-0Oct-1996 Version 5.003 195

perlipc Perl Programmers Reference Guide perlipc

at port $port";

spawn sub {
print "Hello there, $name, it's now ", scalar localtime, "\n";
exec 'lusr/games/fortune’
or confess "can't exec fortune: $!";

}

sub spawn {
my $coderef = shift;

unless (@_ == 0 && $coderef && ref($coderef) eq 'CODE’) {
confess "usage: spawn CODEREF";

}

my $pid;

if (defined($pid = fork)) {
logmsg "cannot fork: $!";
return;

} elsif ($pid) {
logmsg "begat $pid";
return; # i'm the parent

}

else i'm the child —— go spawn

open(STDIN, "<&Client") || die "can’t dup client to stdin";
open(STDOUT, ">&Client") || die "can’t dup client to stdout";

open(STDERR, ">&STDOUT") || die "can’t dup stdout to stderr";
exit &$coderef();

}

This server takes the trouble to clone off a child versiofiorlq) for each incoming request. That way it

can handle many requests at once, which you might not always want. Even if yododdqh't , the
listen() will allow that many pending connections. Forking servers have to be particularly careful about
cleaning up their dead children (called "zombies" in Unix parlance), because otherwise you'll quickly fill up
your process table.

We suggest that you use th& flag to use taint checking (sperlsed even if we aren‘t running setuid or
setgid. This is always a good idea for servers and other programs run on behalf of someone else (like CGI
scripts), because it lessens the chances that people from the outside will be able to compromise your system.

Let's look at another TCP client. This one connects to the TCP "time" service on a number of different
machines and shows how far their clocks differ from the system on which it's being run:

#l/usr/bin/perl —-w
require 5.002;
use strict;

use Socket;

my $SECS_of_70_YEARS = 2208988800;
sub ctime { scalar localtime(shift) }

my $iaddr = gethostbyname(’localhost’);
my $proto = getprotobyname(’tcp’);

my $port = getservbyname(’time’, 'tcp’);
my $paddr = sockaddr_in(0, $iaddr);
my($host);

196 Version 5.003 08-0Oct-1996

perlipc Perl Programmers Reference Guide

perlipc

$=1;

printf "%—-24s %8s %s\n", "localhost", 0, ctime(time());

foreach $host (@ARGV) {
printf "%-24s ", $host;
my $hisiaddr = inet_aton($host) || die "unknown host";
my $hispaddr = sockaddr_in($port, $hisiaddr);

socket(SOCKET, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";

connect(SOCKET, $hispaddr) || die "bind: $!";
my $rtime =" ;

read(SOCKET, $rtime, 4);

close(SOCKET);

my $histime = unpack("N", $rtime) — $SECS_of 70_YEARS ;
printf "%8d %s\n", $histime — time, ctime($histime);

}

Unix—Domain TCP Clients and Servers

That's fine for Internet—-domain clients and servers, but what about local communications? While you can
use the same setup, sometimes you don‘t want to. Unix—domain sockets are local to the current host, and are
often used internally to implement pipes. Unlike Internet domain sockets, UNIX domain sockets can show

up in the file system with an Is(1) listing.

$ Is -1 /dev/log
srw—rw-rw— 1 root 0 Oct 31 07:23 /dev/log

You can test for these with Per¥s file test:

unless (=S '/dev/log’) {
die "something’s wicked with the print system";

}

Here's a sample Unix—domain client:

#l/usr/bin/perl -w
require 5.002;

use Socket;

use strict;

my ($rendezvous, $line);

$rendezvous = shift || '/tmp/catsock’;

socket(SOCK, PF_UNIX, SOCK_STREAM, 0) || die "socket: $!";
connect(SOCK, sockaddr_un($remote)) | die "connect: $!";
while ($line = <SOCK>) {

print $line;
} .
exit;

And here's a corresponding server.

#!/usr/bin/perl —Tw
require 5.002;

use strict;

use Socket;

use Carp;

BEGIN { SENV{PATH} = '/usr/ucb:/bin’ }

my $NAME = '/tmp/catsock’;
my $uaddr = sockaddr_un($NAME);
my $proto = getprotobyname(’tcp’);

08-0ct-1996 Version 5.003

197

perlipc

Perl Programmers Reference Guide perlipc

socket(Server,PF_UNIX,SOCK_STREAM,0) || die "socket: $!";
unlink($NAME);

bind (Server, $uaddr) || die "bind: $!";
listen(Server, SOMAXCONN) || die "listen: $!";

logmsg "server started on SNAME";
$SIG{CHLD} = \&REAPER;

for ($waitedpid = 0;
accept(Client,Server) || $waitedpid;
$waitedpid = 0, close Client)

next if $waitedpid;
logmsg "connection on $SNAME";
spawn sub {
print "Hello there, it's now ", scalar localtime, "\n";
exec 'lusr/games/fortune’ or die "can’t exec fortune: $!";
¥
}

As you see, it's remarkably similar to the Internet domain TCP server, so much so, in fact, that we've
omitted several duplicatinctions—spawn() , logmsg() , ctime() , and REAPER()—which are
exactly the same as in the other server.

So why would you ever want to use a Unix domain socket instead of a simpler named pipe? Because a
named pipe doesn't give you sessions. You can't tell one process's data from another's. With socket
programming, you get a separate session for each client: thataoebpt() takes two arguments.

For example, let's say that you have a long running database server daemon that you want folks from the
World Wide Web to be able to access, but only if they go through a CGI interface. You‘d have a small,
simple CGI program that does whatever checks and logging you feel like, and then acts as a Unix—domain
client and connects to your private server.

UDP: Message Passing

Another kind of client—server setup is one that uses not connections, but messages. UDP communications
involve much lower overhead but also provide less reliability, as there are no promises that messages will
arrive at all, let alone in order and unmangled. Still, UDP offers some advantages over TCP, including being
able to "broadcast" or "multicast" to a whole bunch of destination hosts at once (usually on your local
subnet). If you find yourself overly concerned about reliability and start building checks into your message
system, then you probably should just use TCP to start with.

Here's a UDP program similar to the sample Internet TCP client given above. However, instead of checking
one host at a time, the UDP version will check many of them asynchronously by simulating a multicast and
then usingselect() to do a timed—out wait for I/O. To do something similar with TCP, you‘d have to use

a different socket handle for each host.

#l/usr/bin/perl -w
use strict;

require 5.002;

use Socket;

use Sys::Hostname;

my ($count, $hisiaddr, $hispaddr, $histime,
$host, $iaddr, $paddr, $port, $proto,
$rin, $rout, $rtime, $SECS_of 70_YEARS);

$SECS_of 70_YEARS =2208988800;
$iaddr = gethostbyname(hostname());

198

Version 5.003 08-0ct—-1996

perlipc Perl Programmers Reference Guide perlipc

$proto = getprotobyname('udp’);
$port = getservbyname('time’, 'udp’);
$paddr = sockaddr_in(0, $iaddr); # 0 means let kernel pick

socket(SOCKET, PF_INET, SOCK_DGRAM, $proto) || die "socket: $!";

bind(SOCKET, $paddr) || die "bind: $!";
$=1;
printf "%—-12s %8s %s\n", "localhost", 0, scalar localtime time;
$count = 0;
for $host (@ARGV) {
$count++;
$hisiaddr = inet_aton($host) | die "unknown host";

$hispaddr = sockaddr_in($port, $hisiaddr);
defined(send(SOCKET, 0, 0, $hispaddr)) || die "send $host: $!";
}

$rin=";
vec($rin, fileno(SOCKET), 1) = 1;

timeout after 10.0 seconds
while ($count && select($rout = $rin, undef, undef, 10.0)) {
$rtime =,
($hispaddr = recv(SOCKET, $rtime, 4, 0)) | die "recv: $!";
($port, Shisiaddr) = sockaddr_in($hispaddr);
$host = gethostbyaddr($hisiaddr, AF_INET);
$histime = unpack("N", $rtime) - $SECS_of 70_YEARS;
printf "%-12s ", $host;
printf "%8d %s\n", $histime - time, scalar localtime($histime);
$count--;

}

SysV IPC

While System V IPC isn‘t so widely used as sockets, it still has some interesting uses. You can‘t, however,
effectively use SysV IPC or Berkelegmap() to have shared memory so as to share a variable amongst
several processes. That's because Perl would reallocate your string when you weren‘t wanting it to.

Here's a small example showing shared memory usage.

$IPC_PRIVATE = 0;

$IPC_RMID = 0;

$size = 2000;

$key = shmget($IPC_PRIVATE, $size , 0777);
die unless defined $key;

$message = "Message #1";
shmwrite($key, $message, 0, 60) || die "$!";
shmread($key,$buff,0,60) || die "$!";

print $buff,"\n";

print "deleting $key\n";
shmctl($key ,$IPC_RMID, 0) || die "$!";

Here's an example of a semaphore:
$IPC_KEY = 1234;
$IPC_RMID = 0;

$IPC_CREATE = 0001000;
$key = semget($IPC_KEY, $nsems , 0666 | $IPC_CREATE);

08-0Oct-1996 Version 5.003 199

perlipc Perl Programmers Reference Guide perlipc

die if !defined($key);
print "$key\n";

Put this code in a separate file to be run in more than one process. Callttidefile
create a semaphore

$IPC_KEY =1234;
$key = semget($IPC_KEY, 0,0);
die if !defined($key);

$semnum = 0;
$semflag = 0;

'take’ semaphore

wait for semaphore to be zero

$semop = 0;

$opstringl = pack("sss", $semnum, $semop, $semflag);

Increment the semaphore count

$semop = 1;

$opstring2 = pack("sss", $semnum, $semop, $semflag);
$opstring = $opstringl . $opstring2;

semop($key,$opstring) || die "$!";
Put this code in a separate file to be run in more than one process. Call thisfile

'give’ the semaphore
run this in the original process and you will see
that the second process continues

$IPC_KEY = 1234,
$key = semget($IPC_KEY, 0, 0);
die if !defined($key);

$semnum = 0;
$semflag = 0;

Decrement the semaphore count
$semop = -1;
$opstring = pack("sss", $semnum, $semop, $semflag);

semop($key,$opstring) || die "$!";

WARNING

The SysV IPC code above was written long ago, and it's definitely clunky looking. It should at the very
least be made tase strict andrequire "sys/ipc.ph" . Better yet, perhaps someone should
create anlPC:SysV module the way we have th8ocket module for normal client—server
communications.

(... time passes)

Voila! Check out the IPC::SysV modules written by Jack Shirazi. You can find them at a CPAN store near
you.

NOTES

If you are running under version 5.000 (dubious) or 5.001, you can still use most of the examples in this
document. You may have to remove tise strict and some of they() statements for 5.000, and for
both you'll have to load in version 1.2 or older of 8mcket.pnmodule, which is included iperl5.002

Most of these routines quietly but politely retunndef when they fail instead of causing your program to
die right then and there due to an uncaught exception. (Actually, some of thBoeketconversion

200

Version 5.003 08-0ct—-1996

perlipc Perl Programmers Reference Guide perlipc

functions croak() on bad arguments.) It is therefore essential that you should check the return values of

these functions. Always begin your socket programs this way for optimal success, and don‘t forget to add
—T taint checking flag to the pound-bang line for servers:

#l/usr/bin/perl -w
require 5.002;
use strict;

use sigtrap;

use Socket;

BUGS

All these routines create system-specific portability problems. As noted elsewhere, Perl is at the mercy of
your C libraries for much of its system behaviour. It's probably safest to assume broken SysV semantics for
signals and to stick with simple TCP and UDP socket operations; e.g. don‘t try to pass open file descriptors
over a local UDP datagram socket if you want your code to stand a chance of being portable.

Because few vendors provide C libraries that are safely re—entrant, the prudent programmer will do little
else within a handler beyomiie() to raise an exception and longjmp(3) out.

AUTHOR
Tom Christiansen, with occasional vestiges of Larry Wall's original version.
SEE ALSO

Besides the obvious functionsperlfung you should also check out theodulesfile at your nearest CPAN

site. (Segerlmodor best yet, th€erl FAQ for a description of what CPAN is and where to get it.) Section

5 of themodulesfile is devoted to "Networking, Device Control (modems) and Interprocess

Communication”, and contains numerous unbundled modules numerous networking modules, Chat and

Expect operations, CGI programming, DCE, FTP, IPC, NNTP, Proxy, Ptty, RPC, SNMP, SMTP, Telnet,
Threads, and ToolTalk—just to name a few.

08-0Oct-1996 Version 5.003 201

perldebug Perl Programmers Reference Guide perldebug

NAME

perldebug - Perl debugging

DESCRIPTION

First of all, have you tried using thev switch?

The Perl Debugger

If you invoke Perl with the-d switch, your script runs under the Perl source debugger. This works like an
interactive Perl environment, prompting for debugger commands that let you examine source code, set
breakpoints, get stack backtraces, change the values of variables, etc. This is so convenient that you often
fire up the debugger all by itself just to test out Perl constructs interactively to see what they do. For
example:

perl —d —e 42

In Perl, the debugger is not a separate program as it usually is in the typical compiled environment. Instead,
the —d flag tells the compiler to insert source information into the parse trees it's about to hand off to the
interpreter. That means your code must first compile correctly for the debugger to work on it. Then when
the interpreter starts up, it pre—loads a Perl library file containing the debugger itself.

The program will haltright before the first run—time executable statement (but see below regarding
compile-time statements) and ask you to enter a debugger command. Contrary to popular expectations,
whenever the debugger halts and shows you a line of code, it always displays the dinevuitte execute,

rather than the one it has just executed.

Any command not recognized by the debugger is directly execetad (d) as Perl code in the current
package. (The debugger uses the DB package for its own state information.)

Leading white space before a command would cause the debugger to thiw®Tts debugger command
but for Perl, so be careful not to do that.

Debugger Commands

The debugger understands the following commands:
h [command] Prints out a help message.

If you supply another debugger command as an argument todbmmand, it prints out
the description for just that command. The special argumehttof produces a more
compact help listing, designed to fit together on one screen.

If the output theh command (or any command, for that matter) scrolls past your screen,
either precede the command with a leading pipe symbol so it's run through your pager, as
in

DB> |h

p expr Same aprint DB::OUT expr in the current package. In particular, since this is just
Perl's own print function, this means that nested data structures and objects are not
dumped, unlike with thg& command.

X expr Evals its expression in list context and dumps out the result in a pretty—printed fashion.
Nested data structures are printed out recursively, unlikgrihte function.

V [pkg [vars]] Display all (or some) variables in package (defaulting tontaén package) using a data
pretty—printer (hashes show their keys and values so you see what's what, control
characters are made printable, etc.). Make sure you don'‘t put the type specifi$j (like
there, just the symbol names, like this:

V DB filename line

Use~pattern and!pattern for positive and negative regexps.

202

Version 5.003 08-0ct—-1996

perldebug

Perl Programmers Reference Guide perldebug

X [vars]
T

s [expr]

n
<CR>

c [line]

I

| min+incr
| min—-max
I line

| subname

w [line]

f filename
/pattern/
?pattern?

L

S [[']pattern]
t

t expr

Nested data structures are printed out in a legible fashion, unlikeithe function.
Same a¥ currentpackage [vars]
Produce a stack backtrace. See below for details on its output.

Single step. Executes until it reaches the beginning of another statement, descending into
subroutine calls. If an expression is supplied that includes function calls, it too will be
single-stepped.

Next. Executes over subroutine calls, until it reaches the beginning of the next statement.
Repeat lash ors command.

Continue, optionally inserting a one-time—only breakpoint at the specified line.

List next window of lines.

Listincr+1 lines starting amin .

List linesmin throughmax.

List a single line.

List first window of lines from subroutine.

List previous window of lines.

List window (a few lines) around the current line.

Return debugger pointer to the last—executed line and print it out.
Switch to viewing a different file.

Search forwards for pattern; final / is optional.

Search backwards for pattern; final ? is optional.

List all breakpoints and actions for the current file.

List subroutine names [not] matching pattern.

Toggle trace mode.

Trace through execution of expr. For example:

$ perl —de 42
Stack dump during die enabled outside of evals.

Loading DB routines from perl5db.pl patch level 0.94
Emacs support available.

Enter h or ‘*h h’ for help.

main::(-e:1): 0
DB<1> sub foo {14 }

DB<2> sub bar { 3}

DB<3> t print foo() * bar()
main::((eval 172):3): print foo() + bar();
main::foo((eval 168):2):
main::bar((eval 170):2):
42
DB<4> q

08-0Oct-1996

Version 5.003 203

perldebug Perl Programmers Reference Guide perldebug

b [line] [condition]
Set a breakpoint. If line is omitted, sets a breakpoint on the line that is about to be
executed. If a condition is specified, it's evaluated each time the statement is reached and
a breakpoint is taken only if the condition is true. Breakpoints may only be set on lines
that begin an executable statement. Conditions donif use

b 237 $x > 30
b 33 /pattern/i

b subname [condition]
Set a breakpoint at the first line of the named subroutine.

d [line] Delete a breakpoint at the specified line. If line is omitted, deletes the breakpoint on the
line that is about to be executed.

D Delete all installed breakpoints.

a [line] command

Set an action to be done before the line is executed. The sequence of steps taken by the
debugger is

1 check for a breakpoint at this line
2 print the line if necessary (tracing)
3 do any actions associated with that line
4 prompt user if at a breakpoint or in single-step
5 evaluate line
For example, this will print outfoo every time line 53 is passed:
a 53 print "DB FOUND $foo\n"
A Delete all installed actions.

O [opt[=val]] [opt"val"] [opt?]...
Set or query values of options. val defaults to 1. opt can be abbreviated. Several options
can be listed.

recallCommand, ShellBang

The characters used to recall command or spawn shell. By default, these
are both set tb.

pager Program to use for output of pager—piped commands (those beginning
with a| character.) By defauliENV{PAGER}will be used.

The following options affect what happens wihX, andx commands:

arrayDepth, hashDepth
Print only first N elements (for all).

compactDump, veryCompact
Change style of array and hash dump.

globPrint Whether to print contents of globs.
DumpDBFiles Dump arrays holding debugged files.

DumpPackages
Dump symbol tables of packages.

204 Version 5.003 08-0Oct-1996

perldebug Perl Programmers Reference Guide perldebug

guote, HighBit, undefPrint
Change style of string dump.

tkRunning Run Tk while prompting (with ReadLine).

signalLevel, warnLevel. dieLevel
Level of verbosity.

The optionPrintRet affects printing of return value after command, The option
frame affects printing messages on entry and exit from subroutinefranie is 1,
messages are printed on entry only; if it's set to more than that, they'll will be printed on
exit as well, which may be useful if interdispersed with other messages.

During startup options are initialized froENV{PERLDB_OPTS}. You can put
additional initialization optiond TY, noTTY, ReadLine , andNonStop there. Here's
an example of using tfRENV{PERLDB_OPTS}variable:

$ PERLDB_OPTS="N f=2" perl -d myprogram

will run the scriptmyprogram without human intervention, printing out the call tree with
entry and exit points. Note thhk f=2 is equivalent tdNonStop=1 frame=2 . Note

also that at the moment when this documentation was written all the options to the
debugger could be uniquely abbreviated by the first letter.

See "Debugger Internals" below for more details.

< command Set an action to happen before every debugger prompt. A multiline command may be
entered by backslashing the newlines.

> command Set an action to happen after the prompt when you‘ve just given a command to return to
executing the script. A multiline command may be entered by backslashing the newlines.

I number Redo a previous command (default previous command).

I =number Redo number‘th-to—last command.

I pattern Redo last command that started with pattern.GeecallCommand |, too.

Il'emd Run cmd in a subprocess (reads from DB::IN, writes to DB::OUT)CsskellBang
too.

H —number Display last n commands. Only commands longer than one character are listed. If number
is omitted, lists them all.

g or "D Quit. ("quit" doesn‘t work for this.)

R Restart the debugger lexedng a new session. It tries to maintain your history across this,
but internal settings and command line options may be lost.

|dbecmd Run debugger command, piping DB::OUT to current pager.

[[dbecmd Same as|dbcmd but DB::OUT is temporarilyseleced as well. Often used with

commands that would otherwise produce long output, such as
[V main
= [alias value] Define a command alias, or list current aliases.
command Execute command as a Perl statement. A missing semicolon will be supplied.

p expr Same agrint DB::OUT expr . The DB::OUT filehandle is opened to /devi/ity,
regardless of where STDOUT may be redirected to.

The debugger prompt is something like

08-0Oct-1996 Version 5.003 205

perldebug Perl Programmers Reference Guide perldebug

DB<8>
or even
DB<<17>>

where that number is the command number, which you‘d use to access with the leshittike history
mechanism, e.d17 would repeat command number 17. The number of angle brackets indicates the depth
of the debugger. You could get more than one set of brackets, for example, if you'd already at a breakpoint
and then printed out the result of a function call that itself also has a breakpoint.

If you want to enter a multi-line command, such as a subroutine definition with several statements, you may
escape the newline that would normally end the debugger command with a backslash. Here's an example:

DB<1> for (1..4) { \
cont: print "ok\n"; \
cont: }

ok

ok

ok

ok

Note that this business of escaping a hewline is specific to interactive commands typed into the debugger.
Here's an example of what a stack backtrace might look like:

$ = main::infested called from file ‘Ambulation.pm’ line 10
@ = Ambulation::legs(1, 2, 3, 4) called from file ‘camel_flea’ line 7
$ = main::pests(’bactrian’, 4) called from file ‘camel_flea’ line 4

The left—-hand character up there tells whether the function was called in a scalar or list context (we bet you
can tell which is which). What that says is that you were in the funetén::infested when you ran

the stack dump, and that it was called in a scalar context from line 10 of tAenfilelation.pmbut without

any arguments at all, meaning it was calle&aéested. The next stack frame shows that the function
Ambulation::legs was called in a list context from tlvamel_fleafile with four arguments. The last

stack frame shows thatain::pests was called in a scalar context, also froamel_fleabut from line 4.

If you have any compile—time executable statements (code within a BEGIN bloclser statement), these

will NOTbe stopped by debugger, althoughuire s will. From your own Perl code, however, you can
transfer control back to the debugger using the following statement, which is harmless if the debugger is not
running:

$DB::single = 1;

If you set$DB::single to the value 2, it's equivalent to having just typed ntheommand, whereas a
value of 1 means the command. Th&DB::trace variable should be set to 1 to simulate having typed
thet command.

Debugger Customization

If you want to modify the debugger, copgri5db.plfrom the Perl library to another name and modify it as
necessary. You'll also want to set your PERL5DB environment variable to say something like this:

BEGIN { require "myperl5db.pl" }

You can do some customization by setting upealdbfile which contains initialization code. For instance,
you could make aliases like these (the last one is one people expect to be there):

$DB::alias{’len} ='s/Men(.*)/p length($1)/;
$DB::alias{'stop’} = 's/"stop (at|in)/b/’;
$DB::alias{’ps’} ='s/"ps\b/p scalar /’;
$DB::alias{’quit’} = 's/*quit(\s*)/exit\$/’;

206

Version 5.003 08-0ct—-1996

perldebug Perl Programmers Reference Guide perldebug

Readline Support
As shipped, the only command line history supplied is a simplistic one that checks for leading exclamation
points. However, if you install the Term::ReadKey and Term::ReadLine modules from CPAN, you will
have full editing capabilities much like GNgadling3) provides. Look for these in the
modules/by—-module/Termdirectory on CPAN.

Editor Support for Debugging

If you have GNUemacsinstalled on your system, it can interact with the Perl debugger to provide an
integrated software development environment reminiscent of its interactions with C debuggers.

Perl is also delivered with a start file for makiegnacsact like a syntax—directed editor that understands
(some of) Perl's syntax. Look in tleenacddirectory of the Perl source distribution.

(Historically, a similar setup for interacting with and the X11 window system had also been available, but
at the time of this writing, no debugger supportfiocurrently exists.)

The Perl Profiler
If you wish to supply an alternative debugger for Perl to run, just invoke your script with a colon and a
package argument given to the flag. One of the most popular alternative debuggers for PER1ief, the
Perl profiler. As of this writingDProf is not included with the standard Perl distribution, but it is expected
to be included soon, for certain values of "soon".

Meanwhile, you can fetch the Devel::Dprof module from CPAN. Assuming it's properly installed on your
system, to profile your Perl program in the fiycode.pljust type:

perl —d:DProf mycode.pl

When the script terminates the profiler will dump the profile information to a file cefed.out A tool
like dprofpp (also supplied with the Devel::DProf package) can be used to interpret the information which is
in that profile.

Debugger Internals
When you call thecaller function from package DB, Perl sets tt@DB::args array to contain the
arguments that stack frame was called with. It also maintains other magical internal variables, such as
@DB::dbline , an array of the source code lines for the currently selected (with the debugger's
command) file. Perl effectively inserts a call to the funcii@i:DB (linenun) in front of every place that
can have a breakpoint. Instead of a subroutine call it Bdlssub setting$DB::sub being the called
subroutine. It also insertsBEGIN {require ‘perl5db.pl‘} before the first line.

Note that no subroutine call is possible u&filB::sub is defined (for subroutines defined outside this file).
In fact, the same is true $DB::deep (how many levels of recursion deep into the debugger you are) is
not defined.

At the start, the debugger reads your rc filgpérldb or ~/.perldb under UNIX), which can set important
options. This file may define a subrouti&efterinit to be executed after the debugger is initialized.

After the rc file is read, the debugger reads environment variable PERLDB_OPTS and parses it as a rest of
O ... line in debugger prompt.

The following options can only be specified at startup. To set them in your rc file, call
&parse_options("optionName=new_value").

TTY The TTY to use for debugging 1/O.

noTTY If set, goes iMlonStop mode. On interrupt if TTY is not set uses the valueradfTY or
"/tmp/perldbtty$$" to find TTY usingTerm::Rendezvous . Current variant is to have
the name of TTY in this file.

ReadLine If false, dummy ReadLine is used, so you can debug ReadLine applications.

08-0Oct-1996 Version 5.003 207

perldebug Perl Programmers Reference Guide perldebug

NonStop If true, no I/O is performed until an interrupt.
Linelnfo File or pipe to print line number info to. If it is a pipe, then a short, "emacs like" message
is used.

Example rc file:

&parse_options("NonStop=1 Linelnfo=db.out");
sub afterinit { $trace = 1; }

The script will run without human intervention, putting trace information into the file
db.out (If you interrupt it, you would better reddéhelnfo to something "interactive"!)

Other resources

BUGS

You did try the-w switch, didn‘t you?

If your programexit() s ordie() s, so too does the debugger.

You cannot get the stack frame information or otherwise debug functions that were not compiled by Perl,
such as C or C++ extensions.

If you alter your @_ arguments in a subroutine (such asshithor pop, the stack backtrace will not show
the original values.

208

Version 5.003 08-0ct—-1996

perldiag Perl Programmers Reference Guide perldiag

NAME
perldiag — various Perl diagnostics

DESCRIPTION
These messages are classified as follows (listed in increasing order of desperation):
(W) A warning (optional).
(D) A deprecation (optional).
(S) A severe warning (mandatory).
(F) A fatal error (trappable).
(P) An internal error you should never see (trappable).
(X) A very fatal error (non-trappable).
(A) An alien error message (not generated by Perl).

Optional warnings are enabled by using thes switch. Warnings may be captured by setting
$SIG{_WARN__} to a reference to a routine that will be called on each warning instead of printing it. See
perlvar. Trappable errors may be trapped using the eval operatoev&ee

Some of these messages are generic. Spots that vary are denoted with a %s, just as in a printf format. Note
that some messages start with a %s! The symibet® @sort before the letters, whileand\ sort after.

"my" variable %s can't be in a package

(F) Lexically scoped variables aren‘t in a package, so it doesn‘t make sense to try to declare one with a
package qualifier on the front. Ukseal() if you want to localize a package variable.

"my" variable %s masks earlier declaration in same scope

(S) A lexical variable has been redeclared in the same scope, effectively eliminating all access to the
previous instance. This is almost always a typographical error. Note that the earlier variable will still
exist until the end of the scope or until all closure referents to it are destroyed.

"no" not allowed in expression

(F) The "no" keyword is recognized and executed at compile time, and returns no useful value. See
perimod

"use" not allowed in expression

(F) The "use" keyword is recognized and executed at compile time, and returns no useful value. See
perimod

% may only be used in unpack

(F) You can‘t pack a string by supplying a checksum, since the checksumming process loses
information, and you can‘t go the other way. 8epack

%s (...) interpreted as function
(W) You'‘ve run afoul of the rule that says that any list operator followed by parentheses turns into a
function, with all the list operators arguments found inside the parens. See
Terms and List Operators (Leftward)
%s argument is not a HASH element
(F) The argument tdelete() orexists() must be a hash element, such as
$foo{$bar}
$ref->[12]->{"susie"
%s did not return a true value

(F) A required (or used) file must return a true value to indicate that it compiled correctly and ran its
initialization code correctly. It's traditional to end such a file with a "1;", though any true value would
do. Seeequire

08-0Oct-1996 Version 5.003 209

perldiag Perl Programmers Reference Guide perldiag

%s found where operator expected
(S) The Perl lexer knows whether to expect a term or an operator. If it sees what it knows to be a term
when it was expecting to see an operator, it gives you this warning. Usually it indicates that an
operator or delimiter was omitted, such as a semicolon.

%s had compilation errors.
(F) The final summary message whepeal —c fails.

%s has too many errors.
(F) The parser has given up trying to parse the program after 10 errors. Further error messages would
likely be uninformative.

%s matches null string many times
(W) The pattern you've specified would be an infinite loop if the regular expression engine didn‘t
specifically check for that. Sexerlre.

%s never introduced
(S) The symbol in question was declared but somehow went out of scope before it could possibly have
been used.

%s syntax OK
(F) The final summary message whepeal -c succeeds.

%s: Command not found.
(A) You've accidentally run your script througshinstead of Perl. Check the <#!> line, or manually
feed your script into Perl yourself.

%s: Expression syntax.
(A) You've accidentally run your script througshinstead of Perl. Check the <#!> line, or manually
feed your script into Perl yourself.

%s: Undefined variable.
(A) You've accidentally run your script througshinstead of Perl. Check the <#!> line, or manually
feed your script into Perl yourself.

%s: not found
(A) You've accidentally run your script through the Bourne shell instead of Perl. Check the <#!> line,
or manually feed your script into Perl yourself.

—P not allowed for setuid/setgid script
(F) The script would have to be opened by the C preprocessor by name, which provides a race
condition that breaks security.

—-T and -B not implemented on filehandles
(F) Perl can't peek at the stdio buffer of filehandles when it doesn‘t know about your kind of stdio.
You'll have to use a filename instead.

500 Server error
See Server error.

?+* follows nothing in regexp
(F) You started a regular expression with a quantifier. Backslash it if you meant it literally. See
perlre.

@ outside of string

(F) You had a pack template that specified an absolute position outside the string being unpacked. See
pack

210

Version 5.003 08-0ct—-1996

perldiag Perl Programmers Reference Guide perldiag

accept() on closed fd
(W) You tried to do an accept on a closed socket. Did you forget to check the return value of your
socket() call? Seeccept

Allocation too large: %Ix
(F) You can't allocate more than 64K on an MSDOS machine.

Arg too short for msgsnd
(F) msgsnd() requires a string at least as long as sizeof(long).

Ambiguous use of %s resolved as %s
(W)(S) You said something that may not be interpreted the way you thought. Normally it's pretty easy
to disambiguate it by supplying a missing quote, operator, paren pair or declaration.

Args must match #! line
(F) The setuid emulator requires that the arguments Perl was invoked with match the arguments
specified on the #! line.

Argument "%s" isn‘t numeric
(W) The indicated string was fed as an argument to an operator that expected a humeric value instead.
If you'‘re fortunate the message will identify which operator was so unfortunate.

Array @%s missing the @ in argument %d of %s()
(D) Really old Perl let you omit the @ on array names in some spots. This is now heavily deprecated.

assertion botched: %s
(P) The malloc package that comes with Perl had an internal failure.

Assertion failed: file "%s"
(P) A general assertion failed. The file in question must be examined.

Assignment to both a list and a scalar
(F) If you assign to a conditional operator, the 2nd and 3rd arguments must either both be scalars or
both be lists. Otherwise Perl won‘t know which context to supply to the right side.

Attempt to free non—arena SV: 0x%lx
(P) All SV objects are supposed to be allocated from arenas that will be garbage collected on exit. An
SV was discovered to be outside any of those arenas.

Attempt to free temp prematurely

(W) Mortalized values are supposed to be freed byfrée tmps() routine. This indicates that
something else is freeing the SV before fitee_tmps() routine gets a chance, which means that
thefree_tmps() routine will be freeing an unreferenced scalar when it does try to free it.

Attempt to free unreferenced glob pointers
(P) The reference counts got screwed up on symbol aliases.

Attempt to free unreferenced scalar
(W) Perl went to decrement the reference count of a scalar to see if it would go to 0, and discovered
that it had already gone to O earlier, and should have been freed, and in fact, probably was freed. This
could indicate thaBvREFCNT_dec() was called too many times, or tf8REFCNT_inc() was
called too few times, or that the SV was mortalized when it shouldn't have been, or that memory has
been corrupted.

Attempt to use reference as lvalue in substr

(W) You supplied a reference as the first argumerstutastr() used as an lvalue, which is pretty
strange. Perhaps you forgot to dereference it first.sSest

08-0Oct-1996 Version 5.003 211

perldiag Perl Programmers Reference Guide perldiag

Bad arg length for %s, is %d, should be %d
(F) You passed a buffer of the wrong size to onensfctl() , semctl) orshmctl) . InC
parlance, the correct sizes are, respectively, sizeof(struct msqid_ds *), sizeof(struct semid_ds *) and
sizeof(struct shmid_ds *).

Bad associative array
(P) One of the internal hash routines was passed a null HV pointer.

Bad filehandle: %s
(F) A symbol was passed to something wanting a filehandle, but the symbol has no filehandle
associated with it. Perhaps you didn‘t doogen() , or did it in another package.
Bad free() ignored
(S) An internal routine calleftee() on something that had never bewalloc() ed in the first
place.
Bad name after %s::
(F) You started to name a symbol by using a package prefix, and then didn‘t finish the symbol. In
particular, you can'‘t interpolate outside of quotes, so
$var = 'myvar’;
$sym = mypack::$var;
is not the same as
$var = 'myvar’;
$sym = "mypack::$var”;
Bad symbol for array
(P) An internal request asked to add an array entry to something that wasn‘t a symbol table entry.

Bad symbol for filehandle
(P) An internal request asked to add a filehandle entry to something that wasn‘t a symbol table entry.

Bad symbol for hash
(P) An internal request asked to add a hash entry to something that wasn't a symbol table entry.

Badly placed () ‘s
(A) You've accidentally run your script througshinstead of Perl. Check the <#!> line, or manually
feed your script into Perl yourself.

BEGIN failed—compilation aborted
(F) An untrapped exception was raised while executing a BEGIN subroutine. Compilation stops
immediately and the interpreter is exited.

bind() on closed fd
(W) You tried to do a bind on a closed socket. Did you forget to check the return value of your
socket() call? Sedind.

Bizarre copy of %s in %s
(P) Perl detected an attempt to copy an internal value that is not copiable.

Callback called exit
(F) A subroutine invoked from an external packagepeid _call_sv() exited by calling exit.

Can't "last" outside a block
(F) A "last" statement was executed to break out of the current block, except that there's this itty bitty

problem called there isn‘t a current block. Note that an "if* or "else" block doesn‘t count as a
"loopish" block. You can usually double the curlies to get the same effect though, since the inner

212 Version 5.003 08-0Oct-1996

perldiag Perl Programmers Reference Guide perldiag

curlies will be considered a block that loops once. |>e

Can't "next" outside a block
(F) A "next" statement was executed to reiterate the current block, but there isn‘t a current block. Note
that an "if" or "else" block doesn't count as a "loopish" block. You can usually double the curlies to
get the same effect though, since the inner curlies will be considered a block that loops otec®. See

Can't "redo" outside a block
(F) A "redo" statement was executed to restart the current block, but there isn‘t a current block. Note
that an "if" or "else" block doesn't count as a "loopish" block. You can usually double the curlies to
get the same effect though, since the inner curlies will be considered a block that loops oter®. See

Can't bless non-reference value
(F) Only hard references may be blessed. This is how Perl "enforces" encapsulation of objects. See
perlobj.

Can't break at that line
(S) A warning intended for while running within the debugger, indicating the line number specified
wasn'‘t the location of a statement that could be stopped at.

Can't call method "%s" in empty package "%s"
(F) You called a method correctly, and it correctly indicated a package functioning as a class, but that
package doesn‘t have ANYTHING defined in it, let alone methods.p&dab.

Can't call method "%s" on unblessed reference
(F) A method call must know what package it's supposed to run in. It ordinarily finds this out from the
object reference you supply, but you didn‘t supply an object reference in this case. A reference isn't an
object reference until it has been blessed. fggebj.

Can‘t call method "%s" without a package or object reference

(F) You used the syntax of a method call, but the slot filled by the object reference or package name
contains an expression that returns neither an object reference nor a package name. (Perhaps it's null?)
Something like this will reproduce the error:

$BADREF = undef;
process $BADREF 1,2,3;
$BADREF->process(1,2,3);
Can't chdir to %s
(F) You calledperl —x/foo/bar , but/foo/bar is not a directory that you can chdir to, possibly
because it doesn't exist.
Can't coerce %s to integer in %s
(F) Certain types of SVs, in particular real symbol table entries (type GLOB), can‘t be forced to stop
being what they are. So you can't say things like:
*foo += 1;
You CAN say

$foo = *foo;
$foo +=1;

but then$foo no longer contains a glob.

Can'‘t coerce %s to number in %s

(F) Certain types of SVs, in particular real symbol table entries (type GLOB), can‘t be forced to stop
being what they are.

08-0Oct-1996 Version 5.003 213

perldiag Perl Programmers Reference Guide perldiag

Can't coerce %s to string in %s
(F) Certain types of SVs, in particular real symbol table entries (type GLOB), can‘t be forced to stop
being what they are.

Can't create pipe mailbox
(P) An error peculiar to VMS. The process is suffering from exhausted quotas or other plumbing
problems.

Can‘t declare %s in my
(F) Only scalar, array and hash variables may be declared as lexical variables. They must have
ordinary identifiers as names.

Can't do inplace edit on %s: %s
(S) The creation of the new file failed for the indicated reason.

Can‘t do inplace edit without backup
(F) You're on a system such as MSDOS that gets confused if you try reading from a deleted (but still
opened) file. You have to say.bak , or some such.

Can't do inplace edit: %s > 14 characters
(S) There isn't enough room in the filename to make a backup name for the file.

Can‘t do inplace edit: %s is not a regular file
(S) You tried to use thei switch on a special file, such as a file in /dev, or a FIFO. The file was
ignored.

Can't do setegid!
(P) Thesetegid() call failed for some reason in the setuid emulator of suidperl.

Can't do seteuid!
(P) The setuid emulator of suidperl failed for some reason.

Can't do setuid
(F) This typically means that ordinary perl tried to exec suidperl to do setuid emulation, but couldn’t
exec it. It looks for a name of the form sperl5.000 in the same directory that the perl executable resides
under the name perl5.000, typically /usr/local/bin on Unix machines. If the file is there, check the
execute permissions. If it isn‘t, ask your sysadmin why he and/or she removed it.

Can't do waitpid with flags
(F) This machine doesn‘t have eitheaitpid() orwait4() , so onlywaitpid() without flags
is emulated.

Can‘t do {n,m} with n > m
(F) Minima must be less than or equal to maxima. If you really want your regexp to match something
0 times, just put {0}. Seperlre.

Can't emulate —%s on #! line
(F) The #! line specifies a switch that doesn‘'t make sense at this point. For example, it'd be kind of
silly to put a-x on the #! line.

Can‘t exec "%s": %s

(W) An system() , exec() or piped open call could not execute the named program for the
indicated reason. Typical reasons include: the permissions were wrong on the file, the file wasn't
found in$ENV{PATH}, the executable in question was compiled for another architecture, or the #!
line in a script points to an interpreter that can‘t be run for similar reasons. (Or maybe your system
doesn't support #! at all.)

214

Version 5.003 08-0ct—-1996

perldiag Perl Programmers Reference Guide perldiag

Can‘t exec %s
(F) Perl was trying to execute the indicated program for you because that's what the #! line said. If
that's not what you wanted, you may need to mention "perl" on the #! line somewhere.

Can‘t execute %s
(F) You used the-S switch, but the script to execute could not be found in the PATH, or at least not
with the correct permissions.

Can't find label %s
(F) You said to goto a label that isn‘t mentioned anywhere that it's possible for us to go tmtdSee

Can't find string terminator %s anywhere before EOF

(F) Perl strings can stretch over multiple lines. This message means that the closing delimiter was
omitted. Since bracketed quotes count nesting levels, the following is missing its final parenthesis:

print q(The character '(’ starts a side comment.)

Can't fork
(F) A fatal error occurred while trying to fork while opening a pipeline.

Can't get filespec — stale stat buffer?

(S) A warning peculiar to VMS. This arises because of the difference between access checks under
VMS and under the Unix model Perl assumes. Under VMS, access checks are done by filename,
rather than by bits in the stat buffer, so that ACLs and other protections can be taken into account.
Unfortunately, Perl assumes that the stat buffer contains all the necessary information, and passes it,
instead of the filespec, to the access checking routine. It will try to retrieve the filespec using the
device name and FID present in the stat buffer, but this works only if you haven‘'t made a subsequent
call to the CRTLstat() routine, since the device name is overwritten with each call. If this warning
appears, the name lookup failed, and the access checking routine gave up and returned FALSE, just to
be conservative. (Note: The access checking routine knows about thetaPerloperator and file

tests, so you shouldn't ever see this warning in response to a Perl command; it arises only if some
internal code takes stat buffers lightly.)

Can‘t get pipe mailbox device name
(P) An error peculiar to VMS. After creating a mailbox to act as a pipe, Perl can't retrieve its name for
later use.
Can't get SYSGEN parameter value for MAXBUF
(P) An error peculiar to VMS. Perl ask8GETSYI how big you want your mailbox buffers to be,
and didn‘t get an answer.
Can't goto subroutine outside a subroutine

(F) The deeply magical "goto subroutine" call can only replace one subroutine call for another. It can't
manufacture one out of whole cloth. In general you should only be calling it out of an AUTOLOAD
routine anyway. Segoto.

Can'‘t localize a reference

(F) You said something likéocal $$ref, which is not allowed because the compiler can‘t
determine whethe$ref will end up pointing to anything with a symbol table entry, and a symbol
table entry is necessary to do a local.

Can't localize lexical variable %s

(F) You used local on a variable name that was previously declared as a lexical variable using "my".
This is not allowed. If you want to localize a package variable of the same name, qualify it with the
package name.

08-0Oct-1996 Version 5.003 215

perldiag Perl Programmers Reference Guide perldiag

Can'‘t locate %s in @INC
(F) You said to do (or require, or use) a file that couldn‘t be found in any of the libraries mentioned in
@INC. Perhaps you need to set the PERL5LIB environment variable to say where the extra library is,
or maybe the script needs to add the library name to @INC. Or maybe you just misspelled the name of
the file. Seeequire

Can't locate object method "%s" via package "%s"
(F) You called a method correctly, and it correctly indicated a package functioning as a class, but that
package doesn't define that particular method, nor does any of its base clasgesloBe

Can't locate package %s for @%s::ISA
(W) The @ISA array contained the name of another package that doesn‘t seem to exist.

Can‘t mktemp()

(F) Themktemp() routine failed for some reason while trying to proces® awitch. Maybe your
/tmp partition is full, or clobbered.

Can‘t modify %s in %s

(F) You aren't allowed to assign to the item indicated, or otherwise try to change it, such as with an
autoincrement.

Can‘t modify non—existent substring
(P) The internal routine that does assignmentdobstr() was handed a NULL.

Can‘t msgrcv to readonly var
(F) The target of a msgrcv must be modifiable in order to be used as a receive buffer.

Can't open %s: %s

(S) An inplace edit couldn‘t open the original file for the indicated reason. Usually this is because you
don'‘t have read permission for the file.

Can't open bidirectional pipe
(W) You tried to saypen(CMD, "|jcmd|") , Which is not supported. You can try any of several
modules in the Perl library to do this, such as "open2.pl". Alternately, direct the pipe‘s output to a file
using ">", and then read it in under a different file handle.

Can‘t open error file %s as stderr

(F) An error peculiar to VMS. Perl does its own command line redirection, and couldn‘t open the file
specified after ‘2>’ or ‘2>>’ on the command line for writing.

Can‘t open input file %s as stdin

(F) An error peculiar to VMS. Perl does its own command line redirection, and couldn‘t open the file
specified after ‘<’ on the command line for reading.

Can‘t open output file %s as stdout

(F) An error peculiar to VMS. Perl does its own command line redirection, and couldn‘t open the file
specified after ‘>’ or ‘*>>" on the command line for writing.

Can‘t open output pipe (hame: %s)
(P) An error peculiar to VMS. Perl does its own command line redirection, and couldn‘t open the pipe
into which to send data destined for stdout.

Can‘t open perl script "%s": %s
(F) The script you specified can't be opened for the indicated reason.

Can‘t rename %s to %s: %s, skipping file

(S) The rename done by thé switch failed for some reason, probably because you don‘t have write
permission to the directory.

216 Version 5.003 08-0Oct-1996

perldiag Perl Programmers Reference Guide perldiag

Can‘t reopen input pipe (name: %s) in binary mode
(P) An error peculiar to VMS. Perl thought stdin was a pipe, and tried to reopen it to accept binary
data. Alas, it failed.

Can't reswap uid and euid
(P) Thesetreuid() call failed for some reason in the setuid emulator of suidperl.

Can't return outside a subroutine
(F) The return statement was executed in mainline code, that is, where there was no subroutine call to
return out of. Seperlsub

Can't stat script "%s"
(P) For some reason you cafstat() the script even though you have it open already. Bizarre.

Can‘t swap uid and euid
(P) Thesetreuid() call failed for some reason in the setuid emulator of suidperl.

Can't take log of %g
(F) Logarithms are only defined on positive real numbers.

Can't take sqrt of %g
(F) For ordinary real numbers, you can‘t take the square root of a negative number. There's a
Complex package available for Perl, though, if you really want to do that.
Can't undef active subroutine
(F) You can't undefine a routine that's currently running. You can, however, redefine it while it's
running, and you can even undef the redefined subroutine while the old routine is running. Go figure.
Can't unshift
(F) You tried to unshift an "unreal" array that can‘t be unshifted, such as the main Perl stack.

Can't untie: %d inner references still exist
(F) With "use strict untie" in effect, a copy of the object returned fiem (or tied) was still valid
whenuntie was called.

Can't upgrade that kind of scalar
(P) The internal sv_upgrade routine adds "members" to an SV, making it into a more specialized kind
of SV. The top several SV types are so specialized, however, that they cannot be interconverted. This
message indicates that such a conversion was attempted.

Can't upgrade to undef
(P) The undefined SV is the bottom of the totem pole, in the scheme of upgradability. Upgrading to
undef indicates an error in the code calling sv_upgrade.

Can‘t use "my %s" in sort comparison
(F) The global variable$a and$b are reserved for sort comparisons. You mentidgeedr $b in the
same line as the <=> or cmp operator, and the variable had earlier been declared as a lexical variable.
Either qualify the sort variable with the package name, or rename the lexical variable.

Can't use %s for loop variable
(F) Only a simple scalar variable may be used as a loop variable on a foreach.

Can'‘t use %s ref as %s ref

(F) You've mixed up your reference types. You have to dereference a reference of the type needed.
You can use theef() function to test the type of the reference, if need be.

08-0Oct-1996 Version 5.003 217

perldiag Perl Programmers Reference Guide perldiag

Can'‘t use \1 to mean $1 in expression
(W) In an ordinary expression, backslash is a unary operator that creates a reference to its argument.
The use of backslash to indicate a backreference to a matched substring is only valid as part of a
regular expression pattern. Trying to do this in ordinary Perl code produces a value that prints out
looking like SCALAR(Oxdecaf). Use tH&l form instead.

Can't use string ("%s") as %s ref while "strict refs" in use
(F) Only hard references are allowed by "strict refs". Symbolic references are disallowgerii®ée

Can't use an undefined value as %s reference
(F) A value used as either a hard reference or a symbolic reference must be a defined value. This helps
to de—lurk some insidious errors.

Can‘t use global %s in "my"
(F) You tried to declare a magical variable as a lexical variable. This is not allowed, because the
magic can only be tied to one location (namely the global variable) and it would be incredibly
confusing to have variables in your program that looked like magical variables but weren't.

Can't use subscript on %s
(F) The compiler tried to interpret a bracketed expression as a subscript. But to the left of the brackets
was an expression that didn‘t look like an array reference, or anything else subscriptable.

Can‘t write to temp file for —e: %s
(F) The write routine failed for some reason while trying to process switch. Maybe your /tmp
partition is full, or clobbered.

Can‘t x= to readonly value
(F) You tried to repeat a constant value (often the undefined value) with an assignment operator, which
implies modifying the value itself. Perhaps you need to copy the value to a temporary, and repeat that.

Cannot open temporary file
(F) The create routine failed for some reason while trying to processswitch. Maybe your /tmp
partition is full, or clobbered.

chmod: mode argument is missing initial O
(W) A novice will sometimes say

chmod 777, $filename

not realizing that 777 will be interpreted as a decimal number, equivalent to 01411. Octal constants
are introduced with a leading 0 in Perl, as in C.

Close on unopened file <%s>
(W) You tried to close a filehandle that was never opened.

connect() on closed fd
(W) You tried to do a connect on a closed socket. Did you forget to check the return value of your
socket() call? Seeonnect

Corrupt malloc ptr 0x%lx at 0x%lx
(P) The malloc package that comes with Perl had an internal failure.

corrupted regexp pointers
(P) The regular expression engine got confused by what the regular expression compiler gave it.

corrupted regexp program
(P) The regular expression engine got passed a regexp program without a valid magic number.

218 Version 5.003 08-0Oct-1996

perldiag Perl Programmers Reference Guide perldiag

Deep recursion on subroutine "%s"
(W) This subroutine has called itself (directly or indirectly) 100 times than it has returned. This
probably indicates an infinite recursion, unless you‘re writing strange benchmark programs, in which
case it indicates something else.

Did you mean &%sinstead?
(W) You probably referred to an imported subroui€OOas$FOOor some such.

Did you mean $ or @ instead of %?

(W) You probably said %hastikey} when you mean$hash{$key} or @hash{@keys}. On the
other hand, maybe you just meant %hash and got carried away.

Do you need to predeclare %s?

(S) This is an educated guess made in conjunction with the message "%s found where operator
expected". It often means a subroutine or module name is being referenced that hasn‘t been declared

yet. This may be because of ordering problems in your file, or because of a missing "sub", "package"”,
"require”, or "use" statement. If you're referencing something that isn‘t defined yet, you don‘t actually
have to define the subroutine or package before the current location. You can use an empty "sub foo;"
or "package FOO;" to enter a "forward" declaration.

Don‘t know how to handle magic of type ‘%s’
(P) The internal handling of magical variables has been cursed.

do_study: out of memory
(P) This should have been caughtsayemalloc() instead.

Duplicate free() ignored
(S) An internal routine calleflee() on something that had already been freed.

elseif should be elsif

(S) There is no keyword "elseif" in Perl because Larry thinks it's ugly. Your code will be interpreted
as an attempt to call a method named "elseif" for the class returned by the following block. This is
unlikely to be what you want.

END failed—cleanup aborted

(F) An untrapped exception was raised while executing an END subroutine. The interpreter is
immediately exited.

Error converting file specification %s
(F) An error peculiar to VMS. Since Perl may have to deal with file specifications in either VMS or
Unix syntax, it converts them to a single form when it must operate on them directly. Either you‘ve
passed an invalid file specification to Perl, or you've found a case the conversion routines don‘t
handle. Drat.

Execution of %s aborted due to compilation errors.
(F) The final summary message when a Perl compilation fails.

Exiting eval via %s
(W) You are exiting an eval by unconventional means, such as a goto, or a loop control statement.

Exiting subroutine via %s
(W) You are exiting a subroutine by unconventional means, such as a goto, or a loop control statement.

Exiting substitution via %s

(W) You are exiting a substitution by unconventional means, such as a return, a goto, or a loop control
statement.

08-0Oct-1996 Version 5.003 219

perldiag Perl Programmers Reference Guide perldiag

Fatal VMS error at %s, line %d
(P) An error peculiar to VMS. Something untoward happened in a VMS system service or RTL
routine; Perl's exit status should provide more details. The filename in "at %s" and the line number in
"line %d" tell you which section of the Perl source code is distressed.

fentl is not implemented
(F) Your machine apparently doesn‘t implemfmitl() . What is this, a PDP-11 or something?

Filehandle %s never opened
(W) An 1/O operation was attempted on a filehandle that was never initialized. You need to do an
open() orasocket() call, or call a constructor from the FileHandle package.
Filehandle %s opened only for input
(W) You tried to write on a read-only filehandle. If you intended it to be a read-write filehandle, you
needed to open it with "+<" or "+>" or "+>>" instead of with "<" or nothing. If you only intended to
write the file, use ">" or ">>". Seapen
Filehandle only opened for input
(W) You tried to write on a read-only filehandle. If you intended it to be a read-write filehandle, you
needed to open it with "+<" or "+>" or "+>>" instead of with "<" or nothing. If you only intended to
write the file, use ">" or ">>". Seapen
Final $ should be \$ or $name
(F) You must now decide whether the figaln a string was meant to be a literal dollar sign, or was
meant to introduce a variable name that happens to be missing. So you have to put either the backslash
or the name.
Final @ should be \@ or @name
(F) You must now decide whether the final @ in a string was meant to be a literal "at" sign, or was
meant to introduce a variable name that happens to be missing. So you have to put either the backslash
or the name.
Format %s redefined
(W) You redefined a format. To suppress this warning, say
{
local $"W = 0;
eval "format NAME =...";
}
Format not terminated
(F) A format must be terminated by a line with a solitary dot. Perl got to the end of your file without
finding such a line.
Found = in conditional, should be ==
(W) You said
if ($foo = 123)
when you meant
if ($foo == 123)
(or something like that).

gdbm store returned %d, errno %d, key "%s"
(S) A warning from the GDBM_File extension that a store failed.

220 Version 5.003 08-0Oct-1996

perldiag Perl Programmers Reference Guide perldiag

gethostent not implemented
(F) Your C library apparently doesn‘t implemegthostent() , probably because if it did, it'd feel
morally obligated to return every hostname on the Internet.

get{sock,peeriname() on closed fd
(W) You tried to get a socket or peer socket name on a closed socket. Did you forget to check the
return value of yousocket() call?

getpwnam returned invalid UIC %#o for user "%s"
(S) A warning peculiar to VMS. The call ®ys$getuai underlying thegetpwnam operator
returned an invalid UIC.

Glob not terminated
(F) The lexer saw a left angle bracket in a place where it was expecting a term, so it‘'s looking for the
corresponding right angle bracket, and not finding it. Chances are you left some needed parentheses
out earlier in the line, and you really meant a "less than".

Global symbol "%s" requires explicit package name
(F) You've said "use strict vars”, which indicates that all variables must either be lexically scoped
(using "my"), or explicitly qualified to say which package the global variable is in (using "::").

goto must have label
(F) Unlike with "next" or "last", you‘re not allowed to goto an unspecified destinationg@ee

Had to create %s unexpectedly
(S) A routine asked for a symbol from a symbol table that ought to have existed already, but for some
reason it didn‘t, and had to be created on an emergency basis to prevent a core dump.

Hash %%s missing the % in argument %d of %s()
(D) Really old Perl let you omit the % on hash names in some spots. This is now heavily deprecated.

llI-formed logical name |%s]| in prime_env_iter
(W) A warning peculiar to VMS. A logical name was encountered when preparing to iterate over
%ENV which violates the syntactic rules governing logical names. Since it cannot be translated
normally, it is skipped, and will not appear in %ENV. This may be a benign occurence, as some
software packages might directly modify logical name tables and introduce non—-standard names, or it
may indicate that a logical name table has been corrupted.

lllegal division by zero
(F) You tried to divide a number by 0. Either something was wrong in your logic, or you need to put a
conditional in to guard against meaningless input.

lllegal modulus zero
(F) You tried to divide a number by 0 to get the remainder. Most numbers don‘t take to this kindly.

lllegal octal digit
(F) You used an 8 or 9 in a octal number.

lllegal octal digit ignored

(W) You may have tried to use an 8 or 9 in a octal number. Interpretation of the octal number stopped
before the 8 or 9.

Insecure dependency in %s

(F) You tried to do something that the tainting mechanism didn‘t like. The tainting mechanism is
turned on when you'‘re running setuid or setgid, or when you spe€ifp turn it on explicitly. The
tainting mechanism labels all data that's derived directly or indirectly from the user, who is considered
to be unworthy of your trust. If any such data is used in a "dangerous" operation, you get this error.
Seeperlsecfor more information.

08-0Oct-1996 Version 5.003 221

perldiag Perl Programmers Reference Guide perldiag

Insecure directory in %s

(F) You can't usesystem() , exec() , or a piped open in a setuid or setgid scriENV{PATH}
contains a directory that is writable by the world. Sedsec

Insecure PATH

(F) You can't usesystem() , exec() , or a piped open in a setuid or setgid scriENV{PATH}
is derived from data supplied (or potentially supplied) by the user. The script must set the path to a
known value, using trustworthy data. $eglsec

Internal inconsistency in tracking vforks

(S) A warning peculiar to VMS. Perl keeps track of the number of times you‘ve éatled and

exec, in order to determine whether the current calexec should affect the current script or a
subprocess (seexeg. Somehow, this count has become scrambled, so Perl is making a guess and
treating thisexec as a request to terminate the Perl script and execute the specified command.

internal disaster in regexp
(P) Something went badly wrong in the regular expression parser.

internal urp in regexp at /%s/
(P) Something went badly awry in the regular expression parser.

invalid [] range in regexp
(F) The range specified in a character class had a minimum character greater than the maximum
character. Segerlre.

ioctl is not implemented

(F) Your machine apparently doesn'‘t implemigrtt!() , Which is pretty strange for a machine that
supports C.

junk on end of regexp
(P) The regular expression parser is confused.

Label not found for "last %s"

(F) You named a loop to break out of, but you‘re not currently in a loop of that name, not even if you
count where you were called from. Sast

Label not found for "next %s"

(F) You named a loop to continue, but you're not currently in a loop of that name, not even if you
count where you were called from. Sest

Label not found for "redo %s"

(F) You named a loop to restart, but you'‘re not currently in a loop of that name, not even if you count
where you were called from. Skest

listen() on closed fd

(W) You tried to do a listen on a closed socket. Did you forget to check the return value of your
socket() call? Sedisten

Literal @%s now requires backslash
(F) It used to be that Perl would try to guess whether you wanted an array interpolated or a literal @. It
did this when the string was first used at runtime. Now strings are parsed at compile time, and
ambiguous instances of @ must be disambiguated, either by putting a backslash to indicate a literal, or
by declaring (or using) the array within the program before the string (lexically). (Someday it will
simply assume that an unbackslashed @ interpolates an array.)

Method for operation %s not found in package %s during blessing

(F) An attempt was made to specify an entry in an overloading table that doesn‘'t somehow point to a
valid method. Seeverload

222 Version 5.003 08-0Oct-1996

perldiag Perl Programmers Reference Guide perldiag

Might be a runaway multi-line %s string starting on line %d
(S) An advisory indicating that the previous error may have been caused by a missing delimiter on a
string or pattern, because it eventually ended earlier on the current line.

Misplaced _ in number
(W) An underline in a decimal constant wasn't on a 3—digit boundary.

Missing $ on loop variable
(F) Apparently you‘ve been programmingashtoo much. Variables are always mentioned withthe
in Perl, unlike in the shells, where it can vary from one line to the next.

Missing comma after first argument to %s function
(F) While certain functions allow you to specify a filehandle or an "indirect object" before the
argument list, this ain‘t one of them.

Missing operator before %s?
(S) This is an educated guess made in conjunction with the message "%s found where operator
expected". Often the missing operator is a comma.

Missing right bracket
(F) The lexer counted more opening curly brackets (braces) than closing ones. As a general rule, you'll
find it's missing near the place you were last editing.

Missing semicolon on previous line?
(S) This is an educated guess made in conjunction with the message "%s found where operator
expected". Don‘t automatically put a semicolon on the previous line just because you saw this
message.

Modification of a read—only value attempted
(F) You tried, directly or indirectly, to change the value of a constant. You didn‘t, of course, try "2 =
1", since the compiler catches that. But an easy way to do the same thing is:

submod {$ _[0]=1}
mod(2);

Another way is to assign tosaibstr() that's off the end of the string.

Modification of non—creatable array value attempted, subscript %d
(F) You tried to make an array value spring into existence, and the subscript was probably negative,
even counting from end of the array backwards.

Modification of non—creatable hash value attempted, subscript "%s"
(F) You tried to make a hash value spring into existence, and it couldn‘t be created for some peculiar
reason.

Module name must be constant
(F) Only a bare module name is allowed as the first argument to a "use".

msg%s not implemented
(F) You don‘t have System V message IPC on your system.

Multidimensional syntax %s not supported
(W) Multidimensional arrays aren‘t written lik&oo[1,2,3]. They'‘re written like
$foo[1][2][3], asin C.

Name "%s::%s" used only once: possible typo

(W) Typographical errors often show up as unique variable names. If you had a good reason for
having a unique name, then just mention it again somehow to suppress the messasge V@he
pragma is provided for just this purpose).

08-0Oct-1996 Version 5.003 223

perldiag Perl Programmers Reference Guide perldiag

Negative length

(F) You tried to do a read/write/send/recv operation with a buffer length that is less than 0. This is
difficult to imagine.

nested *?+ in regexp
(F) You can‘t quantify a quantifier without intervening parens. So things like ** or +* or ?* are
illegal.

Note, however, that the minimal matching quantifiers, *?, +? and ?? appear to be nested quantifiers,
but aren‘t. Seeerlre.

No #! line
(F) The setuid emulator requires that scripts have a well-formed #! line even on machines that don't
support the #! construct.

No %s allowed while running setuid
(F) Certain operations are deemed to be too insecure for a setuid or setgid script to even be allowed to
attempt. Generally speaking there will be another way to do what you want that is, if not secure, at
least securable. Sperlsec

No —e allowed in setuid scripts
(F) A setuid script can't be specified by the user.

No comma allowed after %s
(F) A list operator that has a filehandle or "indirect object" is not allowed to have a comma between
that and the following arguments. Otherwise it'd be just another one of the arguments.

No command into which to pipe on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a ‘|" at the
end of the command line, so it doesn‘t know whither you want to pipe the output from this command.

No DB::DB routine defined
(F) The currently executing code was compiled with-ttleswitch, but for some reason the perl5db.pl
file (or some facsimile thereof) didn't define a routine to be called at the beginning of each statement.
Which is odd, because the file should have been required automatically, and should have blown up the
require if it didn‘t parse right.

No dbm on this machine
(P) This is counted as an internal error, because every machine should supply dbm nowadays, since
Perl comes with SDBM. Se&&DBM_File

No DBsub routine
(F) The currently executing code was compiled with-ttleswitch, but for some reason the perl5db.pl
file (or some facsimile thereof) didn‘t define a DB::sub routine to be called at the beginning of each
ordinary subroutine call.

No error file after 2> or 2>> on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a ‘2>' or a
‘2>>" on the command line, but can't find the name of the file to which to write data destined for
stderr.

No input file after < on command line
(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a ‘<’ on the
command line, but can‘t find the name of the file from which to read data for stdin.

No output file after > on command line

(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a lone ‘>’ at
the end of the command line, so it doesn‘t know whither you wanted to redirect stdout.

224

Version 5.003 08-0ct—-1996

perldiag Perl Programmers Reference Guide perldiag

No output file after > or >> on command line

(F) An error peculiar to VMS. Perl handles its own command line redirection, and found a ‘>’ or a
>>' on the command line, but can'‘t find the name of the file to which to write data destined for stdout.

No Perl script found in input
(F) You calledperl —=x , but no line was found in the file beginning with #! and containing the word
"perl”.

No setregid available
(F) Configure didn‘t find anything resembling thetregid() call for your system.

No setreuid available
(F) Configure didn‘t find anything resembling thetreuid() call for your system.

No space allowed after —I
(F) The argument tel must follow the-1 immediately with no intervening space.

No such pipe open
(P) An error peculiar to VMS. The internal routimg_pclose() tried to close a pipe which hadn‘t
been opened. This should have been caught earlier as an attempt to close an unopened filehandle.

No such signal: SIG%s
(W) You specified a signal name as a subscript to %SIG that was not recognizé&dl Say in
your shell to see the valid signal names on your system.

Not a CODE reference
(F) Perl was trying to evaluate a reference to a code value (that is, a subroutine), but found a reference
to something else instead. You can useréi@ function to find out what kind of ref it really was.
See alsperlref.

Not a format reference
(F) I'm not sure how you managed to generate a reference to an anonymous format, but this indicates
you did, and that it didn‘t exist.

Not a GLOB reference
(F) Perl was trying to evaluate a reference to a "type glob" (that is, a symbol table entry that looks like
*foo), but found a reference to something else instead. You can usd(jhe function to find out
what kind of ref it really was. Sexerlref.

Not a HASH reference
(F) Perl was trying to evaluate a reference to a hash value, but found a reference to something else
instead. You can use thef() function to find out what kind of ref it really was. Seslref

Not a perl script
(F) The setuid emulator requires that scripts have a well-formed #! line even on machines that don't
support the #! construct. The line must mention perl.

Not a SCALAR reference
(F) Perl was trying to evaluate a reference to a scalar value, but found a reference to something else
instead. You can use thef() function to find out what kind of ref it really was. Seslref

Not a subroutine reference

(F) Perl was trying to evaluate a reference to a code value (that is, a subroutine), but found a reference
to something else instead. You can useréi@ function to find out what kind of ref it really was.
See alsperlref.

08-0Oct-1996 Version 5.003 225

perldiag Perl Programmers Reference Guide perldiag

Not a subroutine reference in %OVERLOAD
(F) An attempt was made to specify an entry in an overloading table that doesn‘'t somehow point to a
valid subroutine. Seeverload

Not an ARRAY reference

(F) Perl was trying to evaluate a reference to an array value, but found a reference to something else
instead. You can use thef() function to find out what kind of ref it really was. Seslref

Not enough arguments for %s
(F) The function requires more arguments than you specified.

Not enough format arguments
(W) A format specified more picture fields than the next line suppliedp&#ferm

Null filename used
(F) You can‘t require the null filename, especially since on many machines that means the current
directory! Seeequire

NULL OP IN RUN
(P) Some internal routine calledn() with a null opcode pointer.

Null realloc
(P) An attempt was made to realloc NULL.

NULL regexp argument
(P) The internal pattern matching routines blew it bigtime.

NULL regexp parameter
(P) The internal pattern matching routines are out of their gourd.

Odd number of elements in hash list

(S) You specified an odd number of elements to a hash list, which is odd, since hash lists come in
key/value pairs.

oops: 00psAV
(S) An internal warning that the grammar is screwed up.

oops: oopsHV
(S) An internal warning that the grammar is screwed up.

Operation ‘%s’ %s: no method found,

(F) An attempt was made to use an entry in an overloading table that somehow no longer points to a
valid method. Seeverload

Operator or semicolon missing before %s

(S) You used a variable or subroutine call where the parser was expecting an operator. The parser has
assumed you really meant to use an operator, but this is highly likely to be incorrect. For example, if

o

you say "*foo *foo" it will be interpreted as if you said "*foo * ‘foo".

Out of memory for yacc stack

(F) The yacc parser wanted to grow its stack so it could continue parsingaloe() wouldn‘t
give it more memory, virtual or otherwise.

Out of memory!

(X) The malloc() function returned 0O, indicating there was insufficient remaining memory (or
virtual memory) to satisfy the request.

226 Version 5.003 08-0Oct-1996

perldiag Perl Programmers Reference Guide perldiag

page overflow
(W) A single call towrite() produced more lines than can fit on a page.f@eléorm
panic: ck_grep
(P) Failed an internal consistency check trying to compile a grep.
panic: ck_split
(P) Failed an internal consistency check trying to compile a split.
panic: corrupt saved stack index
(P) The savestack was requested to restore more localized values than there are in the savestack.
panic: die %s
(P) We popped the context stack to an eval context, and then discovered it wasn't an eval context.
panic: do_match
(P) The internapp_match() routine was called with invalid operational data.
panic: do_split
(P) Something terrible went wrong in setting up for the split.

panic: do_subst
(P) The internapp_subst() routine was called with invalid operational data.

panic: do_trans
(P) The internatlo_trans() routine was called with invalid operational data.
panic: goto
(P) We popped the context stack to a context with the specified label, and then discovered it wasn'‘t a
context we know how to do a goto in.
panic: INTERPCASEMOD
(P) The lexer got into a bad state at a case modifier.

panic: INTERPCONCAT
(P) The lexer got into a bad state parsing a string with brackets.

panic: last
(P) We popped the context stack to a block context, and then discovered it wasn'‘t a block context.

panic: leave_scope clearsv
(P) A writable lexical variable became readonly somehow within the scope.

panic: leave_scope inconsistency
(P) The savestack probably got out of sync. At least, there was an invalid enum on the top of it.

panic: malloc
(P) Something requested a negative number of bytes of malloc.

panic: mapstart
(P) The compiler is screwed up with respect tontiag() function.

panic: null array
(P) One of the internal array routines was passed a null AV pointer.

panic: pad_alloc

(P) The compiler got confused about which scratch pad it was allocating and freeing temporaries and
lexicals from.

08-0Oct-1996 Version 5.003 227

perldiag Perl Programmers Reference Guide perldiag

panic: pad_free curpad
(P) The compiler got confused about which scratch pad it was allocating and freeing temporaries and
lexicals from.
panic: pad_free po
(P) An invalid scratch pad offset was detected internally.
panic: pad_reset curpad
(P) The compiler got confused about which scratch pad it was allocating and freeing temporaries and
lexicals from.
panic: pad_sv po
(P) An invalid scratch pad offset was detected internally.
panic: pad_swipe curpad
(P) The compiler got confused about which scratch pad it was allocating and freeing temporaries and
lexicals from.
panic: pad_swipe po
(P) An invalid scratch pad offset was detected internally.
panic: pp_iter
(P) The foreach iterator got called in a non-loop context frame.
panic: realloc
(P) Something requested a negative number of bytes of realloc.

panic: restartop
(P) Some internal routine requested a goto (or something like it), and didn‘t supply the destination.

panic: return

(P) We popped the context stack to a subroutine or eval context, and then discovered it wasn't a
subroutine or eval context.

panic: scan_num
(P)scan_num() got called on something that wasn‘t a number.

panic: sv_insert
(P) Thesv_insert() routine was told to remove more string than there was string.

panic: top_env
(P) The compiler attempted to do a goto, or something weird like that.

panic: yylex
(P) The lexer got into a bad state while processing a case modifier.

Parens missing around "%s" list
(W) You said something like

my $foo, $har = @_;
when you meant
my ($foo, $bar) = @_;
Remember that "my" and "local" bind closer than comma.

Perl %3.3f required—this is only version %s, stopped

(F) The module in question uses features of a version of Perl more recent than the currently running
version. How long has it been since you upgraded, anyway?Pe@sse

228 Version 5.003 08-0Oct-1996

perldiag Perl Programmers Reference Guide perldiag

Permission denied
(F) The setuid emulator in suidperl decided you were up to no good.

pid %d not a child

(W) A warning peculiar to VMS. Waitpid() was asked to wait for a process which isn't a
subprocess of the current process. While this is fine from VMS’ perspective, it's probably not what
you intended.

POSIX getpgrp can't take an argument
(F) Your C compiler uses POSIyetpgrp() , which takes no argument, unlike the BSD version,
which takes a pid.

Possible memory corruption: %s overflowed 3rd argument
(F) Anioctl() or fentl() returned more than Perl was bargaining for. Perl guesses a reasonable
buffer size, but puts a sentinel byte at the end of the buffer just in case. This sentinel byte got
clobbered, and Perl assumes that memory is now corruptedocBee

Precedence problem: open %s should be open(%s)
(S) The old irregular construct

open FOO || die;
is now misinterpreted as
open(FOOQ || die);

because of the strict regularization of Perl 5's grammar into unary and list operators. (The old open
was a little of both.) You must put parens around the filehandle, or use the new "or" operator instead of

I
print on closed filehandle %s
(W) The filehandle you'‘re printing on got itself closed sometime before now. Check your logic flow.

printf on closed filehandle %s
(W) The filehandle you'‘re writing to got itself closed sometime before now. Check your logic flow.

Probable precedence problem on %s
(W) The compiler found a bare word where it expected a conditional, which often indicates that an || or
&& was parsed as part of the last argument of the previous construct, for example:
open FOO || die;

Prototype mismatch: (%s) vs (%s)
(S) The subroutine being defined had a predeclared (forward) declaration with a different function
prototype.

Read on closed filehandle <%s>
(W) The filehandle you‘re reading from got itself closed sometime before now. Check your logic flow.

Reallocation too large: %lx
(F) You can't allocate more than 64K on an MSDOS machine.

Recompile perl with -DDEBUGGING to use —D switch
(F) You can't use theD option unless the code to produce the desired output is compiled into Perl,
which entails some overhead, which is why it's currently left out of your copy.

Recursive inheritance detected

(F) More than 100 levels of inheritance were used. Probably indicates an unintended loop in your
inheritance hierarchy.

08-0Oct-1996 Version 5.003 229

perldiag Perl Programmers Reference Guide perldiag

Reference miscount in sv_replace()

(W) The internakv_replace() function was handed a new SV with a reference count of other than
1.

regexp memory corruption
(P) The regular expression engine got confused by what the regular expression compiler gave it.

regexp out of space
(P) A "can't happen" error, becausafemalloc() should have caught it earlier.

regexp too big
(F) The current implementation of regular expressions uses shorts as address offsets within a string.
Unfortunately this means that if the regular expression compiles to longer than 32767, it'll blow up.
Usually when you want a regular expression this big, there is a better way to do it with multiple
statements. Seqeerlre.

Reversed %s= operator

(W) You wrote your assignment operator backwards. The = must always comes last, to avoid
ambiguity with subsequent unary operators.

Runaway format
(F) Your format contained the ~~ repeat—until-blank sequence, but it produced 200 lines at once, and
the 200th line looked exactly like the 199th line. Apparently you didn't arrange for the arguments to
exhaust themselves, either by using ” instead of @ (for scalar variables), or by shifting or popping (for
array variables). Segerlform

Scalar value @%s[%s] better written as $%s[%0s]

(W) You've used an array slice (indicated by @) to select a single value of an array. Generally it's
better to ask for a scalar value (indicatedbhy The difference is thaifoo[&bar] always behaves

like a scalar, both when assigning to it and when evaluating its argument, @falg&bar]

behaves like a list when you assign to it, and provides a list context to its subscript, which can do weird
things if you're only expecting one subscript.

On the other hand, if you were actually hoping to treat the array element as a list, you need to look into
how references work, since Perl will not magically convert between scalars and lists for you. See
perlref.

Script is not setuid/setgid in suidperl
(F) Oddly, the suidperl program was invoked on a script with its setuid or setgid bit not set. This
doesn‘t make much sense.

Search pattern not terminated
(F) The lexer couldn't find the final delimiter of a // or m{} construct. Remember that bracketing
delimiters count nesting level.

seek() on unopened file
(W) You tried to use theeek() function on a filehandle that was either never opened or has been
closed since.

select not implemented
(F) This machine doesn‘t implement thelect() system call.

sem%s not implemented
(F) You don‘t have System V semaphore IPC on your system.

semi—panic: attempt to dup freed string

(S) The internahewSVsv() routine was called to duplicate a scalar that had previously been marked
as free.

230 Version 5.003 08-0Oct-1996

perldiag Perl Programmers Reference Guide perldiag

Semicolon seems to be missing
(W) A nearby syntax error was probably caused by a missing semicolon, or possibly some other
missing operator, such as a comma.

Send on closed socket
(W) The filehandle you‘re sending to got itself closed sometime before now. Check your logic flow.

Sequence (?#... not terminated
(F) A regular expression comment must be terminated by a closing parenthesis. Embedded parens
aren't allowed. Seperlre.

Sequence (?%s...) not implemented
(F) A proposed regular expression extension has the character reserved but has not yet been written.
Seeperlre.

Sequence (?%s...) not recognized
(F) You used a regular expression extension that doesn‘t make sengerl@ee

Server error
Also known as "500 Server error". This is a CGlI error, not a Perl error. You need to make sure your
script is executable, is accessible by the user CGl is running the script under (which is probably not the
user account you tested it under), does not rely on any environment variables (like PATH) from the
user it isn‘t running under, and isn‘t in a location where the CGI server can't find it, basically, more or
less.

setegid() not implemented
(F) You tried to assign t§), and your operating system doesn‘t supporisttegid() system call
(or equivalent), or at least Configure didn‘t think so.

seteuid() not implemented
(F) You tried to assign t$>, and your operating system doesn‘t supporistteuid() system call
(or equivalent), or at least Configure didn‘t think so.

setrgid() not implemented
(F) You tried to assign t§(, and your operating system doesn't supporisttegid() system call
(or equivalent), or at least Configure didn‘t think so.

setruid() not implemented
(F) You tried to assign t8<It , and your operating system doesn'‘t supportsteuid() system
call (or equivalent), or at least Configure didn't think so.

Setuid/gid script is writable by world
(F) The setuid emulator won't run a script that is writable by the world, because the world might have
written on it already.

shm%s not implemented
(F) You don‘t have System V shared memory IPC on your system.

shutdown() on closed fd
(W) You tried to do a shutdown on a closed socket. Seems a bit superfluous.

SIG%s handler "%s" not defined.
(W) The signal handler named in %SIG doesn't, in fact, exist. Perhaps you put it into the wrong
package?

sort is now a reserved word

(F) An ancient error message that almost nobody ever runs into anymore. But before sort was a
keyword, people sometimes used it as a filehandle.

08-0Oct-1996 Version 5.003 231

perldiag Perl Programmers Reference Guide perldiag

Sort subroutine didn‘t return a numeric value

(F) A sort comparison routine must return a number. You probably blew it by not<asingr cmp,
or by not using them correctly. Ssert

Sort subroutine didn't return single value

(F) A sort comparison subroutine may not return a list value with more or less than one element. See
sort

Split loop
(P) The split was looping infinitely. (Obviously, a split shouldn't iterate more times than there are
characters of input, which is what happened.)spdie

Stat on unopened file <%s>

(W) You tried to use thstat() function (or an equivalent file test) on a filehandle that was either
never opened or has been closed since.

Statement unlikely to be reached

(W) You did anexec() with some statement after it other thadi@() . This is almost always an
error, becausexec() never returns unless there was a failure. You probably wanted to use
system() instead, which does return. To suppress this warning, pak#o€) in a block by itself.

Subroutine %s redefined
(W) You redefined a subroutine. To suppress this warning, say

local $"W = 0;
eval "sub name { ... };

}

Substitution loop

(P) The substitution was looping infinitely. (Obviously, a substitution shouldn't iterate more times
than there are characters of input, which is what happened.) See the discussion of substitution in
Quote and Quotelike Operators in perlop

Substitution pattern not terminated

(F) The lexer couldn‘t find the interior delimiter of a s/// or s{}{} construct. Remember that
bracketing delimiters count nesting level.

Substitution replacement not terminated

(F) The lexer couldn't find the final delimiter of a s/// or s{{} construct. Remember that bracketing
delimiters count nesting level.

substr outside of string

(W) You tried to reference substr() that pointed outside of a string. That is, the absolute value of
the offset was larger than the length of the string. sBbstr

suidperl is no longer needed since...

(F) Your Perl was compiled withDSETUID_SCRIPTS_ARE_SECURE_NOW, but a version of the
setuid emulator somehow got run anyway.

syntax error
(F) Probably means you had a syntax error. Common reasons include:

A keyword is misspelled.

A semicolon is missing.

A comma is missing.

An opening or closing parenthesis is missing.

232 Version 5.003 08-0Oct-1996

perldiag Perl Programmers Reference Guide perldiag

An opening or closing brace is missing.
A closing quote is missing.

Often there will be another error message associated with the syntax error giving more information.
(Sometimes it helps to turn otw.) The error message itself often tells you where it was in the line
when it decided to give up. Sometimes the actual error is several tokens before this, since Perl is good
at understanding random input. Occasionally the line number may be misleading, and once in a blue
moon the only way to figure out what's triggering the error is topmdl —-c ~ repeatedly, chopping
away half the program each time to see if the error went away. Sort of the cybernetic version of
20 questions.

syntax error at line %d: ‘%s’ unexpected
(A) You've accidentally run your script through the Bourne shell instead of Perl. Check the <#!> line,
or manually feed your script into Perl yourself.

System V IPC is not implemented on this machine
(F) You tried to do something with a function beginning with "sem", "shm" or "msg".s&wuet] for
example.

Syswrite on closed filehandle
(W) The filehandle you'‘re writing to got itself closed sometime before now. Check your logic flow.

tell() on unopened file
(W) You tried to use theell() function on a filehandle that was either never opened or has been
closed since.

Test on unopened file <%s>
(W) You tried to invoke a file test operator on a filehandle that isn‘t open. Check your logic. See also
-X.

That use of $[is unsupported

(F) Assignment t&[is now strictly circumscribed, and interpreted as a compiler directive. You may
only say one of

$[=0;
$[=1;
I.(.).cal $[=0;

local $[= 1;

This is to prevent the problem of one module changing the array base out from under another module
inadvertently. SeéJ .

The %s function is unimplemented
The function indicated isn‘t implemented on this architecture, according to the probings of Configure.

The crypt() function is unimplemented due to excessive paranoia.
(F) Configure couldn‘t find therypt() function on your machine, probably because your vendor
didn't supply it, probably because they think the U.S. Government thinks it's a secret, or at least that
they will continue to pretend that it is. And if you quote me on that, | will deny it.
The stat preceding —| _ wasn't an Istat
(F) 1t makes no sense to test the current stat buffer for symbolic linkhood if the last stat that wrote to
the stat buffer already went past the symlink to get to the real file. Use an actual filename instead.
times not implemented

(F) Your version of the C library apparently doesn‘ttohoes() . | suspect you‘re not running on
Unix.

08-0Oct-1996 Version 5.003 233

perldiag Perl Programmers Reference Guide perldiag

Too few args to syscall
(F) There has to be at least one argumesysoall() to specify the system call to call, silly dilly.
Too many (‘s
Too many)‘s
(A) You've accidentally run your script througshinstead of Perl. Check the <#!> line, or manually
feed your script into Perl yourself.
Too many args to syscall
(F) Perl only supports a maximum of 14 argsysecall()

Too many arguments for %s
(F) The function requires fewer arguments than you specified.
trailing \ in regexp
(F) The regular expression ends with an unbackslashed backslash. Backslastpirir&ee

Translation pattern not terminated
(F) The lexer couldn't find the interior delimiter of a tr/// or tr[][] construct.

Translation replacement not terminated
(F) The lexer couldn't find the final delimiter of a tr/// or tr[][] construct.

truncate not implemented
(F) Your machine doesn‘t implement a file truncation mechanism that Configure knows about.

Type of arg %d to %s must be %s (not %s)
(F) This function requires the argument in that position to be of a certain type. Arrays must be
@NAME or @{EXPR} Hashes must be %NAME @&6{EXPR}. No implicit dereferencing is
allowed—use the {EXPR} forms as an explicit dereference. pSdeef.

umask: argument is missing initial 0
(W) A umask of 222 is incorrect. It should be 0222, since octal literals always start with 0 in Perl, as
in C.

Unable to create sub named "%s"
(F) You attempted to create or access a subroutine with an illegal name.

Unbalanced context: %d more PUSHes than POPs
(W) The exit code detected an internal inconsistency in how many execution contexts were entered and
left.

Unbalanced saves: %d more saves than restores
(W) The exit code detected an internal inconsistency in how many values were temporarily localized.

Unbalanced scopes: %d more ENTERs than LEAVES
(W) The exit code detected an internal inconsistency in how many blocks were entered and left.

Unbalanced tmps: %d more allocs than frees
(W) The exit code detected an internal inconsistency in how many mortal scalars were allocated and
freed.

Undefined format "%s" called
(F) The format indicated doesn't seem to exist. Perhaps it's really in another package?l{Gee

Undefined sort subroutine "%s" called

(F) The sort comparison routine specified doesn‘t seem to exist. Perhaps it's in a different package?
Seesort

234 Version 5.003 08-0Oct-1996

perldiag Perl Programmers Reference Guide perldiag

Undefined subroutine &%scalled
(F) The subroutine indicated hasn‘t been defined, or if it was, it has since been undefined.

Undefined subroutine called
(F) The anonymous subroutine you‘re trying to call hasn‘t been defined, or if it was, it has since been
undefined.

Undefined subroutine in sort
(F) The sort comparison routine specified is declared but doesn't seem to have been defined yet. See
sort

Undefined top format "%s" called
(F) The format indicated doesn't seem to exist. Perhaps it's really in another package?liGee

unexec of %s into %s failed!
(F) Theunexec() routine failed for some reason. See your local FSF representative, who probably
put it there in the first place.

Unknown BYTEORDER
(F) There are no byteswapping functions for a machine with this byte order.

unmatched () in regexp
(F) Unbackslashed parentheses must always be balanced in regular expressions. If you‘re a vi user, the
% key is valuable for finding the matching paren. Sertre.

Unmatched right bracket
(F) The lexer counted more closing curly brackets (braces) than opening ones, so you're probably
missing an opening bracket. As a general rule, you'll find the missing one (so to speak) near the place
you were last editing.

unmatched [] in regexp
(F) The brackets around a character class must match. If you wish to include a closing bracket in a
character class, backslash it or put it first. fesdre.

Unquoted string "%s" may clash with future reserved word
(W) You used a bare word that might someday be claimed as a reserved word. It's best to put such a
word in quotes, or capitalize it somehow, or insert an underbar into it. You might also declare it as a
subroutine.

Unrecognized character \%030 ignored
(S) A garbage character was found in the input, and ignored, in case it's a weird control character on
an EBCDIC machine, or some such.

Unrecognized signal name "%s"
(F) You specified a signal name to tkié() function that was not recognized. Sal —I in
your shell to see the valid signal names on your system.

Unrecognized switch: —%s
(F) You specified an illegal option to Perl. Don‘t do that. (If you think you didn‘t do that, check the #!
line to see if it's supplying the bad switch on your behalf.)

Unsuccessful %s on filename containing newline

(W) A file operation was attempted on a filename, and that operation failed, PROBABLY because the
filename contained a newline, PROBABLY because you forgehtp() or chomp() it off. See
chop

08-0Oct-1996 Version 5.003 235

perldiag Perl Programmers Reference Guide perldiag

Unsupported directory function "%s" called
(F) Your machine doesn‘t suppapendir() andreaddir()

Unsupported function %s

(F) This machines doesn‘t implement the indicated function, apparently. At least, Configure doesn‘t
think so.

Unsupported socket function "%s" called
(F) Your machine doesn't support the Berkeley socket mechanism, or at least that's what Configure
thought.

Unterminated <> operator

(F) The lexer saw a left angle bracket in a place where it was expecting a term, so it's looking for the
corresponding right angle bracket, and not finding it. Chances are you left some needed parentheses
out earlier in the line, and you really meant a "less than".

Use of $# is deprecated

(D) This was an ill-advised attempt to emulate a poorly defimell feature. Use an explicit
printf() or sprintf() instead.

Use of $* is deprecated

(D) This variable magically turned on multiline pattern matching, both for you and for any luckless
subroutine that you happen to call. You should use the/tmewand//s modifiers now to do that
without the dangerous action—at—-a-distance effec#.of

Use of %s in printf format not supported

(F) You attempted to use a feature of printf that is accessible only from C. This usually means there's
a better way to do it in Perl.

Use of %s is deprecated

(D) The construct indicated is no longer recommended for use, generally because there's a better way
to do it, and also because the old way has bad side effects.

Use of bare << to mean << is deprecated

(D) You are now encouraged to use the explicitly quoted form if you wish to use a blank line as the
terminator of the here-document.

Use of implicit split to @ _ is deprecated
(D) It makes a lot of work for the compiler when you clobber a subroutine's argument list, so it's better
if you assign the results ofsalit() explicitly to an array (or list).

Use of uninitialized value

(W) An undefined value was used as if it were already defined. It was interpreted as a
maybe it was a mistake. To suppress this warning assign an initial value to your variables.

or a 0, but

Useless use of %s in void context

(W) You did something without a side effect in a context that does nothing with the return value, such
as a statement that doesn't return a value from a block, or the left side of a scalar comma operator.
Very often this points not to stupidity on your part, but a failure of Perl to parse your program the way
you thought it would. For example, you‘d get this if you mixed up your C precedence with Python
precedence and said

$one, $two =1, 2;
when you meant to say
($one, $two) = (1, 2);

Another common error is to use ordinary parentheses to construct a list reference when you should be

236

Version 5.003 08-0ct—-1996

perldiag Perl Programmers Reference Guide perldiag

using square or curly brackets, for example, if you say
$array = (1,2);

when you should have said
$array = [1,2];

The square brackets explicitly turn a list value into a scalar value, while parentheses do not. So when a
parenthesized list is evaluated in a scalar context, the comma is treated like C's comma operator, which
throws away the left argument, which is not what you want. p8deef for more on this.

Variable "%s" is not exported
(F) While "use strict" in effect, you referred to a global variable that you apparently thought was
imported from another module, because something else of the same name (usually a subroutine) is
exported by that module. It usually means you put the wrong funny character on the front of your
variable.

Variable syntax.
(A) You've accidentally run your script througshinstead of Perl. Check the <#!> line, or manually
feed your script into Perl yourself.

Warning: unable to close filehandle %s properly.
(S) The implicitclose() done by ammpen() got an error indication on ttibose() . This usually
indicates your filesystem ran out of disk space.

Warning: Use of "%s" without parens is ambiguous

(S) You wrote a unary operator followed by something that looks like a binary operator that could also
have been interpreted as a term or unary operator. For instance, if you know that the rand function has
a default argument of 1.0, and you write

rand + 5;

you may THINK you wrote the same thing as
rand() + 5;

but in actual fact, you got
rand(+5);

So put in parens to say what you really mean.

Write on closed filehandle
(W) The filehandle you'‘re writing to got itself closed sometime before now. Check your logic flow.

X outside of string
(F) You had a pack template that specified a relative position before the beginning of the string being
unpacked. Sepgack

x outside of string
(F) You had a pack template that specified a relative position after the end of the string being
unpacked. Sepgack

Xsub "%s" called in sort
(F) The use of an external subroutine as a sort comparison is not yet supported.

Xsub called in sort
(F) The use of an external subroutine as a sort comparison is not yet supported.

You can‘t use —| on a filehandle

(F) A filehandle represents an opened file, and when you opened the file it already went past any
symlink you are presumably trying to look for. Use a filename instead.

08-0Oct-1996 Version 5.003 237

perldiag Perl Programmers Reference Guide perldiag

YOU HAVEN'T DISABLED SET-ID SCRIPTS IN THE KERNEL YET!
(F) And you probably never will, since you probably don't have the sources to your kernel, and your
vendor probably doesn't give a rip about what you want. Your best bet is to use the wrapsuid script in
the eg directory to put a setuid C wrapper around your script.

You need to quote "%s"
(W) You assigned a bareword as a signal handler name. Unfortunately, you already have a subroutine
of that name declared, which means that Perl 5 will try to call the subroutine when the assignment is
executed, which is probably not what you want. (If it IS what you want, ptrafront.)

[gs]etsockopt() on closed fd
(W) You tried to get or set a socket option on a closed socket. Did you forget to check the return value

of yoursocket() call? Seayetsockopt

\1 better written as $1
(W) Outside of patterns, backreferences live on as variables. The use of backslashes is grandfathered
on the righthand side of a substitution, but stylistically it's better to use the variable form because other
Perl programmers will expect it, and it works better if there are more than 9 backreferences.

‘I and ‘<’ may not both be specified on command line
(F) An error peculiar to VMS. Perl does its own command line redirection, and found that STDIN was
a pipe, and that you also tried to redirect STDIN using ‘<’. Only one STDIN stream to a customer,

please.

‘" and *>" may not both be specified on command line
(F) An error peculiar to VMS. Perl does its own command line redirection, and thinks you tried to
redirect stdout both to a file and into a pipe to another command. You need to choose one or the other,
though nothing'‘s stopping you from piping into a program or Perl script which ‘splits’ output into two
streams, such as

open(OUT,">$ARGV[0]") or die "Can’t write to SARGVI[0]: $!";
while (<STDIN>) {

print;

print OUT;

}
close OUT;

238 Version 5.003 08-0Oct-1996

perlsec Perl Programmers Reference Guide perlsec

NAME
perlsec — Perl security

DESCRIPTION

Perl is designed to make it easy to program securely even when running with extra privileges, like setuid or
setgid programs. Unlike most command-line shells, which are based on multiple substitution passes on each
line of the script, Perl uses a more conventional evaluation scheme with fewer hidden snags. Additionally,
because the language has more built-in functionality, it can rely less upon external (and possibly
untrustworthy) programs to accomplish its purposes.

Perl automatically enables a set of special security checks, taltédnode when it detects its program
running with differing real and effective user or group IDs. The setuid bit in Unix permissions is mode
04000, the setgid bit mode 02000; either or both may be set. You can also enable taint mode explicitly by
using the the-T command line flag. This flag istrongly suggested for server programs and any program

run on behalf of someone else, such as a CGI script.

While in this mode, Perl takes special precautions ca#led checksto prevent both obvious and subtle

traps. Some of these checks are reasonably simple, such as verifying that path directories aren‘t writable by
others; careful programmers have always used checks like these. Other checks, however, are best supported
by the language itself, and it is these checks especially that contribute to making a setuid Perl program more
secure than the corresponding C program.

You may not use data derived from outside your program to affect something else outside your program—at
least, not by accident. All command-line arguments, environment variables, and file input are marked as
"tainted". Tainted data may not be used directly or indirectly in any command that invokes a subshell, nor in
any command that modifies files, directories, or processes. Any variable set within an expression that has
previously referenced a tainted value itself becomes tainted, even if it is logically impossible for the tainted
value to influence the variable. Because taintedness is associated with each scalar value, some elements of
an array can be tainted and others not.

For example:
$arg = shift; # $arg is tainted
$hid = $arg, 'bar’; # $hid is also tainted
$line = <>; # Tainted
$path = SENV{'PATH}; # Tainted, but see below
$data = "abc’; # Not tainted
system "echo $arg"; # Insecure
system "/bin/echo", $arg; # Secure (doesn't use sh)
system "echo $hid"; # Insecure
system "echo $data"; # Insecure until PATH set
$path = SENV{'PATH'}; # $path now tainted

SENV{PATH’} = '/bin:/usr/bin’;
SENV{'IFS’} = " if SENV{IFS’} ne ”;

$path = SENV{'PATH}; # $path now NOT tainted
system "echo $data"; # Is secure now!
open(FOO, "< $arg"); # OK - read-only file
open(FOO, "> $arg"); # Not OK - trying to write
open(FOO,"echo $arg|"); # Not OK, but...
open(FOO,"-|")

or exec 'echo’, $arg; # OK

$shout = ‘echo $arg’; # Insecure, $shout now tainted

08-0Oct-1996 Version 5.003 239

perlsec Perl Programmers Reference Guide perlsec

unlink $data, $arg; # Insecure

umask $arg; # Insecure

exec "echo $arg"; # Insecure

exec "echo", $arg; # Secure (doesn’t use the shell)
exec "sh", '-c’, $arg; # Considered secure, alas!

If you try to do something insecure, you will get a fatal error saying something like "Insecure dependency”
or "Insecure PATH". Note that you can still write an inse@ystemor exec but only by explicitly doing
something like the last example above.

Laundering and Detecting Tainted Data

To test whether a variable contains tainted data, and whose use would thus trigger an "Insecure dependency"
message, you can use the followiagtainted() function.

sub is_tainted {
return ! eval {
join(”,@_), kill 0;
1
¥
}

This function makes use of the fact that the presence of tainted data anywhere within an expression renders
the entire expression tainted. It would be inefficient for every operator to test every argument for
taintedness. Instead, the slightly more efficient and conservative approach is used that if any tainted value
has been accessed within the same expression, the whole expression is considered tainted.

But testing for taintedness only gets you so far. Sometimes you just have to clear your data's taintedness.
The only way to bypass the tainting mechanism is by referencing subpatterns from a regular expression
match. Perl presumes that if you reference a substring $&ings2, etc., that you knew what you were

doing when you wrote the pattern. That means using a bit of thought—don‘t just blindly untaint anything, or
you defeat the entire mechanism. It's better to verify that the variable has only good characters (for certain
values of "good") rather than checking whether it has any bad characters. That's because it's far too easy to
miss bad characters that you never thought of.

Here's a test to make sure that the data contains nothing but "word" characters (alphabetics, numerics, and
underscores), a hyphen, an at sign, or a dot.

if ($data =~ N[-\@W.]9)$/) {
$data = $1; # $data now untainted
}else {

}

This is fairly secure sincéw+/ doesn't normally match shell metacharacters, nor are dot, dash, or at going
to mean something special to the shell. Usé+gf would have been insecure in theory because it lets
everything through, but Perl doesn‘t check for that. The lesson is that when untainting, you must be
exceedingly careful with your patterns. Laundering data using regular expressio®MLt¥ienechanism for
untainting dirty data, unless you use the strategy detailed below to fork a child of lesser privilege.

die "Bad data in $data"; # log this somewhere

Cleaning Up Your Path

For "InsecureSENV{PATH}" messages, you need to $BENV{'PATH?} to a known value, and each
directory in the path must be non—writable by others than its owner and group. You may be surprised to get
this message even if the pathname to your executable is fully qualified. Tiosgisnerated because you

didn't supply a full path to the program, instead, it's generated because you never set your PATH
environment variable, or you didn‘t set it to something that was safe. Because Perl can't guarantee that the
executable in question isn‘t itself going to turn around and execute some other program that is dependent on
your PATH, it makes sure you set the PATH.

240

Version 5.003 08-0ct—-1996

perlsec Perl Programmers Reference Guide perlsec

It's also possible to get into trouble with other operations that don‘t care whether they use tainted values.
Make judicious use of the file tests in dealing with any user-supplied filenames. When possible, do opens
and such after setting> = $<. (Remember group IDs, too!) Perl doesn't prevent you from opening
tainted filenames for reading, so be careful what you print out. The tainting mechanism is intended to
prevent stupid mistakes, not to remove the need for thought.

Perl does not call the shell to expand wild cards when you gyassm and exec explicit parameter lists
instead of strings with possible shell wildcards in them. Unfortunatelypple® glob, and backtick
functions provide no such alternate calling convention, so more subterfuge will be required.

Perl provides a reasonably safe way to open a file or pipe from a setuid or setgid program: just create a child
process with reduced privilege who does the dirty work for you. First, fork a child using the speaial

syntax that connects the parent and child by a pipe. Now the child resets its ID set and any other per—process
attributes, like environment variables, umasks, current working directories, back to the originals or known
safe values. Then the child process, which no longer has any special permissions, dpes ¢hether

system call. Finally, the child passes the data it managed to access back to the parent. Since the file or pipe
was opened in the child while running under less privilege than the parent, it's not apt to be tricked into
doing something it shouldn‘t.

Here's a way to do backticks reasonably safely. Notice howxéeis not called with a string that the shell

could expand. This is by far the best way to call something that might be subjected to shell escapes: just
never call the shell at all. By the time we get togkeg tainting is turned off, however, so be careful what

you call and what you pass it.

use English;
die unless defined $pid = open(KID, "-|");
if ($pid) { # parent

while (<KID>) {
do something

}

close KID;
}else {

$EUID = $UID;

$EGID = $GID; # XXX: initgroups() not called
$ENV{PATH} = "/bin:/usr/bin";

exec ‘'myprog’, 'argl’, 'arg2’;

die "can't exec myprog: $!";

}

A similar strategy would work for wildcard expansion glab .

Taint checking is most useful when although you trust yourself not to have written a program to give away

the farm, you don‘t necessarily trust those who end up using it not to try to trick it into doing something bad.

This is the kind of security checking that's useful for setuid programs and programs launched on someone
else's behalf, like CGI programs.

This is quite different, however, from not even trusting the writer of the code not to try to do something evil.
That's the kind of trust needed when someone hands you a program you've never seen before and says,
"Here, run this." For that kind of safety, check out the Safe module, included standard in the Perl
distribution. This module allows the programmer to set up special compartments in which all system
operations are trapped and namespace access is carefully controlled.

Security Bugs
Beyond the obvious problems that stem from giving special privileges to systems as flexible as scripts, on
many versions of Unix, setuid scripts are inherently insecure right from the start. The problem is a race
condition in the kernel. Between the time the kernel opens the file to see which interpreter to run and when
the (now-setuid) interpreter turns around and reopens the file to interpret it, the file in question may have
changed, especially if you have symbolic links on your system.

08-0Oct-1996 Version 5.003 241

perlsec Perl Programmers Reference Guide perlsec

Fortunately, sometimes this kernel "feature" can be disabled. Unfortunately, there are two ways to disable it.
The system can simply outlaw scripts with the setuid bit set, which doesn‘t help much. Alternately, it can
simply ignore the setuid bit on scripts. If the latter is true, Perl can emulate the setuid and setgid mechanism
when it notices the otherwise useless setuid/gid bits on Perl scripts. It does this via a special executable
calledsuidperl that is automatically invoked for you if it's needed.

However, if the kernel setuid script feature isn't disabled, Perl will complain loudly that your setuid script is
insecure. You'll need to either disable the kernel setuid script feature, or put a C wrapper around the script.
A C wrapper is just a compiled program that does nothing except call your Perl program. Compiled
programs are not subject to the kernel bug that plagues setuid scripts. Here's a simple wrapper, written in C:

#define REAL_PATH "/path/to/script"
main(ac, av)
char **av;

{
}

Compile this wrapper into a binary executable and then mhaéther than your script setuid or setgid.

execV(REAL_PATH, av);

See the prograrnwrapsuid in the eg directory of your Perl distribution for a convenient way to do this
automatically for all your setuid Perl programs. It moves setuid scripts into files with the same name plus a
leading dot, and then compiles a wrapper like the one above for each of them.

In recent years, vendors have begun to supply systems free of this inherent security bug. On such systems,
when the kernel passes the name of the setuid script to open to the interpreter, rather than using a pathname
subject to meddling, it instead passgsv/fd/3 This is a special file already opened on the script, so that
there can be no race condition for evil scripts to exploit. On these systems, Perl should be compiled with
-DSETUID_SCRIPTS_ARE_SECURE_NOWhe Configure program that builds Perl tries to figure this

out for itself, so you should never have to specify this yourself. Most modern releases of SysVr4 and BSD
4.4 use this approach to avoid the kernel race condition.

Prior to release 5.003 of Perl, a bug in the codsuidperl could introduce a security hole in systems
compiled with strict POSIX compliance.

242

Version 5.003 08-0ct—-1996

perltrap Perl Programmers Reference Guide perltrap

NAME
perltrap — Perl traps for the unwary

DESCRIPTION

The biggest trap of all is forgetting to use tive switch; segerlrun. The second biggest trap is not making
your entire program runnable undese strict

Awk Traps
Accustomedawk users should take special note of the following:

° The English module, loaded via
use English;

allows you to refer to special variables (I&RS) as though they were awk; seeperlvar for details.

° Semicolons are required after all simple statements in Perl (except at the end of a block). Newline is
not a statement delimiter.

° Curly brackets are required dns andwhile s.

° Variables begin with$" or "@" in Perl.

° Arrays index from 0. Likewise string positionssabstr() andindex()

° You have to decide whether your array has numeric or string indices.

° Associative array values do not spring into existence upon mere reference.
° You have to decide whether you want to use string or numeric comparisons.

° Reading an input line does not split it for you. You get to split it yourself to an array. And the
split() operator has different arguments.

. The current input line is normally i, not$0. It generally does not have the newline stripped.
(%0 is the name of the program executed.) [S=b/ar.

] $<digit > does not refer to fields—it refers to substrings matched by the last match pattern.

. The print() statement does not add field and record separators unless $ousset$\. You can
set$OFSand$ORSif you're using the English module.

° You must open your files before you print to them.

° The range operator is "..", not comma. The comma operator works as in C.

° The match operator is "=~", not "~". ("~" is the one's complement operator, as in C.)

° The exponentiation operator is "**", not "". "A" is the XOR operator, as in C. (You know, one could
get the feeling thaawk is basically incompatible with C.)

° The concatenation operator is ".", not the null string. (Using the null string would ripader
/pat/ unparsable, since the third slash would be interpreted as a division operator—the tokener is in

fact slightly context sensitive for operators like "/*, "?", and ">". And in fact, "." itself can be the
beginning of a number.)

° Thenext , exit , andcontinue keywords work differently.

° The following variables work differently:

Awk Perl
ARGC $#ARGV or scalar @ARGV
ARGVI0] $0

FILENAME $ARGV

08-0Oct-1996 Version 5.003 243

perltrap Perl Programmers Reference Guide perltrap
FNR $. - something
FS(whatever you like)
NF$#FId, or some such
NR$.
OFMT $#
OFS &,
ORS %\
RLENGTH length($&)
RS$/
RSTART length($")
SUBSEP $;
° You cannot se$RSto a pattern, only a string.
° When in doubt, run thawk construct through2p and see what it gives you.
C Traps

Sed Traps

Shell Traps

Cerebral C programmers should take note of the following:

Curly brackets are required dn ‘s andwhile ‘s.
You must uselsif rather tharelse if

Thebreak andcontinue keywords from C become in Péakt andnext , respectively. Unlike
in C, these dNOT work within ado { } while construct.

There's no switch statement. (But it's easy to build one on the fly.)
Variables begin with$" or "@" in Perl.

printf() does not implement the ™" format for interpolating field widths, but it's trivial to use
interpolation of double—quoted strings to achieve the same effect.

Comments begin with "#", not "/*".

You can't take the address of anything, although a similar operator in Perl 5 is the backslash, which
creates a reference.

ARGVmust be capitalizedbARGV[0] is C'sargv[1l] , andargv[0] ends up ir$0.
System calls such &gk() ,unlink() ,rename() , etc. return nonzero for success, not 0.

Signal handlers deal with signal names, not numbers. kllsel to find their names on your
system.

Seasonededprogrammers should take note of the following:

Backreferences in substitutions u§g 'rather than "\".

The pattern matching metacharacters "(*,)", and "|" do not have backslashes in front.

The range operator is , rather than comma.

Sharp shell programmers should take note of the following:

The backtick operator does variable interpolation without regard to the presence of single quotes in the
command.

The backtick operator does no translation of the return value, wslike

Shells (especiallgsh) do several levels of substitution on each command line. Perl does substitution
only in certain constructs such as double quotes, backticks, angle brackets, and search patterns.

244

Version 5.003 08-0ct—-1996

perltrap Perl Programmers Reference Guide perltrap
° Shells interpret scripts a little bit at a time. Perl compiles the entire program before executing it
(except foBEGIN blocks, which execute at compile time).
° The arguments are available via @ARGV, bt $2, etc.
° The environment is not automatically made available as separate scalar variables.
Perl Traps

Practicing Perl Programmers should take note of the following:

Remember that many operations behave differently in a list context than they do in a scalar one. See
perldatafor details.

Avoid barewords if you can, especially all lower—case ones. You can't tell just by looking at it whether
a bareword is a function or a string. By using quotes on strings and parens on function calls, you
won't ever get them confused.

You cannot discern from mere inspection which built-ins are unary operatorliiipg) and
chdir()) and which are list operators (lifgint() andunlink()). (User—defined subroutines
canonly be list operators, never unary ones.) Satop.

People have a hard time remembering that some functions def&ult tor @ARGV, or whatever,
but that others which you might expect to do not.

The <FH> construct is not the name of the filehandle, it is a readline operation on that handle. The
data read is only assigned$o if the file read is the sole condition in a while loop:

while (<FH>) {}
while ($_ = <FH>) {}..
<FH>; # data discarded!

Remember not to use™ when you need=~"; these two constructs are quite different:

$x = [fool;
$x =~ ffool;

Thedo {} constructisn't a real loop that you can use loop control on.

Usemy() for local variables whenever you can get away with it (butpselorm for where you
can't). Usinglocal() actually gives a local value to a global variable, which leaves you open to
unforeseen side—effects of dynamic scoping.

If you localize an exported variable in a module, its exported value will not change. The local name
becomes an alias to a new value but the external name is still an alias for the original.

Perl4 to Perl5 Traps
Practicing Perl4 Programmers should take note of the following Perl4—to—Perl5 specific traps.

They're crudely ordered according to the following list:

Discontinuance, Deprecation, and BugFix traps

Anything that's been fixed as a perl4 bug, removed as a perl4 feature or deprecated as a perl4 feature
with the intent to encourage usage of some other perl5 feature.

Parsing Traps

Traps that appear to stem from the new parser.

Numerical Traps

Traps having to do with numerical or mathematical operators.

General data type traps

Traps involving perl standard data types.

08-0Oct-1996 Version 5.003 245

perltrap Perl Programmers Reference Guide perltrap

Context Traps — scalar, list contexts
Traps related to context within lists, scalar statements/declarations.

Precedence Traps
Traps related to the precedence of parsing, evaluation, and execution of code.

General Regular Expression Traps using s///, etc.
Traps related to the use of pattern matching.

Subroutine, Signal, Sorting Traps

Traps related to the use of signals and signal handlers, general subroutines, and sorting, along with

sorting subroutines.
OS Traps
OS-specific traps.

DBM Traps
Traps specific to the use dbmopen() , and specific dom implementations.

Unclassified Traps
Everything else.

If you find an example of a conversion trap that is not listed here, please submit it to Bill Middleton

wjm@best.confor inclusion. Also note that at least some of these can be caughtwyith

Discontinuance, Deprecation, and BugFix traps

Anything that has been discontinued, deprecated, or fixed as a bug from perl4.

e Discontinuance
Symbols starting with "_" are no longer forced into package main, except itgelf (and@ , etc.).

package test;
$ legacy = 1;

package main;
print "\$_legacy is ",$_legacy,"\n";

perl4 prints: $_legacy is 1
perl5 prints: $_legacy is

e Deprecation

Double—colon is now a valid package separator in a variable name. Thus these behave differently in

perl4 vs. perl5, since the packages don't exist.
$a=1;$b=2;$c=3;$var=4;
print "$a::$bh::$c ;
print "$var::abc::xyz\n";
perld prints: 1::2::3 4::abc::xyz
perl5 prints: 3

Given that: is now the preferred package delimiter, it is debatable whether this should be classed as

a bug or not. (The older package delimiter, ' ,is used here)

$x=10;
print "x=${’xp\n" ;

perl4 prints: x=10
perl5 prints: Can't find string terminator """ anywhere before EOF

Also see precedence traps, for parding

246

Version 5.003 08-0ct—-1996

perltrap Perl Programmers Reference Guide perltrap

e BugFix
The second and third argumentsspfice() are now evaluated in scalar context (as the Camel says)
rather than list context.

sub sub1{return(0,2) } # return a 2—elem array
sub sub?{ return(1,2,3)} # return a 3—elem array
@al = ("a","b","c","d","e");

@a2 = splice(@al,&subl,&sub?2);

print join(’ ’,@a2),"\n";

perld prints: a b

perl5 prints: cd e

e Discontinuance
You can‘t do egoto into a block that is optimized away. Darn.

goto markerl;

for(1){
markerl:

print "Here I is'\n";
}

perl4 prints: Here 1 is!
perl5 dumps core (SEGV)

e Discontinuance
It is no longer syntactically legal to use whitespace as the name of a variable, or as a delimiter for any
kind of quote construct. Double darn.

$a = ("foo bar");
$b=qgbaz;
print "ais $a, b is $b\n";

perld prints: a is foo bar, b is baz
perl5 errors: Bare word found where operator expected

e Discontinuance
The archaic while/if BLOCK BLOCK syntax is ho longer supported.
if{1}H{

print "True!";
}

else {
print "False!";

}

perl4 prints: True!
perl5 errors: syntax error at test.pl line 1, near "if {"

e BugFix
The** operator now binds more tightly than unary minus. It was documented to work this way before,
but didn't.
print —=4**2 "\n";

perld prints: 16
perl5 prints: -16

08-0Oct-1996 Version 5.003 247

perltrap Perl Programmers Reference Guide perltrap

e Discontinuance

The meaning oforeach{} has changed slightly when it is iterating over a list which is not an array.
This used to assign the list to a temporary array, but no longer does so (for efficiency). This means
that you'll now be iterating over the actual values, not over copies of the values. Maodifications to the
loop variable can change the original values.

@list = ('ab’,’abc’,’bcd’,'def’);
foreach $var (grep(/ab/,@list)){
$var = 1;

}
print (join(:’,@list));

perl4 prints: ab:abc:bcd:def
perl5 prints: 1:1:bcd:def

To retain Perl4 semantics you need to assign your list explicitly to a temporary array and then iterate
over that. For example, you might need to change

foreach $var (grep(/ab/,@list)){
to
foreach $var (@tmp = grep(/ab/,@list)){

Otherwise changingvar will clobber the values of @list. (This most often happens when you use
$_ for the loop variable, and call subroutines in the loop that don‘t properly lo&alige

e Discontinuance

split with no arguments now behaves |#@it '’ (which doesn‘t return an initial null field if
$_ starts with whitespace), it used to behave dikit \s+/ (which does).
$ ="himom’;

print join(’:’, split);
perl4 prints: :hi:mom
perl5 prints: hizmom
e Deprecation
Some error messages will be different.

e Discontinuance
Some bugs may have been inadvertently removed. :-)

Parsing Traps
Perl4-to—Perl5 traps from having to do with parsing.
e Parsing
Note the space between . and =

$string . = "more string";
print $string;

perl4 prints: more string
perl5 prints: syntax error at — line 1, near ". =

e Parsing
Better parsing in perl 5
sub foo {}

&foo
print("hello, world\n");

248 Version 5.003 08-0Oct-1996

perltrap Perl Programmers Reference Guide perltrap

perl4 prints: hello, world
perl5 prints: syntax error

e Parsing
"if it looks like a function, it is a function"” rule.
print
($foo == 1) ? "is one\n" : "is zero\n";

perld prints: is zero
perl5 warns: "Useless use of a constant in void context" if using —w

Numerical Traps
Perl4-to—Perl5 traps having to do with numerical operators, operands, or output from same.

e Numerical
Formatted output and significant digits

print 7.373504 - 0, "\n";
printf "%20.18f\n", 7.373504 - 0;

Perl4 prints:
7.375039999999996141
7.37503999999999614

Perl5 prints:
7.373504
7.37503999999999614

e Numerical

This specific item has been deleted. It demonstrated how the autoincrement operator would not catch
when a number went over the signed int limit. Fixed in 5.003_04. But always be wary when using
large ints. If in doubt:

use Math::Bigint;

e Numerical

Assignment of return values from numeric equality tests does not work in perl5 when the test
evaluates to false (0). Logical tests now return an null, instead of 0

$p = (Btest == 1);
print $p,"\n";

perl4 prints: 0
perl5 prints:

Also see thé&eneral Regular Expression Trafests for another example of this new feature...

General data type traps
Perl4-to—Perl5 traps involving most data—types, and their usage within certain expressions and/or context.

o (Arrays)
Negative array subscripts now count from the end of the array.

@a=(1,23,4,5),
print "The third element of the array is $a[3] also expressed as $a[-2] \n";

perld prints: The third element of the array is 4 also expressed as
perl5 prints: The third element of the array is 4 also expressed as 4

08-0Oct-1996 Version 5.003 249

perltrap Perl Programmers Reference Guide perltrap

o (Arrays)
Setting$#array lower now discards array elements, and makes them impossible to recover.
@a = (a,b,c,d,e);
print "Before: ",join(",@a);
$#a =1,
print ", After: " join(",@a);
$#a =3;

print ", Recovered: " join(",@a),"\n";

perl4 prints: Before: abcde, After: ab, Recovered: abcd
perl5 prints: Before: abcde, After: ab, Recovered: ab

e (Hashes)
Hashes get defined before use

local($s,@a,%h);

die "scalar \$s defined" if defined($s);
die "array \@a defined" if defined(@a);
die "hash \%h defined" if defined(%h);

perl4 prints:
perl5 dies: hash %h defined

¢ (Globs)
glob assignment from variable to variable will fail if the assigned variable is localized subsequent to
the assignment

@a = ("This is Perl 4");
*b = *a,

local(@a);

print @b,"\n";

perl4 prints: This is Perl 4
perl5 prints:

Another example

*fred = *barney; # fred is aliased to barney
@barney = (1, 2, 4);

@fred;

print "@fred"; # should print "1, 2, 4"

perld prints: 12 4
perl5 prints: Literal @fred now requires backslash

e (Scalar String)
Changes in unary negation (of strings) This change effects both the return value and what it does to
auto(magic)increment.

$x = "aaa";

print ++$x," : ";

print =$x," : ";

print ++$x,"\n";

perld prints: aab : -0: 1

perl5 prints: aab : —aab : aac
¢ (Constants)

perl 4 lets you modify constants:

250 Version 5.003 08-0Oct-1996

perltrap Perl Programmers Reference Guide perltrap

$foo = "Xx";

&mod($foo);

for ($x = 0; $x < 3; $x++) {
&mod("a");

}

sub mod {
print "before: $_[0]";
$_[0]="m";
print" after: $_[0]\n";

}

perl4:

before: x after: m
before: a after: m
before: m after: m
before: m after: m

Perl5:

before: x after: m

Modification of a read-only value attempted at foo.pl line 12.
before: a

e (Scalars)
The behavior is slightly different for:

print "$x", defined $x

#perl4:1
perl 5: <no output, $x is not called into existence>

e (Variable Suicide)

Variable suicide behavior is more consistent under Perl 5. Perl5 exhibits the same behavior for
associative arrays and scalars, that perl4 exhibits only for scalars.

$aGlobal{ "aKey" } = "global value";
print "MAIN:", $aGlobal{"aKey"}, "\n";
$GloballLevel = 0;

&test(*aGlobal);

sub test {
local(*theArgument) = @_;
local(%aNewLocal); # perl 4 !=5.001l,m
$aNewLocal{"aKey"} = "this should never appear";
print "SUB: ", $theArgument{"aKey"}, "\n";
$aNewLocal{"aKey"} = "level $GlobalLevel"; # what should print
$GlobalLevel++;
if($GlobalLevel<4) {

&test(*aNewLocal);

}

}

Perl4:

MAIN:global value
SUB: global value
SUB: level 0

SUB: level 1

SUB: level 2

Perl5:

08-0Oct-1996 Version 5.003 251

perltrap Perl Programmers Reference Guide

perltrap

MAIN:global value
SUB: global value
SUB: this should never appear
SUB: this should never appear
SUB: this should never appear

Context Traps — scalar, list contexts

o (list context)

The elements of argument lists for formats are now evaluated in list context. This means you can

interpolate list values now.
@fmt - ("fOO","bar","baZ");

format STDOUT=
@<<<<< @||||| @>>>>>
@fmt;

write;

perld errors: Please use commas to separate fields in file
perl5 prints: foo bar baz

e (scalar context)

The caller() function now returns a false value in a scalar context if there is no caller. This lets

library files determine if they're being required.
caller() ? (print "You rang?\n") : (print "Got a 0\n");

perld errors: There is no caller
perl5 prints: Gota 0

e (scalar context)

The comma operator in a scalar context is now guaranteed to give a scalar context to its arguments.

@y= (a',’b','c);
$x = (1, 2, @y);
print "x = $x\n";

Perld prints: x =c # Thinks list context interpolates list
Perl5 prints: x =3 # Knows scalar uses length of list

o (list, builtin)

sprintf() funkiness (array argument converted to scalar array count) This test could be added to

t/op/sprintf.t

@z = (%s%s’, 'foo’, 'bar’);
$x = sprintf(@z);
if ($x eq 'foobar’) {print "ok 2\n";} else {print "not ok 2 '$x\n";}

perl4 prints: ok 2
perl5 prints: not ok 2

printf() works fine, though:

printf STDOUT (@2);
print "\n";

perl4 prints: foobar
perl5 prints: foobar

Probably a bug.

252 Version 5.003

08-0Oct-1996

perltrap Perl Programmers Reference Guide perltrap

Precedence Traps
Perl4-to—Perl5 traps involving precedence order.

e Precedence
LHS vs. RHS when both sides are getting an op.
@arr = (’left’, right’);
$a{shift @arr} = shift @arr;
print join(", keys %a);
perl4 prints: left
perl5 prints: right

e Precedence
These are now semantic errors because of precedence:

@list = (1,2,3,4,5);

%map = ("a",1,"b",2,"c",3,"d",4);

$n = shift @list + 2; # first item in list plus 2

print "nis $n, ";

$m = keys %map + 2; # number of items in hash plus 2
print "m is $m\n";

perld prints: nis 3, mis 6
perl5 errors and fails to compile

e Precedence
The precedence of assignment operators is now the same as the precedence of assignment. Perl 4
mistakenly gave them the precedence of the associated operator. So you how must parenthesize them

in expressions like
[fool ? ($a +=2) : ($a -= 2);
Otherwise
ffoo/ ? $a+=2: $a —=
would be erroneously parsed as
(/foo/ ? $a +=2: $a) —= 2;
On the other hand,
$a +=/foo/ ? 1: 2;
now works as a C programmer would expect.

e Precedence
open FOO || die;
is now incorrect. You need parens around the filehandle. Otherwise, perl5 leaves the statement as it's
default precedence:

open(FOOQ || die);

perld opens or dies
perl5 errors: Precedence problem: open FOO should be open(FOO)

e Precedence
perl4 gives the special variabt, precedence, where perl5 tre@its as mairpackage

$a = "X"; print "$::a";

08-0Oct-1996 Version 5.003 253

perltrap Perl Programmers Reference Guide

perltrap

perl 4 prints: —:a
perl 5 prints: x

e Precedence
concatenation precedence over filetest operator?

-e $foo .="q

perl4 prints: no output
perl5 prints: Can’t modify —e in concatenation

e Precedence

Assignment to value takes precedence over assignment to key in perl5 when using the shift operator

on both sides.
@arr = (’left’, right’);
$a{shift @arr} = shift @arr;
print join(", keys %a);
perl4 prints: left
perl5 prints: right
General Regular Expression Traps using s///, etc.
All types of RE traps.

e Regular Expression

s'lhs'rhs’ now does no interpolation on either side.
$rhs. (And still does not match a litera$’ in string)
$a=1;$b=2;

$string = '1 2 $a $b’;
$string =~ s'$a’$b’;

print $string,"\n";

perl4 prints: $b 2 $a $b
perl5 prints: 1 2 $a $b

e Regular Expression

It used to interp8lage but not

m//g now attaches its state to the searched string rather than the regular expression. (Once the scope
of a block is left for the sub, the state of the searched string is lost)

$ ="ababab";
while(m/ab/gy{
&doit("blah™);
}
sub doit{local($_) = shift; print "Got $_ "}

perl4 prints: blah blah blah
perl5 prints: infinite loop blah...

e Regular Expression

If no parentheses are used in a match, Perl4bsetis the whole match, just likg&. Perl5 does not.

"abcdef" =~ /b.*e/;
print "\$+ = $+\n";

perl4 prints: bcde
perl5 prints:

e Regular Expression
substitution now returns the null string if it fails

254 Version 5.003

08-0Oct-1996

perltrap

Perl Programmers Reference Guide perltrap

$string = "test";
$value = ($string =~ s/fool/);
print $value, "\n";

perl4 prints: 0
perl5 prints:

Also seeNumerical Trapdor another example of this new feature.

e Regular Expression

s'lhs‘rhs’ (using backticks) is now a normal substitution, with no backtick expansion

$string =",
$string =~ s*Mhostname’;
print $string, "\n";

perl4d prints: <the local hosthame>
perl5 prints: hostname

e Regular Expression

Stricter parsing of variables used in regular expressions

siN[~$grpc]*$grpc[$optsplus$rep]?)//o;

perld: compiles w/o error
perl5: with Scalar found where operator expected ..., near "optplus”

an added component of this example, apparently from the same script, is the actual value of the s'd
string after the substitutiofffopt] is a character class in perl4 and an array subscript in perl5

$grpc ='a’;

$opt ='r’;

$_="'bar;
siM([~$grpc]*$grpc[$opt]?)/fool;
print ;

perl4 prints: foo
perl5 prints: foobar

e Regular Expression

Under perl5m?x? matches only once, likex?. Under perl4, it matched repeatedly, lik#¢ or
mix! .

$test = "once";
sub match { $test =~ m?once?; }
&match();
if(&match()) {
m?x? matches more then once
print "perl4\n®;
}else {
m?x? matches only once
print "perl5\n™;
}

perld prints: perl4
perl5 prints: perl5

Subroutine, Signal, Sorting Traps

The general group of Perl4-to—Perl5 traps having to do with Signals, Sorting, and their related subroutines,
as well as general subroutine traps. Includes some OS-Specific traps.

08-0Oct-1996

Version 5.003 255

perltrap Perl Programmers Reference Guide perltrap

o (Signals)
Barewords that used to look like strings to Perl will now look like subroutine calls if a subroutine by
that name is defined before the compiler sees them.

sub SeeYa { warn"Hasta la vista, baby!" }
$SIG{TERM'} = SeeYa;
print "SIGTERM is now $SIG{TERMAn";

perl4 prints: SIGTERM is main’SeeYa
perl5 prints: SIGTERM is now main::1

Use-w to catch this one

e (Sort Subroutine)
reverse is no longer allowed as the name of a sort subroutine.

sub reverse{ print "yup "; $a <=> $b }
print sort reverse a,b,c;

perl4 prints: yup yup yup yup abc
perl5 prints: abc

ewarn() specifically implies STDERR
warn STDERR "Foo!";

perl4 prints: Foo!
perl5 prints: String found where operator expected

OS Traps

o (SysV)
Under HPUX, and some other SysV OS's, one had to reset any signal handler, within the signal
handler function, each time a signal was handled with perl4. With perl5, the reset is now done
correctly. Any code relying on the handler _not_ being reset will have to be reworked.

5.002 and beyond usegaction() under SysV

sub gotit {
print "Got @_... ";
}
$SIG{INT’} = 'gotit’;
$|=1;
$pid = fork;
if ($pid) {
KillCINT’, $pid);
sleep(1);
KillCINT’, $pid);
}else {
while (1) {sleep(10);}

perld (HPUX) prints: Got INT...
perl5 (HPUX) prints: Got INT... Got INT...

o (SysV)
Under SysV OS'sseek() on a file opened to appere> now does the right thing w.r.t. the

fopen() man page. e.g. — When a file is opened for append, it is impossible to overwrite
information already in the file.

open(TEST,">>seek.test");

256 Version 5.003 08-0Oct-1996

perltrap Perl Programmers Reference Guide perltrap

$start = tell TEST ;
foreach(1 .. 91
print TEST "$_ ",
}
$end = tell TEST ;
seek(TEST,$start,0);
print TEST "18 characters here";

perl4 (solaris) seek.test has: 18 characters here
perl5 (solaris) seek.testhas: 123456 7 8 9 18 characters here

Interpolation Traps
Perl4-to—Perl5 traps having to do with how things get interpolated within certain expressions, statements,
contexts, or whatever.

e Interpolation
@ now always interpolates an array in double—quotish strings.

print "To: someone@somewhere.com\n";

perl4 prints: To:someone@somewhere.com
perl5 errors : Literal @somewhere now requires backslash

e Interpolation
Double—quoted strings may no longer end with an uneschped.

$foo = "foo$";
$bar = "bar@";
print "foo is $foo, bar is $bar\n”;

perl4 prints: foo is foo$, bar is bar@
perl5 errors: Final $ should be \$ or $name

Note: perl5 DOES NOT error on the terminating @lrar

e Interpolation
Perl now sometimes evaluates arbitrary expressions inside braces that occur within double quotes
(usually when the opening brace is precedefi by @.

@www = "buz";

$foo = "foo";

$bar = "bar",

sub foo { return "bar" };

print "|@{w.w.w}|${main’foo}|";

perl4 prints: |@{w.w.w}|foo|
perl5 prints: |buz|bar|
Note that you canse strict; to ward off such trappiness under perl5.

e Interpolation
The construct "this i$$x" used to interpolate the pid at that point, but now apparently tries to
dereferenc&x. $$ by itself still works fine, however.

print "this is $$x\n";

perld prints: this is XXXx (XXX is the current pid)
perl5 prints: this is

e Interpolation

Creation of hashes on the fly widval "EXPR" now requires either botl$'s to be protected in
the specification of the hash name, or both curlies to be protected. If both curlies are protected, the

08-0Oct-1996 Version 5.003 257

perltrap Perl Programmers Reference Guide perltrap

result will be compatible with perl4 and perl5. This is a very common practice, and should be
changed to use the block formendfal{} if possible.

$hashname = "foobar";

$key = "baz";

$value = 1234;

eval "\$$hashname{'$key’} = q|$value|";
(defined($foobar{’baz’})) ? (print "Yup") : (print "Nope");

perl4 prints: Yup
perl5 prints: Nope

Changing

eval "\$$hashname{'$key’} = q|$value|";
to

eval "\$\$hashname{'$key’} = g|$value|";
causes the following result:

perl4 prints: Nope
perl5 prints: Yup

or, changing to
eval "\$$hashname\{’$key'\} = q|$value|";
causes the following result:

perl4 prints: Yup
perl5 prints: Yup
and is compatible for both versions

e Interpolation
perl4 programs which unconsciously rely on the bugs in earlier perl versions.

perl —e '$bar=q/not/; print "This is $foo{$bar} perl5"™

perl4 prints: This is not perl5
perl5 prints: This is perl5

e Interpolation
You also have to be careful about array references.
print "$foo{"

perl 4 prints: {
perl 5 prints: syntax error

e Interpolation
Similarly, watch out for:

$foo = "array";
print "\$$foo{barf\n";

perl4 prints: $array{bar}
perl5 prints: $

Perl 5 is looking foarray{bar} which doesn't exist, but perl 4 is happy just to expéfod to
"array" by itself. Watch out for this especiallyanal ‘s.

258 Version 5.003 08-0Oct-1996

perltrap Perl Programmers Reference Guide

perltrap

e Interpolation
gq() string passed teval

eval qq(
foreach \$y (keys %\$x\) {

\$count++;

}
);

perl4 runs this ok
perl5 prints: Can't find string terminator)"

DBM Traps
General DBM traps.

¢ DBMEXxisting dbm databases created under perl4 (or any other dbm/ndbm tool) may cause the same script,
run under perl5, to fail. The build of perl5 must have been linked with the same dbm/ndbm as the
default fordbmopen() to function properly withoutie ‘ing to an extension dbm implementation.

dbmopen (%dbm, "file", undef);
print "ok\n";

perl4 prints: ok
perl5 prints: ok (IFF linked with —ldbm or —Indbm)

e DBMEXxisting dbm databases created under perl4 (or any other dbm/ndbm tool) may cause the same script,
run under perl5, to fail. The error generated when exceeding the limit on the key/value size will

cause perl5 to exit immediately.

dbmopen(DB, "testdb",0600) || die "couldn’t open db! $!";
$DB{trap’} = "x" x 1024; # value too large for most dbm/ndbm

print "YUP\n";

perl4 prints:
dbm store returned -1, errno 28, key "trap" at — line 3.
YUP

perl5 prints:
dbm store returned -1, errno 28, key "trap" at — line 3.

Unclassified Traps
Everything else.

e Unclassified
require /do trap using returned value

If the file doit.pl has:

sub foo {
$rc = do "./do.pl";
return 8;

}
print &foo, "\n";

And the do.pl file has the following single line:
return 3;
Running doit.pl gives the following:

perl 4 prints: 3 (aborts the subroutine early)
perl 5 prints: 8

08-0ct-1996 Version 5.003

259

perltrap Perl Programmers Reference Guide perltrap

Same behavior if you replade with require

As always, if any of these are ever officially declared as bugs, they‘ll be fixed and removed.

260 Version 5.003 08-0Oct-1996

perlstyle Perl Programmers Reference Guide perlstyle

NAME
peristyle — Perl style guide

DESCRIPTION

Each programmer will, of course, have his or her own preferences in regards to formatting, but there are
some general guidelines that will make your programs easier to read, understand, and maintain.

The most important thing is to run your programs under-theflag at all times. You may turn it off
explicitly for particular portions of code via téW variable if you must. You should also always run under
use strict or know the reason why not. Thise sigtrap and everuse diagnostics pragmas
may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is that the closing curly
brace of a multi-line BLOCK should line up with the keyword that started the construct. Beyond that, he has
other preferences that aren't so strong:

° 4-column indent.

° Opening curly on same line as keyword, if possible, otherwise line up.
° Space before the opening curly of a multiline BLOCK.

° One-line BLOCK may be put on one line, including curlies.
° No space before the semicolon.

° Semicolon omitted in "short" one-line BLOCK.

. Space around most operators.

° Space around a "complex" subscript (inside brackets).

° Blank lines between chunks that do different things.

° Uncuddled elses.

° No space between function name and its opening paren.

° Space after each comma.

° Long lines broken after an operator (except "and" and "or").
° Space after last paren matching on current line.

° Line up corresponding items vertically.

° Omit redundant punctuation as long as clarity doesn‘t suffer.

Larry has his reasons for each of these things, but he doesn't claim that everyone else‘s mind works the same
as his does.

Here are some other more substantive style issues to think about:

° Just because yoDAN do something a particular way doesn‘t mean thatSid®ULDdo it that way.
Perl is designed to give you several ways to do anything, so consider picking the most readable one.
For instance

open(FOO,$foo) || die "Can't open $foo: $!";
is better than
die "Can’t open $foo: $!" unless open(FOO,$foo);
because the second way hides the main point of the statement in a modifier. On the other hand

print "Starting analysis\n" if $verbose;

08-0Oct-1996 Version 5.003 261

perlstyle

Perl Programmers Reference Guide perlstyle

is better than
$verbose && print "Starting analysis\n";
since the main point isn‘t whether the user typear not.

Similarly, just because an operator lets you assume default arguments doesn‘t mean that you have to
make use of the defaults. The defaults are there for lazy systems programmers writing one-shot
programs. If you want your program to be readable, consider supplying the argument.

Along the same lines, just because YOAN omit parentheses in many places doesn‘t mean that you
ought to:

return print reverse sort num values %array;
return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on the % key in
Vi.

Even if you aren‘t in doubt, consider the mental welfare of the person who has to maintain the code
after you, and who will probably put parens in the wrong place.

Don'‘t go through silly contortions to exit a loop at the top or the bottom, when Perl providast the
operator so you can exit in the middle. Just "outdent” it a little to make it more visible:

LINE:
for (;;) {
statements;
last LINE if $foo;
next LINE if /"#/;
statements;

}

Don't be afraid to use loop labels—they‘re there to enhance readability as well as to allow multi-level
loop breaks. See the previous example.

Avoid usinggrep() (ormap()) or ‘backticks' in a void context, that is, when you just throw away
their return values. Those functions all have return values, so use them. Otherwise use a
foreach() loop or thesystem() function instead.

For portability, when using features that may not be implemented on every machine, test the construct
in an eval to see if it fails. If you know what version or patchlevel a particular feature was
implemented, you can te$§] ($PERL_VERSIONin English) to see if it will be there. The
Config module will also let you interrogate values determined byCthafigure program when Perl

was installed.

Choose mnemonic identifiers. If you can‘t remember what mnemonic means, you‘ve got a problem.

While short identifiers like$gotit are probably ok, use underscores to separate words. It is
generally easier to regblvar_names_like_this than $VarNamesLikeThis, especially for
non—native speakers of English. It's also a simple rule that works consistently with
VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally reserves lowercase module
names for "pragma" modules likgeger andstrict . Other modules should begin with a capital

letter and use mixed case, but probably without underscores due to limitations in primitive filesystems’
representations of module names as files that must fit into a few sparse bites.

You may find it helpful to use letter case to indicate the scope or nature of a variable. For example:

$ALL_CAPS_HERE constants only (beware clashes with perl vars!)
$Some_Caps_Here package-wide global/static
$no_caps_here function scope my() or local() variables

262

Version 5.003 08-0ct—-1996

perlstyle Perl Programmers Reference Guide perlstyle

Function and method names seem to work best as all lowercaseboBjgzas_string()

You can use a leading underscore to indicate that a variable or function should not be used outside the
package that defined it.

° If you have a really hairy regular expression, usexhenodifier and put in some whitespace to make
it look a little less like line noise. Don‘t use slash as a delimiter when your regexp has slashes or
backslashes.

° Use the new "and" and "or" operators to avoid having to parenthesize list operators so much, and to
reduce the incidence of punctuational operatorsdi&eand|| . Call your subroutines as if they were
functions or list operators to avoid excessive ampersands and parens.

° Use here documents instead of repeptad() statements.
° Line up corresponding things vertically, especially if it'd be too long to fit on one line anyway.
$IDX = $ST_MTIME;

$IDX = $ST_ATIME if $opt_u;
$IDX = $ST_CTIME if Sopt_c;
$IDX = $ST_SIZE if $opt_s;

mkdir $tmpdir, 0700 or die "can’t mkdir $tmpdir: $!";
chdir($tmpdir) or die "can’'t chdir $tmpdir: $!";
mkdir 'tmp’, 0777 or die "can’t mkdir $tmpdir/tmp: $!";

° Always check the return codes of system calls. Good error messages should go to STDERR, include
which program caused the problem, what the failed system call and arguments were, and VERY
IMPORTANT) should contain the standard system error message for what went wrong. Here's a
simple but sufficient example:

opendir(D, $dir) or die "can’t opendir $dir: $!";
° Line up your translations when it makes sense:
tr [abc]
[xyz];

° Think about reusability. Why waste brainpower on a one—shot when you might want to do something

like it again? Consider generalizing your code. Consider writing a module or object class. Consider

making your code run cleanly witrse strict and-w in effect. Consider giving away your code.
Consider changing your whole world view. Consider... oh, never mind.

° Be consistent.

° Be nice.

08-0Oct-1996 Version 5.003 263

perlpod

Perl Programmers Reference Guide perlpod

NAME

perlpod - plain old documentation

DESCRIPTION

A pod-to—whatever translator reads a pod file paragraph by paragraph, and translates it to the appropriate
output format. There are three kinds of paragraphs:

A verbatim paragraph, distinguished by being indented (that is, it starts with space or tab). It should be
reproduced exactly, with tabs assumed to be on 8-column boundaries. There are no special formatting
escapes, so you can't italicize or anything like that. A\ means\, and nothing else.

A command. All command paragraphs start with "=", followed by an identifier, followed by arbitrary
text that the command can use however it pleases. Currently recognized commands are

=head1 heading
=head? heading
=item text
=over N

=back

=cut

=pod

The "=pod" directive does nothing beyond telling the compiler to lay off of through the next "=cut".
It's useful for adding another paragraph to the doc if you‘re mixing up code and pod a lot.

Headl and head2 produce first and second level headings, with the text on the same paragraph as
"=headn" forming the heading description.

Item, over, and back require a little more explanation: Over starts a section specifically for the
generation of a list using =item commands. At the end of your list, use =back to end it. You will
probably want to give "4" as the number to =over, as some formatters will use this for indentation. This
should probably be a default. Note also that there are some basic rules to using =item: don‘t use them
outside of an =over/=back block, use at least one inside an =over/=back block, you don‘t _have_ to
include the =back if the list just runs off the document, and perhaps most importantly, keep the items
consistent: either use "=item *" for all of them, to produce bullets, or use "=item 1.", "=item 2.", etc., to

produce numbered lists, or use "=item foo", "=item bar", etc., i.e., things that looks nothing like bullets
or numbers. If you start with bullets or numbers, stick with them, as many formatters use the first
=item type to decide how to format the list.

And don‘t forget, when using any command, that that command lasts up until the end of the
paragraph, not the line. Hence in the examples below, you can see the blank lines after each
command to end its paragraph.

Some examples of lists include:
=over 4

=item *

First item

=item *

Second item

=back

=over 4

=item Foo()

Description of Foo function

264

Version 5.003 08-0ct—-1996

perlpod Perl Programmers Reference Guide perlpod

=item Bar()
Description of Bar function
=back

° An ordinary block of text. It will be filled, and maybe even justified. Certain interior sequences are
recognized both here and in commands:

I<text> italicize text, used for emphasis or variables
B<text> embolden text, used for switches and programs
S<text> text contains non-breaking spaces

C<code> literal code

L<name> A link (cross reference) to name
L<name> manpage
L<name/ident> item in manpage
L<name/"sec"> section in other manpage
L<"sec"> section in this manpage

(the quotes are optional)

L</"sec"> ditto

F<file> Used for filenames

X<index> An index entry

7<> A zero—-width character

That's it. The intent is simplicity, not power. | wanted paragraphs to look like paragraphs (block format), so
that they stand out visually, and so that I could run them through fmt easily to reformat them (that's F7 in my
version ofvi). | wanted the translator (and not me) to worry about whether " or ' is a left quote or a right
guote within filled text, and | wanted it to leave the quotes alone dammit in verbatim mode, so | could slurp
in a working program, shift it over 4 spaces, and have it print out, er, verbatim. And presumably in a
constant width font.

In particular, you can leave things like this verbatim in your text:

Perl
FILEHANDLE
$variable
function()
manpage(3r)

Doubtless a few other commands or sequences will need to be added along the way, but I've gotten along
surprisingly well with just these.

Note that I'm not at all claiming this to be sufficient for producing a book. I'm just trying to make an
idiot—proof common source for nroff, TeX, and other markup languages, as used for online documentation.
Translators exist fopod2man (that's for nroff(1) and troff(1))pod2html, pod2latex andpod2fm.

Embedding Pods in Perl Modules

You can embed pod documentation in your Perl scripts. Start your documentation with a =headl command
at the beg, and end it with an =cut command. Perl will ignore the pod text. See any of the supplied library
modules for examples. If you‘re going to put your pods at the end of the file, and you‘re usingan _ END___

or _ DATA__ cut mark, make sure to put a blank line there before the first pod directive.

__END__
=headl NAME
modern — | am a modern module

If you had not had that blank line there, then the translators wouldn't have seen it.

08-0Oct-1996 Version 5.003 265

perlpod Perl Programmers Reference Guide perlpod

SEE ALSO
pod2marandPODs: Embedded Documentation in perlsyn

AUTHOR
Larry Wall

266 Version 5.003 08-0Oct-1996

perlbook Perl Programmers Reference Guide perlbook

NAME
perlbook — Perl book information

DESCRIPTION
You can order Perl books from O'Reil Associates, 1-800-998-9938. Local/overseas is +1 707 829
0515. If you can locate an O'Reilly order form, you can also fax to +1 707 829 0104. If you're
web-connected, you can even mosey on over to http://www.ora.com/ for an online order form.

Programming Perl, Second Editios a reference work that covers nearly all of Perl, wihdarning Perlis

a tutorial that covers the most frequently used subset of the language. You might also check out the very
handy, inexpensive, and compatrl 5 Desktop Referencespecially when the thought of lugging the
676-page Camel around doesn‘t make much sense.

Programming Perl, Second Edition (the Camel Book):
ISBN 1-56592-149-6 (English)

Learning Perl (the Llama Book):
ISBN 1-56592-042-2 (English)
ISBN 4-89502-678-1 (Japanese)
ISBN 2-84177-005-2 (French)
ISBN 3-930673-08-8 (German)

Perl 5 Desktop Reference (the reference card):

ISBN 1-56592-187-9 (brief English)

08-0Oct-1996 Version 5.003 267

perlembed Perl Programmers Reference Guide perlembed

NAME

perlembed — how to embed perl in your C program

DESCRIPTION
PREAMBLE

Do you want to:
Use C from Perl?
Readperlcall andperlxs
Use a UNIX program from Perl?
Read about backquotes and abeygtem andexec in perlfunc
Use Perl from Perl?
Read aboudo andeval in perlfuncanduse andrequire in perimod
Use C from C?
Rethink your design.

Use Perl from C?
Read on...

ROADMAP

Compiling your C program

There's one example in each of the six sections:

Adding a Perl interpreter to your C program

Calling a Perl subroutine from your C program

Evaluating a Perl statement from your C program

Performing Perl pattern matches and substitutions from your C program
Fiddling with the Perl stack from your C program

Using Perl modules, which themselves use C libraries, from your C program

This documentation is UNIX specific.

Compiling your C program

Every C program that uses Perl must link ingtled library.

What's that, you ask? Perl is itself written in C; the perl library is the collection of compiled C programs that
were used to create your perl executallsr(bin/perlor equivalent). (Corollary: you can‘t use Perl from
your C program unless Perl has been compiled on your machine, or installed properly—that's why you

shouldn‘t blithely copy Perl executables from machine to machine without also copylimdirectory.)

Your C program will—usually—allocate, "run", and deallocateealinterpreterobject, which is defined in

the perl library.

If your copy of Perl is recent enough to contain this documentation (5.002 or later), then the perl library (and

EXTERN.handperl.h, which you'll also need) will reside in a directory resembling this:
lusr/local/lib/perl5/your_architecture_here/CORE

or perhaps just
lusr/local/lib/perl5/CORE

or maybe something like

268

Version 5.003 08-0ct—-1996

perlembed Perl Programmers Reference Guide perlembed

lusr/opt/perl5/CORE
Execute this statement for a hint about where to find CORE:
perl -MConfig —e "print $Config{archlib}

Here's how you might compile the example in the next section,
Adding a Perl interpreter to your C programn a DEC Alpha running the OSF operating system:

% cc —o interp interp.c —L/usr/local/lib/perl5/alpha—-dec_osf/CORE
—l/usr/local/lib/perl5/alpha—dec_osf/CORE —Iperl —Im

You'll have to choose the appropriate compiler, gcc et al.) and library directoryysr/local/lib/..) for
your machine. If your compiler complains that certain functions are undefined, or that it can‘tIpedte
then you need to change the path following the —L. If it complains that it can'EXT&ERN.hor perl.h,

you need to change the path following the —I.
You may have to add extra libraries as well. Which ones? Perhaps those printed by

perl —MConfig —e "print $Config{libs}’

We strongly recommend you use thetUtils::Embed module to determine all of this information for you:

% cc —o interp interp.c ‘perl —-MExtUtils::Embed —e ccopts —e Idopts’

If the ExtUtils::Embed module is not part of your perl kit's distribution you can retrieve it from:

http://www.perl.com/cgi—-bin/cpan_mod?module=ExtUtils::Embed.

Adding a Perl interpreter to your C program

In a sense, perl (the C program) is a good example of embedding Perl (the language), so I'll demonstrate
embedding withminiperimain.¢ from the source distribution. Here's a bastardized, non—portable version of

miniperlmain.ccontaining the essentials of embedding:

#include <stdio.h>
#include <EXTERN.h> /* from the Perl distribution */
#include <perl.h> [* from the Perl distribution ~ */

static Perlinterpreter *my_perl; /*** The Perl interpreter ***/

int main(int argc, char **argv, char **env)
{
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, argc, argv, (char **)NULL);
perl_run(my_perl);
perl_destruct(my_perl);
perl_free(my_perl);

}

Note that we do not use tlemv pointer here or in any of the following examples. Normally handed to
perl_parse as it's final argument, we hand itNULL instead, in which case the current environment is

used.
Now compile this program (I'll call iinterp.g into an executable:

% cc —o interp interp.c ‘perl -MExtUtils::Embed —e ccopts —e Idopts’
After a successful compilation, you'll be able to urgerp just like perl itself:

% interp

print "Pretty Good Perl \n";

print "10890 - 9801 is ", 10890 — 9801,
<CTRL-D>

Pretty Good Perl

08-0Oct-1996 Version 5.003 269

perlembed Perl Programmers Reference Guide perlembed

10890 - 9801 is 1089
or

% interp —e ’printf("%x", 3735928559)’
deadbeef

You can also read and execute Perl statements from a file while in the midst of your C program, by placing
the filename irargv[1] before callingper!_run()
Calling a Perl subroutine from your C program
To call individual Perl subroutines, you'll need to remove the caletd run() and replace it with a call
to perl_call_argv()
That's shown below, in a program I'll calhowtime.c

#include <stdio.h>
#include <EXTERN.h>
#include <perl.h>

static Perlinterpreter *my_perl;

int main(int argc, char **argv, char **env)

{

my_perl = perl_alloc();
perl_construct(my_perl);

perl_parse(my_perl, NULL, argc, argv, NULL);

[*** This replaces perl_run() ***/
perl_call_argv("showtime", G_DISCARD | G_NOARGS, argv);
perl_destruct(my_perl);
perl_free(my_perl);

}

where showtimeis a Perl subroutine that takes no arguments (that'$&sti¢OARGY) and for which [I'll
ignore the return value (that's te DISCARD. Those flags, and others, are discussextifcall.

I'll define the showtimesubroutine in a file calleshowtime.pl
print "I shan’t be printed.";

sub showtime {
print time;

}

Simple enough. Now compile and run:
% cc —o showtime showtime.c ‘perl —~MExtUtils::Embed —e ccopts —e Idopts'

% showtime showtime.pl
818284590

yielding the number of seconds that elapsed between January 1, 1970 (the beginning of the UNIX epoch),
and the moment | began writing this sentence.

If you want to pass some arguments to the Perl subroutine, or you want to access the return value, you'll
need to manipulate the Perl stack, demonstrated in the last section of this document:
Fiddling with the Perl stack from your C program

Evaluating a Perl statement from your C program

NOTE: This section, and the next, employ some very brittle techniques for evaluating strings of Perl code.
Perl 5.002 contains some nifty features that enable A Better Way (such agewitbval sy Look for
updates to this document soon.

270 Version 5.003 08-0Oct-1996

perlembed Perl Programmers Reference Guide perlembed

One way to evaluate a Perl string is to define a function (we'll callgeniseval()) that wraps around
Perl'seval

Arguably, this is the only routine you'll ever need to execute snippets of Perl code from within your C
program. Your string can be as long as you wish; it can contain multiple statements; it rcauine®r do
to include external Perl files.

Our perl_eval() lets us evaluate individual Perl strings, and then extract variables for coercion into C
types. The following progranstring.c executes three Perl strings, extractingirgn from the first, a
float from the second, andchar * from the third.

#include <stdio.h>
#include <EXTERN.h>
#include <perl.h>

static Perlinterpreter *my_perl;

int perl_eval(char *string)
{
char *argv[2];
argv[0] = string;
argv[1] = NULL;
perl_call_argv("_eval_", 0, argv);

main (int argc, char **argv, char **env)

{
char *embedding[] ={ ™, "-e", "sub _eval_{eval $ [0]}'};
STRLEN length;

my_perl = perl_alloc();
perl_construct(my_perl);

perl_parse(my_perl, NULL, 3, embedding, NULL);

[** Treat $a as an integer **/
perl_eval("$a = 3; $a **=2");
printf("a = %d\n", SvIV(perl_get_sv("a", FALSE)));

[** Treat $a as a float **/
perl_eval("$a = 3.14; $a **=2");
printf("a = %f\n", SYNV(perl_get_sv("a", FALSE)));

[** Treat $a as a string **/
perl_eval("$a = 'rekcaH IreP rehtonA tsuJ’; $a = reverse($a); ");
printf("a = %s\n", SvPV(perl_get_sv("a", FALSE), length));

perl_destruct(my_perl);
perl_free(my_perl);
}

All of those strange functions witlvin their names help convert Perl scalars to C types. They're described
in perlguts

If you compile and rumstring.¢ you'll see the results of usirgv/V() to create ammt , SYNV/() to create
afloat , andSvPV() to create a string:

a=9
a =9.859600
a = Just Another Perl Hacker

08-0Oct-1996 Version 5.003 271

perlembed Perl Programmers Reference Guide perlembed

Performing Perl pattern matches and substitutions from your C program

Our perl_eval() lets us evaluate strings of Perl code, so we can define some functions that use it to
"specialize" in matches and substitutionmtch() , substitute() , andmatches()

char match(char *string, char *pattern);

Given a string and a pattern (e.g. "m/clasp/" or "Ab\w*\b/", which in your program might be represented as
"MNb\Ww*\b/"), returns 1 if the string matches the pattern and O otherwise.

int substitute(char *string[], char *pattern);

Given a pointer to a string and an "=~" operation (e.g. "s/bob/robert/g" or "tr[A-Z][a-z]"), modifies the
string according to the operation, returning the number of substitutions made.

int matches(char *string, char *pattern, char **matches]);

Given a string, a pattern, and a pointer to an empty array of strings, evaktates =~ $pattern in
an array context, and fills imatcheswith the array elements (allocating memory as it does so), returning the
number of matches found.

Here's a sample programmatch.¢ that uses all three (long lines have been wrapped here):

#include <stdio.h>

#include <EXTERN.h>
#include <perl.h>

static Perlinterpreter *my_perl;
int perl_eval(char *string)

char *argv[2];

argv[0] = string;

argv[1] = NULL;

perl_call_argv("_eval_", 0, argv);
}

[** match(string, pattern)
*%

** Used for matches in a scalar context.
*%

** Returns 1 if the match was successful; O otherwise.
**/

char match(char *string, char *pattern)
{
char *command,;
command = malloc(sizeof(char) * strlen(string) + strlen(pattern) + 37);
sprintf(command, "$string = '%s’; $return = $string =~ %s",
string, pattern);
perl_eval(command);
free(command);
return SviV(perl_get_sv("return”, FALSE));
}

[** substitute(string, pattern)
*%

** Used for =~ operations that modify their left—hand side (s/// and tr///)

%

** Returns the number of successful matches, and
** modifies the input string if there were any.

**/

int substitute(char *string[], char *pattern)

{

272

Version 5.003 08-0ct—-1996

perlembed Perl Programmers Reference Guide perlembed

char *command,;
STRLEN length;
command = malloc(sizeof(char) * strlen(*string) + strlen(pattern) + 35);
sprintf(command, "$string = '%s’; $ret = ($string =~ %s)",
*string, pattern);
perl_eval(command);
free(command);
*string = SvPV(perl_get_sv("string", FALSE), length);
return SviV(perl_get_sv("ret", FALSE));
}

/** matches(string, pattern, matches)
*%

** Used for matches in an array context.
*%
** Returns the number of matches,
** and fills in **matches with the matching substrings (allocates memory!)
**/
int matches(char *string, char *pattern, char *match_list[])
{
char *command,;
SV *current_match;
AV *array;
132 num_matches;
STRLEN length;
int i;
command = malloc(sizeof(char) * strlen(string) + strlen(pattern) + 38);
sprintf(command, "$string = '%s’; @array = ($string =~ %s)",
string, pattern);
perl_eval(command);
free(command);
array = perl_get_av("array", FALSE);
num_matches = av_len(array) + 1; /** assume $[is 0 **/
*match_list = (char **) malloc(sizeof(char *) * num_matches);
for (i = 0; i <= num_matches; i++) {
current_match = av_shift(array);
(*match_list)[i] = SvPV(current_match, length);
}
return num_matches;
}
main (int argc, char **argv, char **env)
{
char *embedding[] ={"", "-e", "sub _eval_{eval $_[0]}"};
char *text, **match_list;
int num_matches, i;
int j;
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 3, embedding, NULL);
text = (char *) malloc(sizeof(char) * 486); /** A long string follows! **/
sprintf(text, "%s", "When he is at a convenience store and the bill \
comes to some amount like 76 cents, Maynard is aware that there is \
something he *should* do, something that will enable him to get back \
a quarter, but he has no idea *what*. He fumbles through his red \
squeezey changepurse and gives the boy three extra pennies with his \

08-0Oct-1996 Version 5.003 273

perlembed Perl Programmers Reference Guide perlembed

dollar, hoping that he might luck into the correct amount. The boy \
gives him back two of his own pennies and then the big shiny quarter \
that is his prize. -RICHH");
if (match(text, "m/quarter/")) /** Does text contain 'quarter’? **/
printf("match: Text contains the word 'quarter’.\n\n");
else
printf("match: Text doesn’t contain the word 'quarter’.\n\n");
if (match(text, "m/eighth/")) /** Does text contain 'eighth’? **/
printf("match: Text contains the word 'eighth’.\n\n");
else
printf("match: Text doesn’t contain the word 'eighth’.\n\n");
/** Match all occurrences of /wi../ **/
num_matches = matches(text, "m/(wi..)/g", &match_list);
printf("matches: m/(wi..)/g found %d matches...\n", num_matches);
for (i = 0; i < num_matches; i++)
printf("match: %s\n", match_list[i]);
printf("\n");
for (i = 0; i < num_matches; i++) {
free(match_list[i]);
}
free(match_list);
/** Remove all vowels from text **/
num_matches = substitute(&text, "s/[aeiou]//gi");
if (num_matches) {
printf("substitute: s/[aeiou]//gi...%d substitutions made.\n",
num_matches);
printf("Now text is: %s\n\n", text);
}
[** Attempt a substitution **/
if (Isubstitute(&text, "s/Perl/C/")) {
printf("substitute: s/Perl/C...No substitution made.\n\n");
}
free(text);
perl_destruct(my_perl);
perl_free(my_perl);
}

which produces the output (again, long lines have been wrapped here)
perl_match: Text contains the word 'quarter’.
perl_match: Text doesn’t contain the word eighth’.

perl_matches: m/(wi..)/g found 2 matches...
match: will
match: with

perl_substitute: s/[aeiou]//gi...139 substitutions made.

Now text is: Whn h st cnvnnc str nd th bll cms t sm mnt Ik 76 cnts,
Mynrd s wr tht thr s smthng h *shld* d, smthng tht wil nbl hm t gt bck
grtr, bt h hs n d *wht*. H fmbls thrgh hs rd sqzy chngprs nd gvs th by
thr xtr pnns wth hs dlIr, hpng tht h mght Ick nt th crrct mnt. Th by gvs
hm bck tw f hs wn pnns nd thn th bg shny grtr tht s hs prz. -RCHH

perl_substitute: s/Perl/C...No substitution made.

274 Version 5.003 08-0Oct-1996

perlembed Perl Programmers Reference Guide perlembed

Fiddling with the Perl stack from your C program
When trying to explain stacks, most computer science textbooks mumble something about spring—loaded
columns of cafeteria plates: the last thing you pushed on the stack is the first thing you pop off. That'll do
for our purposes: your C program will push some arguments onto "the Perl stack”, shut its eyes while some
magic happens, and then pop the results—the return value of your Perl subroutine—off the stack.

First you'll need to know how to convert between C types and Perl types,neittsViv() and
sv_setnv() andnewAV() and all their friends. They‘re describedperlguts

Then you'll need to know how to manipulate the Perl stack. That's descripedaall.
Once you‘ve understood those, embedding Perl in C is easy.

Since C has no built-in function for integer exponentiation, let's make Perl's ** operator available to it (this
is less useful than it sounds, since Perl implements ** withp@ig() function). First I'll create a stub
exponentiation function ipower.pl

sub expo {
my ($a, $b) = @_;
return $a ** $b;

}

Now I'll create a C programpower.¢ with a function PerlPower() that contains all the perlguts
necessary to push the two arguments @po() and to pop the return value out. Take a deep breath...

#include <stdio.h>
#include <EXTERN.h>
#include <perl.h>

static Perlinterpreter *my_perl;

static void

PerlPower(int a, int b)

{
dsp; [* initialize stack pointer */
ENTER; /* everything created after here */
SAVETMPS; /* ...is a temporary variable. */
PUSHMARK(sp); /* remember the stack pointer */

XPUSHSs(sv_2mortal(newSViv(a))); /* push the base onto the stack */
XPUSHSs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */

PUTBACK; /* make local stack pointer global */
perl_call_pv("expo", G_SCALAR); /* call the function */
SPAGAIN; /* refresh stack pointer */

[* pop the return value from stack */
printf ("%d to the %dth power is %d.\n", a, b, POPI);

PUTBACK;
FREETMPS; [* free that return value *
LEAVE; [* ...and the XPUSHed "mortal" args.*/
}
int main (int argc, char **argv, char **env)
{

char *my_argv[2];

my_perl = perl_alloc();
perl_construct(my_perl);
my_argv[1] = (char *) malloc(10);
sprintf(my_argv[1], "power.pl");

08-0Oct-1996 Version 5.003 275

perlembed Perl Programmers Reference Guide perlembed

Using

perl_parse(my_perl, NULL, argc, my_argv, NULL);
PerlPower(3, 4); [*¥** Compute 3 ** 4 **/

perl_destruct(my_perl);
perl_free(my_perl);

}

Compile and run:

% cc —o power power.c ‘perl -MExtUtils::Embed —e ccopts —e Idopts'

% power
3 to the 4th power is 81.

Perl modules, which themselves use C libraries, from your C program

If you've played with the examples above and tried to embed a scripigbft s a Perl module (such as
Sockexwhich itself uses a C or C++ library, this probably happened:

Can't load module Socket, dynamic loading not available in this perl.
(You may need to build a new perl executable which either supports
dynamic loading or has the Socket module statically linked into it.)

What's wrong?

Your interpreter doesn‘t know how to communicate with these extensions on its own. A little glue will help.
Up until now you‘ve been callinger!_parse() , handing it NULL for the second argument:

perl_parse(my_perl, NULL, argc, my_argv, NULL);

That's where the glue code can be inserted to create the initial contact between Perl and linked C/C++
routines. Let's take a look some piecepefimain.cto see how Perl does this:

#ifdef __ cplusplus

define EXTERN_C extern "C"
#else

define EXTERN_C extern
#endif

static void xs_init _((void));

EXTERN_C void boot_DynalLoader _((CV* cv));
EXTERN_C void boot_Socket _((CV* cv));

EXTERN_C void

xs_init()

{
char *file = FILE__;
/* Dynal oader is a special case */
newXS("DynalLoader::boot_Dynal oader”, boot_Dynal oader, file);
newXS("Socket::bootstrap”, boot_Socket, file);

}

Simply put: for each extension linked with your Perl executable (determined during its initial configuration
on your computer or when adding a new extension), a Perl subroutine is created to incorporate the
extension's routines. Normally, that subroutine is naedule::bootstrap() and is invoked when

you sayuse Module In turn, this hooks into an XSUBpot_Module which creates a Perl counterpart for

each of the extension‘'s XSUBs. Don'‘t worry about this part; leave that kstibppand extension authors.

If your extension is dynamically loaded, Dynaloader creétegule::bootstrap() for you on the fly.

In fact, if you have a working Dynaloader then there is rarely any need to statically link in any other
extensions.

276

Version 5.003 08-0ct—-1996

perlembed Perl Programmers Reference Guide perlembed

Once you have this code, slap it into the second argumgetrbfarse()
perl_parse(my_perl, xs_init, argc, my_argv, NULL);

Then compile:

% cc —o interp interp.c ‘perl ~-MExtUtils::Embed —e Idopts'

% interp
use Socket;
use SomeDynamicallyLoadedModule;

print "Now | can use extensions!\n"
ExtUtils::Embed can also automate writing tlxe_initglue code.

% perl —MExtUtils::Embed —e xsinit —o perlxsi.c

% cc —c perlxsi.c ‘perl -MExtUtils::Embed —e ccopts'

% cc —c interp.c ‘perl —-MExtUltils::Embed —e ccopts’

% cc —o interp perlxsi.o interp.o ‘perl ~-MExtUtils::Embed —e Idopts'

Consultperlxsandperlgutsfor more details.

MORAL

You can sometimewrite faster coden C, but you can alwaysrite code fastein Perl. Since you can use
each from the other, combine them as you wish.

AUTHOR

Jon Orwant<orwant@media.mit.edu> co-authored by Doug MacEachexdougm@osf.org> with
contributions from Tim Bunce, Tom Christiansen, Dov Grobgeld, and Illya Zakharevich.

June 17, 1996

Some of this material is excerpted from my boBlerl 5 Interactive Waite Group Press, 1996 (ISBN
1-57169-064-6) and appears courtesy of Waite Group Press.

08-0Oct-1996 Version 5.003 277

perlapio Perl Programmers Reference Guide perlapio

NAME
perlio — perl‘s 10 abstraction interface.

SYNOPSIS

PerllO *PerllO_stdin(void);
PerllO *PerllO_stdout(void);
PerllO *PerllO_stderr(void);

PerllO *PerllO_open(const char *,const char *);
int PerllO_close(PerllO *);

int PerllO_stdoutf(const char *,...)

int PerllO_puts(PerllO *,const char *);

int PerllO_putc(PerllO *,int);

int PerllO_write(PerllO *,const void *,size_t);

int PerllO_printf(PerllO *, const char *,...);

int PerllO_vprintf(PerllO *, const char *, va_list);
int PerllO_flush(PerllO *);

int PerllO_eof(PerllO *);
int PerllO_error(PerllO *);
void PerllO_clearerr(PerllO *);

int PerllO_getc(PerllO *);
int PerllO_ungetc(PerllO *,int);
int PerllO_read(PerllO *void *,size_t);

int PerllO_fileno(PerllO *);

PerllO *PerllO_fdopen(int, const char *);
PerllO *PerllO_importFILE(FILE *);

FILE *PerllO_exportFILE(PerllO *);

FILE *PerllO_findFILE(PerllO *);

void PerllO_releaseFILE(PerllO *,FILE *);

void PerllO_setlinebuf(PerllO *);

long PerllO_tell(PerllO *);

int PerllO_seek(PerllO *off_t,int);
int PerllO_getpos(PerllO *,Fpos_t *)
int PerllO_setpos(PerllO *,Fpos_t *)
void PerllO_rewind(PerllO *);

int PerllO_has_base(PerllO *);
int PerllO_has_cntptr(PerllO *);
int PerllO_fast_gets(PerllO *);
int PerllO_canset_cnt(PerllO *);

char *PerllO_get_ptr(PerllO *);

int PerllO_get_cnt(PerllO *);

void PerllO_set_cnt(PerllO *,int);

void PerllO_set ptrcnt(PerllO *,char *,int);
char *PerllO_get_base(PerllO *);

int PerllO_get_bufsiz(PerllO *);

DESCRIPTION

Perl's source code should use the above functions instead of those defined in ABi8iodis perlio.hwill
the#define them to the I/O mechanism selected at Configure time.

The functions are modeled on thosatidio.h but parameter order has been "tidied up a little".

278 Version 5.003 08-0Oct-1996

perlapio Perl Programmers Reference Guide perlapio

PerllO *

This takes the place of FILE *. Unlike FILE * it should be treated as opaque (it is probably safe to
assume it is a pointer to something).

PerllO_stdin() , PerllO_stdout() , PerllO_stderr()

Use these rather thatdin |, stdout , stderr . They are written to look like "function calls" rather
than variables because this makes it easienake thenfunction calls if platform cannot export data
to loaded modules, or if (say) different "threads" might have different values.

PerllO_open(path, mode) , PerllO_fdopen(fd,mode)

These correspond fopen()/fdopen() arguments are the same.
PerllO_printf(f,fmt,...) , PerllO_vprintf(f,fmt,a)

These are ifprintf() Ivfprintf equivalents.

PerllO_stdoutf(fmt,...)

This is printf() equivalent. printf is #defined to this function, so it is (currently) legal to use
printf(fmt,...) in perl sources.

PerllO_read(f,buf,count) , PerllO_write(f,buf,count)

These correspond foead() andfwrite() . Note that arguments are different, there is only one
"count" and order has "file" first.

PerllO_close(f)
PerllO_puts(s,f) , PerllO_putc(c,f)

These correspond fputs() andfputc() . Note that arguments have been revised to have "file"
first.

PerllO_ungetc(c,f)
This corresponds tongetc() . Note that arguments have been revised to have "file" first.

PerllO_getc(f)
This corresponds tgetc()

PerllO_eof(f)
This corresponds tieof()

PerllO_error(f)
This corresponds tierror()

PerllO_fileno(f)

This corresponds tfileno() , hote that on some platforms, the meaning of "fileno" may not match
UNIX.

PerllO_clearerr(f)
This corresponds tdearerr() , I.e. clears ‘eof’ and ‘error’ flags for the "stream".

PerllO_flush(f)
This corresponds tfflush()

PerllO_tell(f)

This corresponds titell()
PerllO_seek(f,0,w)

This corresponds tiseek()

PerllO_getpos(f,p) , PerllO_setpos(f,p)

These correspond tigetpos() andfsetpos() . If platform does not have the stdio calls then
they are implemented in termsérlO_tell() andPerllO_seek()

08-0Oct-1996 Version 5.003 279

perlapio Perl Programmers Reference Guide perlapio

PerllO_rewind(f)
This corresponds tewind() . Note may be redefined in termsRérlIO_seek() at some point.

PerllO_tmpfile()
This corresponds tempfile() , i.e. returns an anonymous PerllO which will automatically be
deleted when closed.
Co-existence with stdio

There is outline support for co—existence of PerllO with stdio. Obviously if PerllO is implemented in terms
of stdio there is no problem. However if perlio is implemented on top of (say) sfio then mechanisms must
exist to create a FILE * which can be passed to library code which is going to use stdio calls.

PerllO_importFILE(f,flags)
Used to get a PerllO * from a FILE *. May need additional arguments, interface under review.

PerllO_exportFILE(f,flags)

Given an PerllO * return a ‘native’ FILE * suitable for passing to code expecting to be compiled and
linked with ANSI Cstdio.h

The fact that such a FILE * has been ‘exported’ is recorded, and may affect future PerllO operations
on the original PerllO *.

PerllO_findFILE(f)
Returns previously ‘exported’ FILE * (if any). Place holder until interface is fully defined.

PerllO_releaseFILE(p,f)
Calling PerllO_releaseFILE informs PerllO that all use of FILE * is complete. It is removed from list
of ‘exported’ FILE *s, and associated PerllO * should revert to original behaviour.
PerllO_setlinebuf(f)
This corresponds teetlinebuf() . Use is deprecated pending further discussion. (Perladye
uses it when "dumping" is has nothing to do vithauto—flush.)

In addition to user API above there is an "implementation" interface which allows perl to get at internals of
PerllO. The following calls correspond to the various FILE_xxx macros determined by Configure. This
section is really only of interest to those concerned with detailed perl-core behaviour or implementing a
PerllO mapping.
PerllO_has_cntptr(f)
Implementation can return pointer to current position in the "buffer" and a count of bytes available in
the buffer.
PerllO_get_ptr(f)
Return pointer to next readable byte in buffer.

PerllO_get_cnt(f)
Return count of readable bytes in the buffer.

PerllO_canset_cnt(f)
Implementation can adjust its idea of number of bytes in the buffer.

PerllO_fast_gets(f)
Implementation has all the interfaces required to allow perls fast code to handle <FILE mechanism.
PerllO_fast_gets(f) = PerllO_has_cntptr(f) && \

PerllO_canset_cnt(f) && \
‘Can set pointer into buffer’

280 Version 5.003 08-0Oct-1996

perlapio Perl Programmers Reference Guide perlapio

PerllO_set_ptrent(f,p,c)
Set pointer into buffer, and a count of bytes still in the buffer. Should only be used to set pointer to
within range implied by previous calls RerllO_get_ptr andPerllO_get_cnt

PerllO_set_cnit(f,c)

Obscure — set count of bytes in the buffer. Deprecated. Currently only used in doio.c to force count <
-1 to —1. Perhaps should be PerllO_set_empty or similar. This call may actually do nothing if "count"
is deduced from pointer and a "limit".

PerllO_has_base(f)

Implementation has a buffer, and can return pointer to whole buffer and its size. Used by-pel for
-B tests. Other uses would be very obscure...

PerllO_get_base(f)
Returnstart of buffer.

PerllO_get_bufsiz(f)
Returntotal sizeof buffer.

08-0Oct-1996 Version 5.003 281

perixs Perl Programmers Reference Guide perixs

NAME
perlxs — XS language reference manual

DESCRIPTION

Introduction

XS is a language used to create an extension interface between Perl and some C library which one wishes to
use with Perl. The XS interface is combined with the library to create a new library which can be linked to
Perl. AnXSUB is a function in the XS language and is the core component of the Perl application interface.

The XS compiler is calledsubpp. This compiler will embed the constructs necessary to let an XSUB,
which is really a C function in disguise, manipulate Perl values and creates the glue necessary to let Perl
access the XSUB. The compiler usgpemaps to determine how to map C function parameters and
variables to Perl values. The default typemap handles many common C types. A supplement typemap must
be created to handle special structures and types for the library being linked.

Seeperlxstutfor a tutorial on the whole extension creation process.

On The Road
Many of the examples which follow will concentrate on creating an interface between Perl and the ONC+
RPC bind library functions. Thgcb_gettime() function is used to demonstrate many features of the

XS language. This function has two parameters; the first is an input parameter and the second is an output
parameter. The function also returns a status value.

bool_t rpcb_gettime(const char *host, time_t *timep);
From C this function will be called with the following statements.

#include <rpc/rpc.h>

bool_t status;

time_t timep;

status = rpcb_gettime("localhost”, &timep);

If an XSUB is created to offer a direct translation between this function and Perl, then this XSUB will be
used from Perl with the following code. THstatus and$timep variables will contain the output of the
function.

use RPC;
$status = rpcb_gettime("localhost", $timep);

The following XS file shows an XS subroutine, or XSUB, which demonstrates one possible interface to the
rpcb_gettime() function. This XSUB represents a direct translation between C and Perl and so
preserves the interface even from Perl. This XSUB will be invoked from Perl with the usage shown above.
Note that the first three #include statementsEX¥TERN.h, perl.h , andXSUB.h, will always be present

at the beginning of an XS file. This approach and others will be expanded later in this document.

#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
#include <rpc/rpc.h>

MODULE = RPC PACKAGE = RPC

bool_t
rpcb_gettime(host,timep)
char *host
time_t &timep
OUTPUT:
timep

282 Version 5.003 08-0Oct-1996

perixs Perl Programmers Reference Guide perixs

Any extension to Perl, including those containing XSUBs, should have a Perl module to serve as the
bootstrap which pulls the extension into Perl. This module will export the extension's functions and
variables to the Perl program and will cause the extension's XSUBs to be linked into Perl. The following
module will be used for most of the examples in this document and should be used from Perl wgi¢h the
command as shown earlier. Perl modules are explained in more detail later in this document.

package RPC;

require Exporter;

require Dynal.oader;

@ISA = gw(Exporter DynalLoader);
@EXPORT = qw(rpcb_gettime);

bootstrap RPC;
1

Throughout this document a variety of interfaces torgob_gettime() XSUB will be explored. The
XSUBs will take their parameters in different orders or will take different numbers of parameters. In each
case the XSUB is an abstraction between Perl and the mgalbCgettime() function, and the XSUB

must always ensure that the reaéb_gettime() function is called with the correct parameters. This
abstraction will allow the programmer to create a more Perl-like interface to the C function.

The Anatomy of an XSUB

The following XSUB allows a Perl program to access a C library function cgitéd . The XSUB will
imitate the C function which takes a single argument and returns a single value.

double
sin(x)
double x
When using C pointers the indirection operatoshould be considered part of the type and the address

operator& should be considered part of the variable, as is demonstratedrptithgettime() function
above. See the section on typemaps for more about handling qualifiers and unary operators in C types.

The function name and the return type must be placed on separate lines.

INCORRECT CORRECT
double sin(x) double
double x sin(x)

double x

The function body may be indented or left-adjusted. The following example shows a function with its body
left-adjusted. Most examples in this document will indent the body.

CORRECT

double
sin(x)
double x

The Argument Stack

The argument stack is used to store the values which are sent as parameters to the XSUB and to store the
XSUB's return value. In reality all Perl functions keep their values on this stack at the same time, each
limited to its own range of positions on the stack. In this document the first position on that stack which
belongs to the active function will be referred to as position 0 for that function.

XSUBs refer to their stack arguments with the m&F¢x), wherex refers to a position in this XSUB's part

of the stack. Position O for that function would be known to the XSUB as ST(0). The XSUB's incoming
parameters and outgoing return values always begin at ST(0). For many simple caselspgheompiler

will generate the code necessary to handle the argument stack by embedding code fragments found in the
typemaps. In more complex cases the programmer must supply the code.

08-0Oct-1996 Version 5.003 283

perixs

Perl Programmers Reference Guide perixs

The RETVAL Variable

The RETVAL variable is a magic variable which always matches the return type of the C library function.
The xsubpp compiler will supply this variable in each XSUB and by default will use it to hold the return
value of the C library function being called. In simple cases the value of RETVAL will be placed in ST(0)
of the argument stack where it can be received by Perl as the return value of the XSUB.

If the XSUB has a return type @bid then the compiler will not supply a RETVAL variable for that
function. When using the PPCODE: directive the RETVAL variable may not be needed.

The MODULE Keyword

The MODULE keyword is used to start the XS code and to specify the package of the functions which are
being defined. All text preceding the first MODULE keyword is considered C code and is passed through to
the output untouched. Every XS module will have a bootstrap function which is used to hook the XSUBs
into Perl. The package name of this bootstrap function will match the value of the last MODULE statement
in the XS source files. The value of MODULE should always remain constant within the same XS file,
though this is not required.

The following example will start the XS code and will place all functions in a package named RPC.

MODULE = RPC

The PACKAGE Keyword

When functions within an XS source file must be separated into packages the PACKAGE keyword should be
used. This keyword is used with the MODULE keyword and must follow immediately after it when used.

MODULE = RPC PACKAGE = RPC

[XS code in package RPC]
MODULE = RPC PACKAGE = RPCB
[XS code in package RPCB]
MODULE = RPC PACKAGE = RPC

[XS code in package RPC]

Although this keyword is optional and in some cases provides redundant information it should always be
used. This keyword will ensure that the XSUBs appear in the desired package.

The PREFIX Keyword

The PREFIX keyword designates prefixes which should be removed from the Perl function names. If the C
function is rpcb_gettime() and the PREFIX value igpcb_ then Perl will see this function as
gettime()

This keyword should follow the PACKAGE keyword when used. If PACKAGE is not used then PREFIX
should follow the MODULE keyword.

MODULE = RPC PREFIX =rpc_
MODULE = RPC PACKAGE = RPCB PREFIX =rpcb_

The OUTPUT: Keyword

The OUTPUT: keyword indicates that certain function parameters should be updated (new values made
visible to Perl) when the XSUB terminates or that certain values should be returned to the calling Perl
function. For simple functions, such as #ie() function above, the RETVAL variable is automatically
designated as an output value. In more complex functionssti®pp compiler will need help to determine

which variables are output variables.

This keyword will normally be used to complement the CODE: keyword. The RETVAL variable is not
recognized as an output variable when the CODE: keyword is present. The OUTPUT: keyword is used in
this situation to tell the compiler that RETVAL really is an output variable.

284

Version 5.003 08-0ct—-1996

perixs Perl Programmers Reference Guide perixs

The OUTPUT: keyword can also be used to indicate that function parameters are output variables. This may
be necessary when a parameter has been modified within the function and the programmer would like the
update to be seen by Perl.

bool_t
rpcb_gettime(host,timep)
char *host
time_t &timep
OUTPUT:
timep

The OUTPUT: keyword will also allow an output parameter to be mapped to a matching piece of code rather
than to a typemap.

bool_t
rpcb_gettime(host,timep)
char *host
time_t &timep
OUTPUT:
timep sv_setnv(ST(1), (double)timep);

The CODE: Keyword

This keyword is used in more complicated XSUBs which require special handling for the C function. The
RETVAL variable is available but will not be returned unless it is specified under the OUTPUT: keyword.

The following XSUB is for a C function which requires special handling of its parameters. The Perl usage is
given first.

$status = rpcb_gettime("localhost", $timep);
The XSUB follows.

bool_t
rpcb_gettime(host,timep)
char *host
time_t timep
CODE:
RETVAL = rpcb_gettime(host, &timep);
OUTPUT:
timep
RETVAL

The INIT: Keyword
The INIT: keyword allows initialization to be inserted into the XSUB before the compiler generates the call
to the C function. Unlike the CODE: keyword above, this keyword does not affect the way the compiler
handles RETVAL.

bool_t
rpcb_gettime(host,timep)
char *host
time_t &timep
INIT:
printf("# Host is %s\n", host);
OUTPUT:
timep

The NO_INIT Keyword

The NO_INIT keyword is used to indicate that a function parameter is being used as only an output value.
The xsubpp compiler will normally generate code to read the values of all function parameters from the

08-0Oct-1996 Version 5.003 285

perixs

Perl Programmers Reference Guide perixs

argument stack and assign them to C variables upon entry to the function. NO_INIT will tell the compiler
that some parameters will be used for output rather than for input and that they will be handled before the
function terminates.

The following example shows a variation of tipeb_gettime() function. This function uses the timep
variable as only an output variable and does not care about its initial contents.
bool_t
rpcb_gettime(host,timep)
char *host
time_t &timep = NO_INIT
OUTPUT:
timep

Initializing Function Parameters

Function parameters are normally initialized with their values from the argument stack. The typemaps
contain the code segments which are used to transfer the Perl values to the C parameters. The programmer,
however, is allowed to override the typemaps and supply alternate initialization code.

The following code demonstrates how to supply initialization code for function parameters. The
initialization code is eval‘d by the compiler before it is added to the output so anything which should be
interpreted literally, such as double quotes, must be protected with backslashes.

bool_t
rpcb_gettime(host,timep)
char *host = (char *)SvPV(ST(0),na);
time_t &timep = 0;
OUTPUT:
timep

This should not be used to supply default values for parameters. One would normally use this when a
function parameter must be processed by another library function before it can be used. Default parameters
are covered in the next section.

Default Parameter Values

Default values can be specified for function parameters by placing an assignment statement in the parameter
list. The default value may be a number or a string. Defaults should always be used on the right-most
parameters only.

To allow the XSUB forpch_gettime() to have a default host value the parameters to the XSUB could
be rearranged. The XSUB will then call the rgadb_gettime() function with the parameters in the
correct order. Perl will call this XSUB with either of the following statements.

$status = rpch_gettime($timep, $host);
$status = rpcb_gettime($timep);

The XSUB will look like the code which follows. A CODE: block is used to call the real
rpcb_gettime() function with the parameters in the correct order for that function.

bool_t
rpcb_gettime(timep,host="localhost")
char *host
time_t timep = NO_INIT
CODE:
RETVAL = rpcb_gettime(host, &timep);
OUTPUT:
timep
RETVAL

286

Version 5.003 08-0ct—-1996

perixs Perl Programmers Reference Guide perixs

The PREINIT: Keyword

The PREINIT: keyword allows extra variables to be declared before the typemaps are expanded. If a
variable is declared in a CODE: block then that variable will follow any typemap code. This may result in a
C syntax error. To force the variable to be declared before the typemap code, place it into a PREINIT: block.
The PREINIT: keyword may be used one or more times within an XSUB.

The following examples are equivalent, but if the code is using complex typemaps then the first example is
safer.

bool_t
rpcb_gettime(timep)
time_t timep = NO_INIT

PREINIT:
char *host = "localhost";
CODE:
RETVAL = rpcb_gettime(host, &timep);
OUTPUT:
timep
RETVAL

A correct, but error—prone example.

bool_t
rpcb_gettime(timep)
time_t timep = NO_INIT
CODE:
char *host = "localhost";
RETVAL = rpcb_gettime(host, &timep);
OUTPUT:
timep
RETVAL

The SCOPE: Keyword

The SCOPE: keyword allows scoping to be enabled for a particular XSUB. If enabled, the XSUB will
invoke ENTER and LEAVE automatically.

To support potentially complex type mappings, if a typemap entry used by this XSUB contains a comment
like /*scope*/ then scoping will automatically be enabled for that XSUB.

To enable scoping:
SCOPE: ENABLE

To disable scoping:
SCOPE: DISABLE

The INPUT: Keyword

The XSUB's parameters are usually evaluated immediately after entering the XSUB. The INPUT: keyword
can be used to force those parameters to be evaluated a little later. The INPUT: keyword can be used
multiple times within an XSUB and can be used to list one or more input variables. This keyword is used
with the PREINIT: keyword.

The following example shows how the input paramgteep can be evaluated late, after a PREINIT.

bool_t
rpcb_gettime(host,timep)
char *host
PREINIT:
time_t tt;

08-0Oct-1996 Version 5.003 287

perixs

Perl Programmers Reference Guide perixs

INPUT:
time_t timep
CODE:

RETVAL = rpcb_gettime(host, &tt);
timep = tt;

OUTPUT:
timep
RETVAL

The next example shows each input parameter evaluated late.

bool_t
rpcb_gettime(host,timep)
PREINIT:
time_t tt;
INPUT:
char *host
PREINIT:
char *h;
INPUT:
time_t timep
CODE:
h = host;
RETVAL = rpcb_gettime(h, &tt);
timep = tt;
OUTPUT:
timep
RETVAL

Variable—length Parameter Lists

XSUBs can have variable—length parameter lists by specifying an e{lipsis in the parameter list. This

use of the ellipsis is similar to that found in ANSI C. The programmer is able to determine the number of
arguments passed to the XSUB by examiningitdras variable which thexsubpp compiler supplies for

all XSUBs. By using this mechanism one can create an XSUB which accepts a list of parameters of
unknown length.

The hostparameter for thepcb_gettime() XSUB can be optional so the ellipsis can be used to indicate
that the XSUB will take a variable number of parameters. Perl should be able to call this XSUB with either
of the following statements.

$status = rpch_gettime($timep, $host);
$status = rpcb_gettime($timep);
The XS code, with ellipsis, follows.

bool_t
rpcb_gettime(timep, ...)
time_t timep = NO_INIT

PREINIT:
char *host = "localhost";
CODE:
if(items > 1)
host = (char *)SvPV(ST(1), na);
RETVAL = rpcb_gettime(host, &timep);
OUTPUT:
timep
RETVAL

288

Version 5.003 08-0ct—-1996

perixs Perl Programmers Reference Guide perixs

The PPCODE: Keyword

The PPCODE: keyword is an alternate form of the CODE: keyword and is used to xslitipe compiler

that the programmer is supplying the code to control the argument stack for the XSUBs return values.
Occasionally one will want an XSUB to return a list of values rather than a single value. In these cases one
must use PPCODE: and then explicitly push the list of values on the stack. The PPCODE: and CODE:
keywords are not used together within the same XSUB.

The following XSUB will call the Crpcb_gettime() function and will return its two output values,
timep and status, to Perl as a single list.
void
rpcb_gettime(host)
char *host

PREINIT:
time_t timep;
bool t status;
PPCODE:
status = rpcb_gettime(host, &timep);
EXTEND(sp, 2);
PUSHs(sv_2mortal(newSViv(status)));
PUSHs(sv_2mortal(newSViv(timep)));

Notice that the programmer must supply the C code necessary to have thelregéttime() function
called and to have the return values properly placed on the argument stack.

Thevoid return type for this function tells thesubpp compiler that the RETVAL variable is not needed or
used and that it should not be created. In most scenarios the void return type should be used with the
PPCODE: directive.

The EXTEND() macro is used to make room on the argument stack for 2 return values. The PPCODE:
directive causes thesubpp compiler to create a stack pointer caldgd and it is this pointer which is being
used in th&aEXTEND() macro. The values are then pushed onto the stack wiEl.iBéls() macro.

Now therpcb_gettime() function can be used from Perl with the following statement.
($status, $timep) = rpcb_gettime("localhost");

Returning Undef And Empty Lists

Occasionally the programmer will want to simply returrdef or an empty list if a function fails rather

than a separate status value. Theb_gettime() function offers just this situation. If the function
succeeds we would like to have it return the time and if it fails we would like to have undef returned. In the
following Perl code the value 8timep will either be undef or it will be a valid time.

$timep = rpcb_gettime("localhost");

The following XSUB uses theoid return type to disable the generation of the RETVAL variable and uses
a CODE: block to indicate to the compiler that the programmer has supplied all the necessary code. The
sv_newmortal() call will initialize the return value to undef, making that the default return value.

void
rpcb_gettime(host)
char * host
PREINIT:
time_t timep;
bool tx;
CODE:
ST(0) = sv_newmortal();
if(rpcb_gettime(host, &timep))
sv_setnv(ST(0), (double)timep);

08-0Oct-1996 Version 5.003 289

perixs Perl Programmers Reference Guide perixs

The next example demonstrates how one would place an explicit undef in the return value, should the need
arise.

void
rpcb_gettime(host)
char * host
PREINIT:
time_t timep;
bool_tx;
CODE:
ST(0) = sv_newmortal();
if(rpcb_gettime(host, &timep)){
sv_setnv(ST(0), (double)timep);
}
else{
ST(0) = &sv_undef;
}

To return an empty list one must use a PPCODE: block and then not push return values on the stack.

void
rpcb_gettime(host)
char *host
PREINIT:
time_t timep;
PPCODE:
if(rpcb_gettime(host, &timep))
PUSHs(sv_2mortal(newSViv(timep)));
else{
/* Nothing pushed on stack, so an empty */
[* list is implicitly returned. */

}

Some people may be inclined to include an explatiirn in the above XSUB, rather than letting control
fall through to the end. In those situatioRSRETURN_EMPT&hould be used, instead. This will ensure
that the XSUB stack is properly adjusted. Con&< LISTING in perlgut$or otherXSRETURMnacros.

The REQUIRE: Keyword
The REQUIRE: keyword is used to indicate the minimum version ofgblpp compiler needed to compile
the XS module. An XS module which contains the following statement will only compilexautbpp
version 1.922 or greater:

REQUIRE: 1.922

The CLEANUP: Keyword
This keyword can be used when an XSUB requires special cleanup procedures before it terminates. When
the CLEANUP: keyword is used it must follow any CODE:, PPCODE:, or OUTPUT: blocks which are
present in the XSUB. The code specified for the cleanup block will be added as the last statements in the
XSUB.

The BOOT: Keyword
The BOOT: keyword is used to add code to the extension‘s bootstrap function. The bootstrap function is
generated by thesubpp compiler and normally holds the statements necessary to register any XSUBs with
Perl. With the BOOT: keyword the programmer can tell the compiler to add extra statements to the bootstrap
function.

This keyword may be used any time after the first MODULE keyword and should appear on a line by itself.
The first blank line after the keyword will terminate the code block.

290 Version 5.003 08-0Oct-1996

perixs Perl Programmers Reference Guide perixs

BOOT:
The following message will be printed when the
bootstrap function executes.
printf("Hello from the bootstrap\n");
The VERSIONCHECK: Keyword

The VERSIONCHECK: keyword correspondsxXsubpp's —versioncheck and-—noversioncheck

options. This keyword overrides the commandline options. Version checking is enabled by default. When
version checking is enabled the XS module will attempt to verify that its version matches the version of the
PM module.

To enable version checking:
VERSIONCHECK: ENABLE

To disable version checking:
VERSIONCHECK: DISABLE

The PROTOTYPES: Keyword

The PROTOTYPES: keyword correspondsxsubpp's —prototypes and —noprototypes options.

This keyword overrides the commandline options. Prototypes are enabled by default. When prototypes are
enabled XSUBs will be given Perl prototypes. This keyword may be used multiple times in an XS module to
enable and disable prototypes for different parts of the module.

To enable prototypes:
PROTOTYPES: ENABLE

To disable prototypes:
PROTOTYPES: DISABLE

The PROTOTYPE: Keyword

This keyword is similar to the PROTOTYPES: keyword above but can be used tx$oigep to use a
specific prototype for the XSUB. This keyword overrides all other prototype options and keywords but
affects only the current XSUB. ConsRBitototypesor information about Perl prototypes.

bool_t
rpcb_gettime(timep, ...)
time_t timep = NO_INIT
PROTOTYPE: $;$

PREINIT:
char *host = "localhost";
CODE:
if(items > 1)
host = (char *)SvPV(ST(1), na);
RETVAL = rpcb_gettime(host, &timep);
OUTPUT:
timep
RETVAL

The ALIAS: Keyword

The ALIAS: keyword allows an XSUB to have two more more unique Perl names and to know which of
those names was used when it was invoked. The Perl names may be fully—qualified with package names.
Each alias is given an index. The compiler will setup a variable dalledhich contain the index of the

alias which was used. When the XSUB is called with its declared mamal be O.

The following example will create aliase®©O0::gettime() andBAR::getit() for this function.

bool_t

08-0Oct-1996 Version 5.003 291

perixs

Perl Programmers Reference Guide perixs

rpcb_gettime(host,timep)
char *host
time_t &timep
ALIAS:
FOO::gettime =1
BAR::getit = 2
INIT:
printf("# ix = %d\n", ix);
OUTPUT:
timep

The INCLUDE: Keyword

This keyword can be used to pull other files into the XS module. The other files may have XS code.
INCLUDE: can also be used to run a command to generate the XS code to be pulled into the module.

The file Rpcbl1.xshcontains ourpcb_gettime() function:

bool t
rpcb_gettime(host,timep)
char *host
time_t &timep
OUTPUT:
timep

The XS module can use INCLUDE: to pull that file into it.
INCLUDE: Rpcb1.xsh

If the parameters to the INCLUDE: keyword are followed by a pipahen the compiler will interpret the
parameters as a command.

INCLUDE: cat Rpcbl.xsh |

The CASE: Keyword

The CASE: keyword allows an XSUB to have multiple distinct parts with each part acting as a virtual
XSUB. CASE: is greedy and if it is used then all other XS keywords must be contained within a CASE.:.
This means nothing may precede the first CASE: in the XSUB and anything following the last CASE: is
included in that case.

A CASE: might switch via a parameter of the XSUB, viai¥heALIAS: variable (see

"The ALIAS: Keyword; or maybe via thééems variable (se€Variable-length Parameter List}" The

last CASE: becomes thiefault case if it is not associated with a conditional. The following example shows
CASE switched viax with a functionrpcb_gettime() having an aliax_gettime() . When the
function is called aspcb_gettime() its parameters are the usu@har *host, time_t

*timep) , but when the function is called asgettime() its parameters are reversdtdme_t

*timep, char *host)

long
rpcb_gettime(a,b)
CASE: ix ==
ALIAS:
X_gettime =1
INPUT:
#'a’ is timep, 'b’ is host
char *b
time ta=NO_INIT
CODE:
RETVAL = rpcb_gettime(b, &a);
OUTPUT:

292

Version 5.003 08-0ct—-1996

perixs Perl Programmers Reference Guide perixs

a
RETVAL
CASE:
#'a’ is host, b’ is timep
char *a
time_t &b = NO_INIT
OUTPUT:
b
RETVAL

That function can be called with either of the following statements. Note the different argument lists.
$status = rpch_gettime($host, $timep);
$status = x_gettime($timep, $host);

The & Unary Operator

The & unary operator is used to tell the compiler that it should dereference the object when it calls the C
function. This is used when a CODE: block is not used and the object is a not a pointer type (the object is an
int orlong butnotant* orlong*).

The following XSUB will generate incorrect C code. The xsubpp compiler will turn this into code which
callsrpcb_gettime() with parametergchar *host, time_t timep) , but the real
rpcb_gettime() wants thégimep parameter to be of tygeme_t* rather thartime_t

bool_t
rpcb_gettime(host,timep)
char *host
time_t timep
OUTPUT:
timep

That problem is corrected by using &®perator. The xsubpp compiler will now turn this into code which
callsrpcb_gettime() correctly with parametefghar *host, time_t *timep) . It does this by
carrying the& through, so the function call looks likecb_gettime(host, &timep).

bool_t
rpcb_gettime(host,timep)
char *host
time_t &timep
OUTPUT:
timep

Inserting Comments and C Preprocessor Directives

C preprocessor directives are allowed within BOOT:, PREINIT: INIT:, CODE:, PPCODE: and CLEANUP:
blocks, as well as outside the functions. Comments are allowed anywhere after the MODULE keyword. The
compiler will pass the preprocessor directives through untouched and will remove the commented lines.

Comments can be added to XSUBs by placing & the first non—-whitespace of a line. Care should be
taken to avoid making the comment look like a C preprocessor directive, lest it be interpreted as such. The
simplest way to prevent this is to put whitespace in front oftthe

If you use preprocessor directives to choose one of two versions of a function, use

#if ... versionl
#else /* ... version2 */
#endif

and not

#if ... versionl

08-0Oct-1996 Version 5.003 293

perixs

Perl Programmers Reference Guide perixs

#endif
#if ... version2
#endif

because otherwise xsubpp will believe that you made a duplicate definition of the function. Also, put a blank
line before the #else/#endif so it will not be seen as part of the function body.

Using XS With C++

If a function is defined as a C++ method then it will assume its first argument is an object pointer. The
object pointer will be stored in a variable called THIS. The object should have been created by C++ with the
new() function and should be blessed by Perl with gtesetref pv() macro. The blessing of the
object by Perl can be handled by a typemap. An example typemap is shown at the end of this section.

If the method is defined as static it will call the C++ function usinglags::method() syntax. If the
method is not static the function will be called usingThdS—>method() syntax.

The next examples will use the following C++ class.

class color {
public:
color();
~color();
int blue();
void set_blue(int);

private:
int c_blue;
2
The XSUBs for théblue() andset_blue() methods are defined with the class name but the parameter
for the object (THIS, or "self") is implicit and is not listed.
int
color::blue()
void
color::set_blue(val)
int val

Both functions will expect an object as the first parameter. The xsubpp compiler will call thafTétj@ct
and will use it to call the specified method. So in the C++ codeéltlef) andset_blue() methods
will be called in the following manner.

RETVAL = THIS->blue();
THIS—>set_blue(val);

If the function's name IDESTROY then the C+idelete function will be called andHIS will be given
as its parameter.

void
color::DESTROY()

The C++ code will caltlelete
delete THIS;

If the function‘s name isew then the C+#new function will be called to create a dynamic C++ object. The
XSUB will expect the class name, which will be kept in a variable c&le@lSS to be given as the first
argument.

color *
color::new()

294

Version 5.003 08-0ct—-1996

perixs Perl Programmers Reference Guide perixs

The C++ code will calhew.
RETVAL = new color();
The following is an example of a typemap that could be used for this C++ example.

TYPEMAP
color * O_OBJECT

OUTPUT
The Perl object is blessed into 'CLASS’, which should be a
char* having the name of the package for the blessing.
O_OBJECT

sv_setref_pv($arg, CLASS, (void*)$var);

INPUT
O_OBJECT
if(sv_isobject($arg) && (SVTYPE(SvRV($arg)) == SVt_PVMG))
$var = ($type)SvIV((SV*)SVRV($arg));
else{
warn(\"${Package}::$func_name() —— $var is not a blessed SV reference
XSRETURN_UNDEF;

}

Interface Strategy

When designing an interface between Perl and a C library a straight translation from C to XS is often
sufficient. The interface will often be very C-like and occasionally nonintuitive, especially when the C
function modifies one of its parameters. In cases where the programmer wishes to create a more Perl-like
interface the following strategy may help to identify the more critical parts of the interface.

Identify the C functions which modify their parameters. The XSUBs for these functions may be able to
return lists to Perl, or may be candidates to return undef or an empty list in case of failure.

Identify which values are used by only the C and XSUB functions themselves. If Perl does not need to
access the contents of the value then it may not be necessary to provide a translation for that value from C to
Perl.

Identify the pointers in the C function parameter lists and return values. Some pointers can be handled in XS
with the& unary operator on the variable name while others will require the use of the * operator on the type
name. In general it is easier to work with &eperator.

Identify the structures used by the C functions. In many cases it may be helpful to use the T_PTROBJ
typemap for these structures so they can be manipulated by Perl as blessed objects.

Perl Objects And C Structures

When dealing with C structures one should select efthBTROBJ or T_PTRREF for the XS type. Both

types are designed to handle pointers to complex objects. The T_PTRREF type will allow the Perl object to
be unblessed while the T_PTROBJ type requires that the object be blessed. By using T_PTROBJ one can
achieve a form of type—checking because the XSUB will attempt to verify that the Perl object is of the
expected type.

The following XS code shows thyetnetconfigent() function which is used with ONC+ TIRPC. The
getnetconfigent() function will return a pointer to a C structure and has the C prototype shown
below. The example will demonstrate how the C pointer will become a Perl reference. Perl will consider
this reference to be a pointer to a blessed object and will attempt to call a destructor for the object. A
destructor will be provided in the XS source to free the memory usedetnetconfigent()

Destructors in XS can be created by specifying an XSUB function whose name ends with the word
DESTROY. XS destructors can be used to free memory which may have been malloc‘'d by another XSUB.

struct netconfig *getnetconfigent(const char *netid);

08-0Oct-1996 Version 5.003 295

perixs

Perl Programmers Reference Guide perixs

A typedef will be created fostruct netconfig . The Perl object will be blessed in a class matching

the name of the C type, with the BBy appended, and the name should not have embedded spaces if it will

be a Perl package name. The destructor will be placed in a class corresponding to the class of the object and
the PREFIX keyword will be used to trim the name to the word DESTROQOY as Perl will expect.

typedef struct netconfig Netconfig;
MODULE = RPC PACKAGE =RPC

Netconfig *
getnetconfigent(netid)
char *netid

MODULE = RPC PACKAGE = NetconfigPtr PREFIX = rpcb_

void
rpcbh_DESTROY (netconf)
Netconfig *netconf
CODE:
printf("Now in NetconfigPtr::DESTROY\n");
free(netconf);

This example requires the following typemap entry. Consult the typemap section for more information about
adding new typemaps for an extension.

TYPEMAP
Netconfig * T_PTROBJ

This example will be used with the following Perl statements.

use RPC;
$netconf = getnetconfigent("udp");

When Perl destroys the object referenced$hgtconf it will send the object to the supplied XSUB
DESTROY function. Perl cannot determine, and does not care, that this object is a C struct and not a Perl
object. In this sense, there is no difference between the object created dstribeonfigent()

XSUB and an object created by a normal Perl subroutine.

The Typemap

The typemap is a collection of code fragments which are used bgubep compiler to map C function
parameters and values to Perl values. The typemap file may consist of three sectiond YARPEMAP

INPUT, andOUTPUT The INPUT section tells the compiler how to translate Perl values into variables of
certain C types. The OUTPUT section tells the compiler how to translate the values from certain C types
into values Perl can understand. The TYPEMAP section tells the compiler which of the INPUT and
OUTPUT code fragments should be used to map a given C type to a Perl value. Each of the sections of the
typemap must be preceded by one of the TYPEMAP, INPUT, or OUTPUT keywords.

The default typemap in thext directory of the Perl source contains many useful types which can be used
by Perl extensions. Some extensions define additional typemaps which they keep in their own directory.
These additional typemaps may reference INPUT and OUTPUT maps in the main typemaqsubpe
compiler will allow the extension‘'s own typemap to override any mappings which are in the default
typemap.

Most extensions which require a custom typemap will need only the TYPEMAP section of the typemap file.
The custom typemap used in tyetnetconfigent() example shown earlier demonstrates what may be

the typical use of extension typemaps. That typemap is used to equate a C structure with the T_PTROBJ
typemap. The typemap used dgtnetconfigent() is shown here. Note that the C type is separated
from the XS type with a tab and that the C unary opetatsrconsidered to be a part of the C type name.

TYPEMAP
Netconfig *<tab>T_PTROBJ

296

Version 5.003 08-0ct—-1996

perixs Perl Programmers Reference Guide perixs

EXAMPLES
File RPC.xs : Interface to some ONC+ RPC bind library functions.

#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"

#include <rpc/rpc.h>
typedef struct netconfig Netconfig;
MODULE = RPC PACKAGE =RPC

void
rpcb_gettime(host="localhost")
char *host
PREINIT:
time_t timep;
CODE:
ST(0) = sv_newmortal();
if(rpcb_gettime(host, &timep))
sv_setnv(ST(0), (double)timep);

Netconfig *
getnetconfigent(netid="udp")
char *netid

MODULE = RPC PACKAGE = NetconfigPtr PREFIX = rpcb_

void

rpcbh_DESTROY (netconf)
Netconfig *netconf
CODE:
printf("NetconfigPtr::DESTROY\n");
free(netconf);

File typemap : Custom typemap for RPC.xs.

TYPEMAP
Netconfig * T_PTROBJ

File RPC.pm Perl module for the RPC extension.
package RPC;

require Exporter;

require Dynal.oader;

@ISA = gw(Exporter DynalLoader);

@EXPORT = qw(rpcb_gettime getnetconfigent);

bootstrap RPC;
1

File rpctest.pl : Perl test program for the RPC extension.
use RPC;

$netconf = getnetconfigent();
$a = rpcb_gettime();

print “time = $a\n";

print "netconf = $netconfin”;

08-0Oct-1996 Version 5.003 297

perixs Perl Programmers Reference Guide perixs

$netconf = getnetconfigent("tcp");
$a = rpcb_gettime("poplar");
print “time = $a\n";
print "netconf = $netconfin”;
XS VERSION
This document covers features supporteddnbpp 1.935.
AUTHOR

Dean Roehrickroehrich@cray.com=Jul 8, 1996

298 Version 5.003 08-0Oct-1996

perixstut Perl Programmers Reference Guide perixstut

NAME
perlXStut — Tutorial for XSUBs

DESCRIPTION

This tutorial will educate the reader on the steps involved in creating a Perl extension. The reader is assumed
to have access fmerlgutsandperlxs

This tutorial starts with very simple examples and becomes more complex, with each new example adding
new features. Certain concepts may not be completely explained until later in the tutorial in order to slowly
ease the reader into building extensions.

VERSION CAVEAT

This tutorial tries hard to keep up with the latest development versions of Perl. This often means that it is
sometimes in advance of the latest released version of Perl, and that certain features described here might not
work on earlier versions. This section will keep track of when various features were added to Perl 5.

° In versions of 5.002 prior to the gamma version, the test script in Example 1 will not function properly.
You need to change the "use lib" line to read:
use lib "./blib’;

° In versions of 5.002 prior to version beta 3, the line in the .xs file about "PROTOTYPES: DISABLE"
will cause a compiler error. Simply remove that line from the file.

° In versions of 5.002 prior to version 5.002b1h, the test.pl file was not automatically created by h2xs.
This means that you cannot say "make test" to run the test script. You will need to add the following
line before the "use extension" statement:

use lib "./blib’;
° In versions 5.000 and 5.001, instead of using the above line, you will need to use the following line:
BEGIN { unshift(@INC, "./blib") }

° This document assumes that the executable named "perl" is Perl version 5. Some systems may have
installed Perl version 5 as "perl5".

DYNAMIC VERSUS STATIC

It is commonly thought that if a system does not have the capability to dynamically load a library, you
cannot build XSUBs. This is incorrect. Yoanbuild them, but you must link the XSUB's subroutines with
the rest of Perl, creating a new executable. This situation is similar to Perl 4.

This tutorial can still be used on such a system. The XSUB build mechanism will check the system and
build a dynamically-loadable library if possible, or else a static library and then, optionally, a new
statically-linked executable with that static library linked in.

Should you wish to build a statically-linked executable on a system which can dynamically load libraries,
you may, in all the following examples, where the command "make" with no arguments is executed, run the
command "make perl" instead.

If you have generated such a statically-linked executable by choice, then instead of saying "make test", you
should say "make test_static". On systems that cannot build dynamically—loadable libraries at all, simply
saying "make test" is sufficient.

EXAMPLE 1
Our first extension will be very simple. When we call the routine in the extension, it will print out a
well-known message and return.

Runh2xs —A -n Mytest . This creates a directory named Mytest, possibly under ext/ if that directory
exists in the current working directory. Several files will be created in the Mytest dir, including
MANIFEST, Makefile.PL, Mytest.pm, Mytest.xs, test.pl, and Changes.

08-0Oct-1996 Version 5.003 299

perixstut Perl Programmers Reference Guide perixstut

The MANIFEST file contains the names of all the files created.
The file Makefile.PL should look something like this:

use ExtUtils::MakeMaker;
See lib/ExtUtils/MakeMaker.pm for details of how to influence
the contents of the Makefile that is written.
WriteMakefile(
'NAME' =>'Mytest’,
'VERSION_FROM'’ => 'Mytest.pm’, # finds $VERSION
'LIBS =>["], #e.g.,-Im’
'DEFINE’ =>", #e.g.,,'-DHAVE_SOMETHING’
'INC’ =>" #e.g., —llusrf/include/other’
);
The file Mytest.pm should start with something like this:
package Mytest;

require Exporter;
require Dynaloader;

@ISA = gw(Exporter DynalLoader);

Items to export into callers namespace by default. Note: do not export

names by default without a very good reason. Use EXPORT_OK instead.
Do not simply export all your public functions/methods/constants.
@EXPORT = qw(

);
$VERSION =0.01";

bootstrap Mytest $VERSION;

Preloaded methods go here.

Autoload methods go after __ END__, and are processed by the autosplit progra
1

__END__

Below is the stub of documentation for your module. You better edit it!

And the Mytest.xs file should look something like this:

#ifdef __ cplusplus
extern "C" {

#endif

#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
#ifdef __ cplusplus

}
#endif

PROTOTYPES: DISABLE
MODULE = Mytest PACKAGE = Mytest
Let's edit the .xs file by adding this to the end of the file:

void
hello()
CODE:
printf("Hello, world\n");

300 Version 5.003 08-0Oct-1996

perixstut Perl Programmers Reference Guide perixstut

Now we'll run "perl Makefile.PL". This will create a real Makefile, which make needs. Its output looks
something like:

% perl Makefile.PL

Checking if your kit is complete...
Looks good

Writing Makefile for Mytest

%

Now, running make will produce output that looks something like this (some long lines shortened for
clarity):

% make

umask 0 && cp Mytest.pm ./blib/Mytest.pm

perl xsubpp —typemap typemap Mytest.xs >Mytest.tc && mv Mytest.tc Mytest.c
cc —c Mytest.c

Running Mkbootstrap for Mytest ()

chmod 644 Mytest.bs

LD_RUN_PATH=""1d —o ./blib/PA-RISC1.1/auto/Mytest/Mytest.sl —b Mytest.o
chmod 755 ./blib/PA-RISC1.1/auto/Mytest/Mytest.sl

cp Mytest.bs ./blib/PA-RISC1.1/auto/Mytest/Mytest.bs

chmod 644 ./blib/PA-RISC1.1/auto/Mytest/Mytest.bs

Now, although there is already a test.pl template ready for us, for this example only, we'll create a special
test script. Create a file called hello that looks like this:

#! Jopt/perl5/bin/perl
use ExtUtils::testlib;
use Mytest;
Mytest::hello();
Now we run the script and we should see the following output:

% perl hello
Hello, world!
%

EXAMPLE 2

Now let's add to our extension a subroutine that will take a single argument and return 1 if the argument is
even, 0 if the argument is odd.

Add the following to the end of Mytest.xs:

int

is_even(input)
int input
CODE:
RETVAL = (input % 2 == 0);
OUTPUT:
RETVAL

There does not need to be white space at the start of the "int input” line, but it is useful for improving
readability. The semi-colon at the end of that line is also optional.

Any white space may be between the "int" and "input". It is also okay for the four lines starting at the
"CODE:" line to not be indented. However, for readability purposes, it is suggested that you indent them 8
spaces (or one normal tab stop).

Now re—run make to rebuild our new shared library.

08-0Oct-1996 Version 5.003 301

perixstut Perl Programmers Reference Guide perixstut

Now perform the same steps as before, generating a Makefile from the Makefile.PL file, and running make.

In order to test that our extension works, we now need to look at the file test.pl. This file is set up to imitate
the same kind of testing structure that Perl itself has. Within the test script, you perform a number of tests to
confirm the behavior of the extension, printing "ok" when the test is correct, "not ok" when it is not. Change
the print statement in the BEGIN block to print "1..4", and add the following code to the end of the file:

print &Mytest::is_even(0) == 1 ? "ok 2" : "not ok 2", "\n";
print &Mytest::is_even(1l) == 0 ? "ok 3" : "not ok 3", "\n";
print &Mytest::is_even(2) == 1 ? "ok 4" : "not ok 4", "\n";

We will be calling the test script through the command "make test". You should see output that looks
something like this:

% make test

PERL_DL_NONLAZY=1 /opt/perl5.002b2/bin/perl (lots of —I arguments) test.pl
1.4

ok 1

ok 2

ok 3

ok 4

%

WHAT HAS GONE ON?

The program h2xs is the starting point for creating extensions. In later examples we'll see how we can use
h2xs to read header files and generate templates to connect to C routines.

h2xs creates a number of files in the extension directory. The file Makefile.PL is a perl script which will
generate a true Makefile to build the extension. We'll take a closer look at it later.

The files <extension>.pm and <extension>.xs contain the meat of the extension. The .xs file holds the C
routines that make up the extension. The .pm file contains routines that tell Perl how to load your extension.

Generating and invoking the Makefile created a directory blib (which stands for "build library") in the
current working directory. This directory will contain the shared library that we will build. Once we have
tested it, we can install it into its final location.

Invoking the test script via "make test" did something very important. It invoked perl with all-those
arguments so that it could find the various files that are part of the extension.

It is very important that while you are still testing extensions that you use "make test". If you try to run the
test script all by itself, you will get a fatal error.

Another reason it is important to use "make test" to run your test script is that if you are testing an upgrade to
an already—existing version, using "make test" insures that you use your new extension, not the
already—existing version.

When Perl sees ase extension; , it searches for a file with the same name as the use'd extension that
has a .pm suffix. If that file cannot be found, Perl dies with a fatal error. The default search path is
contained in the @INC array.

In our case, Mytest.pm tells perl that it will need the Exporter and Dynamic Loader extensions. It then sets
the @ISA and @EXPORT arrays and $8%ERSION scalar; finally it tells perl to bootstrap the module.
Perl will call its dynamic loader routine (if there is one) and load the shared library.

The two arrays that are set in the .pm file are very important. The @ISA array contains a list of other
packages in which to search for methods (or subroutines) that do not exist in the current package. The
@EXPORT array tells Perl which of the extension‘s routines should be placed into the calling package's
namespace.

It's important to select what to export carefully. Do NOT export method names and do NOT export anything
elseby defaultwithout a good reason.

302

Version 5.003 08-0ct—-1996

perixstut Perl Programmers Reference Guide perixstut

As a general rule, if the module is trying to be object-oriented then don‘t export anything. If it's just a
collection of functions then you can export any of the functions via another array, called @EXPORT_OK.

Seeperlmodfor more information.

The $VERSIONvariable is used to ensure that the .pm file and the shared library are "in sync" with each
other. Any time you make changes to the .pm or .xs files, you should increment the value of this variable.

WRITING GOOD TEST SCRIPTS

The importance of writing good test scripts cannot be overemphasized. You should closely follow the
"ok/not ok" style that Perl itself uses, so that it is very easy and unambiguous to determine the outcome of
each test case. When you find and fix a bug, make sure you add a test case for it.

By running "make test", you ensure that your test.pl script runs and uses the correct version of your
extension. If you have many test cases, you might want to copy Perl's test style. Create a directory named
"t", and ensure all your test files end with the suffix ".t". The Makefile will properly run all these test files.

EXAMPLE 3

Our third extension will take one argument as its input, round off that value, and seguhgentto the
rounded value.

Add the following to the end of Mytest.xs:

void
round(arg)
double arg
CODE:
if (arg > 0.0) {
arg = floor(arg + 0.5);
} else if (arg < 0.0) {
arg = ceil(arg — 0.5);
}else {
arg = 0.0;
}
OUTPUT:
arg

Edit the Makefile.PL file so that the corresponding line looks like this:
'LIBS =>[-Im], #e.g., -Im’

Generate the Makefile and run make. Change the BEGIN block to print out "1..9" and add the following to
test.pl:

$i = -1.5; &Mytest::round($i); print $i == -2.0 ? "ok 5" : "not ok 5", "\n";

$i = -1.1; &Mytest::round($i); print $i == -1.0 ? "ok 6" : "not ok 6", "\n";

$i = 0.0; &Mytest::round($i); print $i == 0.0 ? "ok 7" : "not ok 7", "\n";

$i = 0.5; &Mytest::round($i); print $i == 1.0 ? "ok 8" : "not ok 8", "\n";

$i = 1.2; &Mytest::round($i); print $i == 1.0 ? "ok 9" : "not ok 9", "\n";
Running "make test" should now print out that all nine tests are okay.

You might be wondering if you can round a constant. To see what happens, add the following line to test.pl
temporarily:

&Mytest::round(3);

Run "make test" and notice that Perl dies with a fatal error. Perl won't let you change the value of constants!

08-0Oct-1996 Version 5.003 303

perixstut Perl Programmers Reference Guide perixstut

WHAT'S NEW HERE?

Two things are new here. First, we've made some changes to Makefile.PL. In this case, we've specified an
extra library to link in, the math library libom. We'll talk later about how to write XSUBs that can call every
routine in a library.

Second, the value of the function is being passed back not as the function's return value, but through the
same variable that was passed into the function.

INPUT AND OUTPUT PARAMETERS

You specify the parameters that will be passed into the XSUB just after you declare the function return value
and name. Each parameter line starts with optional white space, and may have an optional terminating
semicolon.

The list of output parameters occurs after the OUTPUT: directive. The use of RETVAL tells Perl that you
wish to send this value back as the return value of the XSUB function. In Example 3, the value we wanted
returned was contained in the same variable we passed in, so we listed it (and not RETVAL) in the
OUTPUT: section.

THE XSUBPP COMPILER

The compiler xsubpp takes the XS code in the .xs file and converts it into C code, placing it in a file whose
suffix is .c. The C code created makes heavy use of the C functions within Perl.

THE TYPEMAP FILE

The xsubpp compiler uses rules to convert from Perl's data types (scalar, array, etc.) to C's data types (int,
char *, etc.). These rules are stored in the typemapbHERLLIB/ExtUtils/typemap). This file is
split into three parts.

The first part attempts to map various C data types to a coded flag, which has some correspondence with the
various Perl types. The second part contains C code which xsubpp uses for input parameters. The third part
contains C code which xsubpp uses for output parameters. We'll talk more about the C code later.

Let's now take a look at a portion of the .c file created for our extension.

XS(XS_Mytest_round)

{
dXSARGS;
if (items !1=1)
croak("Usage: Mytest::round(arg)");
{
double arg = (double)SVNV(ST(0)); /¥ XXXXX */
if (arg > 0.0) {
arg = floor(arg + 0.5);
} else if (arg < 0.0) {
arg = ceil(arg — 0.5);
}else {
arg = 0.0;
}
sv_setnv(ST(0), (double)arg); ¥ XXXXX */
}
XSRETURN(1);
}

Notice the two lines marked with "XXXXX". If you check the first section of the typemap file, you'll see
that doubles are of type T_DOUBLE. In the INPUT section, an argument that is T_DOUBLE is assigned to
the variable arg by calling the routine SYNV on something, then casting it to double, then assigned to the
variable arg. Similarly, in the OUTPUT section, once arg has its final value, it is passed to the sv_setnv
function to be passed back to the calling subroutine. These two functions are explgiagduits we'll

talk more later about what that "ST(0)" means in the section on the argument stack.

304

Version 5.003 08-0ct—-1996

perixstut Perl Programmers Reference Guide perixstut

WARNING

In general, it's not a good idea to write extensions that modify their input parameters, as in Example 3.
However, in order to better accommodate calling pre—existing C routines, which often do modify their input
parameters, this behavior is tolerated. The next example will show how to do this.

EXAMPLE 4

In this example, we'll now begin to write XSUB's that will interact with pre—defined C libraries. To begin
with, we will build a small library of our own, then let h2xs write our .pm and .xs files for us.

Create a new directory called Mytest2 at the same level as the directory Mytest. In the Mytest2 directory,
create another directory called mylib, and cd into that directory.

Here we'll create some files that will generate a test library. These will include a C source file and a header
file. We'll also create a Makefile.PL in this directory. Then we'll make sure that running make at the
Mytest2 level will automatically run this Makefile.PL file and the resulting Makefile.

In the testlib directory, create a file mylib.h that looks like this:
#define TESTVAL 4
extern double foo(int, long, const char*);

Also create a file mylib.c that looks like this:

#include <stdlib.h>
#include "./mylib.h"

double
foo(a, b, ¢)
int a;
long b;
const char * C;
{
return (a + b + atof(c) + TESTVAL);
}

And finally create a file Makefile.PL that looks like this:

use ExtUtils::MakeMaker;
$Verbose = 1;
WriteMakefile(
'NAME' => 'Mytest2::mylib’,
‘clean’ =>{’FILES’ =>libmylib.a’},
);

sub MY::postamble {

all :: static
static :: libmylib$(LIB_EXT)

libmylib$(LIB_EXT): $(O_FILES)
$(AR) cr libmylib$(LIB_EXT) $(O_FILES)
$(RANLIB) libmylib$(LIB_EXT)

}

We will now create the main top—level Mytest? files. Change to the directory above Mytest2 and run the
following command:

% h2xs —O —n Mytest2 ./Mytest2/mylib/mylib.h

08-0Oct-1996 Version 5.003 305

perixstut Perl Programmers Reference Guide perixstut

This will print out a warning about overwriting Mytest2, but that's okay. Our files are stored in
Mytest2/mylib, and will be untouched.

The normal Makefile.PL that h2xs generates doesn‘t know about the mylib directory. We need to tell it that
there is a subdirectory and that we will be generating a library in it. Let's add the following key-value pair
to the WriteMakefile call:

'MYEXTLIB’ => 'mylib/libmylib$(LIB_EXT)’,
and a new replacement subroutine too:

sub MY::postamble {

$(MYEXTLIB): mylib/Makefile
cd mylib && $(MAKE)

}

(Note: Most makes will require that there be a tab character that indents the line "cd &®ylib
$(MAKE)".)

Let's also fix the MANIFEST file so that it accurately reflects the contents of our extension. The single line
that says "mylib" should be replaced by the following three lines:

mylib/Makefile.PL

mylib/mylib.c

mylib/mylib.h
To keep our namespace nice and unpolluted, edit the .pm file and change the lines setting @EXPORT to

@EXPORT_OK (there are two: one in the line beginning "use vars" and one setting the array itself).
Finally, in the .xs file, edit the #include line to read:

#include "mylib/mylib.h"

And also add the following function definition to the end of the .xs file:

double

foo(a,b,c)
int a
long b
constchar* ¢
OUTPUT:
RETVAL

Now we also need to create a typemap file because the default Perl doesn't currently support the const char *
type. Create a file called typemap and place the following in it:

const char * T PV

Now run perl on the top-level Makefile.PL. Notice that it also created a Makefile in the mylib directory.
Run make and see that it does cd into the mylib directory and run make in there as well.

Now edit the test.pl script and change the BEGIN block to print "1..4", and add the following lines to the end
of the script:

print &Mytest2::foo(1, 2, "Hello, world!") == 7 ? "ok 2\n" : "not ok 2\n";
print &Mytest2::foo(1, 2, "0.0") == 7 ? "ok 3\n" : "not ok 3\n";
print abs(&Mytest2::foo(0, 0, "-3.4") — 0.6) <= 0.01 ? "ok 4\n" : "not ok 4\n

(When dealing with floating—point comparisons, it is often useful to not check for equality, but rather the
difference being below a certain epsilon factor, 0.01 in this case)

Run "make test" and all should be well.

306

Version 5.003 08-0ct—-1996

perixstut Perl Programmers Reference Guide perixstut

WHAT HAS HAPPENED HERE?

Unlike previous examples, we‘ve now run h2xs on a real include file. This has caused some extra goodies to
appear in both the .pm and .xs files.

° In the .xs file, there's now a #include declaration with the full path to the mylib.h header file.

° There's now some new C code that's been added to the .xs file. The purposecofistamt
routine is to make the values that are #define'd in the header file available to the Perl script (in this
case, by callingkmain:: TESTVAL). There's also some XS code to allow calls todbestant
routine.

° The .pm file has exported the name TESTVAL in the @EXPORT array. This could lead to name
clashes. A good rule of thumb is that if the #define is only going to be used by the C routines
themselves, and not by the user, they should be removed from the @EXPORT array. Alternately, if
you don‘t mind using the "fully qualified name" of a variable, you could remove most or all of the
items in the @EXPORT array.

° If our include file contained #include directives, these would not be processed at all by h2xs. There is
no good solution to this right now.

We've also told Perl about the library that we built in the mylib subdirectory. That required only the
addition of the MYEXTLIB variable to the WriteMakefile call and the replacement of the postamble
subroutine to cd into the subdirectory and run make. The Makefile.PL for the library is a bit more
complicated, but not excessively so. Again we replaced the postamble subroutine to insert our own code.
This code simply specified that the library to be created here was a static archive (as opposed to a
dynamically loadable library) and provided the commands to build it.

SPECIFYING ARGUMENTS TO XSUBPP
With the completion of Example 4, we now have an easy way to simulate some real-life libraries whose
interfaces may not be the cleanest in the world. We shall now continue with a discussion of the arguments
passed to the xsubpp compiler.

When you specify arguments in the .xs file, you are really passing three pieces of information for each one
listed. The first piece is the order of that argument relative to the others (first, second, etc). The second is
the type of argument, and consists of the type declaration of the argument (e.g., int, char*, etc). The third
piece is the exact way in which the argument should be used in the call to the library function from this
XSUB. This would mean whether or not to placeka before the argument or not, meaning the argument
expects to be passed the address of the specified data type.

There is a difference between the two arguments in this hypothetical function:
int
foo(a,b)

char &a
char* b

The first argument to this function would be treated as a char and assigned to the variable a, and its address
would be passed into the function foo. The second argument would be treated as a string pointer and
assigned to the variable b. Tialue of b would be passed into the function foo. The actual call to the
function foo that xsubpp generates would look like this:

foo(&a, b);

Xsubpp will identically parse the following function argument lists:

char &a
char&a
char & a

However, to help ease understanding, it is suggested that you p&taext to the variable name and away
from the variable type), and place a "*" near the variable type, but away from the variable name (as in the

08-0Oct-1996 Version 5.003 307

perixstut Perl Programmers Reference Guide perixstut

complete example above). By doing so, it is easy to understand exactly what will be passed to the C function
— it will be whatever is in the "last column".

You should take great pains to try to pass the function the type of variable it wants, when possible. It will
save you a lot of trouble in the long run.

THE ARGUMENT STACK
If we look at any of the C code generated by any of the examples except example 1, you will notice a number
of references to ST(n), where nis usually 0. The "ST" is actually a macro that points to the n‘th argument on
the argument stack. ST(0) is thus the first argument passed to the XSUB, ST(1) is the second argument, and

S0 on.
When you list the arguments to the XSUB in the .xs file, that tells xsubpp which argument corresponds to
which of the argument stack (i.e., the first one listed is the first argument, and so on). You invite disaster if
you do not list them in the same order as the function expects them.

EXTENDING YOUR EXTENSION
Sometimes you might want to provide some extra methods or subroutines to assist in making the interface
between Perl and your extension simpler or easier to understand. These routines should live in the .pm file.
Whether they are automatically loaded when the extension itself is loaded or only loaded when called
depends on where in the .pm file the subroutine definition is placed.

DOCUMENTING YOUR EXTENSION
There is absolutely no excuse for not documenting your extension. Documentation belongs in the .pm file.
This file will be fed to pod2man, and the embedded documentation will be converted to the man page
format, then placed in the blib directory. It will be copied to Perl‘'s man page directory when the extension is

installed.

You may intersperse documentation and Perl code within the .pm file. In fact, if you want to use method
autoloading, you must do this, as the comment inside the .pm file explains.

Seeperlpodfor more information about the pod format.

INSTALLING YOUR EXTENSION

Once your extension is complete and passes all its tests, installing it is quite simple: you simply run "make
install". You will either need to have write permission into the directories where Perl is installed, or ask

your system administrator to run the make for you.

SEE ALSO
For more information, consubierlguts perlxs perlmod andperlpod

Author
Jeff Okamoto gkamoto@corp.hp.com
Reviewed and assisted by Dean Roehrich, llya Zakharevich, Andreas Koenig, and Tim Bunce.

Last Changed
1996/7/10

308 Version 5.003 08-0Oct-1996

perlguts Perl Programmers Reference Guide perlguts

NAME
perlguts — Perl‘s Internal Functions

DESCRIPTION
This document attempts to describe some of the internal functions of the Perl executable. It is far from
complete and probably contains many errors. Please refer any questions or comments to the author below.
Datatypes
Perl has three typedefs that handle Perl‘s three main data types:
SV Scalar Value

AV Array Value
HV Hash Value

Each typedef has specific routines that manipulate the various data types.

What is an "IV"?
Perl uses a special typedef IV which is large enough to hold either an integer or a pointer.

Perl also uses two special typedefs, 132 and 116, which will always be at least 32-bits and 16-bits long,
respectively.

Working with SVs

An SV can be created and loaded with one command. There are four types of values that can be loaded: an
integer value (1V), a double (NV), a string, (PV), and another scalar (SV).

The four routines are:

SV* newSViv(lV);

SV* newSVnv(double);
SV* newSVpv(char*, int);
SV* newSVsv(SV*);

To change the value of an *already—existing* SV, there are five routines:

void sv_setiv(SV*, IV);

void sv_setnv(SV*, double);

void sv_setpvn(SV*, char*, int)

void sv_setpv(SV*, char*);

void sv_setsv(SV*, SV*);
Notice that you can choose to specify the length of the string to be assigned bgwsatpvn or
newSVpv, or you may allow Perl to calculate the length by usimgsetpv or by specifying O as the

second argument toewSVpv. Be warned, though, that Perl will determine the string‘s length by using
strlen , which depends on the string terminating with a NUL character.

To access the actual value that an SV points to, you can use the macros:

SVIV(SV*)
SVNV(SV¥)
SVPV(SV*, STRLEN len)

which will automatically coerce the actual scalar type into an IV, double, or string.

In the SVPV macro, the length of the string returned is placed into the vat@blgthis is a macro, so you
donotuseé&len). If you do not care what the length of the data is, use the global vareablRemember,
however, that Perl allows arbitrary strings of data that may both contain NULs and not be terminated by a
NUL.

If you simply want to know if the scalar value is TRUE, you can use:
SVTRUE(SV*)

08-0Oct-1996 Version 5.003 309

perlguts Perl Programmers Reference Guide perlguts

Although Perl will automatically grow strings for you, if you need to force Perl to allocate more memory for
your SV, you can use the macro

SVGROW(SV*, STRLEN newlen)

which will determine if more memory needs to be allocated. If so, it will call the furstiagrow . Note
thatSYGROWan only increase, not decrease, the allocated memory of an SV.

If you have an SV and want to know what kind of data Perl thinks is stored in it, you can use the following
macros to check the type of SV you have.

SVIOK(SV*)
SVNOK(SV*)
SVPOK(SV*)

You can get and set the current length of the string stored in an SV with the following macros:

SvCUR(SV*)
SvCUR_set(SV*, 132 val)

You can also get a pointer to the end of the string stored in the SV with the macro:
SVEND(SV*)
But note that these last three macros are valid ol3yHOK() is true.
If you want to append something to the end of string stored 8V&nyou can use the following functions:

void sv_catpv(SV*, char*);
void sv_catpvn(SV*, char*, int);
void sv_catsv(SV*, SV*);

The first function calculates the length of the string to be appended bystiderg . In the second, you
specify the length of the string yourself. The third function extends the string stored in the first SV with the
string stored in the second SV. It also forces the second SV to be interpreted as a string.

If you know the name of a scalar variable, you can get a pointer to its SV by using the following:
SV* perl_get_sv("varname", FALSE);

This returns NULL if the variable does not exist.

If you want to know if this variable (or any other SV) is actud#yined , you can call:
SVOK(SV¥)

The scalaundef value is stored in an SV instance cabedundef . Its address can be used whenever an
SV* is needed.

There are also the two valuss_yes andsv_no, which contain Boolean TRUE and FALSE values,
respectively. Likesv_undef , their addresses can be used whenev&\&nis needed.

Do not be fooled into thinking théBV *) 0 is the same a&sv_undef. Take this code:

SV* sv = (SV*) 0;
if (I-am-to-return—a-real-value) {
sv = sv_2mortal(hewSViv(42));

sv_setsv(ST(0), sv);

This code tries to return a new SV (which contains the value 42) if it should return a real value, or undef
otherwise. Instead it has returned a null pointer which, somewhere down the line, will cause a segmentation
violation, or just weird results. Change the zer&sw_undef in the first line and all will be well.

To free an SV that you‘ve created, cCBIREFCNT_dec(SV*) . Normally this call is not necessary. See
the section oMORTALITY .

310

Version 5.003 08-0ct—-1996

perlguts Perl Programmers Reference Guide perlguts

What's Really Stored in an SV?

Recall that the usual method of determining the type of scalar you have is$g*@#€ macros. Since a
scalar can be both a number and a string, usually these macros will always return TRUE and calling the
Sv*V macros will do the appropriate conversion of string to integer/double or integer/double to string.

If you really need to know if you have an integer, double, or string pointer in an SV, you can use the
following three macros instead:

SVIOKp(SV*)
SVNOKp(SV*)
SVPOKp(SV*)

These will tell you if you truly have an integer, double, or string pointer stored in your SV. The "p" stands
for private.

In general, though, it's best to just use §wV macros.
Working with AVs
There are two ways to create and load an AV. The first method just creates an empty AV:
AV* newAV();
The second method both creates the AV and initially populates it with SVs:
AV* av_make(I32 num, SV **ptr);

The second argument points to an array containimg SV*s. Once the AV has been created, the SVs can
be destroyed, if so desired.

Once the AV has been created, the following operations are possible on AVs:
void av_push(AV*, SV*);
SV* av_pop(AV*);
SV* av_shift(AV*);
void av_unshift(AV*, 132 num);

These should be familiar operations, with the excepticawvobtinshift . This routine addaum elements
at the front of the array with thendef value. You must then usey_store (described below) to assign
values to these new elements.

Here are some other functions:
132 av_len(AV*); /* Returns highest index value in array */

SV** av_fetch(AV*, 132 key, 132 Ival);
/* Fetches value at key offset, but it stores an undef value
at the offset if Ival is non-zero */
SV** av_store(AV*, 132 key, SV* val);
[* Stores val at offset key */

Take note thaav_fetch andav_store returnSV** s, notSV*s.

void av_clear(AV*);

/* Clear out all elements, but leave the array */
void av_undef(AV*);

/* Undefines the array, removing all elements */
void av_extend(AV*, 132 key);

/* Extend the array to a total of key elements */

If you know the name of an array variable, you can get a pointer to its AV by using the following:

AV* perl_get_av("varname", FALSE);

08-0Oct-1996 Version 5.003 311

perlguts Perl Programmers Reference Guide perlguts

This returns NULL if the variable does not exist.

Working with HVs
To create an HV, you use the following routine:

HV* newHV();
Once the HV has been created, the following operations are possible on HVs:

SV** hv_store(HV*, char* key, U32 klen, SV* val, U32 hash);
Sv** hv_fetch(HV*, char* key, U32 klen, 132 Ival);

Theklen parameter is the length of the key being passed in.v@lheargument contains the SV pointer to
the scalar being stored, ahdsh is the pre-computed hash value (zero if you viantstore to calculate
it for you). Thelval parameter indicates whether this fetch is actually a part of a store operation.

Remember thaltv_store andhv_fetch returnSV** s and not jusEV*. In order to access the scalar
value, you must first dereference the return value. However, you should check to make sure that the return
value is not NULL before dereferencing it.

These two functions check if a hash table entry exists, and deletes it.

bool hv_exists(HV*, char* key, U32 klen);
SV* hv_delete(HV*, char* key, U32 klen, 132 flags);

And more miscellaneous functions:

void hv_clear(HV?*);

/* Clears all entries in hash table */
void hv_undef(HV*);

/* Undefines the hash table */

Perl keeps the actual data in linked list of structures with a typedef of HE. These contain the actual key and
value pointers (plus extra administrative overhead). The key is a string pointer; the valu8\%. an
However, once you have &E*, to get the actual key and value, use the routines specified below.

132 hv_iterinit(HV*);
[* Prepares starting point to traverse hash table */
HE* hv_iternext(HV?*);
/* Get the next entry, and return a pointer to a
structure that has both the key and value */
char* hv_iterkey(HE* entry, 132* retlen);
/* Get the key from an HE structure and also return
the length of the key string */
SV* hv_iterval(HV*, HE* entry);

/* Return a SV pointer to the value of the HE

structure */
SV* hv_iternextsv(HV*, char** key, 132* retlen);

/* This convenience routine combines hv_iternext,
hv_iterkey, and hv_iterval. The key and retlen
arguments are return values for the key and its
length. The value is returned in the SV* argument */

If you know the name of a hash variable, you can get a pointer to its HV by using the following:
HVv* perl_get_hv("varname", FALSE);

This returns NULL if the variable does not exist.

The hash algorithm, for those who are interested, is:

i = klen;
hash = 0;

312 Version 5.003 08-0Oct-1996

perlguts Perl Programmers Reference Guide perlguts

s = key;
while (i—-)
hash = hash * 33 + *s++;

References
References are a special type of scalar that point to other data types (including references).

To create a reference, use the following command:
SV* newRV((SV*) thing);

Thething argument can be any of &V*, AV*, or HV*. Once you have a reference, you can use the
following macro to dereference the reference:

SVRV(SV¥)
then call the appropriate routines, casting the retud\&dto either arAV* or HV*, if required.
To determine if an SV is a reference, you can use the following macro:

SVROK(SV*)

To actually discover what the reference refers to, you must use the following macro and then check the value
returned.

SVTYPE(SVRV(SV*))
The most useful types that will be returned are:

SVt IV Scalar

SVt_NV Scalar

SVt PV Scalar
SVt_PVAV Array
SVt_PVHV Hash
SVt_PVCV Code

SVt PVMG Blessed Scalar

Blessed References and Class Objects

References are also used to support object-oriented programming. In the OO lexicon, an object is simply a
reference that has been blessed into a package (or class). Once blessed, the programmer may now use the
reference to access the various methods in the class.

A reference can be blessed into a package with the following function:
SV* sv_bless(SV* sv, HV* stash);

Thesv argument must be a reference. Bhesh argument specifies which class the reference will belong
to. See théStashes'for information on converting class names into stashes.

/* Still under construction */

Upgrades rv to reference if not already one. Creates new SV for rv to point to. If classname is non—null, the
SV is blessed into the specified class. SV is returned.

SV* newSVrv(SV* rv, char* classname);
Copies integer or double into an SV whose reference is rv. SV is blessed if classname is non—null.

SV* sv_setref_iv(SV* rv, char* classname, 1V iv);
SV* sv_setref_nv(SV* rv, char* classname, NV iv);

Copies pointerr{ot a string) into an SV whose reference is rv. SV is blessed if classname is non—null.
SV* sv_setref_pv(SV* rv, char* classname, PV iv);

Copies string into an SV whose reference is rv. Set length to 0 to let Perl calculate the string length. SV is

08-0Oct-1996 Version 5.003 313

perlguts Perl Programmers Reference Guide perlguts

blessed if classname is non—null.
SV* sv_setref_pvn(SV* rv, char* classname, PV iv, int length);

int sv_isa(SV* sv, char* name);
int sv_isobject(SV* sv);

Creating New Variables

To create a new Perl variable, which can be accessed from your Perl script, use the following routines,
depending on the variable type.

SV* perl_get_sv("varname", TRUE);
AV* perl_get_av("varname", TRUE);
HVv* perl_get_hv("varname", TRUE);

Notice the use of TRUE as the second parameter. The new variable can now be set, using the routines
appropriate to the data type.

There are additional bits that may be OR'ed with the TRUE argument to enable certain extra features. Those
bits are:

0x02 Marks the variable as multiply defined, thus preventing the
"Identifier <varname> used only once: possible typo" warning.
0x04 Issues a "Had to create <varname> unexpectedly" warning if
the variable didn't actually exist. This is useful if
you expected the variable to already exist and want to propagate
this warning back to the user.

If the varname argument does not contain a package specifier, it is created in the current package.

XSUBs and the Argument Stack

The XSUB mechanism is a simple way for Perl programs to access C subroutines. An XSUB routine will
have a stack that contains the arguments from the Perl program, and a way to map from the Perl data
structures to a C equivalent.

The stack arguments are accessible throughSih@) macro, which returns tha‘th stack argument.
Argument O is the first argument passed in the Perl subroutine call. These argum&ms, amrd can be
used anywhere &V* is used.

Most of the time, output from the C routine can be handled through use of the RETVAL and OUTPUT
directives. However, there are some cases where the argument stack is not already long enough to handle all
the return values. An example is the PO&Xame() call, which takes no arguments, but returns two, the

local timezone's standard and summer time abbreviations.

To handle this situation, the PPCODE directive is used and the stack is extended using the macro:
EXTEND(sp, num);
wheresp is the stack pointer, amimis the number of elements the stack should be extended by.

Now that there is room on the stack, values can be pushed on it using the macros to push IVs, doubles,
strings, and SV pointers respectively:

PUSHI(IV)
PUSHnN(double)
PUSHp(char*, 132)
PUSHs(SV*)

And now the Perl program calliigname , the two values will be assigned as in:
($standard_abbrev, $summer_abbrev) = POSIX::tzname;

An alternate (and possibly simpler) method to pushing values on the stack is to use the macros:

314 Version 5.003 08-0Oct-1996

perlguts Perl Programmers Reference Guide perlguts

XPUSHI(IV)
XPUSHnN(double)
XPUSHp(char*, 132)
XPUSHs(SV*)

These macros automatically adjust the stack for you, if needed.
For more information, consubierixs

Mortality

In Perl, values are normally "immortal” — that is, they are not freed unless explicitly done so (via the Perl
undef call or other routines in Perl itself).

Add cruft about reference counts.
int SYREFCNT(SV* sv);
void SVREFCNT_inc(SV* sv);
void SYVREFCNT_dec(SV* sv);

In the above example witzname , we needed to create two new SVs to push onto the argument stack, that
being the two strings. However, we don‘t want these new SVs to stick around forever because they will
eventually be copied into the SVs that hold the two scalar variables.

An SV (or AV or HV) that is "mortal" acts in all ways as a normal "immortal" SV, AV, or HV, but is only
valid in the "current context". When the Perl interpreter leaves the current context, the mortal SV, AV, or
HV is automatically freed. Generally the "current context" means a single Perl statement.

To create a mortal variable, use the functions:

SV* sv_newmortal()
SV* sv_2mortal(SV*)
SV* sv_mortalcopy(SV*)

The first call creates a mortal SV, the second converts an existing SV to a mortal SV, the third creates a
mortal copy of an existing SV.

The mortal routines are not just for SVs — AVs and HVs can be made mortal by passing their address (and
casting them t&V*) to thesv_2mortal orsv_mortalcopy routines.

From llya: Beware that thev_2mortal() call is eventually equivalent & REFCNT_dec() . A value

can happily be mortal in two different contexts, and it willSv®EFCNT_dec() ed twice, once on exit

from these contexts. It can also be mortal twice in the same context. This means that you should be very
careful to make a value mortal exactly as many times as it is needed. The value that go to the Perl stack
shouldbe mortal.

You should be careful about creating mortal variables. It is possible for strange things to happen should you
make the same value mortal within multiple contexts.

Stashes

A stash is a hash table (associative array) that contains all of the different objects that are contained within a
package. Each key of the stash is a symbol name (shared by all the different types of objects that have the
same name), and each value in the hash table is called a GV (for Glob Value). This GV in turn contains
references to the various objects of that name, including (but not limited to) the following:

Scalar Value
Array Value
Hash Value

File Handle
Directory Handle
Format
Subroutine

08-0Oct-1996 Version 5.003 315

perlguts Perl Programmers Reference Guide perlguts

Perl stores various stashes in a separate GV structure (for global variable) but represents them with an HV
structure. The keys in this larger GV are the various package names; the valuesGréstiahich are

stashes. It may help to think of a stash purely as an HV, and that the term "GV" means the global variable
hash.

To get the stash pointer for a particular package, use the function:

HVv* gv_stashpv(char* name, 132 create)
HV* gv_stashsv(SV*, 132 create)

The first function takes a literal string, the second uses the string stored in the SV. Remember that a stash is
just a hash table, so you get backfr. Thecreate flag will create a new package if it is set.

The name thagv_stash*v wants is the name of the package whose symbol table you want. The default
package is calleanain. If you have multiply nested packages, pass their namep/ tstash*v
separated by as in the Perl language itself.

Alternately, if you have an SV that is a blessed reference, you can find out the stash pointer by using:
HV* SvSTASH(SVRV(SVY);

then use the following to get the package name itself:
char* HYNAME(HV* stash);

If you need to return a blessed value to your Perl script, you can use the following function:
SV* sv_bless(SV*, HV* stash)

where the first argument, @WV*, must be a reference, and the second argument is a stash. The returned
SV* can now be used in the same way as any other SV.

For more information on references and blessings, copestitef.

Magic
[This section still under construction. Ignore everything here. Post no bills. Everything not permitted is
forbidden.]

Any SV may be magical, that is, it has special features that a normal SV does not have. These features are
stored in the SV structure in a linked listsbfuct magic s, typedef‘ed tdAGIC

struct magic {
MAGIC* mg_moremagic;
MGVTBL* mg_virtual;
ule mg_private;
char mg_type;
us mg_flags;
Sv* mg_obj;
char* mg_ptr;
132 mg_len;
¥

Note this is current as of patchlevel 0, and could change at any time.
Assigning Magic
Perl adds magic to an SV using the sv_magic function:
void sv_magic(SV* sv, SV* obj, int how, char* name, 132 namlen);
Thesv argument is a pointer to the SV that is to acquire a new magical feature.

If sv is not already magical, Perl uses ®ddJPGRADHnacro to set th&Vt_PVMGflag for thesv. Perl
then continues by adding it to the beginning of the linked list of magical features. Any prior entry of the
same type of magic is deleted. Note that this can be overridden, and multiple instances of the same type of

316 Version 5.003 08-0Oct-1996

perlguts Perl Programmers Reference Guide perlguts

magic can be associated with an SV.

The name andnamlem arguments are used to associate a string with the magic, typically the name of a
variable.namlem is stored in theng_len field and ifname is non—-null andhamlem >= 0 a malloc‘d copy
of the name is stored mg_ptr field.

The sv_magic function usd®w to determine which, if any, predefined "Magic Virtual Table" should be
assigned to theng_virtual field. See the "Magic Virtual Table" section below. Th@v argument is
also stored in theng_type field.

The obj argument is stored in thrag_obj field of the MAGICstructure. If it is not the same as the
argument, the reference count of ti® object is incremented. If it is the same, or if floev argument is
"#", or if it is a null pointer, theobj is merely stored, without the reference count being incremented.

There is also a function to add magic td-ah
void hv_magic(HV *hv, GV *gv, int how);
This simply callssv_magic and coerces thgyv argument into aBV.
To remove the magic from an SV, call the function sv_unmagic:
void sv_unmagic(SV *sv, int type);
Thetype argument should be equal to thew value when th&V was initially made magical.

Magic Virtual Tables
Themg_virtual field in theMAGICstructure is a pointer to MGVTBL which is a structure of function
pointers and stands for "Magic Virtual Table" to handle the various operations that might be applied to that
variable.

The MGVTBLhas five pointers to the following routine types:

int (*svt_get)(SV* sv, MAGIC* mg);
int (*svt_set)(SV* sv, MAGIC* mg);
U32 (*svt_len)(SV* sv, MAGIC* mg);
int (*svt_clear)(SV* sv, MAGIC* mg);
int (*svt_free)(SV* sv, MAGIC* mg);

This MGVTBL structure is set at compile—time rerl.h and there are currently 19 types (or 21 with
overloading turned on). These different structures contain pointers to various routines that perform
additional actions depending on which function is being called.

Function pointer Action taken

svt_get Do something after the value of the SV is retrieved.
svt_set Do something after the SV is assigned a value.
svt_len Report on the SV’s length.

svt_clear Clear something the SV represents.
svt_free Free any extra storage associated with the SV.

For instance, the MGVTBL structure calletbl_sv (which corresponds to ang_type of \0’) contains:

{ magic_get, magic_set, magic_len, 0, 0}

Thus, when an SV is determined to be magical and of type \0, if a get operation is being performed, the
routinemagic_get is called. All the various routines for the various magical types begimvaitfic_ .

The current kinds of Magic Virtual Tables are:

mg_type MGVTBL Type of magicalness

\0 vtbl_sv Regexp???

08-0Oct-1996 Version 5.003 317

perlguts Perl Programmers Reference Guide perlguts

A vtbl_amagic Operator Overloading
a vtbl_amagicelem Operator Overloading
c 0 Used in Operator Overloading
B vtbl_bm Boyer—Moore???
E vtbl_env %ENV hash
e vtbl_envelem %ENV hash element
g vtbl_mglob Regexp /g flag???
| vtbl_isa @ISA array
i vtbl_isaelem @ISA array element
L 0 (but sets RMAGICAL) Perl Module/Debugger???
I vtbl_dbline Debugger?
P vtbl_pack Tied Array or Hash
p vtbl_packelem Tied Array or Hash element
o} vtbl_packelem Tied Scalar or Handle
S vtbl_sig Signal Hash
s vtbl_sigelem Signal Hash element
t vtbl_taint Taintedness
U vtbl_uvar ??77?
v vtbl_vec Vector
X vtbl_substr Substring???
* vtbl_glob GV???
vtbl_arylen Array Length
vtbl_pos $. scalar variable

~ Reserved for extensions, but multiple extensions may clash

When an upper-case and lower—case letter both exist in the table, then the upper-case letter is used to
represent some kind of composite type (a list or a hash), and the lower—case letter is used to represent an
element of that composite type.

Finding Magic

MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type */

This routine returns a pointer to tMAGICstructure stored in the SV. If the SV does not have that magical
feature NULL is returned. Also, if the SV is not of type SVt_PVMG, Perl may core-dump.

int mg_copy(SV* sv, SV* nsv, char* key, STRLEN Kklen);

This routine checks to see what types of magidas. If the mg_type field is an upper—case letter, then the
mg_obj is copied tasv , but the mg_type field is changed to be the lower—case letter.

Double-Typed SVs

Scalar variables normally contain only one type of value, an integer, double, pointer, or reference. Perl will
automatically convert the actual scalar data from the stored type into the requested type.

Some scalar variables contain more than one type of scalar data. For example, the $larcaioliins
either the numeric value efrno or its string equivalent from eithstrerror orsys_errlist[]

To force multiple data values into an SV, you must do two things: ussvtiset*v routines to add the
additional scalar type, then set a flag so that Perl will believe it contains more than one type of data. The
four macros to set the flags are:

SvIOK _on

SVNOK on
SvPOK on
SVROK on

The particular macro you must use depends on whicket*v routine you called first. This is because
everysv_set*v routine turns on only the bit for the particular type of data being set, and turns off all the
rest.

318

Version 5.003 08-0ct—-1996

perlguts Perl Programmers Reference Guide perlguts

For example, to create a new Perl variable called "dberror" that contains both the numeric and descriptive
string error values, you could use the following code:

extern int dberror;
extern char *dberror_list;

SV* sv = perl_get_sv("dberror", TRUE);
sv_setiv(sv, (IV) dberror);

sv_setpv(sv, dberror_list[dberror]);
SvIOK_on(sv);

If the order ofsv_setiv. andsv_setpv had been reversed, then the m&v®OK_onwould need to be
called instead 06vIOK on.

Calling Perl Routines from within C Programs
There are four routines that can be used to call a Perl subroutine from within a C program. These four are:

132 perl_call_sv(SV*, 132);

132 perl_call_pv(char*, 132);

132 perl_call_method(char*, 132);

132 perl_call_argv(char*, 132, register char**);

The routine most often usedperl_call_sv . TheSV* argument contains either the name of the Perl
subroutine to be called, or a reference to the subroutine. The second argument consists of flags that control
the context in which the subroutine is called, whether or not the subroutine is being passed arguments, how
errors should be trapped, and how to treat return values.

All four routines return the number of arguments that the subroutine returned on the Perl stack.

When using any of these routines (exce@t_call_argv), the programmer must manipulate the Perl
stack. These include the following macros and functions:

dsp
PUSHMARK()
PUTBACK
SPAGAIN
ENTER
SAVETMPS
FREETMPS
LEAVE
XPUSH*()
POP*()

For more information, consuygiericall.

Memory Allocation

It is strongly suggested that you use the version of malloc that is distributed with Perl. It keeps pools of
various sizes of unallocated memory in order to more quickly satisfy allocation requests. However, on some
platforms, it may cause spurious malloc or free errors.

New(x, pointer, number, type);
Newc(X, pointer, number, type, cast);
Newz(X, pointer, number, type);

These three macros are used to initially allocate memory. The first argumes a "magic cookie" that

was used to keep track of who called the macro, to help when debugging memory problems. However, the
current code makes no use of this feature (Larry has switched to using a run—-time memory checker), so this
argument can be any number.

The second argumepbinter will point to the newly allocated memory. The third and fourth arguments
number andtype specify how many of the specified type of data structure should be allocated. The

08-0Oct-1996 Version 5.003 319

perlguts Perl Programmers Reference Guide perlguts

argumentype is passed tgizeof . The final argument thlewc, cast , should be used if theointer
argument is different from thigpe argument.

Unlike the New and Newc macros, theNewz macro callsmemzero to zero out all the newly allocated
memory.

Renew(pointer, number, type);
Renewc(pointer, number, type, cast);
Safefree(pointer)

These three macros are used to change a memory buffer size or to free a piece of memory no longer needed.
The arguments tBRenew andRenewc match those dilewandNewc with the exception of not needing the
"magic cookie" argument.

Move(source, dest, number, type);
Copy(source, dest, number, type);
Zero(dest, number, type);

These three macros are used to move, copy, or zero out previously allocated memaosgpurdée and
dest arguments point to the source and destination starting points. Perl will move, copy, or zero out
number instances of the size of thgpe data structure (using tlsézeof function).

API LISTING

This is a listing of functions, macros, flags, and variables that may be useful to extension writers or that may
be found while reading other extensions.

AVFILL Seeav_len .
av_clear Clears an array, making it empty.
void av_clear _((AVv* ar));

av_extend
Pre—extend an array. Thkey is the index to which the array should be extended.

void av_extend _((AV* ar, 132 key));

av_fetch Returns the SV at the specified index in the array. KByeis the index. Ifval is set then the
fetch will be part of a store. Check that the return value is non—null before dereferencing it to a
SV*,

SV** av_fetch _((AV* ar, 132 key, 132 Ival));
av_len Returns the highest index in the array. Returns -1 if the array is empty.
132 av_len _((AV* ar));

av_make Creates a hew AV and populates it with a list of SVs. The SVs are copied into the array, so they
may be freed after the call to av_make. The new AV will have a refcount of 1.

AvV* av_make ((132 size, SV** svp));
av_pop Pops an SV off the end of the array. Ret®&sg undef if the array is empty.
Sv* av_pop _((AV* ar));

av_push Pushes an SV onto the end of the array. The array will grow automatically to accommodate the
addition.

void av_push _((AV* ar, SV* val));
av_shift Shifts an SV off the beginning of the array.
Sv* av_shift _((AV* ar));

320

Version 5.003 08-0ct—-1996

perlguts Perl Programmers Reference Guide perlguts

av_store Stores an SV in an array. The array index is specifidéyas The return value will be null if
the operation failed, otherwise it can be dereferenced to get the o8ythal

SV** av_store _((AV* ar, 132 key, SV* val));
av_undef Undefines the array.
void av_undef _((AV* ar));

av_unshift

Unshift an SV onto the beginning of the array. The array will grow automatically to
accommodate the addition.

void av_unshift _((AV* ar, 132 num));

CLASS Variable which is setup lysubpp to indicate the class name for a C++ XS constructor. This is
always achar* . SeeTHIS andUsing XS With C++ in perlxs

Copy The XSUB-writer's interface to the @emcpy function. Thes is the sourced is the
destinationn is the number of items, andis the type.

(void) Copy('s, d, n, t);

croak This is the XSUB-writer's interface to Pertige function. Use this function the same way you
use the Gorintf function. Seavarn .

CvSTASH
Returns the stash of the CV.
HV * CvySTASH(SV* sv)

DBsingle When Perl is run in debugging mode, with trgk switch, this SV is a boolean which indicates
whether subs are being single—stepped. Single-stepping is automatically turned on after every
step. This is the C variable which corresponds to PREIB::single variable. Se®Bsub.

DBsub When Perl is run in debugging mode, with tteeswitch, this GV contains the SV which holds
the name of the sub being debugged. This is the C variable which corresponds to Perl's
$DB::sub variable. Se®Bsingle . The sub name can be found by

SvPV(GvSV(DBsub), na)

DBtrace Trace variable used when Perl is run in debugging mode, withdhawitch. This is the C
variable which corresponds to Pe$BB::trace variable. Se®Bsingle

dMARK Declare a stack marker variabfeark , for the XSUB. Se#ARKanddORIGMARK

dORIGMARK
Saves the original stack mark for the XSUB. S&GMARK

dowarn The C variable which corresponds to PeB$V warning variable.
dspP Declares a stack pointer varialdp,, for the XSUB. Se&P.

dXSARGS

Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. This is usually handled
automatically byxsubpp . Declares thitems variable to indicate the number of items on the
stack.

dXSI32 Sets up théx variable for an XSUB which has aliases. This is usually handled automatically by
xsubpp .

dXSI32 Sets up théx variable for an XSUB which has aliases. This is usually handled automatically by
xsubpp .

08-0Oct-1996 Version 5.003 321

perlguts Perl Programmers Reference Guide perlguts

ENTER Opening bracket on a callback. 3#6AVEandperlcall.
ENTER;
EXTEND Used to extend the argument stack for an XSUB's return values.
EXTEND(sp, int x);
FREETMPS
Closing bracket for temporaries on a callback. S&&ETMP &ndperlcall.
FREETMPS;

G_ARRAY
Used to indicate array context. SedMMEandperlcall.

G_DISCARD
Indicates that arguments returned from a callback should be discardegpkriBal

G_EVAL Used to force a Peglval wrapper around a callback. Smelcall.

GIMME The XSUB-writer's equivalent to Perl\wantarray . ReturnsG_SCALARor G_ARRAYfor
scalar or array context.

G_NOARGS
Indicates that no arguments are being sent to a callbackpeS8eall.

G_SCALAR
Used to indicate scalar context. S&®&MEandperlcall.

gv_stashpv
Returns a pointer to the stash for a specified packageedfe is set then the package will be
created if it does not already exist. cheate is not set and the package does not exist then
NULL is returned.

HV* gv_stashpv _((char* name, 132 create));
gv_stashsv
Returns a pointer to the stash for a specified packagegvSemshpv
HV* gv_stashsv _((SV* sv, 132 create));

GvsSV Return the SV from the GV.
he_free Releases a hash entry from an iterator. tveé@ernext
hv_clear Clears a hash, making it empty.

void hv_clear _((HV* th));

hv_delete

Deletes a key/value pair in the hash. The value SV is removed from the hash and returned to the
caller. Theklen is the length of the key. THeags value will normally be zero; if set to
G_DISCARD then null will be returned.

Sv* hv_delete _((HV* tb, char* key, U32 klen, 132 flags));

hv_exists Returns a boolean indicating whether the specified hash key existsklehheis the length of
the key.

bool hv_exists _((HV* tb, char* key, U32 klen));

322 Version 5.003 08-0Oct-1996

perlguts Perl Programmers Reference Guide perlguts

hv_fetch Returns the SV which corresponds to the specified key in the hashklefheis the length of
the key. Iflval is set then the fetch will be part of a store. Check that the return value is
non—null before dereferencing it tdsa/*.

SV** hv_fetch _((HV* th, char* key, U32 klen, 132 Ival));
hv_iterinit Prepares a starting point to traverse a hash table.
132 hv_iterinit _((HV* tb));

hv_iterkey
Returns the key from the current position of the hash iteratorh\&éerinit

char* hv_iterkey ((HE* entry, 132* retlen));

hv_iternext
Returns entries from a hash iterator. Bediterinit

HE* hv_iternext _((HV* th));

hv_iternextsv
Performs arv_iternext , hv_iterkey , andhv_iterval in one operation.

Sv* hv_iternextsv _((HV* hv, char** key, 132* retlen));
hv_iterval Returns the value from the current position of the hash iteratorhvSgerkey
Sv* hv_iterval _((HV* tb, HE* entry));
hv_magic Adds magic to a hash. Sge magic .
void hv_magic _((HV* hv, GV* gv, int how));
HvNAME Returns the package name of a stash. Sy&§ASH CvSTASH
char *HYNAME (HV* stash)

hv_store Stores an SV in a hash. The hash key is specifidé@yasandklen is the length of the key.
Thehash parameter is the pre—computed hash value; if it is zero then Perl will compute it. The
return value will be null if the operation failed, otherwise it can be dereferenced to get the
original SV*.

SV** hv_store _((HV* tb, char* key, U32 klen, SV* val, U32 hash));
hv_undef Undefines the hash.
void hv_undef _((HV* th));
iISALNUM Returns a boolean indicating whether theh@r is an ascii alphanumeric character.
int iSALNUM (char c)
iISALPHA Returns a boolean indicating whether theh@r is an ascii alphabetic character.
int iSALPHA (char c)
isDIGIT Returns a boolean indicating whether theh@r is an ascii digit.
int isDIGIT (char c)

iSLOWER
Returns a boolean indicating whether theh@r is a lowercase character.

int isSLOWER (char c)

08-0Oct-1996 Version 5.003 323

perlguts Perl Programmers Reference Guide perlguts

iISSPACE Returns a boolean indicating whether theh@r is whitespace.
int isSSPACE (char c)

iISUPPER Returns a boolean indicating whether theh@r is an uppercase character.
int iSUPPER (char c)

items Variable which is setup bwxsubpp to indicate the number of items on the stack. See
Variable—length Parameter Lists in perlxs

iX Variable which is setup bysubpp to indicate which of an XSUB's aliases was used to invoke
it. SeeThe ALIAS: Keyword in perlxs

LEAVE Closing bracket on a callback. SedTERandperlcall.
LEAVE;
MARK Stack marker variable for the XSUB. SHAARK
mg_clear Clear something magical that the SV represents.sGauaagic .
int mg_clear _((SV* sv));
mg_copy Copies the magic from one SV to another. Seenagic .
int mg_copy _((SV *, SV *, char *, STRLEN));
mg_find Finds the magic pointer for type matching the SV. Seenagic .
MAGIC* mg_find _((SV* sv, int type));
mg_free Free any magic storage used by the SV. sSemagic .
int mg_free _((SV* sv));
mg_get Do magic after a value is retrieved from the SV. Seanagic .
int mg_get _((SV* sv));
mg_len Report on the SV's length. See_magic .
U3z mg_len _((SV* sv));

mg_magical
Turns on the magical status of an SV. Seamagic .

void mg_magical _((SV* sv));
mg_set Do magic after a value is assigned to the SV. sSemagic .
int mg_set _((SV* sv));

Move The XSUB-writer's interface to the Giemmovefunction. Thes is the sourced is the
destinationn is the number of items, andis the type.

(void) Move('s, d, n, t);
na A variable which may be used wi8vPV to tell Perl to calculate the string length.
New The XSUB-writer's interface to the @alloc function.

void * New(x, void *ptr, int size, type)
Newc The XSUB-writer's interface to the @alloc function, with cast.

void * Newc(x, void *ptr, int size, type, cast)

324 Version 5.003 08-0Oct-1996

perlguts Perl Programmers Reference Guide perlguts
Newz The XSUB-writer's interface to the @alloc function. The allocated memory is zeroed with
memzero.
void * Newz(x, void *ptr, int size, type)
newAV Creates a new AV. The refcount is set to 1.
AV* newAvV _((void));
newHV Creates a new HV. The refcount is set to 1.
HV* newHV _((void));
newRV Creates an RV wrapper for an SV. The refcount for the original SV is incremented.
Sv* newRV _((SV* ref));
newSV Creates a new SV. THen parameter indicates the number of bytes of pre-allocated string
space the SV should have. The refcount for the new SV is set to 1.
Sv* newSV _((STRLEN len));
newSViv Creates a new SV and copies an integer into it. The refcount for the SV is set to 1.
Sv* newSViv _((IV i));
newSVnv Creates a new SV and copies a double into it. The refcount for the SV is set to 1.
Sv* newSVnv _((NV i));
newSVpv Creates a new SV and copies a string into it. The refcount for the SV is set teri. i$fzero
then Perl will compute the length.
Sv* newSVpv _((char* s, STRLEN len));
newSVrv Creates a new SV for the RK , to point to. Ifrv is not an RV then it will be upgraded to one.
If classname is non—null then the new SV will be blessed in the specified package. The new
SV is returned and its refcount is 1.
Sv* newSVrv _((SV* rv, char* classname));
newSVsv Creates a new SV which is an exact duplicate of the original SV.
Sv* newSVsv _((SV* old));
newXS Used byxsubpp to hook up XSUBs as Perl subs.
newXSproto
Used byxsubpp to hook up XSUBs as Perl subs. Adds Perl prototypes to the subs.
Nullav Null AV pointer.
Nullch Null character pointer.
Nullcv Null CV pointer.
Nullhv Null HV pointer.
Nullsv Null SV pointer.
ORIGMARK
The original stack mark for the XSUB. S@é®RIGMARK
perl_alloc Allocates a new Perl interpreter. Seglembed

perl_call_argv

Performs a callback to the specified Perl sub. pfeeleall.

08-0Oct-1996

Version 5.003 325

perlguts Perl Programmers Reference Guide perlguts

132 perl_call_argv _((char* subname, 132 flags, char** argv));

perl_call_method

Performs a callback to the specified Perl method. The blessed object must be on the stack. See
perlcall.

132 perl_call_method _((char* methname, 132 flags));

perl_call_pv
Performs a callback to the specified Perl sub. pfeeleall.

132 perl_call_pv _((char* subname, 132 flags));
perl_call_sv
Performs a callback to the Perl sub whose name is in the S\peBeall.
132 perl_call_sv _((SV* sv, 132 flags));

perl_construct
Initializes a new Perl interpreter. Seerlembed

perl_destruct
Shuts down a Perl interpreter. S$eglembed

perl_eval_sv
Tells Perl toeval the string in the SV.

132 perl_eval_sv _((SV* sv, 132 flags));
perl_free Releases a Perl interpreter. $edembed

perl_get_av

Returns the AV of the specified Perl array.ciéate is set and the Perl variable does not exist
then it will be created. Kreate is not set and the variable does not exist then null is returned.

AV* perl_get_av _((char* name, 132 create));

perl_get _cv

Returns the CV of the specified Perl sub.crate is set and the Perl variable does not exist
then it will be created. Kreate is not set and the variable does not exist then null is returned.

Cv* perl_get _cv _((char* name, 132 create));

perl_get_hv

Returns the HV of the specified Perl hashcrate is set and the Perl variable does not exist
then it will be created. Kreate is not set and the variable does not exist then null is returned.

HV* perl_get_hv _((char* name, 132 create));

perl_get_sv

Returns the SV of the specified Perl scalarcrdéfate is set and the Perl variable does not exist
then it will be created. Kreate is not set and the variable does not exist then null is returned.

Sv* perl_get_sv _((char* name, 132 create));

perl_parse
Tells a Perl interpreter to parse a Perl script. (f2elembed

perl_require_pv
Tells Perl torequire a module.

void perl_require_pv _((char* pv));

326 Version 5.003 08-0Oct-1996

perlguts Perl Programmers Reference Guide perlguts
perl_run Tells a Perl interpreter to run. Seerlembed
POPI Pops an integer off the stack.
int POPI();
POPI Pops a long off the stack.
long POPI();
POPp Pops a string off the stack.
char * POPp();
POPN Pops a double off the stack.
double POPN();
POPs Pops an SV off the stack.
SV* POPs();
PUSHMARK
Opening bracket for arguments on a callback. FB¢EBACKandperlcall.
PUSHMARK(p)
PUSHI Push an integer onto the stack. The stack must have room for this elemeRIUSHéi.
PUSHi(int d)
PUSHn Push a double onto the stack. The stack must have room for this eleme{i.it¢n
PUSHnN(double d)
PUSHp Push a string onto the stack. The stack must have room for this elemelsn Thelicates the
length of the string. Se€PUSHp
PUSHp(char *c, int len)
PUSHs Push an SV onto the stack. The stack must have room for this elemeP 58S
PUSHs(sv)
PUTBACK
Closing bracket for XSUB arguments. This is usually handlexsbippp . SeePUSHMARENd
perlcall for other uses.
PUTBACK;
Renew The XSUB-writer's interface to the @alloc function.
void * Renew(void *ptr, int size, type)
Renewc The XSUB-writer's interface to the @alloc function, with cast.
void * Renewc(void *ptr, int size, type, cast)
RETVAL Variable which is setup bysubpp to hold the return value for an XSUB. This is always the
proper type for the XSUB. S&8te RETVAL Variable in perixs
safefree The XSUB-writer's interface to the ftee function.
safemalloc

The XSUB-writer's interface to the @alloc function.

08-0Oct-1996

Version 5.003 327

perlguts Perl Programmers Reference Guide perlguts

saferealloc
The XSUB-writer's interface to the ealloc function.

savepv Copy a string to a safe spot. This does not use an SV.
char* savepv _((char* sv));

savepvn Copy a string to a safe spot. Tlea indicates number of bytes to copy. This does not use an

SV.
char* savepvn _((char* sv, 132 len));
SAVETMPS
Opening bracket for temporaries on a callback. FFREEETMP Sndperlcall.
SAVETMPS;
SP Stack pointer. This is usually handledxspbpp . SeedSP andSPAGAIN
SPAGAIN
Refetch the stack pointer. Used after a callback.p8#eall.
SPAGAIN;
ST Used to access elements on the XSUB's stack.
SV* ST(int x)
StrEQ Test two strings to see if they are equal. Returns true or false.
int strEQ(char *s1, char *s2)
strGE Test two strings to see if the firstl , is greater than or equal to the seca®d, Returns true or
false.
int strGE(char *s1, char *s2)
strGT Test two strings to see if the first] , is greater than the secos?,. Returns true or false.
int strGT(char *s1, char *s2)
StrLE Test two strings to see if the first], is less than or equal to the secosi@l, Returns true or
false.
int strLE(char *s1, char *s2)
StrL T Test two strings to see if the first] , is less than the secorg®,. Returns true or false.
int strLT(char *s1, char *s2)
StrNE Test two strings to see if they are different. Returns true or false.

int strNE(char *s1, char *s2)

strnEQ Test two strings to see if they are equal. Tre parameter indicates the number of bytes to
compare. Returns true or false.

int strnEQ(char *s1, char *s2)

strnNE Test two strings to see if they are different. Tdre parameter indicates the number of bytes to
compare. Returns true or false.

int strnNE(char *s1, char *s2, int len)

sv_2mortal
Marks an SV as mortal. The SV will be destroyed when the current context ends.

328 Version 5.003 08-0Oct-1996

perlguts Perl Programmers Reference Guide perlguts

Sv* sv_2mortal _((SV* sv));

sv_bless Blesses an SV into a specified package. The SV must be an RV. The package must be
designated by its stash (spe stashpv()). The refcount of the SV is unaffected.

Sv* sv_bless _((SV* sv, HV* stash));
sv_catpv Concatenates the string onto the end of the string which is in the SV.
void sv_catpv _((SV* sv, char* ptr));

sv_catpvn
Concatenates the string onto the end of the string which is in the SMerThadicates number
of bytes to copy.

void sv_catpvn _((SV* sv, char* ptr, STRLEN len));
sv_catsv Concatenates the string from S%v onto the end of the string in S18v .
void sv_catsv _((SV* dsv, SV* ssv));

sv_cmp Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the stwigimless
than, equal to, or greater than the stringuf .

132 sv_cmp _((SV* svl, SV* sv2));

sv_cmp Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the stwigimless
than, equal to, or greater than the stringuf .

132 sv_cmp _((SV* svl, SV* sv2));
SVCUR Returns the length of the string which is in the SV. SdeEN.
int SYCUR (SV* sv)

SVCUR_set
Set the length of the string which is in the SV. Se€UR

SvCUR_set (SV* sy, intval)
sv_dec Autodecrement of the value in the SV.

void sv_dec _((SV* sv));
sv_dec Autodecrement of the value in the SV.

void sv_dec _((SV* sv));

SVEND Returns a pointer to the last character in the string which is in the S\GVE&¢R Access the
character as

*SVEND(sv)
sv_eq Returns a boolean indicating whether the strings in the two SVs are identical.
132 sv_eq _((SV* svl, SV* sv2));

SvGROW

Expands the character buffer in the SV. CsMsgrow to perform the expansion if necessary.
Returns a pointer to the character buffer.

char * SYGROW(SV* sy, int len)

sv_grow Expands the character buffer in the SV. This will s¢eunref and will upgrade the SV to
SVt_PV. Returns a pointer to the character buffer. 88 ROW

08-0Oct-1996 Version 5.003 329

perlguts Perl Programmers Reference Guide perlguts
sv_inc Autoincrement of the value in the SV.
void sv_inc _((SV* sv));
SvIOK Returns a boolean indicating whether the SV contains an integer.
int SVIOK (SV* SV)
SvIOK_off
Unsets the IV status of an SV.
SvIOK _off (SV* sv)
SvIOK _on
Tells an SV that it is an integer.
SvIOK_on (SV* sv)
SvIOK_only
Tells an SV that it is an integer and disables all other OK bits.
SvIOK_on (SV* sv)
SvIOK_only
Tells an SV that it is an integer and disables all other OK bits.
SvIOK_on (SV* sv)
SvIOKp Returns a boolean indicating whether the SV contains an integer. Chegksvitte setting.
UseSvIOK.
int SVIOKp (SV* SV)
Sv_isa Returns a boolean indicating whether the SV is blessed into the specified class. This does not
know how to check for subtype, so it doesn‘t work in an inheritance relationship.
int sv_isa _((SV* sv, char* name));
Sviv Returns the integer which is in the SV.
int SvIV (SV* sv)
Sv_isobject
Returns a boolean indicating whether the SV is an RV pointing to a blessed object. If the SV is
not an RV, or if the object is not blessed, then this will return false.
int sv_isobject _((SV* sv));
SvivX Returns the integer which is stored in the SV.
int SVIVX (SV* sv);
SVLEN Returns the size of the string buffer in the SV. Se@UR
int SYLEN (SV* sv)
sv_len Returns the length of the string in the SV. 3s€UR
STRLEN sv_len _((SV* sv));
sv_len Returns the length of the string in the SV. 3s€UR
STRLEN sv_len _((SV* sv));
sv_magic Adds magic to an SV.
void sv_magic _((SV* sv, SV* obj, int how, char* name, 132 namlen)
330 Version 5.003 08-0Oct-1996

perlguts Perl Programmers Reference Guide perlguts

sv_mortalcopy
Creates a new SV which is a copy of the original SV. The new SV is marked as mortal.

Sv* sv_mortalcopy _((SV* oldsv));
SvOK Returns a boolean indicating whether the value is an SV.
int SYOK (SV* sv)

Ssv_newmortal
Creates a new SV which is mortal. The refcount of the SV is set to 1.

Sv* sv_newmortal _((void));

SV_no This is thefalse SV. Seesv_yes . Always refer to this a&sv_no.

SvNIOK Returns a boolean indicating whether the SV contains a number, integer or double.
int SVNIOK (SV* SV)

SVNIOK _off
Unsets the NV/IV status of an SV.

SVNIOK_off (SV* sv)

SvNIOKp Returns a boolean indicating whether the SV contains a number, integer or double. Checks the
private setting. Us&vNIOK.

int SYNIOKp (SV* SV)
SVNOK Returns a boolean indicating whether the SV contains a double.
int SYNOK (SV* SV)

SVNOK_off
Unsets the NV status of an SV.

SvVNOK_off (SV* sv)

SVNOK on
Tells an SV that it is a double.

SvVNOK_on (SV* sv)

SvNOK_only
Tells an SV that it is a double and disables all other OK bits.

SvVNOK_on (SV* sv)

SvNOK_only
Tells an SV that it is a double and disables all other OK bits.

SvVNOK_on (SV* sv)

SVNOKp Returns a boolean indicating whether the SV contains a double. Chepkiv#te setting. Use
SvNOK

int SYNOKp (SV* SV)

SvNV Returns the double which is stored in the SV.
double SVNV (SV* sv);

SVNVX Returns the double which is stored in the SV.
double SYNVX (SV* sv);

08-0Oct-1996 Version 5.003 331

perlguts Perl Programmers Reference Guide perlguts

SvPOK Returns a boolean indicating whether the SV contains a character string.
int SYPOK (SV* SV)

SvPOK_ off
Unsets the PV status of an SV.

SvPOK_off (SV* sv)

SvPOK on
Tells an SV that it is a string.

SvPOK_on (SV* sv)

SvPOK_only
Tells an SV that it is a string and disables all other OK bits.

SvPOK_on (SV* sv)

SvPOK_only
Tells an SV that it is a string and disables all other OK bits.

SvPOK_on (SV* sv)

SvPOKp Returns a boolean indicating whether the SV contains a character string. Chepkivatee
setting. Use&SvPOK

int SYPOKp (SV* SV)

SvPV Returns a pointer to the string in the SV, or a stringified form of the SV if the SV does not
contain a string. llen isna then Perl will handle the length on its own.

char * SVPV (SV* sv, int len)
SvPVX Returns a pointer to the string in the SV. The SV must contain a string.
char * SVPVX (SV* sv)

SVREFCNT
Returns the value of the object's refcount.

int SYREFCNT (SV* sv);

SVREFCNT _dec
Decrements the refcount of the given SV.

void SYREFCNT_dec (SV* sv)

SVREFCNT _inc
Increments the refcount of the given SV.

void SYVREFCNT _inc (SV* sv)
SVROK Tests if the SV is an RV.
int SYROK (SV* sv)

SVROK _off
Unsets the RV status of an SV.

SVROK_off (SV* sv)

SVROK on
Tells an SV that it is an RV.

332 Version 5.003 08-0Oct-1996

perlguts Perl Programmers Reference Guide perlguts
SVROK_on (SV* sv)
SVRV Dereferences an RV to return the SV.

Sv* SVRV (SV* sv);

sv_setiv Copies an integer into the given SV.

void sv_setiv _((SV* sv, IV num));

sv_setnv Copies a double into the given SV.

void sv_setnv _((SV* sv, double num));

sv_setpv Copies a string into an SV. The string must be null-terminated.

sSv_setpvn

void sv_setpv _((SV* sv, char* ptr));

Copies a string into an SV. Then parameter indicates the number of bytes to be copied.

void sv_setpvn _((SV* sv, char* ptr, STRLEN len));

sv_setref_iv

Copies an integer into a new SV, optionally blessing the SV.nhergument will be upgraded
to an RV. That RV will be modified to point to the new SV. Tit@ssname argument
indicates the package for the blessing. cktsname to Nullch to avoid the blessing. The
new SV will be returned and will have a refcount of 1.

Sv* sv_setref_iv_((SV *rv, char *classname, IV iv));

sv_setref _nv

Copies a double into a new SV, optionally blessing the SV. rThargument will be upgraded
to an RV. That RV will be modified to point to the new SV. Tit@ssname argument
indicates the package for the blessing. cktsname to Nullch to avoid the blessing. The
new SV will be returned and will have a refcount of 1.

Sv* sv_setref_nv _((SV *rv, char *classname, double nv));

sv_setref_pv

Copies a pointer into a new SV, optionally blessing the SV. rifhargument will be upgraded
to an RV. That RV will be modified to point to the new SV. If iveargument is NULL then
sv_undef will be placed into the SV. Thelassname argument indicates the package for
the blessing. Seflassname to Nullch to avoid the blessing. The new SV will be returned
and will have a refcount of 1.

Sv* sv_setref_pv _((SV *rv, char *classname, void* pv));

Do not use with integral Perl types such as HV, AV, SV, CV, because those objects will become
corrupted by the pointer copy process.

Note thatsv_setref _pvn copies the string while this copies the pointer.

sv_setref_pvn

Copies a string into a new SV, optionally blessing the SV. The length of the string must be
specified withn. Therv argument will be upgraded to an RV. That RV will be modified to
point to the new SV. Thelassname argument indicates the package for the blessing. Set
classname to Nullch to avoid the blessing. The new SV will be returned and will have a
refcount of 1.

Sv* sv_setref_pvn _((SV *rv, char *classname, char* pv, 132 n));

Note thatsv_setref pv copies the pointer while this copies the string.

08-0Oct-1996

Version 5.003 333

perlguts Perl Programmers Reference Guide perlguts

sv_setsv Copies the contents of the source 8¥ into the destination Sdsv . The source SV may be
destroyed if it is mortal.

void sv_setsv _((SV* dsv, SV* ssv));

SvSTASH
Returns the stash of the SV.

HV * SYSTASH (SV* sv)
SVt IV Integer type flag for scalars. Sedype .
SVt PV Pointer type flag for scalars. Sedype .

SVt_PVAV

Type flag for arrays. Sesvtype .
SVt_PVCV

Type flag for code refs. Sestype .
SVt_PVHV

Type flag for hashes. Seetype .
SVt_PVMG

Type flag for blessed scalars. Sstype .
SVt_NV Double type flag for scalars. Seetype .

SVTRUE Returns a boolean indicating whether Perl would evaluate the SV as true or false, defined or
undefined.

int SYTRUE (SV* sv)
SVTYPE Returns the type of the SV. Sgdype .
svtype SvTYPE (SV* sv)

svtype An enum of flags for Perl types. These are found in thesfila in thesvtype enum. Test
these flags with th8vTYPE macro.
SvVUPGRADE
Used to upgrade an SV to a more complex form. Ygespgrade to perform the upgrade if
necessary. Sewtype .
bool SVUPGRADE _((SV* sv, svtype mt));

Sv_upgrade
Upgrade an SV to a more complex form. 3s#JPGRADE Seesvtype .

sv_undef This is theundef SV. Always refer to this a&sv_undef.

sv_unref Unsets the RV status of the SV, and decrements the refcount of whatever was being referenced
by the RV. This can almost be thought of as a reversawEVrv. SeeSVROK_off .

void sv_unref ((SV* sv));

sv_usepvn
Tells an SV to usetr to find its string value. Normally the string is stored inside the SV but
sv_usepvn allows the SV to use an outside string.pihe should point to memory that was
allocated bymalloc . The string lengthen , must be supplied. This function will realloc the
memory pointed to bptr , so that pointer should not be freed or used by the programmer after
giving it to sv_usepvn.

334

Version 5.003 08-0ct—-1996

perlguts Perl Programmers Reference Guide perlguts

void sv_usepvn _((SV* sv, char* ptr, STRLEN len));
sv_yes Thisisthetrue SV. Seesv_no . Always refer to this a&sv_yes.

THIS Variable which is setup bysubpp to designate the object in a C++ XSUB. This is always the
proper type for the C++ object. SEeEASSandUsing XS With C++ in perlxs

toLOWER
Converts the specified character to lowercase.

int toLOWER (char c)
toUPPER Converts the specified character to uppercase.
int toUPPER (char c)

warn This is the XSUB-writer's interface to Perkgarn function. Use this function the same way
you use the @rintf function. See&roak()

XPUSHi Push an integer onto the stack, extending the stack if necessafyUSke
XPUSHi(int d)

XPUSHnN Push a double onto the stack, extending the stack if necessaryUSEa
XPUSHnN(double d)

XPUSHp Push a string onto the stack, extending the stack if necessarylenThadicates the length of
the string. SePUSHp

XPUSHp(char *c, int len)
XPUSHs Push an SV onto the stack, extending the stack if necessarPUSéts

XPUSHSs(sv)
XS Macro to declare an XSUB and its C parameter list. This is handbesubyp .
XSRETURN
Return from XSUB, indicating number of items on the stack. This is usually handled by
xsubpp .
XSRETURN(int x);

XSRETURN_EMPTY
Return an empty list from an XSUB immediately.

XSRETURN_EMPTY;

XSRETURN_IV
Return an integer from an XSUB immediately. UX&3_mlIV.

XSRETURN_IV(IV v);

XSRETURN_NO
Return&sv_no from an XSUB immediately. Use&ST_mNO

XSRETURN_NO;

XSRETURN_NV
Return an double from an XSUB immediately. UX&§_mNV

XSRETURN_NV(NV v);

XSRETURN_PV
Return a copy of a string from an XSUB immediately. U§8%_mPV

08-0Oct-1996 Version 5.003 335

perlguts Perl Programmers Reference Guide perlguts

XSRETURN_PV(char *v);

XSRETURN_UNDEF
Return&sv_undef from an XSUB immediately. Use&€ST_mUNDEF

XSRETURN_UNDEF;

XSRETURN_YES
Return&sv_yes from an XSUB immediately. Use&ST _mYES

XSRETURN_YES;

XST_mlV Place an integer into the specified positioon the stack. The value is stored in a new mortal
SV.

XST_mlv(inti, IVv);

XST_mNV
Place a double into the specified positioon the stack. The value is stored in a new mortal SV.

XST_mNV(inti, NV v);

XST_mNO
Place&sv_no into the specified position on the stack.

XST_mNO(inti);

XST_mPV
Place a copy of a string into the specified positioon the stack. The value is stored in a new
mortal SV.
XST_mPV(inti, char *v);
XST_mUNDEF

Place&sv_undef into the specified position on the stack.
XST_mUNDEF(inti);

XST_mYES
Place&sv_yes into the specified position on the stack.

XST_mYES(inti);

XS_VERSION
The version identifier for an XS module. This is usually handled automatically by
ExtUtils::MakeMaker . SeeXS_VERSION_BOOTCHECK

XS_VERSION_BOOTCHECK

Macro to verify that a PM module’$VERSION variable matches the XS module's
XS_VERSIONvariable. This is usually handled automaticallyxbybpp . See
The VERSIONCHECK: Keyword in perlxs

Zero The XSUB-writer's interface to the @emzero function. Thed is the destinatiom is the
number of items, and is the type.

(void) Zero(d, n, t);

AUTHOR
Jeff Okamoto gkamoto@corp.hp.com

With lots of help and suggestions from Dean Roehrich, Malcolm Beattie, Andreas Koenig, Paul Hudson, llya
Zakharevich, Paul Marquess, Neil Bowers, Matthew Green, Tim Bunce, and Spider Boardman.

336 Version 5.003 08-0Oct-1996

perlguts Perl Programmers Reference Guide perlguts

API Listing by Dean Roehrichrgehrich@cray.com.

DATE
Version 22: 1996/9/23

08-0Oct-1996 Version 5.003 337

perlcall Perl Programmers Reference Guide perlcall

NAME

perlcall — Perl calling conventions from C

DESCRIPTION

The purpose of this document is to show you how to call Perl subroutines directly from C, i.e. how to write
callbacks

Apart from discussing the C interface provided by Perl for writing callbacks the document uses a series of
examples to show how the interface actually works in practice. In addition some techniques for coding
callbacks are covered.

Examples where callbacks are necessary include

e An Error Handler
You have created an XSUB interface to an application‘s C API.

A fairly common feature in applications is to allow you to define a C function that will be called
whenever something nasty occurs. What we would like is to be able to specify a Perl subroutine that
will be called instead.

e An Event Driven Program

The classic example of where callbacks are used is when writing an event driven program like for an
X windows application. In this case you register functions to be called whenever specific events
occur, e.g. a mouse button is pressed, the cursor moves into a window or a menu item is selected.

Although the techniques described here are applicable when embedding Perl in a C program, this is not the
primary goal of this document. There are other details that must be considered and are specific to embedding
Perl. For details on embedding Perl in C refggedembed

Before you launch yourself head first into the rest of this document, it would be a good idea to have read the
following two documents perlxsandperlguts

THE PERL_CALL FUNCTIONS

Although this stuff is easier to explain using examples, you first need be aware of a few important
definitions.

Perl has a number of C functions that allow you to call Perl subroutines. They are

132 perl_call_sv(SV* sv, 132 flags) ;

132 perl_call_pv(char *subname, 132 flags) ;

132 perl_call_method(char *methname, 132 flags) ;

132 perl_call_argv(char *subname, 132 flags, register char **argv) ;

The key function igerl_call_sv All the other functions are fairly simple wrappers which make it easier to
call Perl subroutines in special cases. At the end of the day they will ghlechltall_svto actually invoke
the Perl subroutine.

All the perl_call_* functions have flags parameter which is used to pass a bit mask of options to Perl.
This bit mask operates identically for each of the functions. The settings available in the bit mask are
discussed ifrfLAG VALUES

Each of the functions will now be discussed in turn.

perl_call_sv

perl_call_svtakes two parameters, the firsyy, is an SV*. This allows you to specify the Perl
subroutine to be called either as a C string (which has first been converted to an SV) or a reference to
a subroutine. The sectiodsing perl_call_syshows how you can make usepefl_call_sv

perl_call_pv
The function,perl_call_pv is similar toperl_call_svexcept it expects its first parameter to be a C
char* which identifies the Perl subroutine you want to call, ged. call_pv(‘fred", 0) f

338

Version 5.003 08-0ct—-1996

perlcall Perl Programmers Reference Guide perlcall

the subroutine you want to call is in another package, just include the package name in the string, e.g.
"pkg::fred"

perl_call_method

The functionperl_call_methods used to call a method from a Perl class. The parameténame
corresponds to the name of the method to be called. Note that the class that the method belongs to is
passed on the Perl stack rather than in the parameter list. This class can be either the name of the class
(for a static method) or a reference to an object (for a virtual method). peSkeddj for more
information on static and virtual methods adding perl_call_methodor an example of using
perl_call_method

perl_call_argv
perl_call_argvcalls the Perl subroutine specified by the C string stored iaubeame parameter.

It also takes the usuihgs parameter. The final parametargv , consists of a NULL terminated
list of C strings to be passed as parameters to the Perl subroutitusisgeerl_call_argv

All the functions return an integer. This is a count of the number of items returned by the Perl subroutine.
The actual items returned by the subroutine are stored on the Perl stack.

As a general rule you shouddwayscheck the return value from these functions. Even if you are expecting
only a particular number of values to be returned from the Perl subroutine, there is nothing to stop someone
from doing something unexpected — don‘t say you haven‘t been warned.

FLAG VALUES
Theflags parameter in all thperl_call_* functions is a bit mask which can consist of any combination of
the symbols defined below, OR‘ed together.

G_SCALAR
Calls the Perl subroutine in a scalar context. This is the default context flag setting forpettl tisall_*
functions.

This flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in a scalar context (if it executes
wantarraythe result will be false).

2. It ensures that only a scalar is actually returned from the subroutine. The subroutine can, of course,
ignore thewantarray and return a list anyway. If so, then only the last element of the list will be
returned.

The value returned by thgerl_call_* function indicates how many items have been returned by the Perl
subroutine — in this case it will be either O or 1.

If 0, then you have specified the G_DISCARD flag.

If 1, then the item actually returned by the Perl subroutine will be stored on the Perl stack — the section
Returning a Scalashows how to access this value on the stack. Remember that regardless of how many
items the Perl subroutine returns, only the last one will be accessible from the stack — think of the case where
only one value is returned as being a list with only one element. Any other items that were returned will not
exist by the time control returns from tperl_call_* function. The sectiofReturning a list in a scalar
contextshows an example of this behaviour.

G_ARRAY
Calls the Perl subroutine in a list context.

As with G_SCALAR, this flag has 2 effects:

1. It indicates to the subroutine being called that it is executing in an array context (if it executes
wantarraythe result will be true).

08-0Oct-1996 Version 5.003 339

perlcall Perl Programmers Reference Guide perlcall

2. It ensures that all items returned from the subroutine will be accessible when control returns from the
perl_call_* function.

The value returned by thgerl_call_* function indicates how many items have been returned by the Perl
subroutine.

If 0, then you have specified the G_DISCARD flag.

If not O, then it will be a count of the number of items returned by the subroutine. These items will be stored
on the Perl stack. The sectiBeturning a list of valuegives an example of using the G_ARRAY flag and
the mechanics of accessing the returned items from the Perl stack.

G_DISCARD

By default, theperl_call_* functions place the items returned from by the Perl subroutine on the stack. If
you are not interested in these items, then setting this flag will make Perl get rid of them automatically for
you. Note that it is still possible to indicate a context to the Perl subroutine by using either G_SCALAR or
G_ARRAY.

If you do not set this flag then it igry important that you make sure that any temporaries (i.e. parameters
passed to the Perl subroutine and values returned from the subroutine) are disposed of yourself. The section
Returning a Scalagives details of how to explicitly dispose of these temporaries and the ddsingnPerl

to dispose of temporariefiscusses the specific circumstances where you can ignore the problem and let Perl
deal with it for you.

G_NOARGS

Whenever a Perl subroutine is called using one op#re call_* functions, it is assumed by default that
parameters are to be passed to the subroutine. If you are not passing any parameters to the Perl subroutine,
you can save a bit of time by setting this flag. It has the effect of not creatir@_tagay for the Perl
subroutine.

Although the functionality provided by this flag may seem straightforward, it should be used only if there is
a good reason to do so. The reason for being cautious is that even if you have specified the G_NOARGS
flag, it is still possible for the Perl subroutine that has been called to think that you have passed it parameters.

In fact, what can happen is that the Perl subroutine you have called can ac@sartiag from a previous
Perl subroutine. This will occur when the code that is executingdhecall_* function has itself been
called from another Perl subroutine. The code below illustrates this

sub fred
{print"@_\n" }

sub joe
{ &fred }

&joe(1,2,3) ;
This will print
123
What has happened is thiegd accesses th@ _array which belongs toe .

G_EVAL

It is possible for the Perl subroutine you are calling to terminate abnormally, e.g. by didleaglicitly or

by not actually existing. By default, when either of these of events occurs, the process will terminate
immediately. If though, you want to trap this type of event, specify the G_EVAL flag. It will pauadd }

around the subroutine call.

Whenever control returns from tperl_call_* function you need to check tB@variable as you would in a
normal Perl script.

340

Version 5.003 08-0ct—-1996

perlcall Perl Programmers Reference Guide perlcall

The value returned from theerl_call_* function is dependent on what other flags have been specified and
whether an error has occurred. Here are all the different cases that can occur:

° If the perl_call_* function returns normally, then the value returned is as specified in the previous
sections.

° If G_DISCARD is specified, the return value will always be 0.

° If G_ARRAY is specifiedandan error has occurred, the return value will always be O.

° If G_SCALAR is specifiedand an error has occurred, the return value will be 1 and the value on the

top of the stack will beindef This means that if you have already detected the error by chek@&ing
and you want the program to continue, you must remember to papdk&rom the stack.

SeeUsing G_EVALlfor details of using G_EVAL.

G_KEEPERR
You may have noticed that using the G_EVAL flag described abovalwitlys clear the$@variable and
set it to a string describing the error iff there was an error in the called code. This unqualified reskgiing of
can be problematic in the reliable identification of errors usingetfs {} mechanism, because the
possibility exists that perl will call other code (end of block processing code, for example) between the time
the error cause®@to be set withireval {} , and the subsequent statement which checks for the value of
$@gets executed in the user's script.

This scenario will mostly be applicable to code that is meant to be called from within destructors,
asynchronous callbacks, signal handlersDIE__ or _ WARN__hooks, andie functions. In such
situations, you will not want to cle&@at all, but simply to append any new errors to any existing value of

$@.

The G_KEEPERR flag is meant to be used in conjunction with G_EVAeih call_* functions that are
used to implement such code. This flag has no effect when G_EVAL is not used.

When G_KEEPERR is used, any errors in the called code will be prefixed with the string "\t(in cleanup)”,
and appended to the current valu&@s.

The G_KEEPERR flag was introduced in Perl version 5.002.
SeeUsing G_KEEPERRor an example of a situation that warrants the use of this flag.

Determining the Context

As mentioned above, you can determine the context of the currently executing subroutine in Perl with
wantarray. The equivalent test can be made in C by usin@gsthdMEmacro. This will returrG_SCALARf

you have been called in a scalar context @ d\RRAYif in an array context. An example of using the
GIMMEmacro is shown in sectidgsing GIMME

KNOWN PROBLEMS
This section outlines all known problems that exist inpw_call_* functions.

1. If you are intending to make use of both the G_EVAL and G_SCALAR flags in your code, use a
version of Perl greater than 5.000. There is a bug in version 5.000 of Perl which means that the
combination of these two flags will not work as described in the sdetide VALUES

Specifically, if the two flags are used when calling a subroutine and that subroutine doesdiet call
the value returned hyerl_call_* will be wrong.

2. In Perl 5.000 and 5.001 there is a problem with ugieg_call_* if the Perl sub you are calling
attempts to trap die.

The symptom of this problem is that the called Perl sub will continue to completion, but whenever it
attempts to pass control back to the XSUB, the program will immediately terminate.

For example, say you want to call this Perl sub

08-0Oct-1996 Version 5.003 341

perlcall Perl Programmers Reference Guide perlcall

sub fred
{
eval { die "Fatal Error" ; }
print "Trapped error: $@\n"
if $@ ;
}

via this XSUB

void
Call_fred()
CODE:
PUSHMARK(sp) ;
perl_call_pv("fred", G_DISCARD|G_NOARGS) ;
fprintf(stderr, "back in Call_fred\n") ;

WhenCall_fred is executed it will print
Trapped error: Fatal Error
As control never returns toall_fred , the"back in Call_fred" string will not get printed.

To work around this problem, you can either upgrade to Perl 5.002 (or later), or use the G_EVAL
flag with perl_call_* as shown below

void
Call_fred()
CODE:
PUSHMARK(sp) ;
perl_call_pv("fred", G_EVAL|G_DISCARD|G_NOARGS) ;
fprintf(stderr, "back in Call_fred\n") ;
EXAMPLES
Enough of the definition talk, let's have a few examples.
Perl provides many macros to assist in accessing the Perl stack. Wherever possible, these macros should

always be used when interfacing to Perl internals. Hopefully this should make the code less vulnerable to
any changes made to Perl in the future.

Another point worth noting is that in the first series of examples | have made use of opdyltiwall_pv
function. This has been done to keep the code simpler and ease you into the topic. Wherever possible, if the
choice is between usimgerl_call_pvandperl_call_sv you should always try to ugerl_call_sv SeeUsing
perl_call_svfor details.

No Parameters, Nothing returned
This first trivial example will call a Perl subroutirintUID, to print out the UID of the process.

sub PrintUID
{

}

and here is a C function to call it

print "UID is $<\n";

static void
call_PrintUID()

{
dSsP ;

PUSHMARK(sp) ;
perl_call_pv("PrintUID", G_DISCARD|G_NOARGS) ;

}

342 Version 5.003 08-0Oct-1996

perlcall Perl Programmers Reference Guide perlcall

Simple, eh.

A few points to note about this example.

1. IgnoredSP andPUSHMARK(sp)for now. They will be discussed in the next example.
2. We aren‘t passing any parameter®tmtUID so G_NOARGS can be specified.

3. We aren't interested in anything returned frémintUID, so G_DISCARD is specified. Even if
PrintUID was changed to actually return some value(s), having specified G_DISCARD will mean
that they will be wiped by the time control returns frpetl_call_pv

4. As perl_call_pvis being used, the Perl subroutine is specified as a C string. In this case the
subroutine name has been ‘*hard-wired’ into the code.

5. Because we specified G_DISCARD, it is not necessary to check the value returned from
perl_call_pv It will always be O.

Passing Parameters

Now let's make a slightly more complex example. This time we want to call a Perl subroutine,
LeftString , which will take 2 parameters — a strirfgs) and an integer$). The subroutine will
simply print the firstsn characters of the string.

So the Perl subroutine would look like this

sub LeftString
{
my($s, $n) = @_;
print substr($s, 0, $n), "\n" ;

}
The C function required to cdlkeftStringwould look like this.

static void
call_LeftString(a, b)
char*a;
inth;
{

dSP ;

PUSHMARK(sp) ;
XPUSHs(sv_2mortal(newSVpv(a, 0)));
XPUSHSs(sv_2mortal(newSViv(b)));
PUTBACK ;

perl_call_pv("LeftString", G_DISCARD);
}

Here are a few notes on the C functoafi_LeftString

1. Parameters are passed to the Perl subroutine using the Perl stack. This is the purpose of the code
beginning with the lin@SP and ending with the linBUTBACK

2. If you are going to put something onto the Perl stack, you need to know where to put it. This is the
purpose of the macmSP - it declares and initializeslacal copy of the Perl stack pointer.

All the other macros which will be used in this example require you to have used this macro.

The exception to this rule is if you are calling a Perl subroutine directly from an XSUB function. In
this case it is not necessary to explicitly use &8P macro — it will be declared for you
automatically.

08-0Oct-1996 Version 5.003 343

perlcall

Perl Programmers Reference Guide perlcall

6.

Any parameters to be pushed onto the stack should be bracketedRlySEMARIENdPUTBACK
macros. The purpose of these two macros, in this context, is to automatically count the number of
parameters you are pushing. Then whenever Perl is creati@_teay for the subroutine, it knows

how big to make it.

The PUSHMARHKnacro tells Perl to make a mental note of the current stack pointer. Even if you
aren‘'t passing any parameters (like the example shown in the séidrarameters, Nothing
returned you must still call thePUSHMARKnacro before you can call any of tperl_call_*
functions — Perl still needs to know that there are no parameters.

The PUTBACKmacro sets the global copy of the stack pointer to be the same as our local copy. If we
didn't do thisperl_call_pvwouldn‘t know where the two parameters we pushed were — remember
that up to now all the stack pointer manipulation we have done is with our localhcoplye global

copy.

The only flag specified this time is G_DISCARD. Since we are passing 2 parameters to the Perl
subroutine this time, we have not specified G_NOARGS.

Next, we come to XPUSHSs. This is where the parameters actually get pushed onto the stack. In this
case we are pushing a string and an integer.

See theXSUBs and the Argument Stack in perlgatdetails on how the XPUSH macros work.

Finally, LeftStringcan now be called via theerl_call_pvfunction.

Returning a Scalar
Now for an example of dealing with the items returned from a Perl subroutine.

Here is a Perl subroutinAdder, which takes 2 integer parameters and simply returns their sum.
sub Adder

{

}

my($a, $b) = @_;
$a+$b;

Since we are now concerned with the return value fiolaer, the C function required to call it is now a bit
more complex.

static void
call_Adder(a, b)
inta;

inth;

{

dSsP ;
int count ;

ENTER ;
SAVETMPS;

PUSHMARK(sp) ;
XPUSHSs(sv_2mortal(newSViv(a)));
XPUSHs(sv_2mortal(newSViv(b)));
PUTBACK ;

count = perl_call_pv("Adder", G_SCALAR);
SPAGAIN ;
if (count != 1)

croak("Big trouble\n") ;

344

Version 5.003 08-0ct—-1996

perlcall Perl Programmers Reference Guide perlcall

printf (“The sum of %d and %d is %d\n", a, b, POPI) ;

PUTBACK ;
FREETMPS ;
LEAVE ;

}

Points to note this time are

1. The only flag specified this time was G_SCALAR. That means@harray will be created and that
the value returned b&dderwill still exist after the call tgerl_call_pv

2. Because we are interested in what is returned fhaltler we cannot specify G_DISCARD. This
means that we will have to tidy up the Perl stack and dispose of any temporary values ourselves. This
is the purpose of

ENTER ;
SAVETMPS ;

at the start of the function, and

FREETMPS ;
LEAVE ;

at the end. ThR&ENTERSAVETMP Sair creates a boundary for any temporaries we create. This
means that the temporaries we get rid of will be limited to those which were created after these calls.

The FREETMP&EAVE pair will get rid of any values returned by the Perl subroutine, plus it will
also dump the mortal SV's we have created. HaBMNJERSAVETMPSat the beginning of the
code makes sure that no other mortals are destroyed.

Think of these macros as working a bit like usingnd} in Perl to limit the scope of local variables.

See the sectiotJsing Perl to dispose of temporariésr details of an alternative to using these
macros.

3. The purpose of the maci®PAGAIN is to refresh the local copy of the stack pointer. This is
necessary because it is possible that the memory allocated to the Perl stack has been re-allocated
whilst in theperl_call_pvcall.

If you are making use of the Perl stack pointer in your code you must always refresh the your local
copy using SPAGAIN whenever you make use ofggée_call_* functions or any other Perl internal
function.

4. Although only a single value was expected to be returned Adder, it is still good practice to
check the return code froperl_call_pvanyway.

Expecting a single value is not quite the same as knowing that there will be one. If someone modified
Adderto return a list and we didn‘t check for that possibility and take appropriate action the Perl
stack would end up in an inconsistent state. That is somethinggthyidon‘t want to ever happen.

5. The POPi macro is used here to pop the return value from the stack. In this case we wanted an
integer, sd?OPi was used.

Here is the complete list of POP macros available, along with the types they return.

POPs SV
POPp pointer
POPN double
POPI integer
POPI long

08-0Oct-1996 Version 5.003 345

perlcall Perl Programmers Reference Guide perlcall

6. The final PUTBACKIs used to leave the Perl stack in a consistent state before exiting the function.
This is necessary because when we popped the return value from the std&®miithupdated only
our local copy of the stack pointer. Rememif8gTBACKsets the global stack pointer to be the
same as our local copy.

Returning a list of values
Now, let's extend the previous example to return both the sum of the parameters and the difference.

Here is the Perl subroutine
sub AddSubtract

my($a, $b) = @_;
($a+$b, $a-3b) ;
}

and this is the C function

static void
call_AddSubtract(a, b)
inta;
inth;
{

dSP ;

int count ;

ENTER ;
SAVETMPS;

PUSHMARK(sp) ;
XPUSHs(sv_2mortal(newSViv(a)));
XPUSHs(sv_2mortal(newSViv(b)));
PUTBACK ;

count = perl_call_pv("AddSubtract", G_ARRAY);
SPAGAIN ;

if (count = 2)
croak("Big trouble\n") ;

printf ("%d — %d = %d\n", a, b, POPI) ;
printf ("%d + %d = %d\n", a, b, POPI) ;

PUTBACK ;
FREETMPS ;
LEAVE ;

}
If call_AddSubtracts called like this

call_AddSubtract(7, 4) ;

then here is the output

7-4=3
7+4=11
Notes
1. We wanted array context, so G_ARRAY was used.

346 Version 5.003 08-0Oct-1996

perlcall Perl Programmers Reference Guide perlcall

2. Not surprisinglyPOPi is used twice this time because we were retrieving 2 values from the stack.
The important thing to note is that when using R@P* macros they come off the stackraverse
order.

Returning a list in a scalar context
Say the Perl subroutine in the previous section was called in a scalar context, like this

static void
call_AddSubScalar(a, b)
inta;
inth;
{
dSP ;
int count ;
inti;
ENTER ;
SAVETMPS;

PUSHMARK(sp) ;
XPUSHs(sv_2mortal(newSViv(a)));
XPUSHSs(sv_2mortal(newSViv(b)));
PUTBACK ;

count = perl_call_pv("AddSubtract", G_SCALAR);
SPAGAIN ;
printf ("ltems Returned = %d\n", count) ;

for (i=1;i<=count; ++i)
printf ("Value %d = %d\n", i, POPI) ;
PUTBACK ;

FREETMPS ;
LEAVE ;

}

The other modification made is thall_AddSubScalawill print the number of items returned from the Perl
subroutine and their value (for simplicity it assumes that they are integer).célo AddSubScalais called

call_AddSubScalar(7, 4) ;
then the output will be

Items Returned = 1
Value1l=3

In this case the main point to note is that only the last item in the list returned from the subAaldere,
actually made it back teall_AddSubScalar

Returning Data from Perl via the parameter list
It is also possible to return values directly via the parameter list — whether it is actually desirable to do it is
another matter entirely.
The Perl subroutindnc, below takes 2 parameters and increments each directly.

sub Inc

{
++$ [0];
++$ [1];

08-0Oct-1996 Version 5.003 347

perlcall Perl Programmers Reference Guide perlcall

}

and here is a C function to call it.

static void
call_Inc(a, b)
inta;
inth;
{
dSP ;
int count ;
SV *sva ;
SV *svb ;

ENTER ;
SAVETMPS;

sva = sv_2mortal(newSViv(a)) ;
svb = sv_2mortal(newSViv(b)) ;

PUSHMARK(sp) ;
XPUSHSs(sva);
XPUSHSs(svb);
PUTBACK ;

count = perl_call_pv("Inc", G_DISCARD);

if (count != 0)
croak ("call_Inc: expected 0 values from ’Inc’, got %d\n",
count) ;

printf ("%d + 1 = %d\n", a, SvlV(sva)) ;
printf ("%d + 1 = %d\n", b, SvIV(svb)) ;

FREETMPS ;
LEAVE ;

}

To be able to access the two parameters that were pushed onto the stack after they rgtarh G@ipvit
is necessary to make a note of their addresses - thus the two vavabl@sdsvb .

The reason this is necessary is that the area of the Perl stack which held them will very likely have been
overwritten by something else by the time control returns fserh call_pv

Using G_EVAL

Now an example using G_EVAL. Below is a Perl subroutine which computes the difference of its 2
parameters. If this would result in a negative result, the subroutineliealls

sub Subtract

{
my ($a, $b) = @_;
die "death can be fatal\n" if $a < $b ;
$a—-%b;

}

and some C to call it

static void

call_Subtract(a, b)

inta;

intb;

348 Version 5.003 08-0Oct-1996

perlcall Perl Programmers Reference Guide perlcall

dSP ;
int count ;

ENTER ;
SAVETMPS;

PUSHMARK(sp) ;
XPUSHs(sv_2mortal(newSViv(a)));
XPUSHSs(sv_2mortal(newSViv(b)));
PUTBACK ;

count = perl_call_pv("Subtract", G_EVAL|G_SCALAR);
SPAGAIN ;

/* Check the eval first */
if (SVTRUE(GvSV(errgv)))

{
printf ("Uh oh — %s\n", SvPV(GvSV(errgv), na)) ;

POPs ;
}

else

{
if (count I= 1)
croak("call_Subtract: wanted 1 value from 'Subtract’, got %d\n",
count) ;

printf ("%d — %d = %d\n", a, b, POPI) ;
}

PUTBACK ;
FREETMPS ;
LEAVE ;

}

If call_Subtractis called thus
call_Subtract(4, 5)

the following will be printed
Uh oh - death can be fatal

Notes

1. We want to be able to catch thee so we have used the G_EVAL flag. Not specifying this flag
would mean that the program would terminate immediately atithstatement in the subroutine
Subtract

2. The code

if (SVTRUE(GvSV(errgv)))

{
printf ("Uh oh — %s\n", SYPV(GvSV(errgv), na)) ;

POPs ;
}

is the direct equivalent of this bit of Perl
print "Uh oh — $@\n" if $@ ;

errgv is a perl global of typ&V * that points to the symbol table entry containing the error.

08-0Oct-1996 Version 5.003 349

perlcall Perl Programmers Reference Guide perlcall

GvSV(errgv) therefore refers to the C equivalent@.

3. Note that the stack is popped usiR@Ps in the block whereSvTRUE(GvSV(errgv)) is true.
This is necessary because whenevegred_call_* function invoked with G_EVAL|G_SCALAR
returns an error, the top of the stack holds the vahdgef Since we want the program to continue
after detecting this error, it is essential that the stack is tidied up by removingdisfe

Using G_KEEPERR

Consider this rather facetious example, where we have used an XS version of the call_Subtract example
above inside a destructor:

package Foo;
sub new { bless {}, $_[0] }
sub Subtract {

my($a,$b) = @_;
die "death can be fatal" if $a < $b ;
$a — $b;

}
sub DESTROY { call_Subtract(5, 4); }

sub foo { die "foo dies"; }

package main;
eval { Foo—>new->foo };
print "Saw: $@" if $@; # should be, but isn't

This example will fail to recognize that an error occurred insideeted {} . Here's why: the
call_Subtract code got executed while perl was cleaning up temporaries when exiting the eval block, and
since call_Subtract is implemented wghrl_call_pvusing the G_EVAL flag, it promptly res&@. This

results in the failure of the outermost test$@, and thereby the failure of the error trap.

Appending the G_KEEPERR flag, so that gesl_call_pvcall in call_Subtract reads:
count = perl_call_pv("Subtract", G_EVAL|G_SCALAR|G_KEEPERR);

will preserve the error and restore reliable error handling.

Using perl_call_sv

In all the previous examples | have ‘hard—-wired’ the name of the Perl subroutine to be called from C. Most
of the time though, it is more convenient to be able to specify the name of the Perl subroutine from within
the Perl script.

Consider the Perl code below

sub fred

{

}
CallSubPV/("fred") ;

Here is a snippet of XSUB which defin€allSubPV

print "Hello there\n" ;

void
CallSubPV(name)
char* name
CODE:
PUSHMARK(sp) ;
perl_call_pv(name, G_DISCARD|G_NOARGS) ;

That is fine as far as it goes. The thing is, the Perl subroutine can be specified only as a string. For Perl 4
this was adequate, but Perl 5 allows references to subroutines and anonymous subroutines. This is where
perl_call_svis useful.

350

Version 5.003 08-0ct—-1996

perlcall Perl Programmers Reference Guide perlcall

The code below fo€allSubS\s identical toCallSubPVexcept that th@eame parameter is now defined as
an SV* and we usperl_call_svinstead operl_call_pv

void

CallSubSV(name)
SV * name
CODE:
PUSHMARK(sp) ;

perl_call_sv(hame, G_DISCARD|G_NOARGS) ;
Since we are using an SV to daéld the following can all be used

CallSubSV/("fred") ;

CallSubSV(\&fred) ;

$ref = \&fred ;

CallSubSV($ref) ;

CallSubSV/(sub { print "Hello there\n" }) ;

As you can seqerl_call_svgives you much greater flexibility in how you can specify the Perl subroutine.

You should note that if it is necessary to store ther&vhg in the example above) which corresponds to the
Perl subroutine so that it can be used later in the program, it not enough to just store a copy of the pointer to
the SV. Say the code above had been like this

static SV * rememberSub ;

void
SaveSubl(name)
SV * name
CODE:
rememberSub = name ;
void
CallSavedSubl()
CODE:
PUSHMARK(sp) ;

perl_call_sv(rememberSub, G_DISCARD|G_NOARGS) ;

The reason this is wrong is that by the time you come to use the poértermberSub in
CallSavedSubl , it may or may not still refer to the Perl subroutine that was record8avaSubl .
This is particularly true for these cases

SaveSubl1(\&fred) ;
CallSavedSubl() ;

SaveSubl(sub { print "Hello there\n" }) ;
CallSavedSubl() ;

By the time each of thBaveSubl statements above have been executed, the SV*'s which corresponded to
the parameters will no longer exist. Expect an error message from Perl of the form

Can’t use an undefined value as a subroutine reference at ...
for each of theCallSavedSubl lines.
Similarly, with this code

$ref = \&fred ;
SaveSubl($ref) ;
$ref =47 ;
CallSavedSubl() ;

08-0Oct-1996 Version 5.003 351

perlcall Perl Programmers Reference Guide perlcall

you can expect one of these messages (which you actually get is dependent on the version of Perl you are
using)

Not a CODE reference at ...
Undefined subroutine &main::47 called ...

The variable$ref may have referred to the subroutined whenever the call t&aveSubl was made

but by the timeCallSavedSubl gets called it now holds the numbgat. Since we saved only a pointer to
the original SV inSaveSubl, any changes téref will be tracked by the pointeememberSub . This
means that whenev@allSavedSubl gets called, it will attempt to execute the code which is referenced
by the SV*rememberSub . In this case though, it now refers to the intejerso expect Perl to complain
loudly.

A similar but more subtle problem is illustrated with this code

$ref = \&fred ;
SaveSubl($ref) ;
$ref = \&joe ;
CallSavedSubl() ;

This time wheneveCallSavedSubl get called it will execute the Perl subroutijpe (assuming it
exists) rather thafred as was originally requested in the calBaveSubl.

To get around these problems it is necessary to take a full copy of the SV. The code below shows
SaveSub2 modified to do that

static SV * keepSub = (SV*)NULL ;

void
SaveSub2(name)
SV * name
CODE:
[* Take a copy of the callback */
if (keepSub == (SV*)NULL)
[* First time, so create a new SV */
keepSub = newSVsv(name) ;
else
[* Been here before, so overwrite */
SvSetSV(keepSub, name) ;
void
CallSavedSub2()
CODE:
PUSHMARK(sp) ;

perl_call_sv(keepSub, G_DISCARD|G_NOARGS) ;

In order to avoid creating a new SV every tiB@veSub2 is called, the function first checks to see if it has
been called before. If not, then space for a new SV is allocated and the reference to the Perl subroutine,
name is copied to the variabl&keepSub in one operation usingewSVsv. Thereafter, whenever
SaveSub? is called the existing S\keepSub , is overwritten with the new value usiBgSetSV .

Using perl_call_argv
Here is a Perl subroutine which prints whatever parameters are passed to it.

sub PrintList

{
my(@list) = @_;

foreach (@list) { print "$_\n"}
}

352 Version 5.003 08-0Oct-1996

perlcall Perl Programmers Reference Guide perlcall

and here is an example pérl_call_argvwhich will call PrintList.
static char * words][] = {"alpha”, "beta", "gamma", "delta", NULL} ;

static void
call_PrintList()

{
dSP;
perl_call_argv("PrintList", G_DISCARD, words) ;
}
Note that it is not necessary to calUSHMARIK this instance. This is becayserl_call_argvwill do it for
you.

Using perl_call_method
Consider the following Perl code

{
package Mine ;
sub new
{
my($type) = shift ;
bless [@_]
}
sub Display
{
my ($self, $index) = @_;
print "$index: $$self[Sindex]\n" ;
}
sub PrintID
my($class) = @_;
print "This is Class $class version 1.0\n" ;
}
}

It just implements a very simple class to manage an array. Apart from the constreatoit declares
methods, one static and one virtual. The static metRdd{ID , simply prints out the class hame and a
version number. The virtual methddisplay , prints out a single element of the array. Here is an all Perl
example of using it.

$a = new Mine ('red’, 'green’, 'blue’) ;
$a->Display(1) ;
PrintID Mine;

will print

1: green
This is Class Mine version 1.0

Calling a Perl method from C is fairly straightforward. The following things are required

° a reference to the object for a virtual method or the name of the class for a static method.
° the name of the method.
° any other parameters specific to the method.

Here is a simple XSUB which illustrates the mechanics of calling botPtim¢ID and Display

08-0Oct-1996 Version 5.003 353

perlcall Perl Programmers Reference Guide perlcall

methods from C.

void
call_Method(ref, method, index)
SV * ref
char* method
int index
CODE:
PUSHMARK(sp);
XPUSHSs(ref);
XPUSHs(sv_2mortal(newSViv(index))) ;
PUTBACK;

perl_call_method(method, G_DISCARD) ;

void

call_PrintID(class, method)
char* class
char* method
CODE:
PUSHMARK(sp);
XPUSHs(sv_2mortal(newSVpv(class, 0))) ;
PUTBACK;

perl_call_method(method, G_DISCARD) ;
So the methodBrintID andDisplay can be invoked like this
$a = new Mine ('red’, 'green’, 'blue’) ;
call_Method(%a, 'Display’, 1) ;
call_PrintID('Mine’, 'PrintID’) ;
The only thing to note is that in both the static and virtual methods, the method name is not passed via the
stack - itis used as the first parametgued_call_method
Using GIMME
Here is a trivial XSUB which prints the context in which it is currently executing.
void
PrintContext()
CODE:
if (GIMME == G_SCALAR)
printf ("Context is Scalar\n") ;

else
printf ("Context is Array\n") ;

and here is some Perl to test it

$a = PrintContext ;
@a = PrintContext ;

The output from that will be

Context is Scalar
Context is Array
Using Perl to dispose of temporaries

In the examples given to date, any temporaries created in the callback (i.e. parameters passed on the stack to
theperl_call_* function or values returned via the stack) have been freed by one of these methods

354 Version 5.003 08-0Oct-1996

perlcall Perl Programmers Reference Guide perlcall

° specifying the G_DISCARD flag witperl_call_*.
° explicitly disposed of using ttENTERSAVETMPS FREETMP& EAVE pairing.

There is another method which can be used, namely letting Perl do it for you automatically whenever it
regains control after the callback has terminated. This is done by simply not using the

ENTER ;
SAVETMPS ;

FREETMPS ;
LEAVE ;

sequence in the callback (and not, of course, specifying the G_DISCARD flag).

If you are going to use this method you have to be aware of a possible memory leak which can arise under
very specific circumstances. To explain these circumstances you need to know a bit about the flow of
control between Perl and the callback routine.

The examples given at the start of the document (an error handler and an event driven program) are typical of
the two main sorts of flow control that you are likely to encounter with callbacks. There is a very important
distinction between them, so pay attention.

In the first example, an error handler, the flow of control could be as follows. You have created an interface
to an external library. Control can reach the external library like this

perl ——> XSUB ——> external library

Whilst control is in the library, an error condition occurs. You have previously set up a Perl callback to
handle this situation, so it will get executed. Once the callback has finished, control will drop back to Perl
again. Here is what the flow of control will be like in that situation

perl ——> XSUB ——> external library
error occurs

external library ——> perl_call ——> perl

perl <—— XSUB <—- external library <-- perl_call <-———+

After processing of the error usirgerl_call_* is completed, control reverts back to Perl more or less
immediately.

In the diagram, the further right you go the more deeply nested the scope is. It is only when control is back
with perl on the extreme left of the diagram that you will have dropped back to the enclosing scope and any
temporaries you have left hanging around will be freed.

In the second example, an event driven program, the flow of control will be more like this

perl ——> XSUB ——> event handler

event handler ——> perl_call ——> perl

event handler <—— perl_call ——<——+

event handler ——> perl_call ——> perl

event handler <—- perl_call ——<——+

event handler ——> perl_call ——> perl

08-0Oct-1996 Version 5.003 355

perlcall Perl Programmers Reference Guide perlcall

event handler <—— perl_call ——<——+
In this case the flow of control can consist of only the repeated sequence
event handler ——> perl_call ——> perl

for the practically the complete duration of the program. This means that controkreagrop back to the
surrounding scope in Perl at the extreme left.

So what is the big problem? Well, if you are expecting Perl to tidy up those temporaries for you, you might

be in for a long wait. For Perl to actually dispose of your temporaries, control must drop back to the
enclosing scope at some stage. In the event driven scenario that may never happen. This means that as time
goes on, your program will create more and more temporaries, none of which will ever be freed. As each of
these temporaries consumes some memory your program will eventually consume all the available memory
in your system — kapow!

So here is the bottom line — if you are sure that control will revert back to the enclosing Perl scope fairly
quickly after the end of your callback, then it isn‘t absolutely necessary to explicitly dispose of any
temporaries you may have created. Mind you, if you are at all uncertain about what to do, it doesn‘t do any
harm to tidy up anyway.

Strategies for storing Callback Context Information

Potentially one of the trickiest problems to overcome when designing a callback interface can be figuring out
how to store the mapping between the C callback function and the Perl equivalent.

To help understand why this can be a real problem first consider how a callback is set up in an all C
environment. Typically a C API will provide a function to register a callback. This will expect a pointer to a
function as one of its parameters. Below is a call to a hypothetical fumetigsier_fatal which
registers the C function to get called when a fatal error occurs.

register_fatal(cbl) ;

The single parametasbl is a pointer to a function, so you must have defidetl in your code, say
something like this

static void
cbl()

{
printf ("Fatal Error\n") ;

exit(1) ;
}
Now change that to call a Perl subroutine instead
static SV * callback = (SV*)NULL;

static void
cbl()

{
dSP ;

PUSHMARK(sp) ;

[* Call the Perl sub to process the callback */
perl_call_sv(callback, G_DISCARD) ;

}

void

register_fatal(fn)
SV * fn
CODE:

/* Remember the Perl sub */

356

Version 5.003 08-0ct—-1996

perlcall Perl Programmers Reference Guide perlcall

if (callback == (SV*)NULL)
callback = newSVsv(fn) ;
else
SvSetSV(callback, fn) ;

[* register the callback with the external library */
register_fatal(cbl) ;

where the Perl equivalent mdgister_fatal and the callback it registes;bl , might look like this

Register the sub pcbl
register_fatal(\&pcb1) ;

sub pcbl
{

}
The mapping between the C callback and the Perl equivalent is stored in the global valtizdué&

die "I'm dying...\n" ;

This will be adequate if you ever need to have only 1 callback registered at any time. An example could be
an error handler like the code sketched out above. Remember though, repeatedegsfitetofatal
will replace the previously registered callback function with the new one.

Say for example you want to interface to a library which allows asynchronous file i/o. In this case you may
be able to register a callback whenever a read operation has completed. To be of any use we want to be able
to call separate Perl subroutines for each file that is opened. As it stands, the error handler example above
would not be adequate as it allows only a single callback to be defined at any time. What we require is a
means of storing the mapping between the opened file and the Perl subroutine we want to be called for that
file.

Say the i/o library has a functi@synch_read which associates a C functi®mocessRead with a file
handlefh - this assumes that it has also provided some routine to open the file and so obtain the file handle.

asynch_read(fh, ProcessRead)
This may expect the BrocessReatlnction of this form

void

ProcessRead(fh, buffer)
int fh;

char * buffer ;

{
}

To provide a Perl interface to this library we need to be able to map betwdn pagameter and the Perl
subroutine we want called. A hash is a convenient mechanism for storing this mapping. The code below
shows a possible implementation

static HV * Mapping = (HV*)NULL ;

void

asynch_read(fh, callback)
int fh
SV * callback
CODE:

[* If the hash doesn'’t already exist, create it */
if (Mapping == (HV*)NULL)
Mapping = newHV() ;

08-0Oct-1996 Version 5.003 357

perlcall Perl Programmers Reference Guide perlcall

[* Save the fh —> callback mapping */
hv_store(Mapping, (char*)&fh, sizeof(fh), newSVsv(callback), 0) ;

[* Register with the C Library */
asynch_read(fh, asynch_read_if) ;

andasynch_read_if could look like this

static void
asynch_read_if(fh, buffer)
int fh;
char * buffer ;
{

dSP ;

SV ** gy ;

I* Get the callback associated with th */
sv = hv_fetch(Mapping, (char*)&fh , sizeof(fh), FALSE) ;
if (sv == (SV**)NULL)

croak("Internal error...\n") ;

PUSHMARK(sp) ;
XPUSHs(sv_2mortal(newSViv(fh))) ;
XPUSHSs(sv_2mortal(newSVpv(buffer, 0))) ;
PUTBACK ;

[* Call the Perl sub */
perl_call_sv(*sv, G_DISCARD) ;
}

For completeness, hereaisynch_close . This shows how to remove the entry from the Mapping .

void
asynch_close(fh)
int fh
CODE:
/* Remove the entry from the hash */
(void) hv_delete(Mapping, (char*)&fh, sizeof(fh), G_DISCARD) ;

/* Now call the real asynch_close */
asynch_close(fh) ;

So the Perl interface would look like this

sub callbackl

{

}

Register the Perl callback
asynch_read($fh, \&callbackl) ;

my($handle, $huffer) = @_;

asynch_close($fh) ;

The mapping between the C callback and Perl is stored in the globahpping this time. Using a hash
has the distinct advantage that it allows an unlimited number of callbacks to be registered.

What if the interface provided by the C callback doesn't contain a parameter which allows the file handle to
Perl subroutine mapping? Say in the asynchronous i/o package, the callback function gets passed only the
buffer parameter like this

void

358

Version 5.003 08-0ct—-1996

perlcall Perl Programmers Reference Guide perlcall

ProcessRead(buffer)
char * buffer ;

{
-

Without the file handle there is no straightforward way to map from the C callback to the Perl subroutine.

In this case a possible way around this problem is to pre—define a series of C functions to act as the interface
to Perl, thus

#define MAX_CB 3
#define NULL_HANDLE -1
typedef void (*FnMap)() ;

struct MapStruct {
FnMap Function ;
SV* PerlSub;
int Handle;

}s;
static void fni() ;

static void fn2() ;
static void fn3() ;

static struct MapStruct Map [MAX_CB] =
{

{fn1, NULL, NULL_HANDLE },

{fn2, NULL, NULL_HANDLE },

{fn3, NULL, NULL_HANDLE }

b
static void
Pcb(index, buffer)
int index ;
char * buffer ;

{
dSP ;

PUSHMARK(sp) ;
XPUSHs(sv_2mortal(newSVpv(buffer, 0))) ;
PUTBACK ;

* Call the Perl sub */
perl_call_sv(Map[index].PerlSub, G_DISCARD) ;

}
static void

fn1(buffer)
char * buffer ;

Pcb(0, buffer) ;
}
static void

fn2(buffer)
char * buffer ;

{
}

Pcb(1, buffer) ;

08-0Oct-1996 Version 5.003 359

perlcall

Perl Programmers Reference Guide

perlcall

static void
fn3(buffer)
char * buffer ;

Pcb(2, buffer) ;
}
void
array_asynch_read(fh, callback)
int fh
Sv* callback
CODE:
int index ;
int null_index = MAX_CB ;

[* Find the same handle or an empty entry */
for (index = 0 ; index < MAX_CB ; ++index)
{
if (Map[index].Handle == fh)
break ;

if (Map[index].Handle == NULL_HANDLE)
null_index = index ;

}

if (index == MAX_CB && null_index == MAX_CB)
croak ("Too many callback functions registered\n”) ;

if (index == MAX_CB)
index = null_index ;

[* Save the file handle */
Map[index].Handle = fh ;

/* Remember the Perl sub */
if (Map[index].PerlSub == (SV*)NULL)
Map[index].PerlSub = newSVsv(callback) ;
else
SvSetSV(Map[index].PerlSub, callback) ;

asynch_read(fh, Map[index].Function) ;

void
array_asynch_close(fh)
int fh
CODE:
intindex ;

/* Find the file handle */
for (index = 0; index < MAX_CB ; ++ index)
if (Map[index].Handle == fh)
break ;
if (index == MAX_CB)
croak ("could not close fh %d\n", fh) ;
Map[index].Handle = NULL_HANDLE ;

SVREFCNT_dec(Map[index].PerlSub) ;
Map[index].PerlSub = (SV*)NULL ;

360

Version 5.003

08-0Oct-1996

perlcall Perl Programmers Reference Guide perlcall

asynch_close(fh) ;

In this case the functiorfal , fn2 andfn3 are used to remember the Perl subroutine to be called. Each of
the functions holds a separate hard-wired index which is used in the fuRcboio access th#ap array
and actually call the Perl subroutine.

There are some obvious disadvantages with this technique.
Firstly, the code is considerably more complex than with the previous example.

Secondly, there is a hard-wired limit (in this case 3) to the number of callbacks that can exist

simultaneously. The only way to increase the limit is by modifying the code to add more functions and then
re—compiling. None the less, as long as the number of functions is chosen with some care, it is still a
workable solution and in some cases is the only one available.

To summarize, here are a number of possible methods for you to consider for storing the mapping between C
and the Perl callback

1. Ignore the problem - Allow only 1 callback
For a lot of situations, like interfacing to an error handler, this may be a perfectly adequate solution.

2. Create a sequence of callbacks — hard wired limit

If it is impossible to tell from the parameters passed back from the C callback what the context is,
then you may need to create a sequence of C callback interface functions, and store pointers to each
in an array.

3. Use a parameter to map to the Perl callback
A hash is an ideal mechanism to store the mapping between C and Perl.

Alternate Stack Manipulation

Although | have made use of only tROP* macros to access values returned from Perl subroutines, it is
also possible to bypass these macros and read the stack usiTigniaero (Se@erlxsfor a full description
of the ST macro).

Most of the time th&®OP* macros should be adequate, the main problem with them is that they force you to
process the returned values in sequence. This may not be the most suitable way to process the values in some
cases. What we want is to be able to access the stack in a random or@&¥.ni&ero as used when coding

an XSUB is ideal for this purpose.

The code below is the example given in the sedReturning a list of valuesecoded to us8T instead of
POP*

static void
call_AddSubtract2(a, b)
inta;
inth;
{

dSP ;

132 ax ;

int count ;

ENTER ;
SAVETMPS;

PUSHMARK(sp) ;
XPUSHs(sv_2mortal(newSViv(a)));
XPUSHSs(sv_2mortal(newSViv(b)));
PUTBACK ;

count = perl_call_pv("AddSubtract", G_ARRAY);

08-0Oct-1996 Version 5.003 361

perlcall Perl Programmers Reference Guide perlcall

SPAGAIN ;
sp —= count ;
ax = (sp — stack_base) + 1 ;

if (count = 2)
croak("Big trouble\n") ;

printf ("%d + %d = %d\n", a, b, SvIV(ST(0))) ;
printf ("%d — %d = %d\n", a, b, SVIV(ST(1))) ;

PUTBACK ;
FREETMPS ;
LEAVE ;

}

Notes

1. Notice that it was necessary to define the varialzle This is because th&T macro expects it to
exist. If we were in an XSUB it would not be necessary to definas it is already defined for you.

2. The code

SPAGAIN ;
sp —= count ;
ax = (sp — stack_base) + 1 ;

sets the stack up so that we can use&thenacro.

3. Unlike the original coding of this example, the returned values are not accessed in reverse order. So
ST(0) refers to the first value returned by the Perl subroutineSaifdount—1) refers to the last.

SEE ALSO
perlxs perlguts perlembed

AUTHOR
Paul Marquesspmarquess@bfsec.bt.coxk

Special thanks to the following people who assisted in the creation of the document.
Jeff Okamoto, Tim Bunce, Nick Gianniotis, Steve Kelem, Gurusamy Sarathy and Larry Wall.

DATE
Version 1.2, 16th Jan 1996

362 Version 5.003 08-0Oct-1996

AnyDBM_File Perl Programmers Reference Guide AnyDBM_File

NAME
AnyDBM_File — provide framework for multiple DBMs
NDBM_File, ODBM_File, SDBM_File, GDBM_File — various DBM implementations
SYNOPSIS
use AnyDBM_ File;
DESCRIPTION

This module is a "pure virtual base class"—it has nothing of its own. It's just there to inherit from one of the
various DBM packages. It prefers ndbm for compatibility reasons with Perl 4, then Berkeley DB (See
DB_File), GDBM, SDBM (which is always there—it comes with Perl), and finally ODBM. This way old
programs that used to use NDBM dbmopen() can still do so, but new ones can reorder @ISA:

@AnyDBM_File::ISA = qw(DB_File GDBM_File NDBM_File);
Note, however, that an explicit use overrides the specified order:

use GDBM_File;
@AnyDBM_File::ISA = qw(DB_File GDBM_File NDBM_File);

will only find GDBM_File.
Having multiple DBM implementations makes it trivial to copy database formats:

use POSIX; use NDBM_File; use DB_File;
tie %newhash, 'DB_File’, $new_filename, O_CREAT|O_RDWR,;
tie %oldhash, 'NDBM_File’, $old_filename, 1, O;
%newhash = %oldhash;
DBM Comparisons

Here's a partial table of features the different packages offer:

odbm ndbm sdbm gdbm bsd-db

Linkage comes w/ perl yes yes yes yes yes
Src comes w/ perl no no yes no no
Comes w/ many unixos yes yes[0] no no no
Builds ok on lunix ~ ? ? yes yes ?

Code Size ? ? small big big
Database Size ? ? small big? ok[1]
Speed ? ? slow ok fast
FTPable no no yes yes yes
Easy to build N/A N/A yes vyes o0k[2]
Size limits 1k 4k 1Kk[3] none none

Byte—-order independent no no no no yes
Licensing restrictions ? ? no yes no

[0] on mixed universe machines, may be in the bsd compat library, which is often shunned.
[1] Can be trimmed if you compile for one access method.

[2] SeeDB_File. Requires symbolic links.

[3] By default, but can be redefined.

SEE ALSO
dbm(3), ndbm(3), DB_File(3)

08-0Oct-1996 Version 5.003 363

AutoLoader Perl Programmers Reference Guide AutoLoader

NAME

AutolLoader - load functions only on demand

SYNOPSIS

package FOOBAR,;

use Exporter;

use AutoLoader;

@ISA = qw(Exporter AutoLoader);

DESCRIPTION

This module tells its users that functions in the FOOBAR package are to be autoloaded from
auto/$AUTOLOAD.al. SeeAutoloading in perlsulandAutoSplit

END__

The module using the autoloader should have the special mark®&D _ prior to the actual subroutine
declarations. All code that is before the marker will be loaded and compiled when the module is used. At the
marker, perl will cease reading and parsing. See alsauteSplit module, a utility that automatically splits

a module into a collection of files for autoloading.

When a subroutine not yet in memory is called, AkEr OLOADunction attempts to locate it in a directory
relative to the location of the module file itself. As an example, asse@8IX.pm is located in
usr/local/lib/perl5/POSIX.pm The autoloader will look for perl subroutines for this package in
/usr/local/lib/perl5/auto/POSIX/*.al The.al file is named using the subroutine name, sans package.

Loading Stubs

The AutoLoader module provide a specighport() method that will load the stubs (froautosplit.ix
file) of the calling module. These stubs are needed to make inheritance work correctly for class modules.

Modules that inherit fromiutoLoader should always ensure that they overrideAb&Loader— import()
method. If the module inherit frofxporter like shown in thesynopissection this is already taken care of.
For class methods an emjtyport() would do nicely:

package MyClass;

use AutoLoader; # load stubs
@ISA=gw(AutoLoader);
sub import {} # hide AutoLoader::import

You can also set up autoloading by importing the AUTOLOAD function instead of inheriting from
AutoLoader:

package MyClass;
use AutoLoader; # load stubs
*AUTOLOAD = \&AutoLoader::AUTOLOAD;

Package Lexicals

Package lexicals declared withy in the main block of a package using fagolLoader will not be visible
to auto—-loaded functions, due to the fact that the given scope ends aEthB__ marker. A module using
such variables as package globals will not work properly undéxutee oader.

The vars pragma (seevars in perimodl may be used in such situations as an alternative to explicitly
qualifying all globals with the package namespace. Variables pre—declared with this pragma will be visible
to any autoloaded routines (but will not be invisible outside the package, unfortunately).

AutoLoader vs. SelfLoader

The AutoLoader is a counterpart to theelfLoader module. Both delay the loading of subroutines, but the
SelfLoader accomplishes the goal via theDATA__ marker rather than END__. While this avoids the
use of a hierarchy of disk files and the associated open/close for each routine loafSetl| dasler suffers

a disadvantage in the one-time parsing of the lines aftt"ATA__, after which routines are cached.

SelfLoader can also handle multiple packages in a file.

364

Version 5.003 08-0ct—-1996

AutoLoader Perl Programmers Reference Guide AutoLoader

AutoLoader only reads code as it is requested, and in many cases should be faster, but requires a machanism
like AutoSplit be used to create the individual files. TEetUtils::MakeMaker will invoke AutoSplit
automatically if theAutoLoader is used in a module source file.

CAVEAT
On systems with restrictions on file name length, the file corresponding to a subroutine may have a shorter
name that the routine itself. This can lead to conflicting file hamesAlit&Splitpackage warns of these
potential conflicts when used to split a module.

Calling foo@1) for the autoloaded functidioo() might not work as expected, because the AUTOLOAD
function of AutoLoader clobbers the regexp variables. Invoking it as d() avoids this problem.

08-0Oct-1996 Version 5.003 365

AutoSplit Perl Programmers Reference Guide AutoSplit

NAME
AutoSplit — split a package for autoloading

SYNOPSIS

perl —e 'use AutoSplit; autosplit_lib_modules(@ARGV)' ...

use AutoSplit; autosplit($file, $dir, $keep, $check, $modtime);

for perl versions 5.002 and later:

perl -MAutoSplit —e "autosplit(SARGV[0], $ARGV[1], $k, $chk, $modtime)’ ...

DESCRIPTION

This function will split up your program into files that the AutoLoader module can handle. It is used by both
the standard perl libraries and by the MakeMaker utility, to automatically configure libraries for autoloading.

The autosplit interface splits the specified file into a hierarchy rooted at the direBtry It creates
directories as needed to reflect class hierarchy, and creates tngd#gplit.ix This file acts as both forward
declaration of all package routines, and as timestamp for the last update of the hierarchy.

The remaining three arguments aoitosplit govern other options to the autosplitter. If the third
argument$keep , is false, then any pre—existingl files in the autoload directory are removed if they are
no longer part of the module (obsoleted functions). The fourth arguereck , instructsautosplit to
check the module currently being split to ensure that it does incluge apecification for the AutoLoader
module, and skips the module if AutoLoader is not detected. Lastl$ntloetime argument specifies that
autosplit is to check the modification time of the module against that cdubasplit.ix file, and
only split the module if it is newer.

Typical use of AutoSplit in the perl MakeMaker utility is via the command-line with:
perl —e 'use AutoSplit; autosplit($ARGVI[0], SARGV[1], 0, 1, 1)’

Defined as a Make macro, it is invoked with file and directory argumentssplit will split the
specified file into the specified directory and delete obso#dte files, after checking first that the module

does use the AutoLoader, and ensuring that the module is not already currently split in its current form (the
modtime test).

The autosplit_lib_modules form is used in the building of perl. It takes as input a list of files
(modules) that are assumed to reside in a diretitomglative to the current directory. Each file is sent to the
autosplitter one at a time, to be split into the diredibrfguto.

In both usages of the autosplitter, only subroutines defined following the perl special mak#d _are
split out into separate files. Some routines may be placed prior to this marker to force their immediate
loading and parsing.

CAVEATS

Currently,AutoSplit cannot handle multiple package specifications within one file.

DIAGNOSTICS

AutoSplit will inform the user if it is necessary to create the top-level directory specified in the
invocation. It is preferred that the script or installation process that invakeSplit have created the

full directory path ahead of time. This warning may indicate that the module is being split into an incorrect
path.

AutoSplit will warn the user of all subroutines whose name causes potential file naming conflicts on
machines with drastically limited (8 characters or less) file name length. Since the subroutine name is used as
the file name, these warnings can aid in portability to such systems.

Warnings are issued and the file skippediiftoSplit ~ cannot locate either the END___marker or a
"package Name;"-style specification.

366

Version 5.003 08-0ct—-1996

AutoSplit Perl Programmers Reference Guide AutoSplit

AutoSplit will also emit general diagnostics for inability to create directories or files.

08-0Oct-1996 Version 5.003 367

Benchmark Perl Programmers Reference Guide Benchmark

NAME
Benchmark — benchmark running times of code

timethis — run a chunk of code several times
timethese — run several chunks of code several times
timeit — run a chunk of code and see how long it goes

SYNOPSIS
timethis ($count, "code");
timethese($count, {

'Namel' =>"...codel...’,
'Name2' =>"...code2...’,

)]

$t = timeit($count, "...other code...")
print "$count loops of other code took:",timestr($t),"\n";
DESCRIPTION
The Benchmark module encapsulates a number of routines to help you figure out how long it takes to
execute some code.
Methods
new Returns the current time. Example:

use Benchmark;

$t0 = new Benchmark;

... your code here ...

$t1 = new Benchmark;

$td = timediff($t1, $t0);

print "the code took:" timestr($td),"\n";

debug Enables or disable debugging by settinggBenchmark::Debug flag:

debug Benchmark 1;
$t = timeit(10, ' 5 ** $Global *);
debug Benchmark 0;
Standard Exports
The following routines will be exported into your namespace if you use the Benchmark module:

timeit(COUNT, CODE)

Arguments: COUNT is the number of time to run the loop, and the second is the code to run.
CODE may be a string containing the code, a reference to the function to run, or a reference
to a hash containing keys which are names and values which are more CODE specs.

Side-effects: prints out noise to standard out.
Returns: a Benchmark object.

timethis
timethese
timediff
timestr
Optional Exports
The following routines will be exported into your namespace if you specifically ask that they be imported:

clearcache

368 Version 5.003 08-0Oct-1996

Benchmark Perl Programmers Reference Guide Benchmark

clearallcache
disablecache
enablecache

NOTES
The data is stored as a list of values from the time and times functions:

($real, $user, $system, $children_user, $children_system)
in seconds for the whole loop (not divided by the number of rounds).
The timing is done using time(3) and times(3).
Code is executed in the caller's package.
Enable debugging by:
$Benchmark::debug = 1;

The time of the null loop (a loop with the same number of rounds but empty loop body) is subtracted from
the time of the real loop.

The null loop times are cached, the key being the number of rounds. The caching can be controlled using
calls like these:

clearcache($key);
clearallcache();

disablecache();
enablecache();

INHERITANCE
Benchmark inherits from no other class, except of course for Exporter.
CAVEATS
The real time timing is done using time(2) and the granularity is therefore only one second.

Short tests may produce negative figures because perl can appear to take longer to execute the empty loop
than a short test; try:

timethis(100,’1";

The system time of the null loop might be slightly more than the system time of the loop with the actual code
and therefore the difference might end up being < 0.

More documentation is needed :—(especially for styles and formats.

AUTHORS
Jarkko Hietaniemi darkko.Hietaniemi@hut.f>, Tim Bunce dim.Bunce@ig.co.uk

MODIFICATION HISTORY
September 8th, 1994; by Tim Bunce.

08-0Oct-1996 Version 5.003 369

Carp Perl Programmers Reference Guide Carp

NAME
carp — warn of errors (from perspective of caller)

croak — die of errors (from perspective of caller)
confess — die of errors with stack backtrace

SYNOPSIS

use Carp;
croak "We're outta here!";

DESCRIPTION

The Carp routines are useful in your own modules because they adid(ke or warn() , but report

where the error was in the code they were called from. Thus if you have a ieatife that has a
carp() in it, then thecarp() will report the error as occurring wheffeo() was called, not where
carp() was called.

370 Version 5.003 08-0Oct-1996

Cwd

Perl Programmers Reference Guide Cwd

NAME

getcwd — get pathname of current working directory

SYNOPSIS

use Cwd;
$dir = cwd:;

use Cwd;
$dir = getcwd;

use Cwd;
$dir = fastgetcwd;

use Cwd 'chdir’;
chdir "/tmp";
print SENV{'PWD};

DESCRIPTION

Thegetcwd() function re-implements the getcwd(3) (or getwd(3)) functions in Perl.

Thefastcwd() function looks the same ggtcwd() , but runs faster. It's also more dangerous because
you might conceivablghdir() out of a directory that you carchdir() back into.

The cwd() function looks the same as getcwd and fastgetcwd but is implemented using the most natural
and safe form for the current architecture. For most systems it is identical to ‘pwd‘ (but without the trailing
line terminator). It is recommended that cwd (or anotiserd() function) is used irall code to ensure
portability.

If you ask to override youchdir() built-in function, then your PWD environment variable will be kept
up to date. (Se®verriding builtin functiong Note that it will only be kept up to date if all packages which
use chdir import it from Cwd.

08-0Oct-1996 Version 5.003 371

SelfStubber Perl Programmers Reference Guide SelfStubber

NAME

Devel::SelfStubber — generate stubs for a SelfLoading module

SYNOPSIS

To generate just the stubs:

use Devel::SelfStubber;
Devel::SelfStubber—>stub(MODULENAME'/’MY_LIB_DIR’);

or to generate the whole module with stubs inserted correctly

use Devel::SelfStubber;
$Devel::SelfStubber::JUST_STUBS=0;
Devel::SelfStubber->stub(MODULENAME'/’MY_LIB_DIR");

MODULENAME is the Perl module name, e.g. Devel::SelfStubber, NOT ‘Devel/SelfStubber or
‘Devel/SelfStubber.pm’.

MY_LIB_DIR defaults to '." if not present.

DESCRIPTION

Devel::SelfStubber prints the stubs you need to put in the module before the _ DATA__ token (or you can
get it to print the entire module with stubs correctly placed). The stubs ensure that if a method is called, it
will get loaded. They are needed specifically for inherited autoloaded methods.

This is best explained using the following example:
Assume four classes, A,B&D.
A is the root class, B is a subclass of A, C is a subclass of B, and D is another subclass of A.

A
/\
B D
/
C

If D calls an autoloaded method ‘foo’ which is defined in class A, then the method is loaded into class A,
then executed. If C then calls method ‘foo, and that method was reimplemented in class B, but set to be
autoloaded, then the lookup mechanism never gets to the AUTOLOAD mechanism in B because it first finds
the method already loaded in A, and so erroneously uses that. If the method foo had been stubbed in B, then
the lookup mechanism would have found the stub, and correctly loaded and used the sub from B.

So, for classes and subclasses to have inheritance correctly work with autoloading, you need to ensure stubs
are loaded.

The SelfLoader can load stubs automatically at module initialization with the statement
‘SelfLoader—>load_stubs() ., but you may wish to avoid having the stub loading overhead
associated with your initialization (though note that the SelfLoader::load_stubs method will be called sooner
or later — at latest when the first sub is being autoloaded). In this case, you can put the sub stubs before the
__DATA__ token. This can be done manually, but this module allows automatic generation of the stubs.

By default it just prints the stubs, but you can set the gibbalel::SelfStubber::JUST_STUBS to
0 and it will print out the entire module with the stubs positioned correctly.

At the very least, this is useful to see what the SelfLoader thinks are stubs — in order to ensure future
versions of the SelfStubber remain in step with the SelfLoader, the SelfStubber actually uses the SelfLoader
to determine which stubs are needed.

372

Version 5.003 08-0ct—-1996

DirHandle Perl Programmers Reference Guide DirHandle

NAME
DirHandle - supply object methods for directory handles
SYNOPSIS
use DirHandle;
$d = new DirHandle ".";
if (defined $d) {
while (defined($_ = $d->read)) { something($_); }
$d->rewind;
while (defined($_ = $d->read)) { something_else($_); }
undef $d;
}
DESCRIPTION
TheDirHandle method provide an alternative interface todpendir() , closedir() ,
readdir() , andrewinddir() functions.

The only objective benefit to usirigirHandle is that it avoids namespace pollution by creating globs to
hold directory handles.

08-0Oct-1996 Version 5.003 373

Dynaloader Perl Programmers Reference Guide DynalLoader

NAME
Dynaloader — Dynamically load C libraries into Perl code
dl_error() , dI_findfile() , dl_expandspec() , dl_load_file() , dl_find_symbol() ,
dl_undef_symbols() , dl_install_xsub() , bootstrap() — routines used by Dynaloader
modules

SYNOPSIS

package YourPackage;
require Dynaloader;

@ISA = gw(... Dynaloader ...);
bootstrap YourPackage;

DESCRIPTION
This document defines a standard generic interface to the dynamic linking mechanisms available on many
platforms. Its primary purpose is to implement automatic dynamic loading of Perl modules.

This document serves as both a specification for anyone wishing to implement the Dynaloader for a new
platform and as a guide for anyone wishing to use the DynalLoader directly in an application.

The Dynaloader is designed to be a very simple high—level interface that is sufficiently general to cover the
requirements of SunOS, HP-UX, NeXT, Linux, VMS and other platforms.

It is also hoped that the interface will cover the needs of OS/2, NT etc and also allow pseudo—-dynamic
linking (usingld —A at runtime).

It must be stressed that the Dynaloader, by itself, is practically useless for accessing non—Perl libraries
because it provides almost no Perl-to—C ‘glue’. There is, for example, no mechanism for calling a C library
function or supplying arguments. It is anticipated that any glue that may be developed in the future will be
implemented in a separate dynamically loaded module.

Dynal oader Interface Summary

@dl_library _path
@dl_resolve_using
@dl_require_symbols

$dl_debug
Implemented in:

bootstrap($modulename) Perl

@filepaths = dl_findfile(@names) Perl

$libref = dl_load_file($filename) C

$symref = dl_find_symbol($libref, $symbol) C

@symbols = dl_undef_symbols() C

dI_install_xsub($name, $symref [, $filename]) C

$message = dI_error C

@dl_library _path

The standard/default list of directories in whidh findfile() will search for libraries etc.
Directories are searched in ordgdl_library_path[0], [1], ... etc
@dl_library_path is initialised to hold the list of ‘normal’ directoriéss(/lib, etc) determined by
Configure ($Config{'libpth‘}). This should ensure portability across a wide range of
platforms.

@dl_library _path should also be initialised with any other directories that can be determined from the
environment at runtime (such as LD_LIBRARY_PATH for SunOS).

After initialisation @dl_library_path can be manipulated by an application using push and unshift
before callingdl_findfile() . Unshift can be used to add directories to the front of the search

374 Version 5.003 08-0Oct-1996

Dynaloader Perl Programmers Reference Guide DynalLoader

order either to save search time or to override libraries with the same name in the ‘normal’ directories.

The load function thatdl_load_file() calls may require an absolute pathname. The
dl_findfile() function and @dl_library_path can be used to search for and return the absolute
pathname for the library/object that you wish to load.

@dl_resolve_using
A list of additional libraries or other shared objects which can be used to resolve any undefined
symbols that might be generated by a later cdtidad_file()

This is only required on some platforms which do not handle dependent libraries automatically. For
example the Socket Perl extension libraayt6/Socket/Socket.3@ontains references to many socket
functions which need to be resolved when it's loaded. Most platforms will automatically know where
to find the ‘dependent’ library (e.glusr/lib/libsocket.sp. A few platforms need to to be told the
location of the dependent library explicitly. Use @dl_resolve_using for this.

Example usage:
@dl_resolve_using = dl_findfile('-Isocket’);

@dl_require_symbols
A list of one or more symbol nhames that are in the library/object file to be dynamically loaded. This is
only required on some platforms.

dl_error()
Syntax:

$message = dl_error();

Error message text from the last failed Dynaloader function. Note that, similar to errno in unix, a
successful function call does not reset this message.

Implementations should detect the error as soon as it occurs in any of the other functions and save the
corresponding message for later retrieval. This will avoid problems on some platforms (such as
SunOS) where the error message is very temporary deegor()).

$dl_debug

Internal debugging messages are enabled Wtkemebug is set true. Currently setting
$dl_debug only affects the Perl side of the DynaLoader. These messages should help an application
developer to resolve any Dynal.oader usage problems.

$dl_debug is set tcdbBENV{'PERL_DL_DEBUG' if defined.

For the Dynaloader developer/porter there is a similar debugging variable added to the C code (see
dlutils.c) and enabled if Perl was built with thBDEBUGGING flag. This can also be set via the
PERL_DL_DEBUG environment variable. Set to 1 for minimal information or higher for more.

dI_findfile()
Syntax:
@filepaths = dI_findfile(@names)

Determine the full paths (including file suffix) of one or more loadable files given their generic names
and optionally one or more directories. Searches directories in @dI_library_path by default and
returns an empty list if no files were found.

Names can be specified in a variety of platform independent forms. Any names in thdrfanne
are converted intbbname.*, where.* is an appropriate suffix for the platform.

If a name does not already have a suitable prefix and/or suffix then the corresponding file will be
searched for by trying combinations of prefix and suffix appropriate to the platf@mame.o",
"lib$name.*" and '$name".

08-0Oct-1996 Version 5.003 375

Dynaloader Perl Programmers Reference Guide DynalLoader

If any directories are included in @names they are searched before @dl_library_path. Directories may
be specified asLdir . Any other names are treated as filenames to be searched for.

Using arguments of the forrLdir and-Iname is recommended.
Example:
@dl_resolve_using = dl_findfile(qw(-L/usr/5lib —Iposix));

dl_expandspec()
Syntax:
$filepath = dI_expandspec($spec)
Some unusual systems, such as VMS, require special filename handling in order to deal with symbolic
names for files (i.e., VMS's Logical Names).

To support these systemalh expandspec() function can be implemented either in tlle*.xs
file or code can be added to the autoloaddblexpandspec() function inDynalLoader.pm See
Dynaloader.pmfor more information.

dI_load_file()
Syntax:

$libref = dl_load_file($filename)

Dynamically load$filename, which must be the path to a shared object or library. An opaque
‘library reference’ is returned as a handle for the loaded object. Returns undef on error.

(On systems that provide a handle for the loaded object such as SunOS and$histeiX, will be
that handle. On other systerisbref will typically be $filename or a pointer to a buffer
containing$filename. The application should not examine or afilforef in any way.)

This is function that does the real work. It should use the current values of @dl_require_symbols and
@dl_resolve_using if required.

SunOS: dlopen($filename)

HP-UX: shl_load($filename)

Linux: dld_create_reference(@dl_require_symbols); did_link($filename)
NeXT: rld_load($filename, @dI_resolve_using)

VMS: lib$find_image_symbol($filename,$dl_require_symbols[0])

dl_find_symbol()
Syntax:

$symref = dl_find_symbol($libref, $symbol)

Return the address of the symi#symbol orundef if not found. If the target system has separate
functions to search for symbols of different types tlérfind_symbol() should search for
function symbols first and then other types.

The exact manner in which the address is returnegsymref is not currently defined. The only
initial requirement is thasymref can be passed to, and understoodibyinstall_xsub()

SunOS: disym($libref, $symbol)

HP-UX: shl_findsym($libref, $symbol)

Linux: dld_get_func($symbol) and/or dld_get_symbol($symbol)
NeXT: rld_lookup("_$symbol")

VMS: lib$find_image_symbol($libref,$symbol)

dl_undef_symbols()
Example

376 Version 5.003 08-0Oct-1996

Dynaloader Perl Programmers Reference Guide DynalLoader

@symbols = dl_undef_symbols()

Return a list of symbol names which remain undefined adizd_file() . Returns() if not
known. Don‘t worry if your platform does not provide a mechanism for this. Most do not need it and
hence do not provide it, they just return an empty list.

dl_install_xsub()
Syntax:

dI_install_xsub($perl_name, $symref [, $filename])

Create a new Perl external subroutine narfipdrl_name using $symref as a pointer to the
function which implements the routine. This is simply a direct calhdawXSUB(). Returns a
reference to the installed function.

The $filename parameter is used by Perl to identify the source file for the function if required by
die() , caller() or the debugger. #filename is not defined then "DynalLoader" will be used.

bootstrap()
Syntax:

bootstrap$module)
This is the normal entry point for automatic dynamic loading in Perl.

It performs the following actions:

° locates an autBmodule directory by searching @INC

° usedl_findfile() to determine the filename to load

. sets @dI_require_symbols {thoot_$module”)

° executes arauto/$module/$module.bs file if it exists (typically used to add to
@dl_resolve_using any files which are required to load the module on the current
platform)

° callsdl_load_file() to load the file

° callsdl_undef_symbols() and warns if any symbols are undefined

. callsdl_find_symbol() for "boot_$module”

. callsdl_install_xsub() to install it as ${module}::bootstrap”

° calls &{"${module}::bootstrap"} to bootstrap the module (actually it uses the

function reference returned by dl_install_xsub for speed)

AUTHOR
Tim Bunce, 11 August 1994.
This interface is based on the work and comments of (in no particular order): Larry Wall, Robert Sanders,

Dean Roehrich, Jeff Okamoto, Anno Siegel, Thomas Neumann, Paul Marquess, Charles Bailey, myself and
others.

Larry Wall designed the elegant inherited bootstrap mechanism and implemented the first Perl 5 dynamic
loader using it.

08-0Oct-1996 Version 5.003 377

English Perl Programmers Reference Guide English

NAME
English — use nice English (or awk) names for ugly punctuation variables

SYNOPSIS
use English;

if (SERRNO =~ /denied/) { ... }
DESCRIPTION

This module provides aliases for the built—in variables whose names no one seems to like to read. Variables
with side—effects which get triggered just by accessing them$tkewill still be affected.

For those variables that have awk version, both long and short English alternatives are provided. For

example, the/ variable can be referred to eitf®RS or $INPUT_RECORD_SEPARATQGRyou are
using the English module.

Seeperlvarfor a complete list of these.

378 Version 5.003 08-0Oct-1996

Env Perl Programmers Reference Guide Env
NAME
Env - perl module that imports environment variables
SYNOPSIS
use Env;
use Env qw(PATH HOME TERM);
DESCRIPTION
Perl maintains environment variables in a pseudo—associative—array named %ENV. For when this access
method is inconvenient, the Perl modklev allows environment variables to be treated as simple variables.
TheEnv::iimport() function ties environment variables with suitable names to global Perl variables with
the same names. By default it does so with all existing environment variedyss$ENV). If the import
function receives arguments, it takes them to be a list of environment variables to tie; it's okay if they don‘t
yet exist.
After an environment variable is tied, merely use it like a normal variable. You may access its value
@path = split(/:/, SPATH);
or modify it
$PATH .=".";
however you'd like. To remove a tied environment variable from the environment, assign it the undefined
value
undef $PATH;
AUTHOR

Chip Salzenbergehip@fin.uucp>

08-0Oct-1996 Version 5.003 379

Exporter Perl Programmers Reference Guide Exporter

NAME
Exporter — Implements default import method for modules

SYNOPSIS
In module ModuleName.pm:
package ModuleName;

require Exporter;
@ISA = gw(Exporter);

@EXPORT = qw(...); # symbols to export by default
@EXPORT_OK = gw(...); # symbols to export on request
%EXPORT_TAGS =tag =>[...]; # define names for sets of symbols

In other files which wish to use ModuleName:

use ModuleName; # import default symbols into my package

use ModuleName qw(...); # import listed symbols into my package

use ModuleName (); # do not import any symbols
DESCRIPTION

The Exporter module implements a defamport method which many modules choose inherit rather than
implement their own.

Perl automatically calls thiemport method when processinguae statement for a module. Modules and
use are documented iperlfunc and perlmod Understanding the concept of modules and howude
statement operates is important to understanding the Exporter.

Selecting What To Export
Do not export method names!

Do not export anything else by default without a good reason!

Exports pollute the namespace of the module user. If you must export try to use @EXPORT_OK in
preference to @EXPORT and avoid short or common symbol names to reduce the risk of name clashes.

Generally anything not exported is still accessible from outside the module using the
ModuleName::item_name (&blessed_ref->method) syntax. By convention you can use a leading
underscore on names to informally indicate that they are ‘internal’ and not for public use.

(It is actually possible to get private functions by saying:

my $subref =sub { ... };
&$subref;

But there's no way to call that directly as a method, since a method must have a name in the symbol table.)

As a general rule, if the module is trying to be object oriented then export nothing. If it's just a collection of
functions then @EXPORT_OK anything but use @EXPORT with caution.

Other module design guidelines can be foungermod

Specialised Import Lists

If the first entry in an import list begins with !, : or / then the list is treated as a series of specifications which
either add to or delete from the list of names to import. They are processed left to right. Specifications are in
the form:

[Iname This name only

[:DEFAULT All names in @EXPORT

[:tag All names in $EXPORT_TAGS{tag} anonymous list
["/pattern/ All names in @EXPORT and @EXPORT_OK which match

380 Version 5.003 08-0Oct-1996

Exporter Perl Programmers Reference Guide Exporter

A leading ! indicates that matching names should be deleted from the list of names to import. If the first
specification is a deletion it is treated as though preceded by :DEFAULT. If you just want to import extra
names in addition to the default set you will still need to include :DEFAULT explicitly.

e.g., Module.pm defines:

@EXPORT = qw(Al A2 A3 A4 A5);
@EXPORT_OK = qw(B1 B2 B3 B4 B5);
%EXPORT_TAGS = (T1 => [qw(Al A2 B1 B2)], T2 => [qw(A1 A2 B3 B4)]);

Note that you cannot use tags in @EXPORT or @EXPORT_OK.
Names in EXPORT_TAGS must also appear in @EXPORT or @EXPORT_OK.

An application using Module can say something like:
use Module qw(:DEFAULT :T2 B3 A3);
Other examples include:

use Socket qw(!/AP]F_/ 'ISOMAXCONN ISOL_SOCKET);
use POSIX qw(:errno_h :termios_h 'TCSADRAIN /*EXIT/);

Remember that most patterns (using //) will need to be anchored with a leading/*E&XIJ/, rather than
[EXIT/

You can sayBEGIN { $Exporter::Verbose=1 } to see how the specifications are being processed
and what is actually being imported into modules.

Module Version Checking
The Exporter module will convert an attempt to import a number from a module into a call to
$module_name->require_version($value). This can be used to validate that the version of the
module being used is greater than or equal to the required version.

The Exporter module supplies a default require_version method which checks the ¥&R& ONin the
exporting module.

Since the default require_version method treatsS¥#RSION number as a simple numeric value it will
regard version 1.10 as lower than 1.9. For this reason it is strongly recommended that you use numbers with
at least two decimal places, e.g., 1.09.

Managing Unknown Symbols
In some situations you may want to prevent certain symbols from being exported. Typically this applies to
extensions which have functions or constants that may not exist on some systems.
The names of any symbols that cannot be exported should be listed@EXIRORT_FAllarray.

If a module attempts to import any of these symbols the Exporter will will give the module an opportunity to
handle the situation before generating an error. The Exporter will call an export_fail method with a list of the
failed symbols:

@failed_symbols = $module_name->export_fail(@failed_symbols);

If the export_fail method returns an empty list then no error is recorded and all the requested symbols are
exported. If the returned list is not empty then an error is generated for each symbol and the export fails. The
Exporter provides a default export_fail method which simply returns the list unchanged.

Uses for the export_fail method include giving better error messages for some symbols and performing lazy
architectural checks (put more symbols into @EXPORT _FAIL by default and then take them out if someone
actually tries to use them and an expensive check shows that they are usable on that platform).

Tag Handling Utility Functions

Since the symbols listed within %EXPORT_TAGS must also appear in either @EXPORT or
@EXPORT_OK, two utility functions are provided which allow you to easily add tagged sets of symbols to

08-0Oct-1996 Version 5.003 381

Exporter Perl Programmers Reference Guide Exporter

@EXPORT or @EXPORT_OK:
%EXPORT_TAGS = (foo => [gw(aa bb cc)], bar => [qw(aa cc dd)]);

Exporter::export_tags('foo’); # add aa, bb and cc to @EXPORT
Exporter::export_ok_tags(’bar’); # add aa, cc and dd to @EXPORT_OK

Any names which are not tags are added to @EXPORT or @EXPORT_OK unchanged but will trigger a
warning (with—w) to avoid misspelt tags names being silently added to @EXPORT or @EXPORT_OK.
Future versions may make this a fatal error.

382 Version 5.003 08-0Oct-1996

Embed Perl Programmers Reference Guide Embed

NAME
ExtUtils::Embed - Utilities for embedding Perl in C/C++ applications

SYNOPSIS

perl -MExtUtils::Embed —e xsinit
perl -MExtUtils::Embed —e Idopts

DESCRIPTION

ExtUtils::Embed provides utility functions for embedding a Perl interpreter and extensions in your C/C++
applications. Typically, an applicatidhakefile will invoke ExtUtils::Embed functions while building your
application.

@EXPORT
ExtUtils::Embed exports the following functions:

xsinit() , Idopts() , ccopts() , perl_inc() , ccflags() , ccdlflags() , Xsi_header() ,
Xsi_protos() , Xsi_body()

FUNCTIONS
xsinit()
Generate C/C++ code for the XS initializer function.

When invoked as'perl —MExtUtils::Embed -e xsinit — the following options are
recognized:

—0 <output filename> (Defaults fzerlxsi.c)

—0 STDOUT will print to STDOUT.

—std (Write code for extensions that are linked with the current Perl.)

Any additional arguments are expected to be names of modules to generate code for.
When invoked with parameters the following are accepted and optional:
xsinit($filename,$std,[@modules])

Where,

$filename is equivalent to theo option.

$std is boolean, equivalent to thetd option.

[@modules]is an array ref, same as additional arguments mentioned above.

Examples
perl -MExtUtils::Embed —e xsinit —— —0 xsinit.c Socket

This will generate code with axs_init function that glues the peBlocket::bootstrap function to the C
boot_Socketfunction and writes it to a file named "xsinit.c".

Note thatDynalLoader is a special case where it must cabt_Dynal oader directly.
perl -MExtUtils::Embed —e xsinit

This will generate code for linking withynal.oader and each static extension found in
$Config{static_ext} . The code is written to the default file naperIxsi.c.

perl -MExtUtils::Embed —e xsinit —— —0 xsinit.c —std DBI DBD::Oracle
Here, code is written for all the currently linked extensions along with cod@BfloandDBD::Oracle.

If you have a workinddynalLoader then there is rarely any need to statically link in any other extensions.

08-0Oct-1996 Version 5.003 383

Embed Perl Programmers Reference Guide Embed

Idopts()
Output arguments for linking the Perl library and extensions to your application.

‘

When invoked as'perl —MExtUtils::Embed -e Idopts —
recognized:

-std

the following options are

Output arguments for linking the Perl library and any extensions linked with the current Perl.
-I <pathl:path2>

Search path for ModuleName.a archives. Default pa@IiC. Library archives are expected to be found
as /some/path/auto/ModuleName/ModuleName.d&or example, when looking f@ocket.arelative to a
search path, we should filadito/Socket/Socket.a

When looking forDBD::Oracle relative to a search path, we should fando/DBD/Oracle/Oracle.a
Keep in mind, you can always suppiyy/own/path/ModuleName.aas an additional linker argument.
— <list of linker args>

Additional linker arguments to be considered.

Any additional arguments found before thetoken are expected to be names of modules to generate code
for.

When invoked with parameters the following are accepted and optional:
Idopts($std,[@modules],[@link_args],$path)

Where,

$std is boolean, equivalent to thetd option.

[@modules]is equivalent to additional arguments found before-thimken.
[@link_args] is equivalent to arguments found after theoken.

$path is equivalent to thel option.

In addition, when Idopts is called with parameters, it will return the argument string rather than print it to
STDOUT.

Examples
perl -MExtUtils::Embed —e Idopts

This will print arguments for linking witlibperl.a, Dynal.oader and extensions found in

$Config{static_ext} . This includes libraries found BConfig{libs} and the first

ModuleName.a library for each extension that is found by sear@@iNf or the path specifed by thé

option. In addition, when ModuleName.a is found, additional linker arguments are picked up from the
extralibs.ld file in the same directory.

perl -MExtUtils::Embed —e ldopts —— —std Socket

This will do the same as the above example, along with printing additional arguments for linking with the
Socketextension.

perl -MExtUtils::Embed —e Idopts —— DynalLoader
This will print arguments for linking with just tHeynal oader extension andbperl.a.
perl -MExtUtils::Embed —e ldopts —— —std Msql —— —L/usr/msql/lib —Imsq|

Any arguments after the second ‘—' token are additional linker arguments that will be examined for
potential conflict. If there is no conflict, the additional arguments will be part of the output.

384

Version 5.003 08-0ct—-1996

Embed Perl Programmers Reference Guide Embed

perl_inc()

For including perl header files this function simply prints:
-1$Config{archlib}/CORE

So, rather than having to say:

perl —-MConfig —e ’print "—I1$Config{archlib}/ CORE"™

Just say:

perl -MExtUtils::Embed —e perl_inc

ccflags() , ccdlflags()

These functions simply pritConfig{ccflags} and$Config{ccdlflags}
ccopts()

This function combineperl_inc() , ccflags() andccdlflags() into one.

xsi_header()

This function simply returns a string defining the saBTERN_C macro asperlmain.c along with
#includingperl.h andEXTERN.h.

Xsi_protos(@modules)
This function returns a string bbot_$ModuleName prototypes for each @modules.

xsi_body(@modules)

This function returns a string of calls toewXS() that glue the moduldootstrap function to
boot_ModuleNamefor each @modules.

xsinit() uses the xsi_* functions to generate most of it's code.

EXAMPLES

For examples on how to ugtUtils::Embed for building C/C++ applications with embedded perl, see the
eg/ directory angerlembed

SEE ALSO
perlembed
AUTHOR
Doug MacEacherndougm@osf.org

Based on ideas from Tim Bunc@&im.Bunce@ig.co.uk andminimod.pl by Andreas Koenig
<k@anna.in—berlin.de and Tim Bunce.

08-0Oct-1996 Version 5.003 385

Install Perl Programmers Reference Guide Install

NAME
ExtUtils::Install — install files from here to there

SYNOPSIS
use ExtUtils::Install;

install($hashref,$verbose,$nonono);
uninstall($packlistfile,$verbose,$nonono);
pm_to_blib($hashref);

DESCRIPTION
Both install() and uninstall() are specific to the way ExtUtils::MakeMaker handles the
installation and deinstallation of perl modules. They are not designed as general purpose tools.

install() takes three arguments. A reference to a hash, a verbose switch and a don‘t-really—do-it
switch. The hash ref contains a mapping of directories: each key/value pair is a combination of directories to
be copied. Key is a directory to copy from, value is a directory to copy to. The whole tree below the "from"
directory will be copied preserving timestamps and permissions.

There are two keys with a special meaning in the hash: "read" and "write". After the copying is done, install
will write the list of target files to the file named Bijashref—>{write}. If there is another file named

by $hashref->{read}, the contents of this file will be merged into the written file. The read and the
written file may be identical, but on AFS it is quite likely, people are installing to a different directory than
the one where the files later appear.

uninstall() takes as first argument a file containing filenames to be unlinked. The second argument is a
verbose switch, the third is a no—don‘t-really—do-it-now switch.

pm_to_blib() takes a hashref as the first argument and copies all keys of the hash to the corresponding
values efficiently. Filenames with the extension pm are autosplit. Second argument is the autosplit directory.

386 Version 5.003 08-0Oct-1996

Liblist Perl Programmers Reference Guide Liblist

NAME
ExtUtils::Liblist — determine libraries to use and how to use them

SYNOPSIS
require ExtUtils::Liblist;
ExtUtils::Liblist::ext($potential_libs, $Verbose);

DESCRIPTION
This utility takes a list of libraries in the formlibl —llib2 —llib3 and prints out lines suitable for
inclusion in an extension Makefile. Extra library paths may be included with the form
—L/another/path this will affect the searches for all subsequent libraries.
It returns an array of four scalar values: EXTRALIBS, BSLOADLIBS, LDLOADLIBS, and
LD_RUN_PATH.

Dependent libraries can be linked in one of three ways:

e For static extensions
by the Id command when the perl binary is linked with the extension library. See EXTRALIBS below.

e For dynamic extensions
by the Id command when the shared object is built/linked. See LDLOADLIBS below.

e For dynamic extensions
by the Dynal.oader when the shared object is loaded. See BSLOADLIBS below.

EXTRALIBS
List of libraries that need to be linked with when linking a perl binary which includes this extension Only
those libraries that actually exist are included. These are written to a file and used when linking perl.
LDLOADLIBS and LD_RUN_PATH
List of those libraries which can or must be linked into the shared library when created using Id. These may
be static or dynamic libraries. LD_RUN_PATH is a colon separated list of the directories in
LDLOADLIBS. It is passed as an environment variable to the process that links the shared library.
BSLOADLIBS
List of those libraries that are needed but can be linked in dynamically at run time on this platform.
SunOS/Solaris does not need this because Id records the information (from LDLOADLIBS) into the object
file. This listis used to create a .bs (bootstrap) file.
PORTABILITY
This module deals with a lot of system dependencies and has quite a few architecturefspiedifie code.

SEE ALSO
ExtUtils::MakeMaker

08-0Oct-1996 Version 5.003 387

ExtUtils::MakeMaker

MM_0S2 Perl Programmers Reference Guide MM_0S2

NAME

ExtUtils::MM_0S2 - methods to override UN*X behaviour in ExtUtils::MakeMaker
SYNOPSIS

use ExtUtils::MM_0S2; # Done internally by ExtUtils::MakeMaker if needed
DESCRIPTION

See ExtUtils::MM_Unix for a documentation of the methods provided there. This package overrides the
implementation of these methods, not the semantics.

388 Version 5.003 08-0Oct-1996

MM_Unix Perl Programmers Reference Guide MM_Unix

NAME

ExtUtils::MM_Unix — methods used by ExtUtils::MakeMaker
SYNOPSIS

require ExtUtils::MM_Unix;
DESCRIPTION

The methods provided by this package are designed to be used in conjunction with ExtUtils::MakeMaker.
When MakeMaker writes a Makefile, it creates one or more objects that inherit their methods from a package
MM MM itself doesn‘t provide any methods, but it ISA ExtUtils::MM_Unix class. The inheritance tree of
MM lets operating specific packages take the responsibility for all the methods provided by MM_Unix. We
are trying to reduce the number of the necessary overrides by defining rather primitive operations within
ExtUtils::MM_Unix.

If you are going to write a platform specific MM package, please try to limit the necessary overrides to
primitive methods, and if it is not possible to do so, let's work out how to achieve that gain.

If you are overriding any of these methods in your Makefile.PL (in the MY class), please report that to the
makemaker mailing list. We are trying to minimize the necessary method overrides and switch to data driven
Makefile.PLs wherever possible. In the long run less methods will be overridable via the MY class.

METHODS
The following description of methods is still under development. Please refer to the code for not suitably
documented sections and complain loudly to the makemaker mailing list.

Not all of the methods below are overridable in a Makefile.PL. Overridable methods are marked as (0). All
methods are overridable by a platform specific MM_*.pm file (Settils::MM_VMSand
ExtUtils::MM_OS2.

Preloaded methods

canonpath

No physical check on the filesystem, but a logical cleanup of a path. On UNIX eliminated successive
slashes and successive "/.".

catdir

Concatenate two or more directory nhames to form a complete path ending with a directory. But remove
the trailing slash from the resulting string, because it doesn‘t look good, isn‘t necessary and confuses
0S2. Of course, if this is the root directory, don't cut off the trailing slash :-)

catfile

Concatenate one or more directory names and a filename to form a complete path ending with a filename
curdir

Returns a string representing of the current directory. "." on UNIX.
rootdir

Returns a string representing of the root directory. "/* on UNIX.
updir

Returns a string representing of the parent directory. ".." on UNIX.

SelfLoaded methods

c_o (o)
Defines the suffix rules to compile different flavors of C files to object files.
cflags (0)

Does very much the same as the cflags script in the perl distribution. It doesn‘t return the whole compiler
command line, but initializes all of its parts. The const_cccmd method then actually returns the definition of

08-0Oct-1996 Version 5.003 389

ExtUtils::MM_VMS
ExtUtils::MM_OS2

MM_Unix Perl Programmers Reference Guide MM_Unix

the CCCMD macro which uses these parts.

clean (0)

Defines the clean target.

const_cccmd (0)

Returns the full compiler call for C programs and stores the definition in CONST_CCCMD.
const_config (0)

Defines a couple of constants in the Makefile that are imported from %Config.

const_loadlibs (0)

Defines EXTRALIBS, LDLOADLIBS, BSLOADLIBS, LD_RUN_PATH. SeextUtils::Liblist for details.
constants (0)

Initializes lots of constants and .SUFFIXES and .PHONY

depend (0)

Same as macro for the depend attribute.

dir_target (0)

Takes an array of directories that need to exist and returns a Makefile entry for a .exists file in these

directories. Returns nothing, if the entry has already been processed. We're helpless though, if the same
directory comes a8(FOO) _and_ as "bar". Both of them get an entry, that's why we use "::".

dist (0)

Defines a lot of macros for distribution support.

dist_basics (0)

Defines the targets distclean, distcheck, skipcheck, manifest.
dist_ci (0)

Defines a check in target for RCS.

dist_core (0)

Defeines the targets dist, tardist, zipdist, uutardist, shdist
dist_dir (0)

Defines the scratch directory target that will hold the distribution before tar-ing (or shar-ing).
dist_test (0)

Defines a target that produces the distribution in the scratchdirectory, and runs ‘perl Makefile.PL; make
;make test’ in that subdirectory.

disyms (o)

Used by AlX and VMS to define DL_FUNCS and DL_VARS and write the *.exp files.
dynamic (0)

Defines the dynamic target.

dynamic_bs (0)

Defines targets for bootstrap files.

dynamic_lib (o)

Defines how to produce the *.so (or equivalent) files.

exescan
Deprecated method. Use libscan instead.

390

Version 5.003 08-0ct—-1996

ExtUtils::Liblist

MM_Unix Perl Programmers Reference Guide MM_Unix

extliblist
Called by init_others, and calls ext ExtUtils::Liblist. I&aUtils::Liblist for details.

file_name_is_absolute
Takes as argument a path and returns true, if it is an absolute path.

find_perl
Finds the executables PERL and FULLPERL

Methods to actually produce chunks of text for the Makefile
The methods here are called in the order specified by @ExtUtils::MakeMaker::MM_Sections. This manpage
reflects the order as well as possible. Some methods call each other, so in doubt refer to the code.
force (0)
Just writes FORCE:

guess_name

Guess the name of this package by examining the working directory's name. MakeMaker calls this only if
the developer has not supplied a NAME attribute.

has_link_code

Returns true if C, XS, MYEXTLIB or similar objects exist within this object that need a compiler. Does not
descend into subdirectoriesraeds_linking() does.

init_dirscan

Initializes DIR, XS, PM, C, O_FILES, H, PL_FILES, MAN*PODS, EXE_FILES.

init_main

Initializes NAME, FULLEXT, BASEEXT, PARENT_NAME, DLBASE, PERL_SRC, PERL_LIB,
PERL_ARCHLIB, PERL_INC, INSTALLDIRS, INST_*, INSTALL*, PREFIX, CONFIG, AR,
AR_STATIC_ARGS, LD, OBJ_EXT, LIB_EXT, MAP_TARGET, LIBPERL_A, VERSION_FROM,
VERSION, DISTNAME, VERSION_SYM.

init_others

Initializes EXTRALIBS, BSLOADLIBS, LDLOADLIBS, LIBS, LD_RUN_PATH, OBJECT, BOOTDEP,
PERLMAINCC, LDFROM, LINKTYPE, NOOP, FIRST_MAKEFILE, MAKEFILE, NOECHO, RM_F,
RM_RF, TOUCH, CP, MV, CHMOD, UMASK_NULL

install (0)

Defines the install target.

installbin (o)
Defines targets to install EXE_FILES.

libscan (0)

Takes a path to a file that is found by init_dirscan and returns false if we don‘t want to include this file in the
library. Mainly used to exclude RCS, CVS, and SCCS directories from installation.

linkext (0)

Defines the linkext target which in turn defines the LINKTYPE.

Isdir

Takes as arguments a directory name and a regular expression. Returns all entries in the directory that match
the regular expression.

macro (0)
Simple subroutine to insert the macros defined by the macro attribute into the Makefile.

08-0Oct-1996 Version 5.003 391

ExtUtils::Liblist

MM_Unix Perl Programmers Reference Guide MM_Unix

makeaper! (0)
Called by staticmake. Defines how to write the Makefile to produce a static new perl.

makefile (0)
Defines how to rewrite the Makefile.

manifypods (o)
Defines targets and routines to translate the pods into manpages and put them into the INST_* directories.

maybe_command
Returns true, if the argument is likely to be a command.

maybe_command_in_dirs
method under development. Not yet used. Ask llya :-)

needs_linking (0)

Does this module need linking? Looks into subdirectory objects (sebkamsbink_code())

nicetext

misnamed method (will have to be changed). The MM_Unix method just returns the argument without
further processing.

On VMS used to insure that colons marking targets are preceded by space — most Unix Makes don‘t need
this, but it's necessary under VMS to distinguish the target delimiter from a colon appearing as part of a
filespec.

parse_version

parse a file and return what you thinkBERSIONIn this file set to

pasthru (o)
Defines the string that is passed to recursive make calls in subdirectories.

path
Takes no argument, returns the environment variable PATH as an array.

perl_script

Takes one argument, a file name, and returns the file name, if the argument is likely to be a perl script. On
MM_Unix this is true for any ordinary, readable file.

perldepend (o)

Defines the dependency from all *.h files that come with the perl distribution.

pm_to_blib

Defines target that copies all files in the hash PM to their destination and autosplits them. See
ExtUtils::Install/pm_to_blib

post_constants (0)

Returns an empty string per default. Dedicated to overrides from within Makefile.PL after all constants have
been defined.

post_initialize (0)

Returns an empty string per default. Used in Makefile.PLs to add some chunk of text to the Makefile after
the object is initialized.

postamble (0)

Returns an empty string. Can be used in Makefile.PLs to write some text to the Makefile at the end.

392

Version 5.003 08-0ct—-1996

ExtUtils::Install/pm_to_blib

MM_Unix Perl Programmers Reference Guide MM_Unix

prefixify

Check a path variable Bself from %Config, if it contains a prefix, and replace it with another one.

Takes as arguments an attribute name, a search prefix and a replacement prefix. Changes the attribute in the
object.

processPL (0)

Defines targets to run *.PL files.

realclean (o)

Defines the realclean target.
replace_manpage_separator

Takes the name of a package, which may be a nested package, in the form Foo/Bar and replaces the slash
with :: . Returns the replacement.

static (0)

Defines the static target.

static_lib (0)

Defines how to produce the *.a (or equivalent) files.
staticmake (o)

Calls makeaperl.

subdir_x (0)

Helper subroutine for subdirs

subdirs (0)

Defines targets to process subdirectories.

test (0)

Defines the test targets.

test_via_harness (0)

Helper method to write the test targets
test_via_script (0)

Other helper method for test.

tool_autosplit (0)

Defines a simple perl call that runs autosplit. May be deprecated by pm_to_blib soon.

tools_other (0)

Defines SHELL, LD, TOUCH, CP, MV, RM_F, RM_RF, CHMOD, UMASK_NULL in the Makefile. Also
defines the perl programs MKPATH, WARN_IF_OLD_PACKLIST, MOD_INSTALL. DOC_INSTALL,
and UNINSTALL.

tool_xsubpp (0)

Determines typemaps, xsubpp version, prototype behaviour.

top_targets (0)

Defines the targets all, subdirs, config, and O_FILES

writedoc

Obsolete, depecated method. Not used since Version 5.21.

08-0Oct-1996 Version 5.003 393

MM_Unix Perl Programmers Reference Guide MM_Unix

xs_c (0)
Defines the suffix rules to compile XS files to C.
xs_0 (0)

Defines suffix rules to go from XS to object files directly. This is only intended for broken make
implementations.

SEE ALSO
ExtUtils::MakeMaker

394 Version 5.003 08-0Oct-1996

ExtUtils::MakeMaker

MM_VMS Perl Programmers Reference Guide MM_VMS

NAME

ExtUtils::MM_VMS - methods to override UN*X behaviour in ExtUtils::MakeMaker
SYNOPSIS

use ExtUtils::MM_VMS; # Done internally by ExtUtils::MakeMaker if needed
DESCRIPTION

See ExtUtils::MM_Unix for a documentation of the methods provided there. This package overrides the
implementation of these methods, not the semantics.

Methods always loaded

eliminate_macros

Expands MM[KS]/Make macros in a text string, using the contents of identically named elements of
%%$self, and returns the result as a file specification in Unix syntax.

fixpath

Catchall routine to clean up problem MM[SK]/Make macros. Expands macros in any directory
specification, in order to avoid juxtaposing two VMS-syntax directories when MM[SK] is run. Also

expands expressions which are all macro, so that we can tell how long the expansion is, and avoid
overrunning DCL's command buffer when MM[KS] is running.

If optional second argument has a TRUE value, then the return string is a VMS-syntax directory
specification, otherwise it is a VMS-syntax file specification.

catdir

Concatenates a list of file specifications, and returns the result as a VMS-syntax directory specification.

catfile
Concatenates a list of file specifications, and returns the result as a VMS-syntax directory specification.

curdir (override)
Returns a string representing of the current directory.

rootdir (override)

Returns a string representing of the root directory.
updir (override)

Returns a string representing of the parent directory.

SelfLoaded methods

Those methods which override default MM_Unix methods are marked "(override)", while methods unique to
MM_VMS are marked "(specific)". For overridden methods, documentation is limited to an explanation of
why this method overrides the MM_Unix method; see the ExtUtils::MM_Unix documentation for more
details.

guess_name (override)

Try to determine name of extension being built. We begin with the name of the current directory. Since
VMS filenames are case-insensitive, however, we look fgynafile whose name matches that of the
current directory (presumably the ‘maipm file for this extension), and try to findpmackage statement

from which to obtain the Mixed::Case package name.

find_perl (override)

Use VMS file specification syntax and CLI commands to find and invoke Perl images.

path (override)

Translate logical name D@PATH as a searchlist, rather than trying $plit string value of
SENV{'PATH.

08-0Oct-1996 Version 5.003 395

MM_VMS Perl Programmers Reference Guide MM_VMS

maybe_command (override)

Follows VMS naming conventions for executable files. If the name passed in doesn‘t exactly match an
executable file, appendExe to check for executable image, a@bmto check for DCL procedure. If this

fails, checksSys$¢Share: for an executable file having the name specified. Finally, app&asand

checks again.

maybe_command_in_dirs (override)

Uses DCL argument quoting on test command line.

perl_script (override)

If name passed in doesn't specify a readable file, appphdsd tries again, since it's customary to have file
types on all files under VMS.

file_name_is_absolute (override)

Checks for VMS directory spec as well as Unix separators.

replace_manpage_separator
Use as separator a character which is legal in a VMS-syntax file name.

init_others (override)
Provide VMS-specific forms of various utility commands, then hand off to the default MM_Unix method.

constants (override)

Fixes up numerous file and directory macros to insure VMS syntax regardless of input syntax. Also adds a
few VMS-specific macros and makes lists of files comma-separated.

const_loadlibs (override)

Basically a stub which passes through library specfications provided by the caller. Will be updated or
removed when VMS support is added to ExtUtils::Liblist.

cflags (override)

Bypass shell script and produce qualifiers for CC directly (but warn user if a shell script for this extension
exists). Fold multiple /Defines into one, since some C compilers pay attention to only one instance of this
qualifier on the command line.

const_cccmd (override)

Adds directives to point C preprocessor to the right place when handling #include <sys/foo.h> directives.
Also constructs CC command line a bit differently than MM_Unix method.

pm_to_blib (override)

DCL still accepts a maximum of 255 characters on a command line, so we write the (potentially) long list of
file names to a temp file, then persuade Perl to read it instead of the command line to find args.
tool_autosplit (override)

Use VMS-style quoting on command line.

tool_sxubpp (override)
Use VMS-style quoting on xsubpp command line.

xsubpp_version (override)

Test xsubpp exit status according to VMS rulgst{ & 1 ==> good) rather than Unix rule$sfs ==
==> good).

tools_other (override)

Adds a few MM[SK] macros, and shortens some the installatin commands, in order to stay under DCL's
255-character limit. Also changes EQUALIZE_TIMESTAMP to set revision date of target file to one
second later than source file, since MMK interprets precisely equal revision dates for a source and target file
as a sign that the target needs to be updated.

396

Version 5.003 08-0ct—-1996

MM_VMS Perl Programmers Reference Guide MM_VMS

dist (override)
Provide VMSish defaults for some values, then hand off to default MM_Unix method.

c_o (override)

Use VMS syntax on command line. In particuls{DEFINE) and$(PERL_INC) have been pulled into
$(CCCMD). Also use MM[SK] macros.

xs_c (override)

Use MM[SK] macros.

Xs_o (override)
Use MM[SK] macros, and VMS command line for C compiler.

top_targets (override)
Use VMS quoting on command line for Version_check.

disyms (override)

Create VMS linker options files specifying universal symbols for this extension's shareable image, and
listing other shareable images or libraries to which it should be linked.

dynamic_lib (override)

Use VMS Link command.

dynamic_bs (override)

Use VMS-style quoting on Mkbootstrap command line.

static_lib (override)
Use VMS commands to manipulate object library.

manifypods (override)

Use VMS-style quoting on command line, and VMS logical nhame to specify fallback location at build time
if we can't find pod2man.

processPL (override)

Use VMS-style quoting on command line.

installbin (override)

Stay under DCL's 255 character command line limit once again by splitting potentially long list of files
across multiple lines irealclean target.

subdir_x (override)

Use VMS commands to change default directory.

clean (override)

Split potentially long list of files across multiple commands (in order to stay under the magic command line
limit). Also use MM[SK] commands for handling subdirectories.

realclean (override)

Guess what we're working around? Also, use MM[SK] for subdirectories.

dist_basics (override)
Use VMS-style quoting on command line.

dist_core (override)

Syntax for invoking VMS_Share differs from that for Unixshar, so shdist target actions are
VMS-specific.

08-0Oct-1996 Version 5.003 397

MM_VMS Perl Programmers Reference Guide MM_VMS

dist_dir (override)
Use VMS-style quoting on command line.

dist_test (override)
Use VMS commands to change default directory, and use VMS-style quoting on command line.

install (override)

Work around DCL's 255 character limit several times,and use VMS-style command line quoting in a few
cases.

perldepend (override)

Use VMS-style syntax for files; it's cheaper to just do it directly here than to have the MM_Unix method
call catfile repeatedly. Also use config.vms as source of original config data if the Perl distribution is
available; config.sh is an ancillary file under VMS. Finally, if we have to rebuild Config.pm, use MM[SK]
to do it.

makefile (override)

Use VMS commands and quoting.

test (override)
Use VMS commands for handling subdirectories.

test_via_harness (override)
Use VMS-style quoting on command line.

test_via_script (override)
Use VMS-style quoting on command line.

makeaperl (override)

Undertake to build a new set of Perl images using VMS commands. Since VMS does dynamic loading, it's
not necessary to statically link each extension into the Perl image, so this isn‘t the normal build path.
Consequently, it hasn't really been tested, and may well be incomplete.

ext (specific)

Stub routine standing in f@xtUtils::LibList::ext until VMS support is added to that package.

nicetext (override)

Insure that colons marking targets are preceded by space, in order to distinguish the target delimiter from a
colon appearing as part of a filespec.

398 Version 5.003 08-0Oct-1996

MakeMaker Perl Programmers Reference Guide MakeMaker

NAME
ExtUtils::MakeMaker — create an extension Makefile

SYNOPSIS
use ExtUtils::MakeMaker;

WriteMakefile(ATTRIBUTE => VALUE [, ...]);
which is really
MM->new(\%att)—>flush;

DESCRIPTION
This utility is designed to write a Makefile for an extension module from a Makefile.PL. It is based on the
Makefile.SH model provided by Andy Dougherty and the perl5—porters.

It splits the task of generating the Makefile into several subroutines that can be individually overridden.
Each subroutine returns the text it wishes to have written to the Makefile.

MakeMaker is object oriented. Each directory below the current directory that contains a Makefile.PL. Is
treated as a separate object. This makes it possible to write an unlimited number of Makefiles with a single
invocation ofWriteMakefile()

How To Write A Makefile.PL

The short answer is: Don‘t. Run h2xs(1) before you start thinking about writing a module. For so called
pm-only modules that consist dppm files only, h2xs has the very useftX switch. This will generate
dummy files of all kinds that are useful for the module developer.

The medium answer is:

use ExtUtils::MakeMaker;
WriteMakefile(NAME => "Foo::Bar");

The long answer is below.

Default Makefile Behaviour
The generated Makefile enables the user of the extension to invoke

perl Makefile.PL # optionally "perl Makefile.PL verbose"
make

make test # optionally set TEST_VERBOSE=1
make install # See below

The Makefile to be produced may be altered by adding arguments of thEExfrVALUEE.g.
perl Makefile.PL PREFIX=/tmp/myperl5
Other interesting targets in the generated Makefile are

make config # to check if the Makefile is up—to—date

make clean # delete local temp files (Makefile gets renamed)
make realclean # delete derived files (including ./blib)

make ci # check in all the files in the MANIFEST file

make dist # see below the Distribution Support section

make test

MakeMaker checks for the existence of a file named "test.pl" in the current directory and if it exists it adds
commands to the test target of the generated Makefile that will execute the script with the proper set of perl
-l options.

MakeMaker also checks for any files matching glob("t/*.t"). It will add commands to the test target of the
generated Makefile that execute all matching files viaTihst::Harnessmodule with the-l1 switches set

08-0Oct-1996 Version 5.003 399

Test::Harness

MakeMaker Perl Programmers Reference Guide MakeMaker

correctly.

make install

make alone puts all relevant files into directories that are named by the macros INST_LIB,
INST_ARCHLIB, INST_SCRIPT, INST_MAN1DIR, and INST_MAN3DIR. All these default to something
below ./blib if you arenot building below the perl source directory. If yawe building below the perl
source, INST_LIB and INST_ARCHLIB default to

.. [lib, and INST_SCRIPT is not defined.

The install target of the generated Makefile copies the files found below each of the INST_* directories to
their INSTALL* counterparts. Which counterparts are chosen depends on the setting of INSTALLDIRS
according to the following table:

INSTALLDIRS set to
perl site

INST_ARCHLIB INSTALLARCHLIB INSTALLSITEARCH
INST_LIB INSTALLPRIVLIB INSTALLSITELIB

INST_BIN INSTALLBIN

INST_SCRIPT INSTALLSCRIPT

INST_MAN1DIR INSTALLMAN1DIR

INST_MAN3DIR INSTALLMANS3DIR
The INSTALL... macros in turn default to their %Conf&Config{installprivlib},
$Config{installarchlib}, etc.) counterparts.

You can check the values of these variables on your system with

perl —-MConfig —le "print join $/, map
sprintf("%20s: %s", $_, $Config{$_}),
grep /Minstall/, keys %Config’

And to check the sequence in which the library directories are searched by perl, run
perl —le "print join $/, @INC’
PREFIX attribute

The PREFIX attribute can be used to set the INSTALL* attributes in one go. The quickest way to install a
module in a non—-standard place

perl Makefile.PL PREFIX=~
This will replace the string specified BZonfig{prefix} in all $Config{install*} values.
Note, that the tilde expansion is done by MakeMaker, not by perl by default, nor by make.

If the user has superuser privileges, and is not working on AFS (Andrew File System) or relatives, then the
defaults for INSTALLPRIVLIB, INSTALLARCHLIB, INSTALLSCRIPT, etc. will be appropriate, and this
incantation will be the best:

perl Makefile.PL; make; make test
make install

make install per default writes some documentation of what has been done into the file
$(INSTALLARCHLIB)/perllocal.pod. This feature can be bypassed by calling make pure_install.

AFS users
will have to specify the installation directories as these most probably have changed since perl itself has been
installed. They will have to do this by calling

perl Makefile.PL INSTALLSITELIB=/afs/here/today \
INSTALLSCRIPT=/afs/there/now INSTALLMAN3DIR=/afs/for/manpages
make

400 Version 5.003 08-0Oct-1996

MakeMaker Perl Programmers Reference Guide MakeMaker

Be careful to repeat this procedure every time you recompile an extension, unless you are sure the AFS
installation directories are still valid.

Static Linking of a new Perl Binary

An extension that is built with the above steps is ready to use on systems supporting dynamic loading. On
systems that do not support dynamic loading, any newly created extension has to be linked together with the
available resources. MakeMaker supports the linking process by creating appropriate targets in the Makefile
whenever an extension is built. You can invoke the corresponding section of the makefile with

make perl

That produces a new perl binary in the current directory with all extensions linked in that can be found in
INST_ARCHLIB , SITELIBEXP, and PERL_ARCHLIB. To do that, MakeMaker writes a new Makefile, on
UNIX, this is called Makefile.aperl (may be system dependent). If you want to force the creation of a new
perl, it is recommended, that you delete this Makefile.aperl, so the directories are searched-through for
linkable libraries again.

The binary can be installed into the directory where perl normally resides on your machine with
make inst_perl
To produce a perl binary with a different name tharl , either say

perl Makefile.PL MAP_TARGET=myperl
make myperl
make inst_perl

or say

perl Makefile.PL
make myperl MAP_TARGET=myperl
make inst_perl MAP_TARGET=myperl

In any case you will be prompted with the correct invocation oiniste perl target that installs the new
binary into INSTALLBIN.

make inst_perl per default writes some documentation of what has been done into the file
$(INSTALLARCHLIB)/perllocal.pod. This can be bypassed by calling make pure_inst_perl.

Warning: the inst_perl: target will most probably overwrite your existing perl binary. Use with care!

Sometimes you might want to build a statically linked perl although your system supports dynamic loading.
In this case you may explicitly set the linktype with the invocation of the Makefile.PL or make:

perl Makefile.PL LINKTYPE=static # recommended
or
make LINKTYPE=static # works on most systems

Determination of Perl Library and Installation Locations

MakeMaker needs to know, or to guess, where certain things are located. Especially INST_LIB and
INST_ARCHLIB (where to put the files during the make(1) run), PERL_LIB and PERL_ARCHLIB (where
to read existing modules from), and PERL_INC (header filedibperl*.*).

Extensions may be built either using the contents of the perl source directory tree or from the installed perl
library. The recommended way is to build extensions after you have run ‘make install’ on perl itself. You can
do that in any directory on your hard disk that is not below the perl source tree. The support for extensions
below the ext directory of the perl distribution is only good for the standard extensions that come with perl.

If an extension is being built below trext/ directory of the perl source then MakeMaker will set
PERL_SRC automatically (e.g./..). If PERL_SRC is defined and the extension is recognized as a
standard extension, then other variables default to the following:

08-0Oct-1996 Version 5.003 401

MakeMaker Perl Programmers Reference Guide MakeMaker

PERL_INC =PERL_SRC
PERL_LIB = PERL_SRCI/lib
PERL_ARCHLIB = PERL_SRC/lib
INST_LIB =PERL_LIB
INST_ARCHLIB = PERL_ARCHLIB

If an extension is being built away from the perl source then MakeMaker will leave PERL_SRC undefined
and default to using the installed copy of the perl library. The other variables default to the following:

PERL_INC = $archlibexp/CORE
PERL_LIB = $privlibexp
PERL_ARCHLIB = $archlibexp
INST_LIB = ./blib/lib
INST_ARCHLIB = ./blib/arch

If perl has not yet been installed then PERL_SRC can be defined on the command line as shown in the
previous section.

Which architecture dependent directory?

If you don‘t want to keep the defaults for the INSTALL* macros, MakeMaker helps you to minimize the
typing needed: the usual relationship between INSTALLPRIVLIB and INSTALLARCHLIB is determined
by Configure at perl compilation time. MakeMaker supports the user who sets INSTALLPRIVLIB. If
INSTALLPRIVLIB is set, but INSTALLARCHLIB not, then MakeMaker defaults the latter to be the same
subdirectory of INSTALLPRIVLIB as Configure decided for the counterparts in %Config , otherwise it
defaults to INSTALLPRIVLIB. The same relationship holds for INSTALLSITELIB and
INSTALLSITEARCH.

MakeMaker gives you much more freedom than needed to configure internal variables and get different
results. It is worth to mention, that make(1) also lets you configure most of the variables that are used in the
Makefile. But in the majority of situations this will not be necessary, and should only be done, if the author
of a package recommends it (or you know what you‘re doing).

Using Attributes and Parameters

The following attributes can be specified as argumenigriteMakefile() or as NAME=VALUE pairs
on the command line:

C Ref to array of *.c file names. Initialised from a directory scan and the values portion of the XS attribute
hash. This is not currently used by MakeMaker but may be handy in Makefile.PLs.

CONFIG

Arrayref. E.g. [qw(archname manext)] defines ARCHNAMBVMANEXT from config.sh. MakeMaker
will add to CONFIG the following values anyway: ar cc cccdlflags ccdlflags dlext disrc Id Iddiflags
Idflags libc lib_ext obj_ext ranlib sitelibexp sitearchexp so

CONFIGURE

CODE reference. The subroutine should return a hash reference. The hash may contain further attributes,
e.g. {LIBS => ...}, that have to be determined by some evaluation method.

DEFINE
Something like¢'-DHAVE_UNISTD_H"
DIR
Ref to array of subdirectories containing Makefile.PLs e.g. [‘sdbm’] in ext/SDBM_File

DISTNAME
Your name for distributing the package (by tar file). This defaults to NAME above.

402

Version 5.003 08-0ct—-1996

MakeMaker Perl Programmers Reference Guide MakeMaker

DL_FUNCS

Hashref of symbol names for routines to be made available as universal symbols. Each key/value pair
consists of the package name and an array of routine names in that package. Used only under AIX
(export lists) and VMS (linker options) at present. The routine names supplied will be expanded in the
same way as XSUB names are expanded b}8{¢ macro. Defaults to

{"$(NAME)" => ["boot_$(NAME)" | }

e.g.
{"RPC" => [gw(boot_rpcb rpcb_gettime getnetconfigent)],
"NetconfigPtr" => ['DESTROY’] }
DL_VARS
Array of symbol names for variables to be made available as universal symbols. Used only under AIX
(export lists) and VMS (linker options) at present. Defaults to []. (e.g. [gw(Foo_version
Foo_numstreams Foo_tree)])
EXCLUDE_EXT
Array of extension names to exclude when doing a static build. This is ignored if INCLUDE_EXT is
present. Consult INCLUDE_EXT for more details. (e.g. [qw(Socket POSIX)])

This attribute may be most useful when specified as a string on the commandline: perl Makefile.PL
EXCLUDE_EXT="'Socket Safe’

EXE_FILES

Ref to array of executable files. The files will be copied to the INST_SCRIPT directory. Make realclean
will delete them from there again.

NO_VC

In general any generated Makefile checks for the current version of MakeMaker and the version the
Makefile was built under. If NO_VC is set, the version check is neglected. Do not write this into your
Makefile.PL, use it interactively instead.

FIRST_MAKEFILE

The name of the Makefile to be produced. Defaults to the contents of MAKEFILE, but can be overridden.
This is used for the second Makefile that will be produced for the MAP_TARGET.

FULLPERL
Perl binary able to run this extension.

H Ref to array of *.h file names. Similar to C.

INC
Include file dirs eg¥-I/usr/5include —I/path/to/inc"
INCLUDE_EXT

Array of extension hames to be included when doing a static build. MakeMaker will normally build with
all of the installed extensions when doing a static build, and that is usually the desired behavior. If
INCLUDE_EXT is present then MakeMaker will build only with those extensions which are explicitly
mentioned. (e.g. [qw(Socket POSIX)])

It is not necessary to mention Dynaloader or the current extension when filling in INCLUDE_EXT. |If
the INCLUDE_EXT is mentioned but is empty then only Dynaloader and the current extension will be
included in the build.

This attribute may be most useful when specified as a string on the commandline: perl Makefile.PL
INCLUDE_EXT='POSIX Socket Devel::Peek’

08-0Oct-1996 Version 5.003 403

MakeMaker Perl Programmers Reference Guide MakeMaker

INSTALLARCHLIB

Used by ‘make install’, which copies files from INST_ARCHLIB to this directory if INSTALLDIRS is
set to perl.

INSTALLBIN
Directory to install binary files (e.g. tkperl) into.

INSTALLDIRS

Determines which of the two sets of installation directories to choose: installprivlib and installarchlib
versus installsitelib and installsitearch. The first pair is chosen with INSTALLDIRS=perl, the second with
INSTALLDIRS=site. Default is site.

INSTALLMAN1DIR
This directory gets the man pages at ‘make install’ time. Defaui€ ¢emfig{installmanidir}.

INSTALLMAN3DIR
This directory gets the man pages at ‘make install’ time. Defaui€ ¢emfig{installman3dir}.

INSTALLPRIVLIB

Used by ‘make install, which copies files from INST_LIB to this directory if INSTALLDIRS is set to
perl.

INSTALLSCRIPT
Used by ‘make install’ which copies files from INST_SCRIPT to this directory.

INSTALLSITELIB

Used by ‘make install, which copies files from INST_LIB to this directory if INSTALLDIRS is set to
site (default).

INSTALLSITEARCH

Used by ‘make install’, which copies files from INST_ARCHLIB to this directory if INSTALLDIRS is
set to site (default).

INST_ARCHLIB
Same as INST_LIB for architecture dependent files.

INST_BIN

Directory to put real binary files during ‘make’. These will be copied to INSTALLBIN during ‘make
install’

INST_EXE
Old name for INST_SCRIPT. Deprecated. Please use INST_SCRIPT if you need to use it.

INST_LIB
Directory where we put library files of this extension while building it.

INST_MAN1DIR
Directory to hold the man pages at ‘make’ time

INST_MAN3DIR
Directory to hold the man pages at ‘make’ time

INST_SCRIPT
Directory, where executable files should be installed during ‘make’. Defaults to "./blib/bin", just to have a
dummy location during testing. make install will copy the files in INST_SCRIPT to INSTALLSCRIPT.
LDFROM

defaults to $(OBJECT)" and is used in the Id command to specify what files to link/load from (also see
dynamic_lib below for how to specify Id flags)

404 Version 5.003 08-0Oct-1996

MakeMaker Perl Programmers Reference Guide MakeMaker

LIBPERL_A
The filename of the perllibrary that will be used together with this extension. Defaults to libperl.a.

LIBS

An anonymous array of alternative library specifications to be searched for (in order) until at least one
library is found. E.g.

'LIBS’ => ["-Igdbm", "-ldbm -Ifoo", "-L/path —ldbm.nfs"]
Mind, that any element of the array contains a complete set of arguments for the Id command. So do not
specify
'LIBS’ => ["-ltel", "—Itk", "-IX11"]
See ODBM_File/Makefile.PL for an example, where an array is needed. If you specify a scalar as in
'LIBS’ => "—ltcl -Itk -IX11"
MakeMaker will turn it into an array with one element.

LINKTYPE
‘static’ or ‘dynamic’ (default unless usedl=undef in config.sh). Should only be used to force static linking
(also see linkext below).

MAKEAPERL
Boolean which tells MakeMaker, that it should include the rules to make a perl. This is handled
automatically as a switch by MakeMaker. The user normally does not need it.

MAKEFILE
The name of the Makefile to be produced.

MAN1PODS
Hashref of pod-containing files. MakeMaker will default this to all EXE_FILES files that include POD
directives. The files listed here will be converted to man pages and installed as was requested at
Configure time.

MAN3PODS
Hashref of .pm and .pod files. MakeMaker will default this to all
.pod and any .pm files that include POD directives. The files listed
here will be converted to man pages and installed as was requested at Configure time.

MAP_TARGET
If it is intended, that a new perl binary be produced, this variable may hold a name for that binary.
Defaults to perl

MYEXTLIB
If the extension links to a library that it builds set this to the name of the library (see SDBM_File)

NAME
Perl module name for this extension (DBD::Oracle). This will default to the directory name but should be
explicitly defined in the Makefile.PL.

NEEDS_LINKING

MakeMaker will figure out, if an extension contains linkable code anywhere down the directory tree, and
will set this variable accordingly, but you can speed it up a very little bit, if you define this boolean
variable yourself.

NOECHO

Defaults to@ By setting it to an empty string you can generate a Makefile that echos all commands.
Mainly used in debugging MakeMaker itself.

08-0Oct-1996 Version 5.003 405

MakeMaker Perl Programmers Reference Guide MakeMaker

NORECURS
Boolean. Attribute to inhibit descending into subdirectories.

OBJECT

List of object files, defaults tab(BASEEXT)$(OBJ_EXT)‘, but can be a long string containing all
object files, e.g. "tkpBind.o tkpButton.o tkpCanvas.o"

OPTIMIZE

Defaults to-O. Set it to—g to turn debugging on. The flag is passed to subdirectory makes.
PERL

Perl binary for tasks that can be done by miniperl

PERLMAINCC
The call to the program that is able to compile perlmain.c. Defaul&io).

PERL_ARCHLIB
Same as above for architecture dependent files
PERL_LIB
Directory containing the Perl library to use.
PERL_SRC
Directory containing the Perl source code (use of this should be avoided, it may be undefined)

PL_FILES
Ref to hash of files to be processed as perl programs. MakeMaker will default to any found *.PL file

(except Makefile.PL) being keys and the basename of the file being the value. E.g.
{’foobar.PL’ => 'foobar’}
The *.PL files are expected to produce output to the target files themselves.

PM
Hashref of .pm files and *.pl files to be installed. e.g.

{'name_of_file.pm’ =>"$(INST_LIBDIR)/install_as.pm’}

By default this will include *.pm and *.pl. If a lib directory exists and is not listed in DIR (above) then
any *.pm and *.pl files it contains will also be included by default. Defining PM in the Makefile.PL will
override PMLIBDIRS.

PMLIBDIRS

Ref to array of subdirectories containing library files. Defaults to [StBASEEXT)]. The directories

will be scanned and any files they contain will be installed in the corresponding location in the library. A
libscan() method can be used to alter the behaviour. Defining PM in the Makefile.PL will override
PMLIBDIRS.

PREFIX
Can be used to set the three INSTALL* attributes in one go (except for probably INSTALLMAN1DIR, if
it is not below PREFIX according to %Config). They will have PREFIX as a common directory node and
will branch from that node into lib/, lib/ARCHNAME or whatever Configure decided at the build time of
your perl (unless you override one of them, of course).

PREREQ_PM

Hashref: Names of modules that need to be available to run this extension (e.g. Fcntl for SDBM_File) are
the keys of the hash and the desired version is the value. If the required version number is 0, we only
check if any version is installed already.

406 Version 5.003 08-0Oct-1996

MakeMaker Perl Programmers Reference Guide MakeMaker

SKIP
Arryref. E.g. [gw(namel name?2)] skip (do not write) sections of the Makefile. Caution! Do not use the
SKIP attribute for the neglectible speedup. It may seriously damage the resulting Makefile. Only use it, if
you really need it.

TYPEMAPS

Ref to array of typemap file names. Use this when the typemaps are in some directory other than the
current directory or when they are not namgzemap. The last typemap in the list takes precedence. A
typemap in the current directory has highest precedence, even if it isn't listed in TYPEMAPS. The
default system typemap has lowest precedence.

VERSION
Your version number for distributing the package. This defaults to 0.1.

VERSION_FROM

Instead of specifying the VERSION in the Makefile.PL you can let MakeMaker parse a file to determine
the version number. The parsing routine requires that the file named by VERSION_FROM contains one
single line to compute the version number. The first line in the file that contains the regular expression

NS(([WA\T)\bVERSION)\b. *\=/

will be evaluated witleval() and the value of the named variahfter theeval() will be assigned to
the VERSION attribute of the MakeMaker object. The following lines will be parsed o.k.:

$VERSION ="1.007;
($VERSION) = '$Revision: 1.207 $ ' =~ N\$Revision:\s+([Ms]+)/;
$FOO::VERSION ="1.10’;

but these will fail:

my $VERSION ="1.01";
local $VERSION ='1.02";
local $FOO::VERSION ='1.30";

The file named in VERSION_FROM is added as a dependency to Makefile to guarantee, that the
Makefile contains the correct VERSION macro after a change of the file.

XS
Hashref of .xs files. MakeMaker will default this. e.g.

{'name_of file.xs’ =>'name_of file.c’}
The .c files will automatically be included in the list of files deleted by a make clean.

XSOPT

String of options to pass to xsubpp. This might incla@e+ or —extern . Do not include typemaps
here; the TYPEMAP parameter exists for that purpose.

XSPROTOARG
May be set to an empty string, which is identica-fwototypes , or —noprototypes . See the
xsubpp documentation for details. MakeMaker defaults to the empty string.

XS_VERSION

Your version number for the .xs file of this package. This defaults to the value of the VERSION attribute.

Additional lowercase attributes
can be used to pass parameters to the methods which implement that part of the Makefile.

08-0Oct-1996 Version 5.003 407

MakeMaker Perl Programmers Reference Guide MakeMaker

clean
{FILES => "*.xyz foo"}

depend
{ANY_TARGET => ANY_DEPENDECY, ...}
dist
{TARFLAGS =>'cvfF’, COMPRESS => 'gzip’, SUFFIX =>'gz’,
SHAR =>'shar -m’, DIST_CP =>"In’, ZIP =>/bin/zip’,
ZIPFLAGS =>"-rI", DIST_DEFAULT => "private tardist’ }
If you specify COMPRESS, then SUFFIX should also be altered, as it is needed to tell make the target file
of the compression. Setting DIST_CP to In can be useful, if you need to preserve the timestamps on your

files. DIST_CP can take the values ‘cp‘, which copies the file, ‘In‘, which links the file, and ‘best’ which
copies symbolic links and links the rest. Default is ‘best’.

dynamic_lib
{ARMAYBE =>'ar’, OTHERLDFLAGS =>"...", INST_DYNAMIC_DEP =>"..."}
installpm
Deprecated as of MakeMaker 5.23. &eUtils::MM_Unix/pm_to_blib
linkext
{LINKTYPE => 'static’, 'dynamic’ or "}
NB: Extensions that have nothing but *.pm files had to say
{LINKTYPE => "}

with Pre-5.0 MakeMakers. Since version 5.00 of MakeMaker such a line can be deleted safely.
MakeMaker recognizes, when there's nothing to be linked.
macro
{ANY_MACRO => ANY_VALUE, ...}

realclean
{FILES =>'$(INST_ARCHAUTODIR)/*.xyz'}

tool_autosplit
{MAXLEN =E<gt> 8}

Overriding MakeMaker Methods

If you cannot achieve the desired Makefile behaviour by specifying attributes you may define private
subroutines in the Makefile.PL. Each subroutines returns the text it wishes to have written to the Makefile.
To override a section of the Makefile you can either say:

sub MY::c_o { "new literal text" }
or you can edit the default by saying something like:

sub MY::c_o{
my($inherited) = shift—->SUPER::c_o(@_);
$inherited =~ s/old text/new text/;
$inherited;
}

If you running experiments with embedding perl as a library into other applications, you might find
MakeMaker not sufficient. You'd better have a look at ExtUtils::embed which is a collection of utilities for
embedding.

If you still need a different solution, try to develop another subroutine, that fits your needs and submit the

408 Version 5.003 08-0Oct-1996

ExtUtils::MM_Unix/pm_to_blib

MakeMaker Perl Programmers Reference Guide MakeMaker

diffs to perl5—porters@nicoh.comor comp.lang.perl.mis@s appropriate.
For a complete description of all MakeMaker methodssseetils::MM_Unix.
Here is a simple example of how to add a new target to the generated Makefile:

sub MY::postamble {

$(MYEXTLIB): sdbm/Makefile
cd sdbm && $(MAKE) all

}

Hintsfile support
MakeMaker.pm uses the architecture specific information from Config.pm. In addition it evaluates
architecture specific hints files intants/ directory. The hints files are expected to be named like their
counterparts ilPERL_SRC/hints , but with an.pl file name extension (egext_3_2.pl). They are

simply eval ed by MakeMaker within th&VriteMakefile() subroutine, and can be used to execute
commands as well as to include special variables. The rules which hintsfile is chosen are the same as in
Configure.

The hintsfile iseval() ed immediately after the arguments given to WriteMakefile are stuffed into a hash
referencebself but before this reference becomes blessed. So if you want to do the equivalent to override
or create an attribute you would say something like

$self->{LIBS} = ['-Idbm —lucb -Ic’];

Distribution Support

For authors of extensions MakeMaker provides several Makefile targets. Most of the support comes from the
ExtUtils::Manifest module, where additional documentation can be found.

make distcheck
reports which files are below the build directory but not in the MANIFEST file and vice versa. (See
ExtUtils::Manifest::fullcheck() for details)

make skipcheck

reports which files are skipped due to the entries iMABIFEST.SKIP file (See
ExtUtils::Manifest::skipcheck() for details)

make distclean
does a realclean first and then the distcheck. Note that this is not needed to build a new distribution as
long as you are sure, that the MANIFEST file is ok.

make manifest

rewrites the MANIFEST file, adding all remaining files found (See
ExtUtils::Manifest::mkmanifest() for details)

make distdir

Copies all the files that are in the MANIFEST file to a newly created directory with the name
$(DISTNAME)-$(VERSION). If that directory exists, it will be removed first.

make disttest
Makes a distdir first, and rungparl Makefile.PL , @ make, and a make test in that directory.

make tardist

First does a distdir. Then a comma®@PREOP) which defaults to a null command, followed by
$(TOUNIX), which defaults to a null command under UNIX, and will convert files in distribution
directory to UNIX format otherwise. Next it runar on that directory into a tarfile and deletes the
directory. Finishes with a commas@POSTOP) which defaults to a null command.

08-0Oct-1996 Version 5.003 409

ExtUtils::MM_Unix

MakeMaker Perl Programmers Reference Guide MakeMaker

make dist
Defaults to$(DIST_DEFAULT) which in turn defaults to tardist.

make uutardist
Runs a tardist first and uuencodes the tarfile.

make shdist

First does a distdir. Then a commap@REOP) which defaults to a null command. Next it runs
shar on that directory into a sharfile and deletes the intermediate directory again. Finishes with a
commandb(POSTOP) which defaults to a null command. Note: For shdist to work propeshaa
program that can handle directories is mandatory.

make zipdist

First does a distdir. Then a comma@REOP) which defaults to a null command. RUZIP)
$(ZIPFLAGS) on that directory into a zipfile. Then deletes that directory. Finishes with a command
$(POSTOP) which defaults to a null command.

make ci
Does a5(Cl) and a$(RCS_LABEL) on all files in the MANIFEST file.

Customization of the dist targets can be done by specifying a hash reference to the dist attribute of the
WriteMakefile call. The following parameters are recognized:

Cl (ci —u’)

COMPRESS (‘compress’)

POSTOP (@:)

PREOP (@)

TO_UNIX (depends on the system)
RCS_LABEL (rcs —q —-Nv$(VERSION_SYM):")
SHAR ('shar’)

SUFFIX (Z)
TAR ('tar’)
TARFLAGS (‘cvf)
ZIP ('zip")
ZIPFLAGS (-1)
An example:
WriteMakefile('dist’ => { COMPRESS=>"gzip", SUFFIX=>"gz" })
SEE ALSO
ExtUtils::MM_Unix, ExtUtils::Manifest, ExtUtils::testlib, ExtUtils::Install, ExtUtils::embed
AUTHORS

Andy Dougherty<doughera@Ilafcol.lafayette.edyuAndreas Konig
<A.Koenig@franz.ww.TU-Berlin.DE> Tim Bunce <Tim.Bunce@ig.co.uk> VMS support by Charles
Bailey <bailey@genetics.upenn.edus0S/2 support by llya Zakharevichilya@math.ohio—state.edu>
Contact the makemaker mailing listailto:makemaker@franz.ww.tu—berlin.de , if you have
any questions.

410 Version 5.003 08-0Oct-1996

Manifest Perl Programmers Reference Guide Manifest

NAME
ExtUtils::Manifest — utilities to write and check a MANIFEST file

SYNOPSIS
require ExtUtils::Manifest;

ExtUtils::Manifest::mkmanifest;
ExtUtils::Manifest::manicheck;
ExtUtils::Manifest::filecheck;
ExtUtils::Manifest::fullcheck;
ExtUtils::Manifest::skipcheck;
ExtUtild::Manifest::manifind();
ExtUtils::Manifest::maniread($file);
ExtUtils::Manifest::manicopy($read,$target,$how);

DESCRIPTION
Mkmanifest() writes all files in and below the current directory to a file named in the global variable
$ExtUtils::Manifest:: MANIFEST (which defaults ttMANIFEST) in the current directory. It works
similar to
find . —print

but in doing so checks each line in an exisMNIFESTfile and includes any comments that are found in

the existingMANIFEST file in the new one. Anything between white space and an end of line within a
MANIFESTfile is considered to be a comment. Filenames and comments are seperated by one or more TAB
characters in the output. All files that match any regular expression ilNdANBFEST.SKIP (if such a file

exists) are ignored.

Manicheck() checks if all the files within MANIFESTin the current directory really do exist. It only
reports discrepancies and exits silently if MANIFEST and the tree below the current directory are in sync.

Filecheck() finds files below the current directory that are not mentioned ilMIABIFEST file. An
optional file MANIFEST.SKIP will be consulted. Any file matching a regular expression in such a file will
not be reported as missing in tMANIFESTfile.

Fullcheck() does both aanicheck() and &filecheck()
Skipcheck() lists all the files that are skipped due to yMANIFEST.SKIP file.
Manifind() retruns a hash reference. The keys of the hash are the files found below the current directory.

Manireadgfile) reads a nameMANIFEST file (defaults toMANIFEST in the current directory) and
returns a HASH reference with files being the keys and comments being the values of the HASH.

Manicopy@read, $target, $how) copies the files that are the keys in the HAB®Head to the named
target directory. The HASH referendizead is typically returned by thenaniread() function. This
function is useful for producing a directory tree identical to the intended distribution tree. The third
parameter$how can be used to specify a different methods of "copying". Valid valuesparevhich
actually copies the file¢n which creates hard links, abést which mostly links the files but copies any
symbolic link to make a tree without any symbolic link. Best is the default.

MANIFEST.SKIP

The file MANIFEST.SKIP may contain regular expressions of files that should be ignored by
mkmanifest() andfilecheck() . The regular expressions should appear one on each line. A typical
example:

08-0Oct-1996 Version 5.003 411

Manifest Perl Programmers Reference Guide Manifest

\bRCS\b
"MANIFEST\.
"Makefile$

~$

\.htmI$

\.old$

"blib/
"MakeMaker-\d

EXPORT_OK
&mkmanifest, &manicheck, &filecheck, &fullcheck, &maniread, and&manicopy are
exportable.

GLOBAL VARIABLES

$ExtUtils::Manifest:: MANIFEST defaults toMANIFEST. Changing it results in both a different
MANIFEST and a differentMANIFEST.SKIP file. This is useful if you want to maintain different
distributions for different audiences (say a user version and a developer version including RCS).

$ExtUtils::Manifest::Quiet defaults to 0. If set to a true value, all functions act silently.
DIAGNOSTICS
All diagnostic output is sent 8BTDERR

Not in MANIFEST: file

is reported if a file is found, that is missing in tkKANIFEST file which is excluded by a regular
expression in the filMANIFEST.SKIP .

No such file: file
is reported if a file mentioned iNMANIFESTfile does not exist.
MANIFEST: $!

is reported iMANIFESTcould not be opened.

Added to MANIFEST: file

is reported bynkmanifest() if $Verbose is set and a file is added to MANIFESHVerbose is
set to 1 by default.

SEE ALSO
ExtUtils::MakeMakerwhich has handy targets for most of the functionality.

AUTHOR
Andreas Koenig koenig@franz.ww.TU-Berlin.DE

412 Version 5.003 08-0Oct-1996

ExtUtils::MakeMaker

Miniperl Perl Programmers Reference Guide Miniperl

NAME
ExtUtils::Miniperl, writemain — write the C code for perlmain.c

SYNOPSIS
use ExtUtils::Miniperl;

writemain(@directories);

DESCRIPTION
This whole module is written when perl itself is built from a script called minimod.PL. In case you want to
patch it, please patch minimod.PL in the perl distribution instead.

writemain() takes an argument list of directories containing archive libraries that relate to perl modules

and should be linked into a new perl binary. It writes to STDOUT a corresponding perlmain.c file that is a

plain C file containing all the bootstrap code to make the modules associated with the libraries available
from within perl.

The typical usage is from within a Makefile generated by ExtUtils::MakeMaker. So under normal
circumstances you won'‘t have to deal with this module directly.

SEE ALSO
ExtUtils::MakeMaker

08-0Oct-1996 Version 5.003 413

ExtUtils::MakeMaker

Mkbootstrap Perl Programmers Reference Guide Mkbootstrap

NAME

ExtUtils::Mkbootstrap — make a bootstrap file for use by Dynal.oader

SYNOPSIS

mkbootstrap

DESCRIPTION

Mkbootstrap typically gets called from an extension Makefile.

There is no.bs file supplied with the extension. Insteadd 8S file which has code for the special cases,
like posix for berkeley db on the NeXT.

This file will get parsed, and produce a maybe en@@ynaloader::dl_resolve_using array for
the current architecture. That will be extende&$BBLOADLIBS, which was computed by
ExtUtils::Liblist::ext() . If this array still is empty, we do nothing, else we write a .bs file with
an@Dynal oader::dl_resolve_using array.

The*_BS file can put some code into the generatbéd file by placing it in$bscode. This is a handy
‘escape’ mechanism that may prove useful in complex situations.

If @Dynaloader::dl_resolve _using contairls* or —I* entries then Mkbootstrap will automatically add a
dl_findfile() call to the generatetdbs file.

414

Version 5.003 08-0ct—-1996

Mksymlists Perl Programmers Reference Guide Mksymlists

NAME
ExtUtils::Mksymlists — write linker options files for dynamic extension

SYNOPSIS

use ExtUtils::Mksymlists;
Mksymlists({ NAME => $name ,
DL_VARS =>[$varl, $var2, $var3],
DL_FUNCS => { $pkgl => [$funcil, $func2],
$pkg2 =>[$func3 1});

DESCRIPTION

ExtUtils::Mksymlists produces files used by the linker under some OSs during the creation of shared
libraries for dynamic extensions. It is normally called from a MakeMaker—generated Makefile when the
extension is built. The linker option file is generated by calling the fundfikeymlists , which is

exported by default fronExtUtils::Mksymlists . It takes one argument, a list of key-value pairs, in
which the following keys are recognized:

NAME

This gives the name of the extensierg(Tk::Canvas) for which the linker option file will be produced.
DL_FUNCS

This is identical to the DL_FUNCS attribute available via MakeMaker, from which it is usually taken. Its
value is a reference to an associative array, in which each key is the name of a package, and each value is an
a reference to an array of function names which should be exported by the extension. For instance, one
might sayDL_FUNCS => { Homer::lliad => [gw(trojans greeks)],

Homer::Odyssey => [qw(travellers family suitors)] } . The function names should

be identical to those in the XSUB codéksymlists will alter the names written to the linker option file

to match the changes made xsubpp In addition, if none of the functions in a list begin with the string

boot_, Mksymlists will add a bootstrap function for that package, just as xsubpp doesbaddf a<pkg>

function is present in the list, it is passed through unchanged.) If DL_FUNCS is not specified, it defaults to
the bootstrap function for the extension specified in NAME.

DL_VARS

This is identical to the DL_VARS attribute available via MakeMaker, and, like DL_FUNCS, it is usually
specified via MakeMaker. Its value is a reference to an array of variable names which should be exported by
the extension.

FILE

This key can be used to specify the name of the linker option file (minus the OS-specific extension), if for
some reason you do not want to use the default value, which is the last word of the NAME adtgbide (
Tk::Canvas, FILE defaults to ‘Canvas’).

FUNCLIST

This provides an alternate means to specify function names to be exported from the extension. Its value is a
reference to an array of function names to be exported by the extension. These names are passed through
unaltered to the linker options file.

DLBASE

This item specifies the name by which the linker knows the extension, which may be different from the name
of the extension itself (for instance, some linkers add an ‘_’ to the name of the extension). If it is not

specified, it is derived from the NAME attribute. It is presently used only by OS2.

When callingMksymlists , one should always specify the NAME attribute. In most cases, this is all that's
necessary. In the case of unusual extensions, however, the other attributes can be used to provide additional
information to the linker.

08-0Oct-1996 Version 5.003 415

Mksymlists Perl Programmers Reference Guide Mksymlists

AUTHOR
Charles Baileybailey@genetics.upenn.edu>

REVISION
Last revised 14—-Feb-1996, for Perl 5.002.

416 Version 5.003 08-0Oct-1996

testlib Perl Programmers Reference Guide testlib

NAME

ExtUtils::testlib — add blib/* directories to @INC
SYNOPSIS

use ExtUTtils::testlib;
DESCRIPTION

After an extension has been built and before it is installed it may be desirable to test it bypassng
test . By adding

use ExtUtils::testlib;

to a test program the intermediate directories useddke are added to @INC.

08-0Oct-1996 Version 5.003 417

xsubpp Perl Programmers Reference Guide xsubpp

NAME
xsubpp — compiler to convert Perl XS code into C code

SYNOPSIS
xsubpp [-Vv] [-C++] [-excepl [-s pattern] [—prototypes] [—noversioncheck [-typemap typemag...
file.xs

DESCRIPTION

xsubppwill compile XS code into C code by embedding the constructs necessary to let C functions
manipulate Perl values and creates the glue necessary to let Perl access those functions. The compiler uses
typemaps to determine how to map C function parameters and variables to Perl values.

The compiler will search for typemap files callgghemap It will use the following search path to find
default typemaps, with the rightmost typemap taking precedence.

OPTIONS
—-C++ Adds “extern "C" to the C code.
—except
Adds exception handling stubs to the C code.
—-typemap typemap

Indicates that a user—supplied typemap should take precedence over the default typemaps. This
option may be used multiple times, with the last typemap having the highest precedence.

-V Prints thexsubppversion number to standard output, then exits.

—prototypes

By defaultxsubppwill not automatically generate prototype code for all xsubs. This flag will enable
prototypes.

—noversioncheck

Disables the run time test that determines if the object file (derived fromghdile) and the.pm
files have the same version number.

ENVIRONMENT

No environment variables are used.
AUTHOR

Larry Wall

MODIFICATION HISTORY
See the filehanges.pod

SEE ALSO
perl(1), perlxs(1), perixstut(1), perlxs(1)

418 Version 5.003 08-0Oct-1996

Fatal Perl Programmers Reference Guide Fatal

NAME
Fatal — replace functions with equivalents which succeed or die

SYNOPSIS
use Fatal qw(open print close);
subjuggle {...}
import Fatal ’juggle’;
DESCRIPTION

Fatal provides a way to conveniently replace functions which normally return a false value when they fail
with equivalents which halt execution if they are not successful. This lets you use these functions without
having to test their return values explicitly on each call. Errors are reportd vjao you can trap them
using$SIG{__DIE__} if you wish to take some action before the program exits.

The do-or-die equivalents are set up simply by calling Fatapert routine, passing it the names of the
functions to be replaced. You may wrap both user—defined functions and CORE operators in this way.

AUTHOR
Lionel.Cons@cern.ch

08-0Oct-1996 Version 5.003 419

Fentl Perl Programmers Reference Guide Fentl

NAME
Fcntl — load the C Fentl.h defines
SYNOPSIS
use Fentl;

DESCRIPTION

This module is just a translation of thefi@tl.h file. Unlike the old mechanism of requiring a translated
fnctl.ph file, this uses th&2xs program (see the Perl source distribution) and your native C compiler. This
means that it has a far more likely chance of getting the numbers right.

NOTE

Only #define symbols get translated; you must still correctly pack up your own arguments to pass as args
for locking functions, etc.

420 Version 5.003 08-0Oct-1996

Basename

Perl Programmers Reference Guide Basename

NAME

Basename - parse file specifications

fileparse — split a pathname into pieces

basename - extract just the filename from a path

dirname — extract just the directory from a path

SYNOPSIS

use File::Basename;

($name,$path,$suffix) = fileparse($fullname, @suffixlist)
fileparse_set_fstype($os_string);

$basename = basename($fullname, @suffixlist);
$dirname = dirname($fullname);

($name, $path,$suffix) = fileparse("lib/File/Basename.pm”,"\.pm");
fileparse_set_fstype("VMS");

$basename = basename("lib/File/Basename.pm"”,".pm");
$dirname = dirname("lib/File/Basename.pm");

DESCRIPTION
These routines allow you to parse file specifications into useful pieces using the syntax of different operating
systems.
fileparse_set_fstype
You select the syntax via the routifieparse_set_fstype() . If the argument passed to it
contains one of the substrings "VMS", "MSDOS", or "MacOS", the file specification syntax of that
operating system is used in future callsikeparse() , basename() , anddirname() . Ifit

contains none of these substrings, UNIX syntax is used. This pattern matching is case-insensitive. If
you've selected VMS syntax, and the file specification you pass to one of these routines contains a "/",
they assume you are using UNIX emulation and apply the UNIX syntax rules instead, for that function
call only.

If you haven't calledileparse_set_fstype() , the syntax is chosen by examining the builtin
variable$"O according to these rules.

fileparse
The fileparse() routine divides a file specification into three parts: a leagat), a file name,

and asuffix. Thepath contains everything up to and including the last directory separator in the input
file specification. The remainder of the input file specification is then dividednemue and suffix

based on the optional patterns you specif@isuffixlist . Each element of this list is interpreted

as a regular expression, and is matched against the eadhef If this succeeds, the matching portion

of nameis removed and prependedduaffix. By proper use ofsuffixlist , you can remove file
types or versions for examination.

You are guaranteed that if you concatenzdth, name andsuffix together in that order, the result
will denote the same file as the input file specification.

EXAMPLES
Using UNIX file syntax:

($base,$path,$type) = fileparse(’/virgil/aeneid/draft.book?’,

\.book\d+);

would yield

$base eq 'draft’
$path eq 'Ivirgil/aeneid/’,

08-0Oct-1996 Version 5.003 421

Basename Perl Programmers Reference Guide Basename

$type eq '.book?’
Similarly, using VMS syntax:

($name,$dir,$type) = fileparse('Doc_Root:[Help]Rhetoric.Rnh’,
L2,

would yield

$name eq 'Rhetoric’
$dir eq 'Doc_Root:[Help]’
$type eq '.Rnh’

basename

Thebasename() routine returns the first element of the list produced by cafliegarse() with the
same arguments. It is provided for compatibility with the UNIX shell command basename(1).

dirname

Thedirname() routine returns the directory portion of the input file specification. When using VMS or
MacOS syntax, this is identical to the second element of the list produced by filEpagse() with

the same input file specification. (Under VMS, if there is no directory information in the input file
specification, then the current default device and directory are returned.) When using UNIX or MSDOS
syntax, the return value conforms to the behavior of the UNIX shell command dirname(1). This is usually
the same as the behavior fiéparse() , but differs in some cases. For example, for the input file
specificationlib/, fileparse() considers the directory name tolti¥, while dirname() considers the
directory name to bg.

422

Version 5.003 08-0ct—-1996

CheckTree Perl Programmers Reference Guide CheckTree
NAME
validate — run many filetest checks on a tree
SYNOPSIS
use File::CheckTree;
$warnings += validate(q{
/vmunix —e || die
/boot —-e || die
/bin cd
csh —ex
csh I-ug
sh —-ex
sh I-ug
lusr —d || warn "What happened to $file?\n"
D;
DESCRIPTION
Thevalidate() routine takes a single multiline string consisting of lines containing a filename plus a file

test to try on it. (The file test may also be a "cd", causing subsequent relative filenames to be interpreted
relative to that directory.) After the file test you may ppulie to make it a fatal error if the file test fails.

The default ig| warn . The file test may optionally have a "!I" prepended to test for the opposite condition.

If you do a cd and then list some relative filenames, you may want to indent them slightly for readability. If
to interpolate the filename.

you supply your ownlie() orwarn() message, you can udile

Filetests may be bunched:
produce a warning.

The routine returns the number of warnings issued.

'—rwx" tests for altof —w, and—x. Only the first failed test of the bunch will

08-0ct-1996 Version 5.003

423

Copy Perl Programmers Reference Guide Copy
NAME
File::Copy — Copy files or filehandles
SYNOPSIS
use File::Copy;
copy("file1","file2");
copy("Copy.pm"*STDOUT);’
use POSIX;
use File::Copy cp;
$n=FileHandle->new("/dev/null","r");
cp($n,"x");
DESCRIPTION

The File::Copy module provides a basic functimpy which takes two parameters: a file to copy from and

a file to copy to. Either argument may be a string, a FileHandle reference or a FileHandle glob. Obviously, if
the first argument is a filehandle of some sort, it will be read from, and if it is mafiteit will be opened

for reading. Likewise, the second argument will be written to (and created if need be). Note that passing in
files as handles instead of names may lead to loss of information on some operating systems; it is
recommended that you use file names whenever possible.

An optional third parameter can be used to specify the buffer size used for copying. This is the number of
bytes from the first file, that wil be held in memory at any given time, before being written to the second file.
The default buffer size depends upon the file, but will generally be the whole file (up to 2Mb), or 1k for
filehandles that do not reference files (eg. sockets).

You may use the syntaxse File::Copy "cp" to get at the "cp" alias for this function. The syntax is
exactlythe same.

File::Copy also provides th&yscopy routine, which copies the file specified in the first parameter to the
file specified in the second parameter, preserving OS-specific attributes and file structure. For Unix
systems, this is equivalent to the simptgy routine. For VMS systems, this calls ttmscopy routine

(see below). For OS/2 systems, this callsstrezopy XSUB directly.

Special behavior under VMS

If the second argument topy is not a file handle for an already opened file, tbepy will perform an

RMS copy of the input file to a new output file, in order to preserve file attributes, indexed file streicture,
The buffer size parameter is ignored. If the second argumeapyo is a Perl handle to an opened file, then
data is copied using Perl operators, and no effort is made to preserve file attributes or record structure.

The RMS copy routine may also be called directly under VMSFiks:Copy::rmscopy (or
File::Copy::syscopy , Which is just an alias for this routine).

rmscopy($from,$to[,$date_flag])

The first and second arguments may be strings, typeglobs, or typeglob references; they are used in all cases
to obtain thdilespecof the input and output files, respectively. The name and type of the input file are used
as defaults for the output file, if necessary.

A new version of the output file is always created, which inherits the structure and RMS attributes of the
input file, except for owner and protections (and possibly timestamps; see below). All data from the input
file is copied to the output file; if either of the first two parametersnscopy is a file handle, its position

is unchanged. (Note that this means a file handle pointing to the output file will be associated with an old
version of that file aftermscopy returns, not the newly created version.)

The third parameter is an integer flag, which tetlscopy how to handle timestamps. If it is < 0, none of

the input file's timestamps are propagated to the output file. If it is > 0, then it is interpreted as a bitmask: if
bit 0 (the LSB) is set, then timestamps other than the revision date are propagated,; if bit 1 is set, the revision
date is propagated. If the third parametermscopy is 0O, then it behaves much like the DCL COPY

424

Version 5.003 08-0ct—-1996

Copy Perl Programmers Reference Guide Copy

command: if the name or type of the output file was explicitly specified, then no timestamps are propagated,
but if they were taken implicitly from the input filespec, then all timestamps other than the revision date are
propagated. If this parameter is not supplied, it defaults to 0.

Like copy, rmscopy returns 1 on success. If an error occurs, it $kts deletes the output file, and
returns 0.

RETURN
Returns 1 on success, 0 on failuBe.will be set if an error was encountered.
AUTHOR

File::Copy was written by Aaron Shermaajs@ajs.com>in 1995. The VMS-specific code was added by
Charles Baileybailey@genetics.upenn.edur March 1996.

08-0Oct-1996 Version 5.003 425

Find Perl Programmers Reference Guide Find

NAME
find — traverse a file tree

finddepth - traverse a directory structure depth—first

SYNOPSIS
use File::Find;
find(\&wanted, '/foo’,’/bar’);
sub wanted { ... }
use File::Find;
finddepth(\&wanted, '/foo’,'/bar’);
sub wanted { ... }

DESCRIPTION
Thewanted() function does whatever verifications you wéfile::Find::dir contains the current
directory name, ané_ the current filename within that directory$File::Find::name contains
"$File::Find::dir/$_". You arechdir() ‘d to $File::Find::dir when the function is
called. The function may s8File::Find::prune to prune the tree.

File::Find assumes that you don‘t alter $hevariable. If you do then make sure you return it to its original
value before exiting your function.

This library is primarily for thdind2per! tool, which when fed,

find2perl / —-name .nfs* -mtime +7\
—exec rm —f {} \; —o —fstype nfs —prune

produces something like:

sub wanted {
IM.nfs.*$/ &&
(($dev,$ino,$mode,$nlink,$uid,$gid) = Istat($_)) &&
int(-M) >7&&
unlink($)
Il
($nlink || (($dev,$ino,$mode,$nlink,$uid,$gid) = Istat($_))) &&
$dev < 0 &&
($File::Find::prune = 1);
}

Set the variabl&File::Find::dont_use_nlink if you're using AFS, since AFS cheats.
finddepth is just likefind , except that it does a depth—first search.
Here's another interesting wanted function. It will find all symlinks that don‘t resolve:

sub wanted {
-1 && I-e && print "bogus link: $File::Find::name\n";
}

426 Version 5.003 08-0Oct-1996

Path Perl Programmers Reference Guide Path

NAME
File::Path — create or remove a series of directories

SYNOPSIS
use File::Path

mkpath([‘/foo/bar/baz’, ‘blurfl/quux‘, 1, 0711);
rmtree(['foo/bar/baz’, ‘blurfl/quux‘], 1, 1);

DESCRIPTION

Themkpath function provides a convenient way to create directories, even iinyledir kernel call won't
create more than one level of directory at a tim&path takes three arguments:

° the name of the path to create, or a reference to a list of paths to create,

° a boolean value, which if TRUE will causgpath to print the name of each directory as it is created
(defaults to FALSE), and

° the numeric mode to use when creating the directories (defaults to 0777)
It returns a list of all directories (including intermediates, determined using the Unix ‘/’ separator) created.

Similarly, thermtree function provides a convenient way to delete a subtree from the directory structure,
much like the Unix commanain —r . rmtree takes three arguments:

° the root of the subtree to delete, or a reference to a list of roots. All of the files and directories below
each root, as well as the roots themselves, will be deleted.

° a boolean value, which if TRUE will caugetree to print a message each time it examines a file,
giving the name of the file, and indicating whether it's usmgir orunlink to remove it, or that
it's skipping it. (defaults to FALSE)

° a boolean value, which if TRUE will causatree to skip any files to which you do not have delete
access (if running under VMS) or write access (if running under another OS). This will change in the
future when a criterion for ‘delete permission’ under OSs other than VMS is settled. (defaults to
FALSE)

It returns the number of files successfully deleted. Symlinks are treated as ordinary files.

AUTHORS
Tim Bunce 9im.Bunce@ig.co.uk Charles Bailey kailey@genetics.upenn.edu

REVISION
This module was last revised 14-Feb-1996, for perl 5$0ERSIONis 1.01.

08-0Oct-1996 Version 5.003 427

FileCache Perl Programmers Reference Guide FileCache

NAME
FileCache — keep more files open than the system permits

SYNOPSIS
cacheout $path;
print $path @data;
DESCRIPTION
Thecacheout function will make sure that there's a filehandle open for writing available as the pathname
you give it. It automatically closes and re—opens files if you exceed your system file descriptor maximum.
BUGS

sys/param.Hies with itsNOFILE define on some systems, so you may have to set
$cacheout::maxopen yourself.

428 Version 5.003 08-0Oct-1996

FileHandle Perl Programmers Reference Guide FileHandle

NAME
FileHandle — supply object methods for filehandles

SYNOPSIS
use FileHandle;

$fh = new FileHandle;

if ($th—>open "< file") {
print <$fh>;
$fh—>close;

}

$fh = new FileHandle "> FOQO";
if (defined $fh) {
print $fh "bar\n";
$fh—>close;

}

$th = new FileHandle "file", "r";
if (defined $fh) {
print <$fh>;
undef $fh; # automatically closes the file

}

$th = new FileHandle "file", O_WRONLY|O_APPEND;
if (defined $fh) {

print $fh "corge\n”;

undef $fh; # automatically closes the file

}

$pos = $th—>getpos;
$fth—>setpos $pos;

$th—>setvbuf($buffer_var, _IOLBF, 1024);
($readth, $writefh) = FileHandle::pipe;
autoflush STDOUT 1,

DESCRIPTION

FileHandle::new creates d&ileHandle , which is a reference to a newly created symbol (see the
Symbol package). If it receives any parameters, they are pasddtéittandle::open ; if the open
fails, theFileHandle object is destroyed. Otherwise, it is returned to the caller.

FileHandle::new_from_fd creates &ileHandle like new does. It requires two parameters, which
are passed td-ileHandle::fdopen ; if the fdopen fails, theFileHandle object is destroyed.
Otherwise, it is returned to the caller.

FileHandle::open accepts one parameter or two. With one parameter, it is just a front end for the
built-in open function. With two parameters, the first parameter is a filename that may include whitespace
or other special characters, and the second parameter is the open mode, optionally followed by a file
permission value.

If FileHandle::open receives a Perl mode string (">", "+<", etc.) or a PORIpen() mode string

("w", "r+", etc.), it uses the basic Pexpen operator.

If FileHandle::open is given a numeric mode, it passes that mode and the optional permissions value
to the Perlsysopen operator. For conveniencEjleHandle::import tries to import the O_XXX
constants from the Fcntl module. If dynamic loading is not available, this may fail, but the rest of
FileHandle will still work.

08-0Oct-1996 Version 5.003 429

FileHandle Perl Programmers Reference Guide FileHandle

FileHandle::fdopen is like open except that its first parameter is not a filename but rather a file
handle name, a FileHandle object, or a file descriptor number.

If the C functionsggetpos() andfsetpos() are available, theRileHandle::getpos returns an
opaque value that represents the current position of the FileHandlEiletiddndle::setpos uses that

value to return to a previously visited position.

If the C functionsetvbuf() is available, theRileHandle::setvbuf sets the buffering policy for the
FileHandle. The calling sequence for the Perl function is the same as its C counterpart, including the macros
_IOFBF, _IOLBF, and_IONBF, except that the buffer parameter specifies a scalar variable to use as a

buffer. WARNING: A variable used as a buffer ByeHandle::setvbuf must not be modified in any
way until the FileHandle is closed or urfileHandle::setvbuf is called again, or memory corruption
may result!

Seeperlfuncfor complete descriptions of each of the following suppdfiegHandle methods, which are
just front ends for the corresponding built—in functions:

close
fileno
getc
gets
eof
clearerr
seek
tell

Seeperlvar for complete descriptions of each of the following suppdfiegHandle methods:

autoflush
output_field_separator
output_record_separator
input_record_separator
input_line_number
format_page_number
format_lines_per_page
format_lines_left
format_name
format_top_name
format_line_break characters
format_formfeed

Furthermore, for doing normal 1/0 you might need these:
$th—>print
Seeprint.
$th—>printf
Seeprintf.
$th—>getline
This works like $fh> described if/O Operators in perloexcept that it's more readable and can be
safely called in an array context but still returns just one line.
$fh—>getlines

This works like $fh> when called in an array context to read all the remaining lines in a file, except
that it's more readable. It will alswoak() if accidentally called in a scalar context.

430

Version 5.003 08-0ct—-1996

FileHandle Perl Programmers Reference Guide FileHandle

SEE ALSO
perlfung 1/0O Operators in perlopFileHandle in POSIX

BUGS

Due to backwards compatibility, all filehandles resemble objects of Eiled$andle , or actually classes
derived from that class. They actually aren‘t. Which means you can‘t derive your own class from
FileHandle and inherit those methods.

08-0Oct-1996 Version 5.003 431

FindBin Perl Programmers Reference Guide FindBin

NAME

FindBin — Locate directory of original perl script
SYNOPSIS

use FindBin;

BEGIN { unshift(@INC,"$FindBin::Bin/../lib") }
or

use FindBin qw($Bin);
BEGIN { unshift(@INC,"$Bin/../lib") }
DESCRIPTION
Locates the full path to the script bin directory to allow the use of paths relative to the bin directory.
This allows a user to setup a directory tree for some software with directories <root>/bin and <root>/lib and

then the above example will allow the use of modules in the lib directory without knowing where the
software tree is installed.

If perl is invoked using thee option or the perl script is read frd8TDIN then FindBin sets bothBin and
$RealBin to the current directory.

EXPORTABLE VARIABLES
$Bin - path to bin directory from where script was invoked
$Script - basename of script from which perl was invoked
$RealBin - $Bin with all links resolved
$RealScript — $Script with all links resolved

KNOWN BUGS

if perl is invoked as
perl filename

and filename does not have executable rights and a program cdiledame exists in the users
$ENV{PATH} which satisfies both-x and -T then FindBin assumes that it was invoked via the
SENV{PATH}.

Workaround is to invoke perl as
perl ./filename

AUTHORS
Graham Barr kodg@tiuk.ti.corm Nick Ing—Simmons gik@tiuk.ti.con>

COPYRIGHT
Copyright (c) 1995 Graham Ba& Nick Ing—Simmons. All rights reserved. This program is free software;
you can redistribute it and/or modify it under the same terms as Perl itself.

REVISION
$Revision: 1.4%

432 Version 5.003 08-0Oct-1996

Long Perl Programmers Reference Guide Long

NAME
GetOptions — extended processing of command line options

SYNOPSIS

use Getopt::Long;
$result = GetOptions (...option—descriptions...);

DESCRIPTION

The Getopt::Long module implements an extended getopt function didptions() . This function
adheres to the POSIX syntax for command line options, with GNU extensions. In general, this means that
options have long names instead of single letters, and are introduced with a double dash "—". Support for
bundling of command line options, as was the case with the more traditional single-letter approach, is
provided but not enabled by default. For example, the UNIX "ps" command can be given the command line
"option"

—vax

which means the combination e¥, —a and —x. With the new syntax—vax would be a single option,
probably indicating a computer architecture.

Command line options can be used to set values. These values can be specified in one of two ways:

——size 24
——size=24

GetOptions is called with a list of option—descriptions, each of which consists of two elements: the option
specifier and the option linkage. The option specifier defines the name of the option and, optionally, the
value it can take. The option linkage is usually a reference to a variable that will be set when the option is
used. For example, the following call to GetOptions:

&GetOptions("size=i" => \$offset);

will accept a command line option "size" that must have an integer value. With a command line of "—size
24" this will cause the variabfoffset to get the value 24.

Alternatively, the first argument to GetOptions may be a reference to a HASH describing the linkage for the
options. The following call is equivalent to the example above:

%optctl = ("size" => \$offset);
&GetOptions(\%optctl, "size=i");

Linkage may be specified using either of the above methods, or both. Linkage specified in the argument list
takes precedence over the linkage specified in the HASH.

The command line options are taken from array @ARGV. Upon completion of GetOptions, @ARGV wiill
contain the rest (i.e. the non—options) of the command line.

Each option specifier designates the name of the option, optionally followed by an argument specifier.
Values for argument specifiers are:

<none> Option does not take an argument. The option variable will be set to 1.

! Option does not take an argument and may be negated, i.e. prefixed by "no". E.g. "foo!" will
allow —foo (with value 1) and-nofoo (with value 0). The option variable will be set to 1, or O if

negated.

=s Option takes a mandatory string argument. This string will be assigned to the option variable.
Note that even if the string argument starts withr —, it will not be considered an option on
itself.

08-0Oct-1996 Version 5.003 433

Long

Perl Programmers Reference Guide Long

'S Option takes an optional string argument. This string will be assigned to the option variable. If
omitted, it will be assigned " (an empty string). If the string argument starts-waith—, it will
be considered an option on itself.

=i Option takes a mandatory integer argument. This value will be assigned to the option variable.
Note that the value may start withto indicate a negative value.

i Option takes an optional integer argument. This value will be assigned to the option variable. If
omitted, the value O will be assigned. Note that the value may start witindicate a negative
value.

=f Option takes a mandatory real number argument. This value will be assigned to the option
variable. Note that the value may start witto indicate a negative value.

f Option takes an optional real number argument. This value will be assigned to the option
variable. If omitted, the value 0 will be assigned.

A lone dash- is considered an option, the corresponding option name is the empty string.

A double dash on itsel- signals end of the options list.

Linkage specification

The linkage specifier is optional. If no linkage is explicitly specified but a ref HASH is passed, GetOptions
will place the value in the HASH. For example:

%optctl = ();
&GetOptions (\%optctl, "size=i");

will perform the equivalent of the assignment
$optctl{"size"} = 24;
For array options, a reference to an array is used, e.g.:

%optctl = ();
&GetOptions (\%optctl, "sizes=i@");

with command line "-sizes 24 —sizes 48" will perform the equivalent of the assignment
$optctl{"sizes"} = [24, 48];

If no linkage is explicitly specified and no ref HASH is passed, GetOptions will put the value in a global
variable named after the option, prefixed by "opt_". To yield a usable Perl variable, characters that are not
part of the syntax for variables are translated to underscores. For example, "—fpp-struct-return” will set the
variable $opt_fpp_struct_return. Note that this variable resides in the namespace of the calling
program, not necessarifgain. For example:

&GetOptions ("size=i", "sizes=i@");
with command line "-size 10 —sizes 24 —sizes 48" will perform the equivalent of the assignments

$opt_size = 10;
@opt_sizes = (24, 48);

A lone dash- is considered an option, the corresponding Perl identifleops .
The linkage specifier can be a reference to a scalar, a reference to an array or a reference to a subroutine.

If a REF SCALAR is supplied, the new value is stored in the referenced variable. If the option occurs more
than once, the previous value is overwritten.

If a REF ARRAY is supplied, the new value is appended (pushed) to the referenced array.

If a REF CODE is supplied, the referenced subroutine is called with two arguments: the option name and the
option value. The option name is always the true name, not an abbreviation or alias.

434

Version 5.003 08-0ct—-1996

Long Perl Programmers Reference Guide Long

Aliases and abbreviations
The option name may actually be a list of option names, separated by "|"s, e.g. "foo|bar|blech=s". In this

example, "foo" is the true name of this option. If no linkage is specified, options "foo", "bar" and "blech" all
will set$opt_foo.

Option names may be abbreviated to uniqueness, depending on configuration variable
$Getopt::Long::autoabbrev.
Non-option call-back routine

A special option specifier, <>, can be used to designate a subroutine to handle non—option arguments.
GetOptions will immediately call this subroutine for every non—option it encounters in the options list. This
subroutine gets the name of the non—-option passed. This feature réfbatept::Long::order to

have the valu8PERMUTE.See also the examples.

Option starters

On the command line, options can start witlftraditional),— (POSIX) and+ (GNU, now being phased
out). The latter is not allowed if the environment varid@SIXLY CORRECT has been defined.

Options that start with "—" may have an argument appended, separated with an "=", e.g. "—foo=bar".

Return value
A return status of O (false) indicates that the function detected one or more errors.

COMPATIBILITY

Getopt::Long::GetOptions() is the successor afewgetopt.pl that came with Perl 4. 1t is fully
upward compatible. In fact, the Perl 5 version of newgetopt.pl is just a wrapper around the module.

If an "@" sign is appended to the argument specifier, the option is treated as an array. Value(s) are not set,
but pushed into array @opt_name. This only applies if no linkage is supplied.

If configuration variablebGetopt::Long::getopt_compat is set to a non-zero value, options that
start with "+" may also include their arguments, e.g. "+foo=bar". This is for compatiblity with older
implementations of the GNU "getopt" routine.

If the first argument to GetOptions is a string consisting of only non-alphanumeric characters, it is taken to
specify the option starter characters. Everything starting with one of these characters from the starter will be
considered an optiotsing a starter argument is strongly deprecated.

For convenience, option specifiers may have a leadlimg—, so it is possible to write:

GetOptions qw(-foo=s ——bar=i ——ar=s);
EXAMPLES
If the option specifier is "one:i" (i.e. takes an optional integer argument), then the following situations are
handled:
—one —-two —-> $opt_one =", —two is next option
-one -2 -> $opt_one = -2

Also, assume specifiers "foo=s" and "bar:s" :

—bar —xxx —-> $opt_bar =, '=xxx’ is next option
—foo —bar -> $opt_foo = '-bar’
—foo —— -> $opt_foo ="'--’

In GNU or POSIX format, option names and values can be combined:

+foo=blech -> $opt_foo = 'blech’
——bar= —-> $opt_bar ="
——bar=—- -> $opt_bar ="'

08-0Oct-1996 Version 5.003 435

Long Perl Programmers Reference Guide Long

Example of using variable references:
$ret = &GetOptions (‘foo=s’, \$foo, 'bar=i’, 'ar=s’, \@ar);

With command line options "—foo blech —bar 24 —ar xx —ar yy" this will result in:

$foo = 'blech’
$opt_bar =24
@ar = (!XX!,!yyl)

Example of using the <> option specifier:

@ARGYV = qw(-foo 1 bar —foo 2 blech);
&GetOptions("foo=i", \$myfoo, "<>", \&mysub);

Results:

&mysub("bar") will be called (with $myfoo being 1)
&mysub("blech") will be called (with $myfoo being 2)

Compare this with:

@ARGYV = qw(-foo 1 bar —foo 2 blech);
&GetOptions("foo=i", \$myfoo);

This will leave the non-options in @ARGV:

$myfoo —> 2
@ARGV —> gw(bar blech)

CONFIGURATION VARIABLES
The following variables can be set to change the default behavi@etOptions()

$Getopt::Long::autoabbrev

Allow option names to be abbreviated to uniqueness. Default is 1 unless environment
variable POSIXLY_ CORRECT has been set.

$Getopt::Long::getopt_compat

Allow ‘+’ to start options. Default is 1 unless environment variable POSIXLY_CORRECT
has been set.

$Getopt::Long::order
Whether non—-options are allowed to be mixed with options. Default is

$REQUIRE_ORDER environment variable POSIXLY CORRECT has been set,
$PERMUTBtherwise.

$PERMUTHEneans that
—foo argl —bar arg2 arg3
is equivalent to
—foo —bar argl arg2 arg3

If a non—option call-back routine is specified, @ARGV will always be empty upon
succesful return of GetOptions since all options have been processed, exceptwhen
used:

—foo argl —bar arg2 —— arg3
will call the call-back routine for argl and arg2, and terminate leaving arg2 in @ARGV.

If $Getopt::Long::order is SREQUIRE_ORDER,options processing terminates
when the first non—option is encountered.

436 Version 5.003 08-0Oct-1996

Long Perl Programmers Reference Guide Long

—foo argl —bar arg2 arg3
is equivalent to
—foo —— argl —bar arg2 arg3
$RETURN_IN_ORDER not supported b§etOptions()
$Getopt::Long::bundling
Setting this variable to a non-zero value will allow single—character options to be bundled.

To distinguish bundles from long option names, long options must be introduced-with
and single—character options (and bundles) withor example,

ps —vax —-vax
would be equivalent to
ps —v —a —X ——vax

provided "vax", "v", "a" and "x" have been defined to be valid options.

Bundled options can also include a value in the bundle; this value has to be the last part of
the bundle, e.g.

scale —h24 —w80
is equivalent to
scale —h 24 —w 80

Note: Using option bundling can easily lead to unexpected results, especially when mixing
long options and bundles. Caveat emptor.
$Getopt::Long::ignorecase
Ignore case when matching options. Default is 1. When bundling is in effect, case is
ignored on single—character options onl@etopt::Long::ignorecase is greater
than 1.
$Getopt::Long::VERSION
The version number of this Getopt::Long implementation in the fomabr .minor .
This can be used to have Exporter check the version, e.g.
use Getopt::Long 2.00;

You can inspectGetopt::Long::major_version and
$Getopt::Long::minor_version for the individual components.
$Getopt::Long::error
Internal error flag. May be incremented from a call-back routine to cause options parsing
to fail.
$Getopt::Long::debug
Enable copious debugging output. Default is 0.

08-0Oct-1996 Version 5.003 437

Std Perl Programmers Reference Guide Std

NAME
getopt — Process single—character switches with switch clustering

getopts — Process single—character switches with switch clustering

SYNOPSIS

use Getopt::Std;

getopt('oDI'); # -0, -D & —I take arg. Sets opt_* as a side effect.

getopts('oif:’); # —o & —i are boolean flags, —f takes an argument
Sets opt_* as a side effect.

DESCRIPTION

Thegetopt() functions processes single—character switches with switch clustering. Pass one argument
which is a string containing all switches that take an argument. For each switch fouidpsets (where

x is the switch name) to the value of the argument, or 1 if no argument. Switches which take an argument
don'‘t care whether there is a space between the switch and the argument.

438 Version 5.003 08-0Oct-1996

Collate Perl Programmers Reference Guide Collate

NAME
I18N::Collate — compare 8-bit scalar data according to the current locale
SYNOPSIS
use 118N::Collate;
setlocale(LC_COLLATE, 'locale—of-your—choice’);
$s1 = new I118N::Collate "scalar_data_1";
$s2 = new I118N::Collate "scalar_data_2";
DESCRIPTION
This module provides you with objects that will collate according to your national character set, provided
that the POSD$etlocale() function is supported on your system.

You can compar8s1 and$s2 above with
$s1 le $s2
to extract the data itself, you'll need a dereferef8sl

This usesPOSIX::setlocale() . The basic collation conversion is done biyxfrm() which
terminates at NUL characters being a decent C routoBate_xfrm() handles embedded NUL
characters gracefully. Due tonp and overload magidt , le , eq, ge, andgt work also. The available

locales depend on your operating system; try whétlvate —a ~ shows them or man pages for "locale" or
"nisinfo" or the direct approads /ust/lib/nis/loc or Is /usr/lib/nls . Not all the locales

that your vendor supports are necessarily installed: please consult your operating system‘'s documentation
and possibly your local system administration.

The locale names are probably something'like XX.(1SO)?8859—-N" or "xx_XX.(ISO)?8859N" |
for example"fr_CH.ISO8859-1" is the Swiss (CH) variant of French (fr), ISO Latin (8859) 1 (-1)
which is the Western European character set.

08-0Oct-1996 Version 5.003 439

File Perl Programmers Reference Guide File

NAME
10::File — supply object methods for filehandles
SYNOPSIS
use |O::File;

$th = new 10::File;
if ($th—>open "< file") {
print <$fh>;
$fh—>close;
}
$th = new 10::File "> FOO";
if (defined $fh) {
print $fh "bar\n";
$fh—>close;
}
$th = new 10::File "file", "r";
if (defined $fh) {
print <$fh>;
undef $fh; # automatically closes the file

}
$th = new 10::File "file", O_WRONLY|O_APPEND;
if (defined $fh) {

print $fh "corge\n”;

undef $fh; # automatically closes the file

}

$pos = $th—>getpos;
$fth—>setpos $pos;

$th—>setvbuf($buffer_var, _IOLBF, 1024);
autoflush STDOUT 1;

DESCRIPTION

10::File is inherits fromlO::Handle anslO::Seekable . It extends these classes with methods that
are specific to file handles.

CONSTRUCTOR

new ([ARGS 1)

Creates daO::File . If it receives any parameters, they are passed to the nmikad if the open
fails, the object is destroyed. Otherwise, it is returned to the caller.

METHODS

open(FILENAME [,MODE [,PERMS]])
open accepts one, two or three parameters. With one parameter, it is just a front end for the built=in
open function. With two parameters, the first parameter is a filename that may include whitespace or
other special characters, and the second parameter is the open mode, optionally followed by a file
permission value.

If 10::File::open receives a Perl mode string (">", "+<", etc.) or a PO&gen() mode
string ("w", "r+", etc.), it uses the basic Pepen operator.

If 10::File::open is given a numeric mode, it passes that mode and the optional permissions
value to the Perbysopen operator. For convenienct)::File::import tries to import the
O_XXX constants from the Fcntl module. If dynamic loading is not available, this may fail, but the

440 Version 5.003 08-0Oct-1996

File Perl Programmers Reference Guide File

rest of 10::File will still work.
SEE ALSO
perlfung 1/0O Operators in perloplO::Handle 10::Seekable
HISTORY
Derived from FileHandle.pm by Graham Balrodg@tiuk.ti.corn.

REVISION
$Revision: 1.5%

08-0Oct-1996 Version 5.003 441

IO::Handle
IO::Seekable

Handle Perl Programmers Reference Guide Handle

NAME

I0::Handle - supply object methods for I/O handles

SYNOPSIS

use 10::Handle;

$fh = new 10::Handle;

if ($th—>open "< file") {
print <$fh>;
$fh—>close;

}

$fh = new 10::Handle "> FOQO";
if (defined $fh) {
print $fh "bar\n";
$fh—>close;

}

$th = new 10::Handle "file", "r";
if (defined $fh) {
print <$fh>;
undef $fh; # automatically closes the file

}

$th = new 10::Handle "file", O_WRONLY|O_APPEND;
if (defined $fh) {

print $fh "corge\n”;

undef $fh; # automatically closes the file

}

$pos = $th—>getpos;
$fth—>setpos $pos;

$th—>setvbuf($buffer_var, _IOLBF, 1024);
autoflush STDOUT 1;

DESCRIPTION

I0::Handle is the base class for all other 10 handle classd®©:Adandle object is a reference to a
symbol (see th&ymbol package)

CONSTRUCTOR

new ()
Creates a neWD::Handle object.

new_from_fd (FD, MODE)

Creates dO::Handle like new does. It requires two parameters, which are passed to the method
fdopen ; if the fdopen fails, the object is destroyed. Otherwise, it is returned to the caller.

METHODS

If the C functionsetvbuf() is available, theitO::Handle::setvbuf sets the buffering policy for the
I0::Handle. The calling sequence for the Perl function is the same as its C counterpart, including the macros
_IOFBF, _IOLBF, and_IONBF, except that the buffer parameter specifies a scalar variable to use as a
buffer. WARNING: A variable used as a buffer Iy::Handle::setvbuf must not be modified in any

way until the 10::Handle is closed or untiD::Handle::setvbuf is called again, or memory
corruption may result!

Seeperlfuncfor complete descriptions of each of the following suppd@dHandle methods, which are
just front ends for the corresponding built—in functions:

442

Version 5.003 08-0ct—-1996

Handle Perl Programmers Reference Guide Handle

close
fileno
getc
gets

eof

read
truncate
stat
print
printf
sysread
syswrite

Seeperlvar for complete descriptions of each of the following suppd@dHandle methods:

autoflush
output_field_separator
output_record_separator
input_record_separator
input_line_number
format_page_number
format_lines_per_page
format_lines_left
format_name
format_top_name
format_line_break characters
format_formfeed
format_write

Furthermore, for doing normal 1/0 you might need these:

$fh— getline
This works like $fh described if/O Operators in perlopexcept that it's more readable and can be
safely called in an array context but still returns just one line.

$fh— getlines

This works like $fh when called in an array context to read all the remaining lines in a file, except
that it's more readable. It will alswoak() if accidentally called in a scalar context.

$fh— fdopen (FD, MODE)
fdopen is like an ordinaryopen except that its first parameter is not a filename but rather a file
handle name, a 10::Handle object, or a file descriptor number.

$th— write (BUF, LEN [, OFFSET }\])
write is like write found in C, that is it is the opposite of read. The wrapper for thenpidel
function is calledormat_write

$fh- opened
Returns true if the object is currently a valid file descriptor.

NOTE
A IO::Handle object is a GLOB reference. Some modules that inherit f@@mdandle may want to
keep object related variables in the hash table part of the GLOB. In an attempt to prevent modules trampling
on each other | propose the that any such module should prefix its variables with its own name separated by
_'s. For example the 10::Socket module keefimmaout variable in ‘io_socket_timeout'.

08-0Oct-1996 Version 5.003 443

Handle Perl Programmers Reference Guide Handle

SEE ALSO
perlfung 1/0O Operators in perlopFileHandle in POSIX

BUGS
Due to backwards compatibility, all filehandles resemble objects of I@as¢andle , or actually classes
derived from that class. They actually aren‘t. Which means you can‘t derive your own class from
IO::Handle and inherit those methods.

HISTORY
Derived from FileHandle.pm by Graham Balrodg@tiuk.ti.corm

444 Version 5.003 08-0Oct-1996

Pipe Perl Programmers Reference Guide Pipe

NAME
10::pipe — supply object methods for pipes
SYNOPSIS
use 10::Pipe;
$pipe = new I0::Pipe;

if($pid = fork()) { # Parent
$pipe->reader();

while(<$pipe> {

}

}
elsif(defined $pid) { # Child

$pipe—>writer();

print $pipe
}
or
$pipe = new I0::Pipe;
$pipe—>reader(qw(ls -1));
while(<$pipe>) {

}

DESCRIPTION
I0::Pipe provides an interface to createing pipes between processes.

CONSTRCUTOR

new ([READER, WRITER])

Creates dO::Pipe , which is a reference to a newly created symbol (se&ynebol package).
10::Pipe::new optionally takes two arguments, which should be objects blessed into
IO0::Handle , or a subclass thereof. These two objects will be used for the systempipd tolf no
arguments are given then then methaddles is called on the ne¥D::Pipe object.

These two handles are held in the array part of the GLOB until ethéer orwriter s called.
METHODS

reader (JARGS])

The object is re—blessed into a sub—claskKOofHandle , and becomes a handle at the reading end
of the pipe. IfARGSare given thefork is called andARGSare passed to exec.

writer (JARGS])

The object is re-blessed into a sub—clasg®©oMHandle , and becomes a handle at the writing end of
the pipe. IfARGSare given theffork is called andARGSare passed to exec.

handles ()

This method is called during construction l6Yy::Pipe::new on the newly createtD::Pipe
object. It returns an array of two objects blessedlidtddandle , or a subclass thereof.

08-0Oct-1996 Version 5.003 445

Pipe Perl Programmers Reference Guide Pipe

SEE ALSO

10::Handle
AUTHOR

Graham Barr kodg@tiuk.ti.corm
REVISION

$Revision: 1.7$%

COPYRIGHT

Copyright (c) 1995 Graham Barr. All rights reserved. This program is free software; you can redistribute it
and/or modify it under the same terms as Perl itself.

446 Version 5.003 08-0Oct-1996

IO::Handle

Seekable Perl Programmers Reference Guide Seekable

NAME
10::Seekable - supply seek based methods for I/O objects

SYNOPSIS
use |0::Seekable;
package 10::Something;
@ISA = gw(lO::Seekable);
DESCRIPTION

10::Seekable does not have a constuctor of its own as is intended to be inherited by other
IO0::Handle based objects. It provides methods which allow seeking of the file descriptors.

If the C functionsfgetpos() and fsetpos() are available, thehO::File::getpos returns an
opaque value that represents the current position of the 10::FiléQakile::setpos uses that value
to return to a previously visited position.

Seeperlfuncfor complete descriptions of each of the following suppdi@®edseekable methods, which
are just front ends for the corresponding built—in functions:

clearerr
seek
tell
SEE ALSO
perlfung 1/0O Operators in perloplO::Handle 10::File

HISTORY
Derived from FileHandle.pm by Graham Barr <bodg@tiuk.ti.com>

REVISION
$Revision: 1.5%

08-0Oct-1996 Version 5.003 447

IO::Handle
IO::File

Select Perl Programmers Reference Guide Select

NAME
10::Select — OO interface to the select system call

SYNOPSIS

use |O::Select;

$s = 10::Select—>new();

$s—>add(*STDIN);

$s—>add($some_handle);

@ready = $s—>can_read($timeout);

@ready = 10::Select->new(@handles)->read(0);
DESCRIPTION

The lO::Select package implements an object approach to the systéent function call. It allows
the user to see what 10 handles, EBeHandle, are ready for reading, writing or have an error condition
pending.

CONSTRUCTOR

new ([HANDLES 1)
The constructor creates a new object and optionally initialises it with a set of handles.

METHODS

add (HANDLES)

Add the list of handles to th®©::Select object. It is these values that will be returned when an
event occurslO::Select keeps these values in a cache which is indexed bfil¢he of the
handle, so if more than one handle with the sfiie®o is specified then only the last one is cached.

remove (HANDLES)
Remove all the given handles from the object. This method also works fiketite of the handles.
So the exact handles that were added need not be passed, just handles that have anféeuovalent
can_read ([TIMEOUT])
Return an array of handles that are ready for readilEOUT s the maximum amount of time to
wait before returning an empty list. TMEOUTis not given then the call will block.
can_write ([TIMEOUT])
Same agan_read except check for handles that can be written to.

has_error ([TIMEOUT])
Same asan_read except check for handles that have an error condition, for example EOF.

count ()
Returns the number of handles that the object will check for when one adrthemethods is called
or the object is passed to thelect static method.

select (READ, WRITE, ERROR [, TIMEOUT])

select is a static method, that is you call it with the package namenéke READ WRITE and
ERRORare eitheundef orlO::Select objects. TIMEOUTis optional and has the same effect as
before.

The result will be an array of 3 elements, each a reference to an array which will hold the handles that
are ready for reading, writing and have error conditions respectively. Upon error an empty array is

returned.

448 Version 5.003 08-0Oct-1996

IO::Handle

Select Perl Programmers Reference Guide Select

EXAMPLE
Here is a short example which shows hd@r:Select could be used to write a server which
communicates with several sockets while also listening for more connections on a listen socket

use 10::Select;
use 10::Socket;

$lsn = new |0::Socket::INET(Listen => 1, LocalPort => 8080);
$sel = new 10::Select($Isn);

while(@ready = $sel->can_read) {
foreach $th (@ready) {

if($fh == $lsn) {
Create a new socket
$new = $lsn—>accept;
$sel->add($new);

}

else {
Process socket

Maybe we have finished with the socket
$sel->remove($fh);
$fth—>close;

}
}
}
AUTHOR
Graham Barr &raham.Barr@tiuk.ti.con»

REVISION
$Revision: 1.9%

COPYRIGHT
Copyright (c) 1995 Graham Barr. All rights reserved. This program is free software; you can redistribute it
and/or modify it under the same terms as Perl itself.

08-0Oct-1996 Version 5.003 449

Socket Perl Programmers Reference Guide Socket

NAME
I0::Socket — Object interface to socket communications
SYNOPSIS
use 10::Socket;
DESCRIPTION

IO::Socket provides an object interface to creating and using sockets. It is built upté@:tHandle
interface and inherits all the methods defined®yHandle.

10::Socket only defines methods for those operations which are common to all types of socket.
Operations which are specified to a socket in a particular domain have methods defined in sub classes of
10::Socket

CONSTRUCTOR

new ([ARGS])

Creates &O::Pipe , which is a reference to a newly created symbol (seSythol package)new
optionally takes arguments, these arguments are in key-value mpaivsonly looks for one key
Domain which tells new which domain the socket it will be. All other arguments will be passed to the
configuration method of the package for that domain, See below.

METHODS

Seeperlfuncfor complete descriptions of each of the following suppdi@®edseekable methods, which
are just front ends for the corresponding built—in functions:

socket

socketpair

bind

listen

accept

send

recv

peername (getpeername)
sockname (getsockname)

Some methods take slightly different arguments to those defirgetlfnncin attempt to make the interface
more flexible. These are

accept([PKG])
perform the system cadiccept on the socket and return a new object. The new object will be created
in the same class as the listen socket, u&s3is specified. This object can be used to communicate
with the client that was trying to connect. In a scalar context the new socket is returned, or undef upon
failure. In an array context a two—element array is returned containing the new socket and the peer
address, the list will be empty upon failure.

Additional methods that are provided are

timeout([VAL])

Set or get the timeout value associated with this socket. If called without any arguments then the
current setting is returned. If called with an argument the current setting is changed and the previous
value returned.

sockopt(OPT [, VAL])

Unified method to both set and get options in the SOL_SOCKET level. If called with one argument
then getsockopt is called, otherwise setsockopt is called.

450 Version 5.003 08-0Oct-1996

IO::Handle
IO::Handle

Socket Perl Programmers Reference Guide Socket

sockdomain
Returns the numerical number for the socket domain type. For example, fir a AF_INET socket the
value of &AF_INET will be returned.

socktype
Returns the numerical number for the socket type. For example, fir a SOCK_STREAM socket the
value of&SOCK_STREAMIill be returned.

protocol
Returns the numerical number for the protocol being used on the socket, if known. If the protocol is
unknown, as with an AF_UNIX socket, zero is returned.

SUB-CLASSES

10::Socket:: INET

10::Socket:: INET provides a constructor to create an AF_INET domain socket and some related
methods. The constructor can take the following options

PeerAddr Remote host address
PeerPort Remote port or service
LocalPort Local host bind port
LocalAddr Local host bind address

Proto Protocol name (eg tcp udp etc)

Type Socket type (SOCK_STREAM etc)
Listen Queue size for listen

Timeout Timeout value for various operations

If Listen is defined then a listen socket is created, else if the socket type, which is derived from the protocol,
is SOCK_STREAM then a connect is called.

Only one ofType orProto needs to be specified, one will be assumed from the other.
METHODS

sockaddr ()
Return the address part of the sockaddr structure for the socket

sockport ()
Return the port number that the socket is using on the local host

sockhost ()

Return the address part of the sockaddr structure for the socket in a text form xx.xx.xx.xx
peeraddr ()

Return the address part of the sockaddr structure for the socket on the peer host
peerport ()

Return the port number for the socket on the peer host.

peerhost ()
Return the address part of the sockaddr structure for the socket on the peer host in a text form

XX XX XX XX
10::Socket::UNIX
10::Socket::UNIX provides a constructor to create an AF_UNIX domain socket and some related
methods. The constructor can take the following options
Type Type of socket (eg SOCK_STREAM or SOCK_DGRAM)
Local Path to local fifo
Peer Path to peer fifo

08-0Oct-1996 Version 5.003 451

Socket Perl Programmers Reference Guide Socket

Listen Create a listen socket
METHODS

hostpath()
Returns the pathname to the fifo at the local end.

peerpath()
Returns the pathanme to the fifo at the peer end.
AUTHOR
Graham Barr &raham.Barr@tiuk.ti.con»
REVISION
$Revision: 1.13%
The VERSION is derived from the revision turning each number after the first dot into a 2 digit number so

Revision 1.8 =>VERSION 1.08
Revision 1.2.3 => VERSION 1.0203
COPYRIGHT

Copyright (c) 1995 Graham Barr. All rights reserved. This program is free software; you can redistribute it
and/or modify it under the same terms as Perl itself.

452 Version 5.003 08-0Oct-1996

Open2 Perl Programmers Reference Guide Open2

NAME
IPC::Open2, open2 — open a process for both reading and writing

SYNOPSIS
use IPC::Open2;
$pid = open2(*RDR, *WTR, 'some cmd and args’);
#or
$pid = open2(*RDR, *WTR, 'some’, ‘cmd’, 'and’, 'args’);
DESCRIPTION
Theopen2() function spawns the givédtmd and connect$rdr for reading anéwtr for writing. It
what you think should work when you try

open(HANDLE, "|cmd args|");
open2() returns the process ID of the child process. It doesn't return on failure: it just raises an exception
matching/open2:/

WARNING
It will not create these file handles for you. You have to do this yourself. So don‘t pass it empty variables
expecting them to get filled in for you.

S

Additionally, this is very dangerous as you may block forever. It assumes it's going to talk to something like
bc, both writing to it and reading from it. This is presumably safe because you "know" that commands like
bc will read a line at a time and output a line at a time. Programsdikehat read their entire input stream

first, however, are quite apt to cause deadlock.

The big problem with this approach is that if you don‘t have control over source code being run in the the
child process, you can'‘t control what it does with pipe buffering. Thus you can't just open a qgape to
—-v and continually read and write a line from it.

SEE ALSO
Seeopen3for an alternative that handles STDERR as well.

08-0Oct-1996 Version 5.003 453

Open3 Perl Programmers Reference Guide Open3

NAME
IPC::Open3, open3 — open a process for reading, writing, and error handling

SYNOPSIS
$pid = open3(*WTRFH, *RDRFH, *\ERRFH
'some cmd and args’, 'optarg’, ...);

DESCRIPTION
Extremely similar toopen2() , open3() spawns the givescmd and connects RDRFH for reading,
WTRFH for writing, and ERRFH for errors. If ERRFH is ”, or the same as RDRFH, then STDOUT and
STDERR of the child are on the same file handle.

If WTRFH begins with "&", then WTRFH will be closed in the parent, and the child will read from it
directly. If RDRFH or ERRFH begins with &, then the child will send output directly to that file handle.
In both cases, there will be a dup(2) instead of a pipe(2) made.

If you try to read from the child‘s stdout writer and their stderr writer, you'll have problems with blocking,
which means you'll want to uselect() , which means you'll have to usgsread() instead of normal
stuff.

All caveats fromopen2() continue to apply. Sespen2for details.

454 Version 5.003 08-0Oct-1996

BigFloat Perl Programmers Reference Guide BigFloat

NAME
Math::BigFloat — Arbitrary length float math package

SYNOPSIS

use Math::BogFloat;
$f = Math::BigFloat—>new($string);

$f->fadd(NSTR) return NSTR addition

$f—>fsub(NSTR) return NSTR subtraction

$f—>fmul(NSTR) return NSTR multiplication
$f—>fdiv(NSTR[,SCALE]) returns NSTR division to SCALE places
$f—>fneg() return NSTR negation

$f—>fabs() return NSTR absolute value

$f—>fcmp(NSTR) return CODE compare undef,<0,=0,>0

$f—>fround(SCALE) return NSTR round to SCALE digits
$f—>ffround(SCALE) return NSTR round at SCALEth place

$f—>fnorm() return (NSTR) normalize
$f—>fsqrt([SCALE]) return NSTR sgrt to SCALE places
DESCRIPTION

All basic math operations are overloaded if you declare your big floats as
$float = new Math::BigFloat "2.123123123123123123123123123123123";

number format
canonical strings have the form /[+-|\d+E[+-]\d+/ . Input values can have inbedded whitespace.

Error returns ‘NaN’
An input parameter was "Not a Number" or divide by zero or sqgrt of negative number.

Division is computed to
max($div_scale,length(dividend)+length(divisor)) digits by default. Also used for
default sqrt scale.
BUGS
The current version of this module is a preliminary version of the real thing that is currently (as of perl5.002)
under development.
AUTHOR
Mark Biggar

08-0Oct-1996 Version 5.003 455

Bigint Perl Programmers Reference Guide Bigint

NAME
Math::Bigint — Arbitrary size integer math package

SYNOPSIS
use Math::Biglint;
$i = Math::BigInt—>new($string);

$i—>bneg return BINT negation

$i—>babs return BINT absolute value

$i—>bcmp(BINT) return CODE compare numbers (undef,<0,=0,>0)
$i->badd(BINT) return BINT addition

$i—>bsub(BINT) return BINT subtraction

$i—>bmul(BINT) return BINT multiplication

$i—>bdiv(BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
$i—>bmod(BINT) return BINT modulus

$i—>bgcd(BINT) return BINT greatest common divisor

$i—>bnorm return BINT normalization

DESCRIPTION
All basic math operations are overloaded if you declare your big integers as
$i = new Math::Bigint '123 456 789 123 456 789’;
Canonical notation
Big integer value are strings of the fofffr-—]\d+$/ with leading zeros suppressed.
Input
Input values to these routines may be strings of the fAsH+-]?[\d\s]+$/.

Output
Output values always always in canonical form
Actual math is done in an internal format consisting of an array whose first element is the sig®/j/"[+-]

and whose remaining elements are base 100000 digits with the least significant digit first. The string ‘NaN’
is used to represent the result when input arguments are not numbers, as well as the result of dividing by

zero.
EXAMPLES
+0’ canonical zero value
' =123123 123’ canonical value '-123123123’
'1 23 456 7890’ canonical value '+1234567890’
BUGS

The current version of this module is a preliminary version of the real thing that is currently (as of perl5.002)
under development.

AUTHOR
Mark Biggar, overloaded interface by llya Zakharevich.

456 Version 5.003 08-0Oct-1996

Complex Perl Programmers Reference Guide Complex

NAME
Math::Complex — complex numbers and associated mathematical functions

SYNOPSIS

use Math::Complex;

$z = Math::Complex—>make(5, 6);
$t=4- 3% + $z;

$j = cplxe(l, 2*pi/3);

DESCRIPTION

This package lets you create and manipulate complex numbers. By deéalditnits itself to real numbers,
but an extrause statement brings full complex support, along with a full set of mathematical functions
typically associated with and/or extended to complex numbers.

If you wonder what complex numbers are, they were invented to be able to solve the following equation:
X*x =-1

and by definition, the solution is notedengineers usginstead sinceé usually denotes an intensity, but the
name does not matter). The numbira purédmaginarynumber.

The arithmetics with pure imaginary numbers works just like you would expect it with real numbers... you
just have to remember that

i*i=-1
S0 you have:
5i+7i=i*(5+7)=12i
4i-3i=i*(4-3)=i
4i*2i=-8
6i/2i=3
1/i=-i
Complex numbers are numbers that have both a real part and an imaginary part, and are usually noted:
a + bi

where a is the real part andb is the imaginary part. The arithmetic with complex numbers is
straightforward. You have to keep track of the real and the imaginary parts, but otherwise the rules used for
real numbers just apply:

(4+3i)+(5-2)=(4+5)+i(3-2)=9+i
Q+i)*(4-0)=2"4+4i -2 - =8+2i+1=9+2i

A graphical representation of complex numbers is possible in a plane (also cattethfiiex plangbut it's
really a 2D plane). The number

z=a+hi

is the point whose coordinates are (a, b). Actually, it would be the vector originating from (0, 0) to (a, b). It
follows that the addition of two complex numbers is a vectorial addition.

Since there is a bijection between a point in the 2D plane and a complex number (i.e. the mapping is unique
and reciprocal), a complex number can also be uniquely identified with polar coordinates:

[rho, theta]

whererho is the distance to the origin, atfteta the angle between the vector andthexis. There is a
notation for this using the exponential form, which is:

rho * exp(i * theta)

08-0Oct-1996 Version 5.003 457

Complex Perl Programmers Reference Guide Complex

wherei is the famous imaginary number introduced above. Conversion between this form and the cartesian
forma + bi is immediate:

a = rho * cos(theta)
b = rho * sin(theta)

which is also expressed by this formula:
z =rho * exp(i * theta) = rho * (cos theta + i * sin theta)

In other words, it's the projection of the vector onto xhendy axes. Mathematicians cato the norm or
modulusandthetatheargumentof the complex number. Theorm of z will be notedabs(z)

The polar notation (also known as the trigonometric representation) is much more handy for performing
multiplications and divisions of complex numbers, whilst the cartesian notation is better suited for additions
and substractions. Real numbers are orx tinds, and thereforehetais zero.

All the common operations that can be performed on a real number have been defined to work on complex
numbers as well, and are merektension®f the operations defined on real numbers. This means they keep
their natural meaning when there is no imaginary part, provided the number is within their definition set.

For instance, thegrt routine which computes the square root of its argument is only defined for positive
real numbers and yields a positive real number (it is an applicationRtota R+). If we allow it to return a
complex number, then it can be extended to negative real numbers to become an applicafibmofom
(the set of complex numbers):

sqrt(x) = x >= 0 ? sqrt(x) : sqrt(—x)*i

It can also be extended to be an application f@to C, whilst its restriction tdR behaves as defined above
by using the following definition:

sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)

Indeed, a negative real number can be nptgi (the modulux is always positive, spx,pi] is really
—X, a negative number) and the above definition states that

sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
which is exactly what we had defined for negative real numbers above.

All the common mathematical functions defined on real numbers that are extended to complex numbers
share that same property of workiag usualwhen the imaginary part is zero (otherwise, it would not be
called an extension, would it?).

A newoperation possible on a complex number that is the identity for real numbers is caied|tigate
and is noted with an horizontal bar above the numberz drere.

z=a+bhi
~z=a-hi

Simple... Now look:
z*~z = (a+bi)*(a-bi)=a*a+ b*b

We saw that the norm afwas notecibs(z) and was defined as the distance to the origin, also known as:
rho = abs(z) = sqrt(a*a + b*b)

S0
z*~z = abs(z) ** 2

If z is a pure real number (i.e.==0), then the above yields:

a*a=abs(a) ** 2

458

Version 5.003 08-0ct—-1996

Complex Perl Programmers Reference Guide Complex

which is true ébs has the regular meaning for real number, i.e. stands for the absolute value). This example
explains why the norm of is notedabs(z) : it extends thebs function to complex numbers, yet is the
regularabs we know when the complex number actually has no imaginary part... This justfeseriori

our use of th@bs notation for the norm.

OPERATIONS
Given the following notations:

z1=a+bi=rl*exp(i*tl)
z2=c+di=r2*exp(i*t2)
z = <any complex or real number>

the following (overloaded) operations are supported on complex numbers:

zZ1+z2=(a+c)+i(b+d)
z1-z2=(a-c)+i(b-d)

z1*z2 =(r1 *r2) *exp(i * (t1 + t2))
z1/z2 =(r1/r2) * exp(i * (11 - t2))

z1 ** 22 = exp(z2 * log z1)

~z1=a- bi

abs(z1) = r1 = sqrt(a*a + b*b)

sqrt(z1) = sqrt(rl) * exp(i * t1/2)

exp(zl) = exp(a) * exp(i * b)

log(z1) = log(rl) + i*t1

sin(z1) = 1/2i (exp(i * z1) — exp(-i * z1))
cos(z1) = 1/2 (exp(i * z1) + exp(-i * z1))
abs(z1)=r1

atan2(z1, z2) = atan(z1/z2)

The following extra operations are supported on both real and complex numbers:

Re(z)=a
Im(z) =b
arg(z) =t

cbrt(z) = z ** (1/3)
log10(z) = log(z) / log(10)
logn(z, n) =log(z) / log(n)

tan(z) = sin(z) / cos(z)
cotan(z) =1 /tan(z)

asin(z) = —i * log(i*z + sqrt(1-z*z))
acos(z) = -i * log(z + sqrt(z*z-1))
atan(z) = i/2 * log((i+z) / (i-2))

acotan(z) = -i/2 * log((i+z) / (z—i))

sinh(z) = 1/2 (exp(z) — exp(-2))
cosh(z) = 1/2 (exp(z) + exp(-2))
tanh(z) = sinh(z) / cosh(z)
cotanh(z) = 1/ tanh(z)

asinh(z) = log(z + sqrt(z*z+1))
acosh(z) = log(z + sqrt(z*z-1))
atanh(z) = 1/2 * log((1+2) / (1-2))
acotanh(z) = 1/2 * log((1+z) / (z-1))
The root function is available to compute all théh roots of some complex, wheneis a strictly positive

integer. There are exactly such roots, returned as a list. Getting the number mathematiciars stath
that:

08-0Oct-1996 Version 5.003 459

Complex Perl Programmers Reference Guide Complex

L+j+j=0;
is a simple matter of writing:

$j = ((root(1, 3))[1];
Thekth root forz = [r,t] is given by:

(root(z, n))[K] = r**(1/n) * exp(i * (t + 2*k*pi)/n)

The spaceshifoperation is also defined. In order to ensure its restriction to real numbers is conform to what
you would expect, the comparison is run on the real part of the complex number first, and imaginary parts
are compared only when the real parts match.

CREATION

To create a complex number, use either:

$z = Math::Complex—>make(3, 4);
$z = cplx(3, 4);

if you know the cartesian form of the number, or
$z = 3 + 4%;
if you like. To create a number using the trigonometric form, use either:

$z = Math::Complex—>emake(5, pi/3);
$x = cplxe(5, pi/3);

instead. The first argument is the modulus, the second is the angle (in radians). (Mnmernsounged as a
notation for complex humbers in the trigonometric form).

It is possible to write:
$x = cplxe(-3, pi/4);

but that will be silently converted in{8,—3pi/4] , since the modulus must be positive (it represents the
distance to the origin in the complex plane).

STRINGIFICATION

When printed, a complex number is usually shown under its cartesiamafdrimbut there are legitimate
cases where the polar fornjgt] is more appropriate.

By calling the routineMath::Complex::display_format and supplying eithef'polar” or
"cartesian” , you override the default display format, which"tartesian” . Not supplying any
argument returns the current setting.

This default can be overridden on a per—-number basis by callindjsplay_format method instead.
As before, not supplying any argument returns the current display format for this number. Otherwise
whatever you specify will be the new display formattfas particular number.

For instance:
use Math::Complex;

Math::Complex::display_format('polar’);
$j = ((root(1, 3))[1];

print "j = $j\n"; # Prints "j = [1,2pi/3]
$j—>display_format(’cartesian’);
print "j = $j\n"; # Prints "j = —0.5+0.866025403784439i"

The polar format attempts to emphasize argumentsfifign (wheren is a positive integer aridan integer
within [-9,+9]).

460

Version 5.003 08-0ct—-1996

Complex Perl Programmers Reference Guide Complex

USAGE
Thanks to overloading, the handling of arithmetics with complex numbers is simple and almost transparent.

Here are some examples:
use Math::Complex;

$j = cplxe(l, 2*pi/3); #$j**3==1
print "j = $j, j**3 =", $j ** 3, "\n";
print"1 +j+j**2 =" 1+ $j + $**2, "\n";
$z = -16 + 0%; # Force it to be a complex
print "sqrt($z) = ", sqrt($z), "\n";
$k = exp(i * 2*pi/3);
print "$j — $k =", $j - $k, "\n";
BUGS
Sayinguse Math::Complex; exports many mathematical routines in the caller environment. This is
construed as a feature by the Author, actually... ;-)

The code is not optimized for speed, although we try to use the cartesian form for addition-like operators
and the trigonometric form for all multiplication—like operators.

The arg() routine does not ensure the angle is within the range [-pi,+pi] (a side effect caused by
multiplication and division using the trigonometric representation).

All routines expect to be given real or complex numbers. Don‘t attempt to use BigFloat, since Perl has
currently no rule to disambiguate a ‘+' operation (for instance) between two overloaded entities.

AUTHOR
Raphael Manfredi Raphael_Manfredi@grenoble.hp.com

08-0Oct-1996 Version 5.003 461

NDBM_File Perl Programmers Reference Guide NDBM_File

NAME
NDBM_File — Tied access to ndbm files

SYNOPSIS
use NDBM_File;

tie(%h, 'NDBM_File’, 'Op.dbmx’, O_ RDWR|O_CREAT, 0640);
untie %h;

DESCRIPTION
Seetie

462 Version 5.003 08-0Oct-1996

Ping Perl Programmers Reference Guide Ping

NAME
Net::Ping, pingecho — check a host for upness
SYNOPSIS
use Net::Ping;
print "'jimmy’ is alive and kicking\n" if pingecho(’jimmy’, 10) ;
DESCRIPTION

This module contains routines to test for the reachability of remote hosts. Currently the only routine
implemented ipingecho()

pingecho() uses a TCP echadt an ICMP one) to determine if the remote host is reachable. This is
usually adequate to tell that a remote host is available to rsh(1), ftp(1), or telnet(1) onto.

Parameters

hostname
The remote host to check, specified either as a hostname or as an IP address.

timeout
The timeout in seconds. If not specified it will default to 5 seconds.

WARNING
pingecho() uses alarm to implement the timeout, so don‘t set another alarm while you are using it.

08-0Oct-1996 Version 5.003 463

ODBM_File Perl Programmers Reference Guide ODBM_File

NAME
ODBM_File - Tied access to odbm files

SYNOPSIS
use ODBM_File;

tie(%h, 'ODBM_File’, 'Op.dbmx’, O_RDWR|O_CREAT, 0640);
untie %h;

DESCRIPTION
Seetie

464 Version 5.003 08-0Oct-1996

Opcode Perl Programmers Reference Guide Opcode

NAME
Opcode - Disable named opcodes when compiling perl code

SYNOPSIS
use Opcode;

DESCRIPTION
Perl code is always compiled into an internal format before execution.
Evaluating perl code (e.g. via "eval" or "do ‘file") causes the code to be compiled into an internal format

and then, provided there was no error in the compilation, executed. The internal format is based on many
distinctopcodes

By default no opmask is in effect and any code can be compiled.

The Opcode module allow you to defineaerator masko be in effect when perlextcompiles any code.
Attempting to compile code which contains a masked opcode will cause the compilation to fail with an error.
The code will not be executed.

NOTE
The Opcode module is not usually used directly. See the ops pragma and Safe modules for more typical uses.

WARNING
The authors makeo warranty, implied or otherwise, about the suitability of this software for safety or
security purposes.

The authors shall not in any case be liable for special, incidental, consequential, indirect or other similar
damages arising from the use of this software.

Your mileage will vary. If in any doultto not use it

Operator Names and Operator Lists

The canonical list of operator names is the contents of the array op_name defined and initialised in file
opcode.hof the Perl source distribution (and installed into the perl library).

Each operator has both a terse name (its opname) and a more verbose or recognisable descriptive name. The
opdesc function can be used to return a list of descriptions for a list of operators.

Many of the functions and methods listed below take a list of operators as parameters. Most operator lists can
be made up of several types of element. Each element can be one of

an operator name (opname)

Operator names are typically small lowercase words like enterloop, leaveloop, last, next, redo
etc. Sometimes they are rather cryptic like gv2cv, i_ncmp and ftsvtx.

an operator tag name (optag)

Operator tags can be used to refer to groups (or sets) of operators. Tag names always being with
a colon. The Opcode module defines several optags and the user can define others using the
define_optag function.

a negated opname or optag

An opname or optag can be prefixed with an exclamation mark, e.g., !Imkdir. Negating an
opname or optag means remove the corresponding ops from the accumulated set of ops at that
point.

an operator set (opset)

An opsetas a binary string of approximately 43 bytes which holds a set or zero or more
operators.

08-0Oct-1996 Version 5.003 465

Opcode Perl Programmers Reference Guide Opcode

The opset and opset_to_ops functions can be used to convert from a list of operators to an opset
andvice versa

Wherever a list of operators can be given you can use one or more opsets. See also Manipulating
Opsets below.

Opcode Functions

The Opcode package contains functions for manipulating operator names tags and sets. All are available for
export by the package.

opcodes In a scalar context opcodes returns the number of opcodes in this version of perl (around 340 for
perl5.002).

In a list context it returns a list of all the operator names. (Not yet implemented, use @names =
opset_to_ops(full_opset).)
opset (OP, ...)
Returns an opset containing the listed operators.
opset_to_ops (OPSET)
Returns a list of operator names corresponding to those operators in the set.
opset_to_hex (OPSET)
Returns a string representation of an opset. Can be handy for debugging.

full_opset Returns an opset which includes all operators.
empty_opset
Returns an opset which contains no operators.

invert_opset (OPSET)
Returns an opset which is the inverse set of the one supplied.

verify_opset (OPSET, ...)

Returns true if the supplied opset looks like a valid opset (is the right length etc) otherwise it
returns false. If an optional second parameter is true then verify_opset will croak on an invalid
opset instead of returning false.

Most of the other Opcode functions call verify _opset automatically and will croak if given an
invalid opset.
define_optag (OPTAG, OPSET)
Define OPTAG as a symbolic name for OPSET. Optag names always start with a.colon
The optag name used must not be defined already (define_optag will croak if it is already

defined). Optag names are global to the perl process and optag definitions cannot be altered or
deleted once defined.

It is strongly recommended that applications using Opcode should use a leading capital letter on
their tag names since lowercase names are reserved for use by the Opcode module. If using
Opcode within a module you should prefix your tags hames with the name of your module to
ensure uniqueness and thus avoid clashes with other modules.

opmask_add (OPSET)
Adds the supplied opset to the current opmask. Note that there is cumemigchanism for
unmasking ops once they have been masked. This is intentional.

opmask Returns an opset corresponding to the current opmask.

opdesc (OP, ...)
This takes a list of operator names and returns the corresponding list of operator descriptions.

466 Version 5.003 08-0Oct-1996

Opcode

Perl Programmers Reference Guide

Opcode

opdump (PAT)
Dumps to STDOUT a two column list of op hames and op descriptions. If an optional pattern is
given then only lines which match the (case insensitive) pattern will be output.

It's designed to be used as a handy command line utility:

perl -MOpcode=opdump —e opdump
perl -MOpcode=opdump —e 'opdump Eval’

Manipulating Opsets
Opsets may be manipulated using the perl bit vector opegatarsd), | (or), * (xor) and ~ (negate/invert).

However you should never rely on the numerical position of any opcode within the opset. In other words

both sides of a bit vector operator should be opsets returned from Opcode functions.

Also, since the number of opcodes in your current version of perl might not be an exact multiple of eight,
there may be unused bits in the last byte of an upset. This should not cause any problems (Opcode functions
ignore those extra bits) but it does mean that using the ~ operator will typically not produce the same
‘physical’ opset ‘string’ as the invert_opset function.

TO DO (maybe)

$bool = opset_eq($opsetl, $opset2) true if opsets are logically eqiv

$yes = opset_can($opset, @ops) true if $opset has all @ops set
@diff = opset_diff($opsetl, $opset2) => (‘foo’, 'tbar’, ...)

Predefined Opcode Tags

:base_core

null stub scalar pushmark wantarray const defined undef
rv2sv sassign

rv2av aassign aelem aelemfast aslice av2arylen

rv2hv helem hslice each values keys exists delete

preinc i_preinc predec i_predec postinc i_postinc postdec i_postdec
int hex oct abs pow multiply i_multiply divide i_divide
modulo i_modulo add i_add subtract i_subtract

left_shift right_shift bit_and bit_xor bit_or negate i_negate
not complement

Iti ltgti gtlei_legei_geeqi_eqnei_nencmpi_ncmp
slt sgt sle sge seq sne scmp

substr vec stringify study pos length index rindex ord chr
ucfirst Icfirst uc Ic quotemeta trans chop schop chomp schomp
match split

list Islice splice push pop shift unshift reverse

cond_expr flip flop andassign orassign and or xor

warn die lineseq nextstate unstack scope enter leave

rv2cv anoncode prototype

entersub leavesub return method —— XXX loops via recursion?

leaveeval —— needed for Safe to operate, is safe without entereval

08-0Oct-1996

Version 5.003

467

Opcode

Perl Programmers Reference Guide Opcode

:base_mem

These memory related ops are not included in :base_core because they can easily be used to
implement a resource attack (e.g., consume all available memory).

concat repeat join range
anonlist anonhash

Note that despite the existance of this optag a memory resource attack may still be possible using
only :base_core ops.

Disabling these ops is\ery heavy handed way to attempt to prevent a memory resource attack. It's
probable that a specific memory limit mechanism will be added to perl in the near future.

:base_loop

These loop ops are not included in :base_core because they can easily be used to implement a
resource attack (e.g., consume all available CPU time).

grepstart grepwhile
mapstart mapwhile
enteriter iter
enterloop leaveloop
last next redo

goto

:base_io

These ops enabli@ehandle (rather than filename) based input and output. These are safe on the
assumption that only pre—existing filehandles are available for use. To create new filehandles other
ops such as open would need to be enabled.

readline rcatline getc read
formline enterwrite leavewrite
print sysread syswrite send recv eof tell seek

readdir telldir seekdir rewinddir

:base_orig

These are a hotchpotch of opcodes still waiting to be considered
gvsv gv gelem
padsv padav padhv padany
rv2gv refgen srefgen ref
bless —— could be used to change ownership of objects (reblessing)
pushre regcmaybe regcomp subst substcont
sprintf prtf —— can core dump
crypt
tie untie

dbmopen dbmclose
sselect select
pipe_op sockpair

getppid getpgrp setpgrp getpriority setpriority localtime gmtime

entertry leavetry —— can be used to ’hide’ fatal errors

468

Version 5.003 08-0ct—-1996

Opcode Perl Programmers Reference Guide Opcode

:base_math

These ops are not included in :base_core because of the risk of them being used to generate floating
point exceptions (which would have to be caught usi®g§l&{FPE} handler).

atan2 sin cos exp log sqrt

These ops are not included in :base_core because they have an effect beyond the scope of the
compartment.

rand srand

:default
A handy tag name for seasonabledefault set of ops. (The current ops allowed are unstable while
development continues. It will change.)
base_core :base_mem :base_loop :base_io :base_orig

If safety matters to you (and why else would you be using the Opcode module?) then you should not
rely on the definition of this, or indeed any other, optag!
filesys_read
stat Istat readlink
ftatime ftblk ftchr ftctime ftdir fteexec fteowned fteread

ftewrite ftfile ftis ftlink ftmtime ftpipe ftrexec ftrowned
ftrread ftsgid ftsize ftsock ftsuid fttty ftzero ftrwrite ftsvix

fttext ftbinary
fileno

'sys_db
ghbyname ghbyaddr ghostent shostent ehostent —— hosts
gnbyname gnbyaddr gnetent snetent enetent —— networks
gpbyname gpbynumber gprotoent sprotoent eprotoent —— protocols
gsbyname gsbyport gservent sservent eservent —— services
gpwnam gpwuid gpwent spwent epwent getlogin —— users
ggrnam ggrgid ggrent sgrent egrent —— groups

‘browse

A handy tag name for @easonabledefault set of ops beyond the :default optag. Like :default (and
indeed all the other optags) its current definition is unstable while development continues. It will
change.

The :browse tag represents the next step beyond :default. It it a superset of the :default ops and adds
ffilesys_read the :sys db. The intent being that scripts can access more (possibly sensitive)
information about your system but not be able to change it.

:default :filesys_read :sys_db

‘filesys_open
sysopen open close
umask binmode

open_dir closedir —— other dir ops are in :base_io

filesys_write
link unlink rename symlink truncate

mkdir rmdir

08-0Oct-1996 Version 5.003 469

Opcode Perl Programmers Reference Guide Opcode

utime chmod chown
fcntl —— not strictly filesys related, but possibly as dangerous?

:subprocess
backtick system

fork
wait waitpid
glob —— access to Cshell via <‘rm *>

:OWNprocess
exec exit kill

time tms —— could be used for timing attacks (paranoid?)

:others

This tag holds groups of assorted specialist opcodes that don‘t warrant having optags defined for
them.

SystemV Interprocess Communications:
msgctl msgget msgrcv msgsnd
semctl semget semop
shmctl shmget shmread shmwrite

:still_to_be_decided
chdir
flock ioctl

socket getpeername ssockopt
bind connect listen accept shutdown gsockopt getsockname

sleep alarm —— changes global timer state and signal handling
sort —— assorted problems including core dumps

tied —— can be used to access object implementing a tie

pack unpack —— can be used to create/use memory pointers

entereval —— can be used to hide code from initial compile
require dofile

caller —— get info about calling environment and args
reset
dbstate —— perl —d version of nextstate(ment) opcode

:dangerous

This tag is simply a bucket for opcodes that are unlikely to be used via a tag name but need to be
tagged for completness and documentation.

syscall dump chroot

SEE ALSO
ops(3) — perl pragma interface to Opcode module.

Safe(3) — Opcode and namespace limited execution compartments

470 Version 5.003 08-0Oct-1996

Opcode Perl Programmers Reference Guide Opcode

AUTHORS
Originally designed and implemented by Malcolm Beattie, mbeattie@sable.ox.ac.uk as part of Safe version
1.

Split out from Safe module version 1, named opcode tags and other changes added by Tim Bunce
<Tim.Bunce@ig.co.uk.

08-0Oct-1996 Version 5.003 471

POSIX Perl Programmers Reference Guide POSIX

NAME
POSIX — Perl interface to IEEE Std 1003.1
SYNOPSIS
use POSIX;

use POSIX qw(setsid);
use POSIX qw(:errno_h :fcntl_h);

printf "EINTR is %d\n", EINTR;
$sess_id = POSIX::setsid();

$fd = POSIX::open($path, O_CREAT|O_EXCL|O_WRONLY, 0644);
note: that's a filedescriptor, *NOT* a filehandle

DESCRIPTION

NOTE

The POSIX module permits you to access all (or nearly all) the standard POSIX 1003.1 identifiers. Many of
these identifiers have been given Perl-ish interfaces. Things whictdefiees in C, like EINTR or
O_NDELAY, are automatically exported into your namespace. All functions are only exported if you ask
for them explicitly. Most likely people will prefer to use the fully—qualified function names.

This document gives a condensed list of the features available in the POSIX module. Consult your operating
system’s manpages for general information on most features. Cpadfunhcfor functions which are noted
as being identical to Perl‘s builtin functions.

The first section describes POSIX functions from the 1003.1 specification. The second section describes
some classes for signal objects, TTY objects, and other miscellaneous objects. The remaining sections list
various constants and macros in an organization which roughly follows IEEE Std 1003.1b-1993.

The POSIX module is probably the most complex Perl module supplied with the standard distribution. It
incorporates autoloading, namespace games, and dynamic loading of code that's in Perl, C, or both. It's a
great source of wisdom.

CAVEATS

A few functions are not implemented because they are C specific. If you attempt to call these, they will print
a message telling you that they aren‘t implemented, and suggest using the Perl equivalent should one exist.
For example, trying to access thetimp() call will elicit the messagésetjmp() is C—specific: use

eval {} instead".

Furthermore, some evil vendors will claim 1003.1 compliance, but in fact are not so: they will not pass the
PCTS (POSIX Compliance Test Suites). For example, one vendor may not define EDEADLK, or the
semantics of the errno values set by open(2) might not be quite right. Perl does not attempt to verify POSIX
compliance. That means you can currently successfully say "use POSIX", and then later in your program
you find that your vendor has been lax and there's no usable ICANON macro after all. This could be
construed to be a bug.

FUNCTIONS

_exit This is identical to the C functiorexit()

abort This is identical to the C functicabort()

abs This is identical to Perl‘s builtinbs() function.
access Determines the accessibility of a file.

if(POSIX::access("/", &POSIX::R_OK) ¥
print "have read permission\n®;

}

472

Version 5.003 08-0ct—-1996

POSIX

Perl Programmers Reference Guide POSIX

Returnsundef on failure.

acos This is identical to the C functicacos()
alarm This is identical to Perl‘s builtinlarm() function.
asctime This is identical to the C functicasctime()
asin This is identical to the C functicasin()
assert Unimplemented.
atan This is identical to the C functicatan()
atan? This is identical to Perl‘s builtiatan2() function.
atexit atexit() is C—specific: use END {} instead.
atof atof() is C—specific.
atoi atoi() is C—specific.
atol atol() is C—specific.
bsearch bsearch() not supplied.
calloc calloc() is C—specific.
ceil This is identical to the C functioreil()
chdir This is identical to Perl‘s builtiohdir() function.
chmod This is identical to Perl‘s builtishmod() function.
chown This is identical to Perl‘s builtishown() function.
clearerr Use methodrileHandle::clearerr() instead.
clock This is identical to the C functiariock()
close Close the file. This uses file descriptors such as those obtained by P&I#iX::open
$fd = POSIX::open("foo", &POSIX::O_RDONLY);
POSIX::close($fd);
Returnsundef on failure.
closedir This is identical to Perl‘s builtinolosedir() function.
cos This is identical to Perl‘s builtinos() function.
cosh This is identical to the C functiazosh()
creat Create a new file. This returns a file descriptor like the ones returne@8yX::open . Use
POSIX::close to close the file.
$fd = POSIX::creat("foo", 0611);
POSIX::close($fd);
ctermid Generates the path name for the controlling terminal.
$path = POSIX::ctermid();
ctime This is identical to the C functiaztime()
cuserid Get the character login name of the user.
$name = POSIX::cuserid();
08-0Oct-1996 Version 5.003 473

POSIX Perl Programmers Reference Guide POSIX
difftime This is identical to the C functiadifftime()
div div() is C—specific.
dup This is similar to the C functiodup() .
This uses file descriptors such as those obtained by cRUIgJX::open
Returnsundef on failure.
dup2 This is similar to the C functiodup2() .
This uses file descriptors such as those obtained by cRUI®JX::open
Returnsundef on failure.
erro Returns the value of errno.
$errno = POSIX::errno();
execl execl() is C—specific.
execle execle() is C-specific.
execlp execlp() is C—specific.
execv execv() is C—specific.
execve execve() is C—specific.
execvp execvp() is C—specific.
exit This is identical to Perl‘s builtiexit() ~ function.
exp This is identical to Perl‘s builtiexp() function.
fabs This is identical to Perl‘s builtinbs() function.
fclose Use methodrileHandle::close() instead.
fentl This is identical to Perl‘s builtifcntl() function.
fdopen Use methodrileHandle::new_from_fd() instead.
feof Use methodrileHandle::eof() instead.
ferror Use methodrileHandle::error() instead.
fflush Use methodrileHandle::flush() instead.
fgetc Use methodrileHandle::getc() instead.
fgetpos Use methodrileHandle::getpos() instead.
fgets Use methodrileHandle::gets() instead.
fileno Use methodrileHandle::fileno() instead.
floor This is identical to the C functidioor()
fmod This is identical to the C functidmod() .
fopen Use methodrileHandle::open() instead.
fork This is identical to Perl‘s builtifork() function.
fpathconf Retrieves the value of a configurable limit on a file or directory. This uses file descriptors such

as those obtained by calliRDSIX::open

The following will determine the maximum length of the longest allowable pathname on the

filesystem which holdémp/foo

474

Version 5.003 08-0ct—-1996

POSIX Perl Programmers Reference Guide POSIX
$fd = POSIX::open("/tmp/foo"”, &POSIX::O_RDONLY);
$path_max = POSIX::fpathconf($fd, &POSIX::_PC_PATH_MAX);

Returnsundef on failure.
fprintf fprintf() is C—specific—use printf instead.
fputc fputc() is C—specific—use print instead.
fputs fputs() is C—specific—use print instead.
fread fread() is C—specific—use read instead.
free free() is C—specific.
freopen freopen() is C—specific—use open instead.
frexp Return the mantissa and exponent of a floating—point number.
($mantissa, $exponent) = POSIX::frexp(3.14);
fscanf fscanf() is C—specific—use < and regular expressions instead.
fseek Use methodrileHandle::seek() instead.
fsetpos Use methodrileHandle::setpos() instead.
fstat Get file status. This uses file descriptors such as those obtained by R&IBi4::open . The
data returned is identical to the data from Perl‘s busitat function.
$fd = POSIX::open("foo", &POSIX::O_RDONLY);
@stats = POSIX::fstat($fd);
ftell Use methodrileHandle::tell() instead.
fwrite fwrite() is C—specific—use print instead.
getc This is identical to Perl‘s builtigetc() function.
getchar Returns one character from STDIN.
getcwd Returns the name of the current working directory.
getegid Returns the effective group id.
getenv Returns the value of the specified enironment variable.
geteuid Returns the effective user id.
getgid Returns the user's real group id.
getgrgid This is identical to Perl‘s builtigetgrgid() function.
getgrnam This is identical to Perl‘s builtigetgrnam() function.
getgroups
Returns the ids of the user‘s supplementary groups.
getlogin This is identical to Perl's builtigetlogin() function.
getpgrp This is identical to Perl's builtigetpgrp() function.
getpid Returns the process's id.
getppid This is identical to Perl's builtigetppid() function.
getpwnam
This is identical to Perl‘s builtigetpwnam() function.
08-0Oct-1996 Version 5.003 475

POSIX Perl Programmers Reference Guide POSIX

getpwuid
This is identical to Perl‘s builtigetpwuid() function.

gets Returns one line from STDIN.
getuid Returns the user's id.
gmtime This is identical to Perl's builtigmtime() function.

isalnum This is identical to the C function, except that it can apply to a single character or to a whole

string.

isalpha This is identical to the C function, except that it can apply to a single character or to a whole
string.

isatty Returns a boolean indicating whether the specified filehandle is connected to a tty.

iscntrl This is identical to the C function, except that it can apply to a single character or to a whole
string.

isdigit This is identical to the C function, except that it can apply to a single character or to a whole
string.

isgraph This is identical to the C function, except that it can apply to a single character or to a whole
string.

islower This is identical to the C function, except that it can apply to a single character or to a whole
string.

isprint This is identical to the C function, except that it can apply to a single character or to a whole
string.

ispunct This is identical to the C function, except that it can apply to a single character or to a whole
string.

isspace This is identical to the C function, except that it can apply to a single character or to a whole
string.

isupper This is identical to the C function, except that it can apply to a single character or to a whole
string.

isxdigit This is identical to the C function, except that it can apply to a single character or to a whole
string.

kill This is identical to Perl‘s builtifill() function.

labs labs() is C—specific, use abs instead.

Idexp This is identical to the C functiddexp()

Idiv Idiv() is C-specific, use / and int instead.
link This is identical to Perl‘s builtiink() ~ function.
localeconv

Get numeric formatting information. Returns a reference to a hash containing the current locale
formatting values.

The database for the (Deutsch or German) locale.

$loc = POSIX::setlocale(&POSIX::LC_ALL, "de");

print "Locale = $loc\n";

$lconv = POSIX::localeconv();

print "decimal_point =", $lconv—>{decimal_point}, "\n";
print "thousands_sep =", $lconv—>{thousands_sep}, "\n";

476 Version 5.003 08-0Oct-1996

POSIX Perl Programmers Reference Guide POSIX

print "grouping =", $lconv—>{grouping},"\n";

print "int_curr_symbol =", $lconv—>{int_curr_symbol}, "\n";

print "currency_symbol =", $lconv->{currency_symbol}, "\n";
print "mon_decimal_point =", $lconv—>{mon_decimal_point}, "\n";
print "mon_thousands_sep =", $lconv—>{mon_thousands_sep}, "\n";

print "mon_grouping =", $lconv—>{mon_grouping}, “\n";
print "positive_sign =", $lconv—>{positive_sign}, "\n";
print "negative_sign =", $lconv—>{negative_sign}, "\n";
print "int_frac_digits =", $lconv—>{int_frac_digits}, "\n";
print "frac_digits =", $lconv—>{frac_digits}, "\n";
print "p_cs_precedes =", $lconv—>{p_cs_precedes}, “\n";
print "p_sep_by space =", $lconv—>{p_sep_by_space}, "\n";
print "n_cs_precedes =", $lconv—>{n_cs_precedes}, “\n";
print "n_sep_by space =", $lconv—>{n_sep_by_space}, "\n";
print "p_sign_posn =", $lconv—>{p_sign_posn}, "\n";
print "n_sign_posn =", $lconv—>{n_sign_posn}, "\n";

localtime This is identical to Perl's builtitocaltime() function.

log This is identical to Perl‘s builtifog() function.

log10 This is identical to the C functidng10()
longjmp longjmp() is C—specific: use die instead.

Iseek Move the read/write file pointer. This uses file descriptors such as those obtained by calling
POSIX::open

$fd = POSIX::open("foo", &POSIX::O_RDONLY);
$off_t = POSIX::Iseek($fd, 0, &POSIX::SEEK_SET);

Returnsundef on failure.
malloc malloc() is C—specific.
mblen This is identical to the C functiamblen()

mbstowcs
This is identical to the C functiambstowcs()

mbtowc This is identical to the C functiambtowc() .
memchr memchr() is C-specific, usendex() instead.
memcmp memcmp() is C—specific, use eq instead.
memcpy memcpy() is C—specific, use = instead.

memmove
memmove() is C—specific, use = instead.

memset memset() is C—specific, use x instead.

mkdir This is identical to Perl‘s builtimkdir() function.

mkfifo This is similar to the C functiomkfifo()
Returnsundef on failure.

mktime Convert date/time info to a calendar time.
Synopsis:

mktime(sec, min, hour, mday, mon, year, wday = 0, yday = 0, isdst =0

08-0Oct-1996 Version 5.003 477

POSIX Perl Programmers Reference Guide POSIX

The month hon), weekday Wday), and yeardayy@day) begin at zero. l.e. January is 0, not 1;
Sunday is 0, not 1; January 1st is 0, not 1. The yesnr () is given in years since 1900. l.e.
The year 1995 is 95; the year 2001 is 101. Consult your systekiisme() manpage for
details about these and the other arguments.

Calendar time for December 12, 1995, at 10:30 am.

$time_t = POSIX::mktime(0, 30, 10, 12, 11, 95);
print "Date =", POSIX::ctime($time_t);

Returnsundef on failure.
modf Return the integral and fractional parts of a floating—point number.
($fractional, $integral) = POSIX::modf(3.14);
nice This is similar to the C functionice()
Returnsundef on failure.
offsetof offsetof() is C—specific.

open Open a file for reading for writing. This returns file descriptors, not Perl filehandles. Use
POSIX::close to close the file.

Open a file read—only with mode 0666.
$fd = POSIX::open("foo");
Open a file for read and write.
$fd = POSIX::open("foo", &POSIX::0_RDWR);
Open a file for write, with truncation.
$fd = POSIX::open("foo", &POSIX::O_WRONLY | &POSIX::O_TRUNC);
Create a new file with mode 0640. Set up the file for writing.
$fd = POSIX::open("foo", &POSIX::O_CREAT | &POSIX::O_WRONLY, 0640);
Returnsundef on failure.
opendir Open a directory for reading.

$dir = POSIX::opendir("tmp");
@files = POSIX::readdir($dir);
POSIX::closedir($dir);

Returnsundef on failure.
pathconf Retrieves the value of a configurable limit on a file or directory.

The following will determine the maximum length of the longest allowable pathname on the
filesystem which hold&mp .

$path_max = POSIX::pathconf("/tmp", &POSIX::_PC_PATH_MAX);
Returnsundef on failure.
pause This is similar to the C functiopause()
Returnsundef on failure.
perror This is identical to the C functiqgrerror()

pipe Create an interprocess channel. This returns file descriptors like those returned by
POSIX::open

478 Version 5.003 08-0Oct-1996

POSIX Perl Programmers Reference Guide POSIX
($fdO, $fd1) = POSIX::pipe();
POSIX::write($fd0, "hello", 5);
POSIX::read($fd1, $buf, 5);
pow Computesx raised to the powesexponent.
$ret = POSIX::pow($x, $exponent);
printf Prints the specified arguments to STDOUT.
putc putc() is C—specific—use print instead.
putchar putchar() is C—specific—use print instead.
puts puts() is C—specific—use print instead.
gsort gsort() is C—specific, use sort instead.
raise Sends the specified signal to the current process.
rand rand() is non—portable, use Perl's rand instead.
read Read from a file. This uses file descriptors such as those obtained by &llgi¥::open . If
the buffer$buf is not large enough for the read then Perl will extend it to make room for the
request.
$fd = POSIX::open("foo", &POSIX::O_RDONLY);
$bytes = POSIX::read($fd, $buf, 3);
Returnsundef on failure.
readdir This is identical to Perl's builtineaddir() function.
realloc realloc() is C—specific.
remove This is identical to Perl's builtinnlink() ~ function.
rename This is identical to Perl's builtirename() function.
rewind Seeks to the beginning of the file.
rewinddir This is identical to Perl‘s builtinewinddir() function.
rmdir This is identical to Perl‘s builtirmdir() ~ function.
scanf scanf() is C—specific—use < and regular expressions instead.
setgid Sets the real group id for this process.
setjmp setimp() is C—specific: use eval {} instead.
setlocale Modifies and queries program's locale.

The following will set the traditional UNIX system locale behavior (the second argu@ient
$loc = POSIX::setlocale(&POSIX::LC_ALL, "C");

The following will query (the missing second argument) the current LC_CTYPE category.
$loc = POSIX::setlocale(&POSIX::LC_CTYPE);

The following will set the LC_CTYPE behaviour according to the locale environment variables
(the second argumerit). Please see your systesetlocale(3)documentation for the locale
environment variables’ meaning or congétlil8n

$loc = POSIX::setlocale(&POSIX::LC_CTYPE, ";

The following will set the LC_COLLATE behaviour to Argentinian SpaniSIOTE: The
naming and availability of locales depends on your operating system. Please peridi@ih for

08-0Oct-1996

Version 5.003 479

POSIX Perl Programmers Reference Guide POSIX
how to find out which locales are available in your system.
$loc = POSIX::setlocale(&POSIX::LC_ALL, "es_AR.ISO8859-1");
setpgid This is similar to the C functiosetpgid()
Returnsundef on failure.
setsid This is identical to the C functicsetsid()
setuid Sets the real user id for this process.
sigaction Detailed signal management. This us&SIX::SigAction objects for theaction and
oldaction arguments. Consult your systeraigaction = manpage for details.
Synopsis:
sigaction(sig, action, oldaction = 0)
Returnsundef on failure.
siglongjmp
siglongjmp() is C—specific: use die instead.
sigpending

Examine signals that are blocked and pending. This RE&&IX::SigSet objects for the
sigset argument. Consult your systensigpending manpage for details.

Synopsis:
sigpending(sigset)

Returnsundef on failure.

sigprocmask

Change and/or examine calling process's signal mask. Thif@®k<::SigSet objects for
thesigset andoldsigset arguments. Consult your systersigprocmask manpage for
details.

Synopsis:
sigprocmask(how, sigset, oldsigset = 0)

Returnsundef on failure.

sigsetjmp sigsetjimp() is C—specific: use eval {} instead.

sigsuspend
Install a signal mask and suspend process until signal arrives. Thi®QS#X::SigSet
objects for thesignal_mask argument. Consult your systensgisuspend manpage for
details.
Synopsis:

sigsuspend(signal_mask)

Returnsundef on failure.

sin This is identical to Perl‘s builtisin() function.

sinh This is identical to the C functiainh()

sleep This is identical to Perl‘s builtisleep() function.

sprintf This is identical to Perl‘s builtisprintf() function.

480 Version 5.003 08-0Oct-1996

POSIX Perl Programmers Reference Guide POSIX

sqrt This is identical to Perl‘s builtingrt() function.
srand srand()

sscanf sscanf() is C—specific—use regular expressions instead.

stat This is identical to Perl‘s builtistat() ~ function.
strcat strcat() is C—specific, use .= instead.
strchr strchr() is C—specific, usendex() instead.

strcemp stremp() is C—specific, use eq instead.
strcoll This is identical to the C functiastrcoll()
strcpy strecpy() is C—specific, use = instead.
strcspn strespn() is C—specific, use regular expressions instead.
strerror Returns the error string for the specified errno.
stritime Convert date and time information to string. Returns the string.

Synopsis:

stritime(fmt, sec, min, hour, mday, mon, year, wday = 0, yday = 0, isd

The month hon), weekday Wday), and yeardayy@day) begin at zero. l.e. January is 0, not 1;
Sunday is 0, not 1; January 1st is 0, not 1. The yesnr () is given in years since 1900. l.e.
The year 1995 is 95; the year 2001 is 101. Consult your syss#ritisie() manpage for
details about these and the other arguments.

The string for Tuesday, December 12, 1995.

$str = POSIX::strftime("%A, %B %d, %Y", 0, 0, 0, 12, 11, 95, 2);
print "$str\n”;

strlen strlen() is C—specific, use length instead.

strncat strncat() is C—specific, use .= instead.

strncmp strnemp() is C—specific, use eq instead.

strncpy strnepy() is C—specific, use = instead.

stroul stroul() is C—specific.

strpbrk strpbrk() is C—specific.

strrchr strrchr() is C—specific, usendex() instead.

strspn strspn() is C—specific.

strstr This is identical to Perl‘s builtimdex() function.

strtod strtod() is C—specific.

strtok strtok() is C—specific.

strtol strtol() is C—specific.

strxfrm String transformation. Returns the transformed string.
$dst = POSIX::strxfrm($src);

sysconf Retrieves values of system configurable variables.

The following will get the machine's clock speed.

08-0Oct-1996 Version 5.003 481

POSIX Perl Programmers Reference Guide POSIX

$clock_ticks = POSIX::sysconf(&POSIX::_SC_CLK_TCK);

Returnsundef on failure.

system This is identical to Perl‘s builtisystem() function.

tan This is identical to the C functiaan()

tanh This is identical to the C functidanh()

tcdrain This is similar to the C functiotedrain()
Returnsundef on failure.

tcflow This is similar to the C functiotcflow()
Returnsundef on failure.

tcflush This is similar to the C functioteflush()
Returnsundef on failure.

tcgetpgrp This is identical to the C functiagetpgrp()

tcsendbreak
This is similar to the C functioltsendbreak()

Returnsundef on failure.

tcsetpgrp This is similar to the C functiotesetpgrp()
Returnsundef on failure.

time This is identical to Perl‘s builtiime() function.

times Thetimes() function returns elapsed realtime since some point in the past (such as system
startup), user and system times for this process, and user and system times used by child
processes. All times are returned in clock ticks.

($realtime, $user, $system, $cuser, $csystem) = POSIX::times();
Note: Perl's builtintimes() function returns four values, measured in seconds.

tmpfile Use methodrileHandle::new_tmpfile() instead.
tmpnam Returns a name for a temporary file.

$tmpfile = POSIX::tmpnam();
tolower This is identical to Perl‘s builtic() function.
toupper This is identical to Perl‘s builtinc() function.
ttyname This is identical to the C functidtyname()
tzname Retrieves the time conversion information from theame variable.

POSIX::tzset();
($std, $dst) = POSIX::tzname();

tzset This is identical to the C functiamset()
umask This is identical to Perl‘s builtimmask() function.
uname Get name of current operating system.

($sysname, $nodename, $release, $version, $machine) = POSIX::uname()

482 Version 5.003 08-0Oct-1996

POSIX Perl Programmers Reference Guide POSIX
ungetc Use methodrileHandle::ungetc() instead.
unlink This is identical to Perl‘s builtinnlink() ~ function.
utime This is identical to Perl‘s builtintime() function.
viprintf vfprintf() is C—specific.
vprintf vprintf() is C—specific.
vsprintf vsprintf() is C—specific.
wait This is identical to Perl‘s builtimait() ~ function.
waitpid Wait for a child process to change state. This is identical to Perl‘s wdtipid() function.
$pid = POSIX::waitpid(-1, &POSIX::WNOHANG);
print "status =", ($? / 256), "\n";
wcstombs
This is identical to the C functiomcstombs()
wctomb This is identical to the C functiomctomb() .
write Write to a file. This uses file descriptors such as those obtained by EDiBHX::open
$fd = POSIX::open("foo", &POSIX::0_WRONLY);
$buf = "hello";
$bytes = POSIX::write($b, $buf, 5);
Returnsundef on failure.
CLASSES

POSIX::SigAction

new

POSIX::SigSet

new

addset

Creates a neWROSIX::SigAction object which corresponds to thes€uct

sigaction . This object will be destroyed automatically when it is no longer needed. The first
parameter is the fully—qualified name of a sub which is a signal-handler. The second parameter
is aPOSIX::SigSet object. The third parameter contains sheflags

$sigset = POSIX::SigSet—>new;
$sigaction = POSIX::SigAction—>new('main::handler’, $sigset, &POSIX:

This POSIX::SigAction object should be used with tR&OSIX::sigaction() function.

Create a new SigSet object. This object will be destroyed automatically when it is no longer
needed. Arguments may be supplied to initialize the set.

Create an empty set.

$sigset = POSIX::SigSet—>new;
Create a set with SIGUSR1.

$sigset = POSIX::SigSet—>new(&POSIX::SIGUSR1);
Add a signal to a SigSet object.

$sigset—>addset(&POSIX::SIGUSR2);

Returnsundef on failure.

08-0Oct-1996

Version 5.003 483

POSIX Perl Programmers Reference Guide POSIX

delset Remove a signal from the SigSet object.
$sigset—>delset(&POSIX::SIGUSR?2);
Returnsundef on failure.
emptyset Initialize the SigSet object to be empty.
$sigset—>emptyset();
Returnsundef on failure.
fillset Initialize the SigSet object to include all signals.
$sigset—>fillset();
Returnsundef on failure.

ismember
Tests the SigSet object to see if it contains a specific signal.

if($sigset—>ismember(&POSIX::SIGUSR1)){
print "contains SIGUSR1\n";

}
POSIX::Termios

new Create a new Termios object. This object will be destroyed automatically when it is no longer
needed.

$termios = POSIX::Termios—>new;
getattr Get terminal control attributes.
Obtain the attributes for stdin.
$termios—>getattr()
Obtain the attributes for stdout.
$termios—>getattr(1)
Returnsundef on failure.

getcc Retrieve a value from the c_cc field of a termios object. The c_cc field is an array so an index
must be specified.

$c_cc[1] = $termios—>getcc(1);
getcflag Retrieve the c_cflag field of a termios object.

$c_cflag = $termios—>getcflag;
getiflag Retrieve the c_iflag field of a termios object.

$c_iflag = $termios—>getiflag;

getispeed
Retrieve the input baud rate.

$ispeed = $termios—>getispeed,;
getlflag Retrieve the c_lIflag field of a termios object.

$c_lflag = $termios—>getlflag;

484 Version 5.003 08-0Oct-1996

POSIX Perl Programmers Reference Guide POSIX

getoflag Retrieve the c_oflag field of a termios object.
$c_oflag = $termios—>getoflag;

getospeed
Retrieve the output baud rate.

$ospeed = $termios—>getospeed;
setattr Set terminal control attributes.
Set attributes immediately for stdout.
$termios—>setattr(1, &POSIX:: TCSANOW);
Returnsundef on failure.

setcc Set a value in the c_cc field of a termios object. The c_cc field is an array so an index must be
specified.

$termios—>setcc(&POSIX::VEOF, 1);
setcflag Set the c_cflag field of a termios object.
$termios—>setcflag(&POSIX::CLOCAL);
setiffag Set the c_iflag field of a termios object.
$termios—>setiflag(&POSIX::BRKINT);
setispeed Set the input baud rate.
$termios—>setispeed(&POSIX::B9600);
Returnsundef on failure.
setlflag Set the c_lflag field of a termios object.
$termios—>setlflag(&POSIX::ECHO);
setoflag Set the c_oflag field of a termios object.
$termios—>setoflag(&POSIX::OPOST);

setospeed
Set the output baud rate.

$termios—>setospeed(&POSIX::B9600);
Returnsundef on failure.

Baud rate values
B38400 B75 B200 B134 B300 B1800 B150 BO B19200 B1200 B9600 B600 B4800 B50 B2400
B110

Terminal interface values

TCSADRAIN TCSANOW TCOON TCIOFLUSH TCOFLUSH TCION TCIFLUSH
TCSAFLUSH TCIOFF TCOOFF

c_cc field values

VEOF VEOL VERASE VINTR VKILL VQUIT VSUSP VSTART VSTOP VMIN VTIME
NCCS

c_cflag field values
CLOCAL CREAD CSIZE CS5 CS6 CS7 CS8 CSTOPB HUPCL PARENB PARODD

08-0Oct-1996 Version 5.003 485

POSIX

Perl Programmers Reference Guide POSIX

c_iflag field values

BRKINT ICRNL IGNBRK IGNCR IGNPAR INLCR INPCK ISTRIP IXOFF IXON PARMRK

c_lflag field values

ECHO ECHOE ECHOK ECHONL ICANON IEXTEN ISIG NOFLSH TOSTOP

c_oflag field values

OPOST

PATHNAME CONSTANTS

Constants

_PC_CHOWN_RESTRICTED _PC_LINK_MAX _PC_MAX_CANON _PC_MAX_INPUT
_PC_NAME_MAX _PC_NO_TRUNC _PC_PATH_MAX PC_PIPE_BUF _PC_VDISABLE

POSIX CONSTANTS

Constants

_POSIX_ARG_MAX _POSIX_CHILD_MAX _POSIX_CHOWN_RESTRICTED
_POSIX_JOB_CONTROL _POSIX_LINK_MAX _POSIX_MAX_CANON
_POSIX_MAX_INPUT _POSIX_NAME_MAX _POSIX_NGROUPS_MAX
_POSIX_NO_TRUNC _POSIX_OPEN_MAX _POSIX_PATH_MAX _POSIX_PIPE_BUF
_POSIX_SAVED_IDS _POSIX_SSIZE_MAX _POSIX_STREAM_MAX
_POSIX_TZNAME_MAX _POSIX_VDISABLE _POSIX_VERSION

SYSTEM CONFIGURATION

Constants

ERRNO

Constants

FCNTL

Constants

FLOAT

Constants

_SC_ARG_MAX _SC_CHILD_MAX _SC_CLK_TCK _SC_JOB_CONTROL
_SC_NGROUPS_MAX _SC_OPEN_MAX _SC_SAVED_IDS _SC_STREAM_MAX
_SC_TZNAME_MAX _SC_VERSION

E2BIG EACCES EAGAIN EBADF EBUSY ECHILD EDEADLK EDOM EEXIST EFAULT
EFBIG EINTR EINVAL EIO EISDIR EMFILE EMLINK ENAMETOOLONG ENFILE
ENODEV ENOENT ENOEXEC ENOLCK ENOMEM ENOSPC ENOSYS ENOTDIR
ENOTEMPTY ENOTTY ENXIO EPERM EPIPE ERANGE EROFS ESPIPE ESRCH EXDEV

FD_CLOEXEC F_DUPFD F_GETFD F_GETFL F_GETLK F_OK F_RDLCK F_SETFD
F_SETFL F_SETLK F_SETLKW F_UNLCK F_WRLCK O_ACCMODE O_APPEND
O_CREAT O_EXCL O_NOCTTY O_NONBLOCK O RDONLY O _RDWR O_TRUNC
O_WRONLY

DBL_DIG DBL_EPSILON DBL_MANT_DIG DBL_MAX DBL_MAX_10_EXP
DBL_MAX_EXP DBL_MIN DBL_MIN_10_EXP DBL_MIN_EXP FLT_DIG FLT_EPSILON
FLT_MANT_DIG FLT_MAX FLT_MAX_10_EXP FLT_MAX_EXP FLT_MIN
FLT_MIN_10_EXP FLT_MIN_EXP FLT_RADIX FLT_ROUNDS LDBL_DIG
LDBL_EPSILON LDBL_MANT_DIG LDBL_MAX LDBL_MAX_10_EXP

LDBL_MAX_EXP LDBL_MIN LDBL_MIN_10_EXP LDBL_MIN_EXP

486

Version 5.003 08-0ct—-1996

POSIX Perl Programmers Reference Guide POSIX

LIMITS
Constants
ARG_MAX CHAR_BIT CHAR_MAX CHAR_MIN CHILD_MAX INT_MAX INT_MIN
LINK_MAX LONG_MAX LONG_MIN MAX_CANON MAX_INPUT MB_LEN_MAX
NAME_MAX NGROUPS_ MAX OPEN_MAX PATH_MAX PIPE_BUF SCHAR_MAX
SCHAR_MIN SHRT_MAX SHRT_MIN SSIZE MAX STREAM_MAX TZNAME_MAX
UCHAR_MAX UINT_MAX ULONG_MAX USHRT_MAX
LOCALE
Constants
LC_ALL LC COLLATE LC_CTYPE LC_MONETARY LC_NUMERIC LC_TIME
MATH
Constants
HUGE_VAL
SIGNAL
Constants
SA_NOCLDSTOP SIGABRT SIGALRM SIGCHLD SIGCONT SIGFPE SIGHUP SIGILL
SIGINT SIGKILL SIGPIPE SIGQUIT SIGSEGV SIGSTOP SIGTERM SIGTSTP SIGTTIN
SIGTTOU SIGUSR1 SIGUSR2 SIG_BLOCK SIG_DFL SIG_ERR SIG_IGN SIG_SETMASK
SIG_UNBLOCK
STAT
Constants

S_IRGRP S_IROTH S_IRUSR S_IRWXG S_IRWXO S_IRWXU S_ISGID S_ISUID
S IWGRP S_IWOTH S_IWUSR S_IXGRP S_IXOTH S_IXUSR

Macros S_ISBLK S_ISCHR S_ISDIR S_ISFIFO S_ISREG
STDLIB

Constants
EXIT_FAILURE EXIT_SUCCESS MB_CUR_MAX RAND_MAX

STDIO

Constants
BUFSIZ EOF FILENAME_MAX L_ctermid L_cuserid L_tmpname TMP_MAX

TIME

Constants
CLK_TCK CLOCKS_PER_SEC

UNISTD

Constants

R_OK SEEK_CUR SEEK_END SEEK_SET STDIN_FILENO STDOUT_FILENO
STRERR_FILENO W_OK X_OK

WAIT

Constants
WNOHANG WUNTRACED

08-0Oct-1996 Version 5.003 487

POSIX Perl Programmers Reference Guide POSIX

Macros ~ WIFEXITED WEXITSTATUS WIFSIGNALED WTERMSIG WIFSTOPPED WSTOPSIG

CREATION
This document generated by ./mkposixman.PL version 19960129.

488 Version 5.003 08-0Oct-1996

SDBM_File Perl Programmers Reference Guide SDBM_File

NAME
SDBM_File - Tied access to sdbm files

SYNOPSIS
use SDBM_File;

tie(%h, 'SDBM_File’, 'Op.dbmx’, O_RDWR|O_CREAT, 0640);
untie %h;

DESCRIPTION
Seetie

08-0Oct-1996 Version 5.003 489

Safe Perl Programmers Reference Guide Safe
NAME

Safe — Compile and execute code in restricted compartments
SYNOPSIS

WARNING

The authors makeo warranty, implied or otherwise, about the suitability of this software for safety or
security purposes.

$compartment = new Safe;
$compartment->permit(qw(time sort :browse));
$result = $compartment—>reval($unsafe_code);

DESCRIPTION

The Safe extension module allows the creation of compartments in which perl code can be evaluated. Each
compartment has

a new namespace

The "root" of the namespace (i.e. "main::") is changed to a different package and code evaluated
in the compartment cannot refer to variables outside this namespace, even with run-time glob
lookups and other tricks.

Code which is compiled outside the compartment can choose to place variables sitaréor
variables with) the compartment's namespace and only that data will be visible to code evaluated
in the compartment.

By default, the only variables shared with compartments are the "underscore" vaialaled

@_ (and, technically, the less frequently used %_, the _ filehandle and so on). This is because
otherwise perl operators which default§o will not work and neither will the assignment of
arguments to @_ on subroutine entry.

an operator mask

Each compartment has an associated "operator mask". Recall that perl code is compiled into an
internal format before execution. Evaluating perl code (e.g. via "eval" or "do ‘file") causes the
code to be compiled into an internal format and then, provided there was no error in the
compilation, executed. Code evaulated in a compartment compiles subject to the compartment's
operator mask. Attempting to evaulate code in a compartment which contains a masked operator
will cause the compilation to fail with an error. The code will not be executed.

The default operator mask for a newly created compartment is the ‘:default’ optag.

It is important that you read the Opcode(3) module documentation for more information,
especially for detailed definitions of opnames, optags and opsets.

Since it is only at the compilation stage that the operator mask applies, controlled access to
potentially unsafe operations can be achieved by having a handle to a wrapper subroutine
(written outside the compartment) placed into the compartment. For example,

$cpt = new Safe;
sub wrapper {
vet arguments and perform potentially unsafe operations

}
$cpt—>share('&wrapper’);

The authors shall not in any case be liable for special, incidental, consequential, indirect or other similar
damages arising from the use of this software.

490

Version 5.003 08-0ct—-1996

Safe Perl Programmers Reference Guide Safe

Your mileage will vary. If in any doultto not use it

RECENT CHANGES
The interface to the Safe module has changed quite dramatically since version 1 (as supplied with Perl5.002).
Study these pages carefully if you have code written to use Safe version 1 because you will need to makes
changes.

Methods in class Safe
To create a new compartment, use

$cpt = new Safe;

Optional argument is (NAMESPACE), where NAMESPACE is the root namespace to use for the
compartment (defaults to "Safe::Root0", incremented for each new compartment).

Note that version 1.00 of the Safe module supported a second optional parameter, MASK. That functionality
has been withdrawn pending deeper consideration. Use the permit and deny methods described below.

The following methods can then be used on the compartment object returned by the above constructor. The
object argument is implicit in each case.
permit (OP, ...)
Permit the listed operators to be used when compiling code in the compartmeshdition to
any operators already permitted).
permit_only (OP, ...)
Permitonly the listed operators to be used when compiling code in the compartroesthér
operators are permitted).
deny (OP, ...)
Deny the listed operators from being used when compiling code in the compartment (other
operators may still be permitted).
deny_only (OP, ...)
Deny only the listed operators from being used when compiling code in the comparafient (
other operators will be permitted).
trap (OP, ...)
untrap (OP, ...)
The trap and untrap methods are synonyms for deny and permit respectfully.
share (NAME, ...)
This shares the variable(s) in the argument list with the compartment. This is almost identical to
exporting variables using thiexporter(3)module.

Each NAME must be theame of a variable, typically with the leading type identifier included.
A bareword is treated as a function name.

Examples of legal names argfoo’ for a scalar, ‘@foo’ for an array, ‘%foo’ for a hash,
‘&foo’ or ‘foo’ for a subroutine and ‘*foo’ for a glob (i.e. all symbol table entries associated
with "foo", including scalar, array, hash, sub and filehandle).

Each NAME is assumed to be in the calling package. See share_from for an alternative method
(which share uses).

share_from (PACKAGE, ARRAYREF)

This method is similar teshare() but allows you to explicitly name the package that symbols
should be shared from. The symbol names (including type characters) are supplied as an array
reference.

$safe—>share_from('main’, ['$foo’, '%bar’, 'func’]);

08-0Oct-1996 Version 5.003 491

Safe Perl Programmers Reference Guide Safe

varglob (VARNAME)

This returns a glob reference for the symbol table entry of VARNAME in the package of the
compartment. VARNAME must be thrame of a variable without any leading type marker. For
example,

$cpt = new Safe 'Root’;

$Root::foo = "Hello world";

Equivalent version which doesn’t need to know $cpt’'s package name:
${$cpt—>varglob('foo’)} = "Hello world";

reval (STRING)
This evaluates STRING as perl code inside the compartment.

The code can only see the compartment's namespace (as returnedrbgt theethod). The
compartment's root package appears to be rtten:: package to the code inside the
compartment.

Any attempt by the code in STRING to use an operator which is not permitted by the
compartment will cause an error (at run—time of the main program but at compile-time for the
code in STRING). The error is of the form "%s trapped by operation mask operation...".

If an operation is trapped in this way, then the code in STRING will not be executed. If such a
trapped operation occurs or any other compile—time or return errord@én set to the error
message, just as with amal()

If there is no error, then the method returns the value of the last expression evaluated, or a return
statement may be used, just as with subroutinesesal{) . The context (list or scalar) is
determined by the caller as usual.

This behaviour differs from the beta distribution of the Safe extension where earlier versions of
perl made it hard to mimic the return behaviour ofekial() command and the context was
always scalar.

Some points to note:

If the entereval op is permitted then the code can use eval "..." to ‘hide’ code which might use
denied ops. This is not a major problem since when the code tries to execute the eval it will fail
because the opmask is still in effect. However this technique would allow clever, and possibly
harmful, code to ‘probe’ the boundaries of what is possible.

Any string eval which is executed by code executing in a compartment, or by code called from
code executing in a compartment, will be eval‘'d in the namespace of the compartment. This is
potentially a serious problem.

Consider a functiofioo() in package pkg compiled outside a compartment but shared with it.
Assume the compartment has a root package called ‘Ro@b()f contains an eval statement
like eval ‘$foo = 1’ then, normally$pkg::foo will be set to 1. Ifoo() is called from the
compartment (by whatever means) then instead of seipkg::foo, the eval will actually
set$Root::pkg::foo.

This can easily be demonstrated by using a module, such as the Socket module, which uses eval
"..." as part of an AUTOLOAD function. You can ‘use’ the module outside the compartment and
share an (autoloaded) function with the compartment. If an autoload is triggered by code in the
compartment, or by any code anywhere that is called by any means from the compartment, then
the eval in the Socket module’'s AUTOLOAD function happens in the namespace of the
compartment. Any variables created or used by the eval‘d code are now under the control of the
code in the compartment.

A similar effect applies tall runtime symbol lookups in code called from a compartment but not
compiled within it.

492 Version 5.003 08-0Oct-1996

Safe Perl Programmers Reference Guide Safe

rdo (FILENAME)

This evaluates the contents of file FILENAME inside the compartment. See above
documentation on theeval method for further details.

root (NAMESPACE)
This method returns the name of the package that is the root of the compartment's namespace.

Note that this behaviour differs from version 1.00 of the Safe module where the root module
could be used to change the namespace. That functionality has been withdrawn pending deeper
consideration.

mask (MASK)
This is a get—or—set method for the compartment's operator mask.

With no MASK argument present, it returns the current operator mask of the compartment.

With the MASK argument present, it sets the operator mask for the compartment (equivalent to
calling the deny_only method).
Some Safety Issues
This section is currently just an outline of some of the things code in a compartment might do (intentionally
or unintentionally) which can have an effect outside the compartment.
Memory Consuming all (or nearly all) available memory.
CPU Causing infinite loops etc.

Snooping Copying private information out of your system. Even something as simple as your user name is
of value to others. Much useful information could be gleaned from your environment variables
for example.

Signals Causing signals (especially SIGFPE and SIGALARM) to affect your process.

Setting up a signal handler will need to be carefully considered and controlled. What mask is in
effect when a signal handler gets called? If a user can get an imported function to get an
exception and call the user's signal handler, does that user's restricted mask get re-instated
before the handler is called? Does an imported handler get called with its original mask or the
user's one?

State Changes
Ops such as chdir obviously effect the process as a whole and not just the code in the
compartment. Ops such as rand and srand have a similar but more subtle effect.

AUTHOR
Originally designed and implemented by Malcolm Beattie, mbeattie@sable.ox.ac.uk.

Reworked to use the Opcode module and other changes added by Tim Bumd&uxdce @ig.co.uk.

08-0Oct-1996 Version 5.003 493

Dict Perl Programmers Reference Guide Dict

NAME
Search::Dict, look — search for key in dictionary file

SYNOPSIS

use Search::Dict;
look *FILEHANDLE, $key, $dict, $fold;

DESCRIPTION

Sets file position in FILEHANDLE to be first line greater than or equal (stringwisgkég . Returns the
new file position, or -1 if an error occurs.

The flags specify dictionary order and case folding:
If $dict is true, search by dictionary order (ignore anything but word characters and whitespace).

If $fold is true, ignore case.

494 Version 5.003 08-0Oct-1996

SelectSaver Perl Programmers Reference Guide SelectSaver

NAME
SelectSaver — save and restore selected file handle

SYNOPSIS
use SelectSaver;

{
my $saver = new SelectSaver(FILEHANDLE);
FILEHANDLE is selected

}

previous handle is selected

{

my $saver = new SelectSaver;
new handle may be selected, or not

}

previous handle is selected

DESCRIPTION

A SelectSaver object contains a reference to the file handle that was selected when it was created. If its

new method gets an extra parameter, then that parameter is selected; otherwise, the selected file handle
remains unchanged.

When aSelectSaver is destroyed, it re-selects the file handle that was selected when it was created.

08-0Oct-1996 Version 5.003 495

SelfLoader Perl Programmers Reference Guide SelfLoader

NAME
SelfLoader - load functions only on demand

SYNOPSIS

package FOOBAR,;

use SelfLoader;

... (initializing code)

_ DATA__

sub{....
DESCRIPTION

This module tells its users that functions in the FOOBAR package are to be autoloaded from after the
__DATA__ token. See alsautoloading in perlsub

The _ DATA _ token

The __ DATA__ token tells the perl compiler that the perl code for compilation is finished. Everything after
the _ DATA__ token is available for reading via the filehandle FOOBAR::DATA, where FOOBAR is the
name of the current package when th®ATA__ token is reached. This works just the same &ND___

does in package ‘main‘, but for other modules data aft&ND___is not automatically retreivable , whereas
data after DATA__is. The_ DATA__ token is not recognized in versions of perl prior to 5.001m.

Note that it is possible to have DATA__ tokens in the same package in multiple files, and that the last
__DATA__ token in a given package that is encountered by the compiler is the one accessible by the
filehandle. This also applies to END__ and main, i.e. if the ‘main’ program has anEND__, but a

module ‘require'd (_not_ ‘use‘'d) by that program has a ‘package main; declaration followed by an

‘ DATA__ ', then theDATAfilehandle is set to access the data after tieATA _ in the module, _not_

the data after the END__ token in the ‘main’ program, since the compiler encounters the ‘require‘d file
later.

SelfLoader autoloading

The SelfLoader works by the user placing the DATA___tokenafter perl code which needs to be compiled
and run at ‘require’ time, buiefore subroutine declarations that can be loaded in later — usually because
they may never be called.

The SelfLoader will read from the FOOBAR::DATA filehandle to load in the data afteDATA _, and

load in any subroutine when it is called. The costs are the one-time parsing of the datdDa#fiek , and

a load delay for the _first_call of any autoloaded function. The benefits (hopefully) are a speeded up
compilation phase, with no need to load functions which are never used.

The SelfLoader will stop reading from _DATA__if it encounters the END__ token - just as you would
expect. If the END__ token is present, and is followed by the token DATA, thenS#l#_oader leaves
the FOOBAR::DATA filehandle open on the line after that token.

The SelfLoader exports theAUTOLOADBubroutine to the package using BedfLoader, and this loads the
called subroutine when it is first called.

There is no advantage to putting subroutines which will _always_ be called afteDXA&A__ token.

Autoloading and package lexicals

A ‘my $pack_lexical statement makes the varialfipack_lexical local _only_ to the file up to
the _ DATA__ token. Subroutines declared elsewhere _cannot_ see these types of variables, just as if you
declared subroutines in the package but in another file, they cannot see these variables.

So specifically, autoloaded functions cannot see package lexicals (this applies to I#elflthaeder and
the Autoloader). Thears pragma provides an alternative to defining package—-level globals that will be
visible to autoloaded routines. See the documentatiafa@in the pragma section perimod

496 Version 5.003 08-0Oct-1996

SelfLoader Perl Programmers Reference Guide SelfLoader

SelfLoader and AutoLoader

The SelfLoader can replace the AutoLoader - just change ‘use AutoLoader’ to ‘use SelfLoader’ (though

note that theSelfLoader exports the AUTOLOAD function - but if you have your own AUTOLOAD and

are using the AutoLoader too, you probably know what you‘re doing), and tB&ID _ token to
DATA__. You will need perl version 5.001m or later to use this (version 5.001 with all patches up to

Etch m).
There is no need to inherit from tBelfLoader.

The SelfLoader works similarly to the AutoLoader, but picks up the subs from after tBATA _instead

of in the ‘lib/auto’ directory. There is a maintainance gain in not needing to run AutoSplit on the module at
installation, and a runtime gain in not needing to keep opening and closing files to load subs. There is a
runtime loss in needing to parse the code after ti®ATA__ . Details of theAutoLoader and another view

of these distinctions can be found in that module‘s documentation.

__DATA__, END__, and the FOOBAR::DATA filehandle.
This section is only relevant if you want to use H@OBAR::DATAtogether with th&elfLoader.

Data after the DATA __ token in a module is read using the FOOBAR::DATA filehandleEND___ can
still be used to denote the end of theDATA __ section if followed by the token DATA - this is supported
by the SelfLoader. The FOOBAR::DATAfilehandle is left open if an END__ followed by a DATA is
found, with the filehandle positioned at the start of the line after tB8D__ token. If no__ END__ token

is present, or an_END___token with no DATA token on the same line, then the filehandle is closed.

The SelfLoader reads from wherever the current position of B@OBAR::DATA filehandle is, until the
EOF or__END__. This means that if you want to use that filehandle (and ONLY if you want to), you
should either

1. Put all your subroutine declarations immediately after tHieATA _ token and put your own data after
those declarations, using theEND__ token to mark the end of subroutine declarations. You must also
ensure that th&elfLoader reads first by callingSelfLoader—>load_stubs() i, or by using a
function which is selfloaded;

or

2. You should read theOOBAR::DATAfilehandle first, leaving the handle open and positioned at the first
line of subroutine declarations.

You could conceivably do both.

Classes and inherited methods.

For modules which are not classes, this section is not relevant. This section is only relevant if you have
methods which could be inherited.

A subroutine stub (or forward declaration) looks like
sub stub;

i.e. it is a subroutine declaration without the body of the subroutine. For modules which are not classes, there
is no real need for stubs as far as autoloading is concerned.

For modules which ARE classes, and need to handle inherited methods, stubs are needed to ensure that the
method inheritance mechanism works properly. You can load the stubs into the module at ‘require’ time, by
adding the statemet8elfLoader—>load_stubs() ;" to the module to do this.

The alternative is to put the stubs in before th®ATA _ token BEFORE releasing the module, and for

this purpose th®evel::SelfStubber module is available. However this does require the extra step of
ensuring that the stubs are in the module. If this is done | strongly recommend that this is done BEFORE
releasing the module - it should NOT be done at install time in general.

08-0Oct-1996 Version 5.003 497

SelfLoader Perl Programmers Reference Guide SelfLoader

Multiple packages and fully qualified subroutine names

Subroutines in multiple packages within the same file are supported — but you should note that this requires
exporting theSelfLoader::AUTOLOAD to every package which requires it. This is done automatically

by the SelfLoader when it first loads the subs into the cache, but you should really specify it in the
initialization before the DATA__ by putting a ‘use SelfLoader’ statement in each package.

Fully qualified subroutine names are also supported. For example,

_ DATA_

sub foo::bar {23}
package baz;
sub dob {32}

will all be loaded correctly by thBelfLoader, and theSelfLoader will ensure that the packages ‘foo’ and
‘baz’ correctly have th&elfLoader AUTOLOADNethod when the data afterDATA__is first parsed.

498

Version 5.003 08-0ct—-1996

Shell Perl Programmers Reference Guide Shell

NAME
Shell - run shell commands transparently within perl

SYNOPSIS
See below.

DESCRIPTION

Date: Thu, 22 Sep 94 16:18:16 —0700

Message-Id: <9409222318.AA17072@scalpel.netlabs.com>
To: perl5—porters@isu.edu

From: Larry Wall <lwall@scalpel.netlabs.com>

Subject: a new module | just wrote

Here's one that'll whack your mind a little out.
#1/usr/bin/perl
use Shell;

$foo = echo("howdy", "<funny>", "world");
print $foo;

$passwd = cat("</etc/passwd");
print $passwd;

sub ps;
print ps —ww;

cp("/etc/passwd”, "/tmp/passwd");

That's maybe too gonzo. It actually exports an AUTOLOAD to the current package (and uncovered a bug in
Beta 3, by the way). Maybe the usual usage should be

use Shell qw(echo cat ps cp);
Larry

AUTHOR
Larry Wall

08-0Oct-1996 Version 5.003 499

Socket Perl Programmers Reference Guide Socket

NAME

SYNO

Socket, sockaddr_in, sockaddr_un, inet_aton, inet ntoa - load the C socket.h defines and structure
manipulators

PSIS
use Socket;

$proto = getprotobyname('udp’);

socket(Socket_Handle, PF_INET, SOCK_DGRAM, $proto);
$iaddr = gethostbyname('hishost.com’);

$port = getservbyname('time’, 'udp’);

$sin = sockaddr_in($port, $iaddr);

send(Socket_Handle, 0, 0, $sin);

$proto = getprotobyname('tcp’);

socket(Socket_Handle, PF_INET, SOCK_STREAM, $proto);
$port = getservbyname('smtp’);

$sin = sockaddr_in($port,inet_aton("127.1"));

$sin = sockaddr_in(7,inet_aton("localhost"));

$sin = sockaddr_in(7,INADDR_LOOPBACK);
connect(Socket_Handle,$sin);

($port, $iaddr) = sockaddr_in(getpeername(Socket_Handle));
$peer_host = gethostbyaddr($iaddr, AF_INET);
$peer_addr = inet_ntoa($iaddr);

$proto = getprotobyname('tcp’);

socket(Socket_Handle, PF_UNIX, SOCK_STREAM, $proto);
unlink(’/tmp/usock’);

$sun = sockaddr_un(’/tmp/usock’);
connect(Socket_Handle,$sun);

DESCRIPTION

This module is just a translation of thes@cket.hfile. Unlike the old mechanism of requiring a translated
socket.phfile, this uses thé2xs program (see the Perl source distribution) and your native C compiler. This
means that it has a far more likely chance of getting the humbers right. This includes all of the commonly
used pound-defines like AF_INET, SOCK_STREAM, etc.

In addition, some structure manipulation functions are available:

inet_aton HOSTNAME

Takes a string giving the name of a host, and translates that to the 4-byte string (structure). Takes arguments
of both the ‘rtfm.mit.edu’ type and ‘18.181.0.24". If the host name cannot be resolved, returns undef.

inet_ntoa IP_ADDRESS

Takes a four byte ip address (as returnedniey aton()) and translates it into a string of the form
‘d.d.d.d’ where the ‘d‘'s are numbers less than 256 (the normal readable four dotted number notation for
internet addresses).

INADDR_ANY

Note: does not return a number, but a packed string.

Returns the 4-byte wildcard ip address which specifies any of the hosts ip addresses. (A particular machine
can have more than one ip address, each address corresponding to a particular network interface. This

wildcard address allows you to bind to all of them simultaneously.) Normally equivalent to
inet_aton(‘0.0.0.0").

500

Version 5.003 08-0ct—-1996

Socket Perl Programmers Reference Guide Socket

INADDR_LOOPBACK
Note — does not return a number.

Returns the 4-byte loopback address. Normally equivalent to inet_aton(‘localhost’).

INADDR_NONE
Note — does not return a number.

Returns the 4-byte invalid ip address. Normally equivalent to inet_aton(‘255.255.255.255’).

sockaddr_in PORT, ADDRESS

sockaddr_in SOCKADDR _IN

In an array context, unpacks its SOCKADDR_IN argument and returns an array consisting of (PORT,
ADDRESS). In a scalar context, packs its (PORT, ADDRESS) arguments as a SOCKADDR_IN and returns
it. If this is confusing, uspack_sockaddr_in() andunpack_sockaddr_in() explicitly.

pack_sockaddr_in PORT, IP_ADDRESS

Takes two arguments, a port number and a 4 byte IP_ADDRESS (as retuiinetl_hton()). Returns

the sockaddr_in structure with those arguments packed in with AF_INET filled in. For internet domain
sockets, this structure is normally what you need for the argumdritedif) , connect() , andsend() ,

and is also returned lgetpeername() , getsockname() andrecv()

unpack_sockaddr_in SOCKADDR_IN

Takes a sockaddr_in structure (as returnedpagk sockaddr_in()) and returns an array of two
elements: the port and the 4-byte ip—address. Will croak if the structure does not have AF_INET in the right
place.

sockaddr_un PATHNAME

sockaddr_un SOCKADDR_UN

In an array context, unpacks its SOCKADDR_UN argument and returns an array consisting of
(PATHNAME). In a scalar context, packs its PATHNAME arguments as a SOCKADDR_UN and returns it.
If this is confusing, uspack_sockaddr_un() andunpack_sockaddr_un() explicitly. These are

only supported if your system hasys/un.t».

pack_sockaddr_un PATH

Takes one argument, a pathname. Returns the sockaddr_un structure with that path packed in with AF_UNIX
filled in. For unix domain sockets, this structure is normally what you need for the argumbmd()n ,
connect() , andsend() , and is also returned lgetpeername() , getsockname() andrecv()

unpack_sockaddr_un SOCKADDR_UN

Takes a sockaddr_un structure (as returnegdmk_sockaddr_un()) and returns the pathname. Will
croak if the structure does not have AF_UNIX in the right place.

08-0Oct-1996 Version 5.003 501

Symbol Perl Programmers Reference Guide Symbol

NAME
Symbol — manipulate Perl symbols and their names
SYNOPSIS
use Symbol;

$sym = gensym;
open($sym, "filename");
$_ = <Bsym>;

etc.

ungensym $sym; # no effect

print qualify("x"), "\n"; # "Test:x"
print qualify("x", "FOQ"), "\n" #"FOO::x"
print qualify("BAR::x"), "\n"; # "BAR::X"

print qualify("BAR::x", "FOO"), "\n"; # "BAR:x"

print qualify("STDOUT", "FOQO"), "\n"; # "main::STDOUT" (global)
print qualify(*x), "\n"; # returns *x

print qualify(*x, "FOQO"), "\n"; # returns *x

DESCRIPTION

Symbol::gensym creates an anonymous glob and returns a reference to it. Such a glob reference can be
used as a file or directory handle.

For backward compatibility with older implementations that didn‘t support anonymous globs,
Symbol::ungensym s also provided. But it doesn't do anything.

Symbol::qualify turns unqualified symbol names into qualified variable names (e.g. "myvar" ->
"MyPackage::myvar"). If it is given a second parametgralify uses it as the default package;
otherwise, it uses the package of its caller. Regardless, global variable names (e.g. "STDOUT", "ENV",
"SIG") are always qualfied with "main::".

Qualification applies only to symbol names (strings). References are left unchanged under the assumption
that they are glob references, which are qualified by their nature.

502

Version 5.003 08-0ct—-1996

Hostname Perl Programmers Reference Guide Hostname

NAME
Sys::Hostname — Try every conceivable way to get hostname

SYNOPSIS

use Sys::Hostname;
$host = hostname;

DESCRIPTION

Attempts several methods of getting the system hosthame and then caches the result. It tries
syscall(SYS_gethostname) , ‘hostname’ | ‘'uname —-n* |, and the fileécom/host If all that fails it
croak s.

All nulls, returns, and newlines are removed from the result.

AUTHOR
David Sundstrom sunds@asictest.sc.ti.com

Texas Instruments

08-0Oct-1996 Version 5.003 503

Syslog Perl Programmers Reference Guide

Syslog

NAME

Sys::Syslog, openlog, closelog, setlogmask, syslog — Perl interface to the UNIX syslog(3) calls

SYNOPSIS
use Sys::Syslog;
openlog $ident, $logopt, $facility;
syslog $priority, $format, @args;
$oldmask = setlogmask $mask_priority;
closelog;

DESCRIPTION

Sys::Syslog is an interface to the UN$)¥slog(3) program. Calkyslog()

list of printf() args just likesyslog(3)
Syslog provides the functions:

openlog $ident, $logopt, $facility

with a string priority and a

$ident is prepended to every messa@agopt contains one or more of the worgsl, ndelay

cons nowait $facility specifies the part of the system

syslog $priority, $format, @args

If $priority permits, logg$format, ~ @args)printed as byrintf(3V)

%mis replaced withi$!" (the latest error message).

setlogmask $mask_priority
Sets log masl$mask_priority and returns the old mask.

closelog
Closes the log file.

Note thatopenlog now takes three arguments, just lig@enlog(3)

EXAMPLES
openlog($program, 'cons,pid’, 'user’);
syslog(’info’, 'this is another test’);
syslog('mailjwarning’, 'this is a better test: %d’, time);
closelog();

syslog('debug’, 'this is the last test’);

openlog("$program $$", 'ndelay’, 'user’);
syslog(’'notice’, 'fooprogram: this is really done’);
$! = 55;
syslog(’info’, ‘problem was %m’); # %m == $! in syslog(3)
DEPENDENCIES
Sys::Syslogneedssyslog.phwhich can be created witiPph .
SEE ALSO
syslog(3)
AUTHOR
Tom Christiansentchrist@perl.corm and Larry Wall swall@sems.com

, with the addition that

504 Version 5.003

08-0Oct-1996

Cap Perl Programmers Reference Guide Cap

NAME
Term::Cap — Perl termcap interface

SYNOPSIS
require Term::Cap;
$terminal = Tgetent Term::Cap { TERM => undef, OSPEED => $ospeed };
$terminal->Trequire(qw/ce ku kd/);
$terminal->Tgoto('cm’, $col, $row, $FH);
$terminal—>Tputs('dl’, $count, $FH);
$terminal->Tpad($string, $count, $FH);

DESCRIPTION
These are low-level functions to extract and use capabilities from a terminal capability (termcap) database.

The Tgetent function extracts the entry of the specified terminal tyE&RM (defaults to the environment
variableTERM from the database.

It will look in the environment for RERMCAPvariable. If found, and the value does not begin with a slash,

and the terminal type name is the same as the environment BERN| the TERMCAPstring is used

instead of reading a termcap file. If it does begin with a slash, the string is used as a path name of the
termcap file to search. TERMCAPdoes not begin with a slash and name is different f&RM Tgetent

searches the file8SHOME/.termcap , letc/termcap and/usr/share/misc/termcapin that order, unless the
environment variabl@ ERMPATHexists, in which case it specifies a list of file pathnames (separated by
spaces or colons) to be searcirestead Whenever multiple files are searched and a tc field occurs in the
requested entry, the entry it names must be found in the same file or one of the succeeding files. If there is a
‘te=... in theTERMCAPenvironment variable string it will continue the search in the files as above.

OSPEEDis the terminal output bit rate (often mistakenly called the baud r@®PEEDcan be specified as
either a POSIX termios/SYSV termio speeds (where 9600 equals 9600) or an old BSD-style speeds (where
13 equals 9600).

Tgetent returns a blessed object reference which the user can then use to send the control strings to the
terminal usinglputs andTgoto. It callscroak on failure.

Tgoto decodes a cursor addressing string with the given parameters.

The output strings fof puts are cached for counts of 1 for performantgoto and Tpad do not cache.
$self->{ xx} is the raw termcap data afigelf—>{xx} is the cached version.

print $terminal->Tpad($self->{ xx}, 1);
Tgoto, Tputs, andTpad return the string and will also output the stringEH if specified.
The extracted termcap entry is available in the objegsa—>{TERMCAP}.

EXAMPLES

Get terminal output speed

require POSIX;

my $termios = new POSIX::Termios;
$termios—>getattr;

my $ospeed = $termios—>getospeed;

Old-style ioctl code to get ospeed:

require ’ioctl.pl’;

ioctl(TTY,$TIOCGETP,$sgtty);

($ispeed,$ospeed) = unpack('cc’,$sgtty);

allocate and initialize a terminal structure
$terminal = Tgetent Term::Cap { TERM => undef, OSPEED => $ospeed };

08-0Oct-1996 Version 5.003 505

Cap

Perl Programmers Reference Guide

Cap

require certain capabilities to be available
$terminal->Trequire(qw/ce ku kd/);

Output Routines, if $FH is undefined these just return the string

Tgoto does the % expansion stuff with the given args
$terminal->Tgoto('cm’, $col, $row, $FH);

Tputs doesn’t do any % expansion.
$terminal->Tputs('dl’, $count = 1, $FH);

506

Version 5.003

08-0Oct-1996

Complete Perl Programmers Reference Guide Complete

NAME
Term::Complete — Perl word completion module

SYNOPSIS
$input = complete('prompt_string’, \@completion_list);
$input = complete('prompt_string’, @completion_list);

DESCRIPTION
This routine provides word completion on the list of words in the array (or array ref).

The tty driver is put into raw mode using the system comnsdiydraw —echo and restored using
stty —raw echo

The following command characters are defined:
<tab>
Attempts word completion. Cannot be changed.
AD Prints completion list. Defined b§Term.:Complete::complete
AU Erases the current input. Defined $Verm::Complete.:kKill

, <bs>

Erases one character. Defined$%erm::Complete:.erasel and
$Term::Complete:.erase2

DIAGNOSTICS
Bell sounds when word completion fails.

BUGS
The completion charater <tab> cannot be changed.

AUTHOR
Wayne Thompson

08-0Oct-1996 Version 5.003 507

ReadLine Perl Programmers Reference Guide ReadLine

NAME

Term::ReadLine - Perl interface to varioadline packages. If no real package is found, substitutes
stubs instead of basic functions.

SYNOPSIS

use Term::ReadLine;
$term = new Term::ReadLine 'Simple Perl calc’;
$prompt = "Enter your arithmetic expression: ";
$OUT = $term->0UT || STDOUT;
while (defined ($_ = $term—>readline($prompt))) {
$res = eval($_), "\n";
warn $@ if $@;
print SOUT $res, "\n" unless $@;
$term—>addhistory($_) if AS/;

}

DESCRIPTION

This package is just a front end to some other packages. At the moment this description is written, the only
such package is Term—ReadLine, available on CPAN near you. The real target of this stub package is to set
up a common interface to whatever Readline emerges with time.

Minimal set of supported functions
All the supported functions should be called as methods, i.e., either as

$term = new Term::ReadLine 'name’;
or as
$term->addhistory('row’);

where$term is a return value of Term::ReadLine—>Init.

ReadLine returns the actual package that executes the commands. Among possible values are
Term::ReadLine::Gnu , Term::ReadLine::Perl , Term::ReadLine::Stub
Exporter

new returns the handle for subsequent calls to following functions. Argument is the name of the

application. Optionally can be followed by two argumentsifbrand OUT filehandles.
These arguments should be globs.

readline gets an input linepossiblywith actualreadline support. Trailing newline is removed.
Returnsundef onEOF

addhistory adds the line to the history of input, from where it can be used if the achdlihe is
present.

IN, $OUT return the filehandles for input and output wrdef if readline input and output

cannot be used for Perl.

MinLine If argument is specified, it is an advice on minimal size of line to be included into history.
undef means do not include anything into history. Returns the old value.

findConsole returns an array with two strings that give most appropriate names for files for input and
output using conventios$in", ">out"

Features Returns a reference to a hash with keys being features present in current implementation.
Several optional features are used in the minimal interégaEame should be present if
the first argument tmew is recognized, andhinline should be present MinLine
method is not dummy.autohistory should be present if lines are put into history
automatically (maybe subject MinLine), andaddhistory if addhistory =~ method
is not dummy.

508 Version 5.003 08-0Oct-1996

ReadLine Perl Programmers Reference Guide ReadLine

Actually Term::ReadLine can use some other package, that will support reacher set of commands.

EXPORTS
None

08-0Oct-1996 Version 5.003 509

Harness Perl Programmers Reference Guide Harness

NAME
Test::Harness — run perl standard test scripts with statistics

SYNOPSIS
use Test::Harness;

runtests(@tests);

DESCRIPTION

Perl test scripts print to standard outfnit N* for each single test, whelis an increasing sequence of
integers. The first line output by a standard test script.id1" with M being the number of tests that

should be run within the test script. Test::Harness::runtests(@tests) runs all the testscripts named as

arguments and checks standard output for the exp&aked' strings.

After all tests have been performedntests() prints some performance statistics that are computed by
the Benchmark module.

The test script output

Any output from the testscript to standard error is ignored and bypassed, thus will be seen by the user. Lines

written to standard output containiffgnot\s+)?ok\b/ are interpreted as feedback fantests()
All other lines are discarded.

It is tolerated if the test numbers aftéc are omitted. In this case Test::Harness maintains temporarily its

own counter until the script supplies test numbers again. So the following test script

print <<END;
1..6

not ok

ok

not ok

ok

ok

END

will generate

FAILED tests 1, 3, 6
Failed 3/6 tests, 50.00% okay

The global variabléTest::Harness::verbose is exportable and can be used torleitests()
display the standard output of the script without altering the behavior otherwise.

EXPORT
&runtests is exported by Test::Harness per default.

DIAGNOSTICS

All tests successful.\nFiles=%d, Tests=%d, %s
If all tests are successful some statistics about the performance are printed.

FAILED tests %s\n\tFailed %d/%d tests, %.2f%% okay.
For any single script that has failing subtests statistics like the above are printed.

Test returned status %d (wstat %d)
Scripts that return a non-zero exit status, I&#th>> 8 and$? are printed in a message similar to
the above.

Failed 1 test, %.2f%% okay. %s

Failed %d/%d tests, %.2f%% okay. %s
If not all tests were successful, the script dies with one of the above messages.

510 Version 5.003 08-0Oct-1996

Harness Perl Programmers Reference Guide Harness

SEE ALSO
SeeBenchmarkor the underlying timing routines.

AUTHORS
Either Tim Bunce or Andreas Koenig, we don‘t know. What we know for sure is, that it was inspired by
Larry Wall's TEST script that came with perl distributions for ages. Current maintainer is Andreas Koenig.

BUGS
Test::Harness use®*X to determine the perl binary to run the tests with. Test scripts running via the
shebang#!) line may not be portable becau®X is not consistent for shebang scripts across platforms.
This is no problem when Test::Harness is run with an absolute path to the perl binary & ¥hean be

found in the path.

08-0Oct-1996 Version 5.003 511

Abbrev Perl Programmers Reference Guide Abbrev

NAME
abbrev — create an abbreviation table from a list

SYNOPSIS

use Text::Abbrev;
abbrev $hashref, LIST

DESCRIPTION

Stores all unambiguous truncations of each element of LIST as keys key in the associative array referenced
to by $hashref. The values are the original list elements.

EXAMPLE
$hashref = abbrev qw(list edit send abort gripe);

%hash = abbrev qw(list edit send abort gripe);
abbrev $hashref, qw(list edit send abort gripe);
abbrev(*hash, qw(list edit send abort gripe));

512 Version 5.003 08-0Oct-1996

ParseWords Perl Programmers Reference Guide ParseWords

NAME
Text::ParseWords — parse text into an array of tokens

SYNOPSIS

use Text::ParseWords;

@words = "ewords($delim, $keep, @lines);
@words = &shellwords(@lines);

@words = &old_shellwords(@lines);

DESCRIPTION
"ewords() accepts a delimiter (which can be a regular expression) and a list of lines and then breaks
those lines up into a list of words ignoring delimiters that appear inside quotes.

The $keep argument is a boolean flag. If true, the quotes are kept with each word, otherwise quotes are
stripped in the splitting proceskkeep also defines whether unprotected backslashes are retained.

A &shellwords() replacement is included to demonstrate the new package. This version differs from the
original in that it will _NOT_ default to usin§_ if no arguments are given. | personally find the old
behavior to be a mis—feature.

"ewords() works by simply jamming all of @lines into a single stringsin and then pulling off
words a bit at a time untfl_ is exhausted.

AUTHORS
Hal Pomeranz (pomeranz@netcom.com), 23 March 1994

Basically an update and generalization of the old shellwords.pl. Much code shamelessly stolen from the old
version (author unknown).

08-0Oct-1996 Version 5.003 513

Soundex Perl Programmers Reference Guide Soundex

NAME
Text::Soundex — Implementation of the Soundex Algorithm as Described by Knuth
SYNOPSIS
use Text::Soundex;
$code = soundex $string; # get soundex code for a string
@codes = soundex @list; # get list of codes for list of strings

set value to be returned for strings without soundex code
$soundex_nocode ='Z000’;

DESCRIPTION

This module implements the soundex algorithm as described by Donald Knuth in Voluniée Aft of

Computer Programming. The algorithm is intended to hash words (in particular surnames) into a small
space using a simple model which approximates the sound of the word when spoken by an English speaker.
Each word is reduced to a four character string, the first character being an upper case letter and the
remaining three being digits.

If there is no soundex code representation for a string then the vasewfdex_nocode is returned.
This is initially set taundef , but many people seem to prefenamikely value likeZ000 (how unlikely this
is depends on the data set being dealt with.) Any value can be assi§sedrtdex_nocode.

In scalar contexsoundex returns the soundex code of its first argument, and in array context a list is
returned in which each element is the soundex code for the corresponding argument pEmsedeto

e.g.
@codes = soundex qw(Mike Stok);
leaves@codes containing(‘M200', ‘S320)

EXAMPLES
Knuth‘s examples of various names and the soundex codes they map to are listed below:

Euler, Ellery —> E460

Gauss, Ghosh —> G200

Hilbert, Heilbronn —-> H416
Knuth, Kant —> K530

Lloyd, Ladd —> L300
Lukasiewicz, Lissajous —> L222

So:

$code = soundex 'Knuth’; # $code contains 'K530’

@list = soundex gw(Lloyd Gauss); # @list contains 'L300’, ‘G200’
LIMITATIONS

As the soundex algorithm was originally usedong time ago in the US it considers only the English
alphabet and pronunciation.

As it is mapping a large space (arbitrary length strings) onto a small space (single letter plus 3 digits) no
inference can be made about the similarity of two strings which end up with the same soundex code. For
example, botiHilbert andHeilbronn end up with a soundex codet®416.

AUTHOR

This code was implemented by Mike Statok@cybercom.net) from the description given by Knuth.
lan Phillips {an@pipex.net) and Rich Pinder rpinder@hsc.usc.edu) supplied ideas and spotted
mistakes.

514 Version 5.003 08-0Oct-1996

Tabs Perl Programmers Reference Guide Tabs

NAME
Text::Tabs — expand and unexpand tabs per the unix expand(1) and unexpand(1)

SYNOPSIS

use Text::Tabs;

$tabstop = 4;

@lines_without_tabs = expand(@lines_with_tabs);

@lines_with_tabs = unexpand(@lines_without_tabs);
DESCRIPTION

Text::Tabs does about what the unix utilities expand(1) and unexpand(1) do. Given a line with tabs in it,
expand will replace the tabs with the appropriate number of spaces. Given a line with or without tabs in it,
unexpand will add tabs when it can save bytes by doing so. Invisible compression with plain ascii!

BUGS

expand doesn‘t handle newlines very quickly — do not feed it an entire document in one string. Instead feed
it an array of lines.

AUTHOR
David Muir Sharnoff shuir@idiom.come

08-0Oct-1996 Version 5.003 515

Wrap Perl Programmers Reference Guide Wrap

NAME
Text::Wrap — line wrapping to form simple paragraphs
SYNOPSIS
use Text:Wrap
print wrap($initial_tab, $subsequent_tab, @text);
use Text::Wrap gw(wrap $columns);
$columns = 132;

DESCRIPTION

Text::Wrap is a very simple paragraph formatter. It formats a single paragraph at a time by breaking lines at
word boundries. Indentation is controlled for the first ligéniial_tab) and all subsquent lines
($subsequent_tab) independently. $Text::Wrap::columns should be set to the full width of

your output device.

EXAMPLE

print wrap("\t",","This is a bit of text that forms
a normal book-style paragraph");

AUTHOR
David Muir Sharnoff shuir@idiom.come

516 Version 5.003 08-0Oct-1996

Hash Perl Programmers Reference Guide Hash

NAME
Tie::Hash, Tie::StdHash — base class definitions for tied hashes

SYNOPSIS
package NewHash;

require Tie::Hash;
@ISA = (Tie::Hash);

sub DELETE{ ... } # Provides needed method
sub CLEAR{... } # Overrides inherited method

package NewStdHash;
require Tie::Hash;
@ISA = (Tie::StdHash);

All methods provided by default, define only those needing overrides
sub DELETE{ ... }

package main;

tie %new_hash, 'NewHash’;
tie %new_std_hash, 'NewStdHash’;
DESCRIPTION

This module provides some skeletal methods for hash-tying classeser8&efor a list of the functions
required in order to tie a hash to a package. The basi¢iash package providesrsew method, as well as
methodsTIEHASH, EXISTS andCLEAR TheTie::StdHash package provides most methods required for
hashes irmperltie. It inherits fromTie::Hash, and causes tied hashes to behave exactly like standard hashes,
allowing for selective overloading of methods. Theav method is provided as grandfathering in the case a
class forgets to includeTdEHASH method.

For developers wishing to write their own tied hashes, the required methods are briefly defined below. See
theperltie section for more detailed descriptive, as well as example code:

TIEHASH classname, LIST

The method invoked by the commatiel %hash, classname . Associates a new hash instance
with the specified clas&IST would represent additional arguments (along the lindsgDBM_File
and compatriots) needed to complete the association.

STORE this, key, value
Store datunvalueinto keyfor the tied haskhis.

FETCH this, key
Retrieve the datum ikeyfor the tied hasthis.
FIRSTKEY this
Return the (key, value) pair for the first key in the hash.

NEXTKEY this, lastkey
Return the next (key, value) pair for the hash.

EXISTS this, key
Verify thatkeyexists with the tied haghis.

DELETE this, key
Delete the kekeyfrom the tied hasthis.

08-0Oct-1996 Version 5.003 517

Hash Perl Programmers Reference Guide Hash

CLEAR this
Clear all values from the tied hastis.

CAVEATS

The perltie documentation includes a method callBESTROYas a necessary method for tied hashes.
NeitherTie::Hash nor Tie::StdHash define a default for this method. This is a standard for class packages,
but may be omitted in favor of a simple default.

MORE INFORMATION

The packages relating to various DBM-related implemetatioBs File, NDBM_File, etc.) show examples
of general tied hashes, as does@oafig module. While these do not utiliZée::Hash, they serve as good
working examples.

518 Version 5.003 08-0Oct-1996

Scalar Perl Programmers Reference Guide Scalar

NAME
Tie::Scalar, Tie::StdScalar — base class definitions for tied scalars

SYNOPSIS
package NewScalar;
require Tie::Scalar;
@ISA = (Tie::Scalar);
Sub FETCH {... } # Provide a needed method
sub TIESCALAR({ ... } # Overrides inherited method
package NewsStdScalar;
require Tie::Scalar;
@ISA = (Tie::StdScalar);
All methods provided by default, so define only what needs be overridden
Sub FETCH {... }
package main;

tie $new_scalar, 'NewScalar’;
tie $new_std_scalar, 'NewStdScalar’;
DESCRIPTION

This module provides some skeletal methods for scalar-tying classgser8isfor a list of the functions
required in tying a scalar to a package. The bémcScalar package provides mew method, as well as
methodsTIESCALAR, FETCHandSTORE TheTie::StdScalar package provides all the methods specified

in perltie. It inherits fromTie::Scalar and causes scalars tied to it to behave exactly like the built-in scalars,
allowing for selective overloading of methods. THew method is provided as a means of grandfathering,
for classes that forget to provide their oWESCALAR method.

For developers wishing to write their own tied—scalar classes, the methods are summarized below. The
perltie section not only documents these, but has sample code as well:

TIESCALAR classname, LIST

The method invoked by the commatid $scalar, classname . Associates a new scalar
instance with the specified cladslST would represent additional arguments (along the lines of
AnyDBM_Fileand compatriots) needed to complete the association.

FETCH this
Retrieve the value of the tied scalar referencethisy

STORE this, value
Store datavaluein the tied scalar referenced thys.
DESTROY this

Free the storage associated with the tied scalar referencédsbyrhis is rarely needed, as Perl
manages its memory quite well. But the option exists, should a class wish to perform specific actions
upon the destruction of an instance.

MORE INFORMATION
The perltie section uses a good example of tying scalars by associating process IDs with priority.

08-0Oct-1996 Version 5.003 519

SubstrHash Perl Programmers Reference Guide SubstrHash

NAME

Tie::SubstrHash — Fixed—-table-size, fixed—key-length hashing

SYNOPSIS

require Tie::SubstrHash;

tie %omyhash, 'Tie::SubstrHash’, $key_len, $value_len, $table_size;

DESCRIPTION

The Tie::SubstrHash package provides a hash-table-like interface to an array of determinate size, with
constant key size and record size.

Upon tying a new hash to this package, the developer must specify the size of the keys that will be used, the
size of the value fields that the keys will index, and the size of the overall table (in terms of key-value pairs,
not size in hard memory)These values will not change for the duration of the tied .hdste
newly-allocated hash table may now have data stored and retrieved. Efforts to store more than
$table_size elements will result in a fatal error, as will efforts to store a value not exactly
$value_len characters in length, or reference through a key not exslatly len characters in length.

While these constraints may seem excessive, the result is a hash table using much less internal memory than
an equivalent freely—allocated hash table.

CAVEATS

Because the current implementation uses the table and key sizes for the hashing algorithm, there is no means
by which to dynamically change the value of any of the initialization parameters.

520

Version 5.003 08-0ct—-1996

Local Perl Programmers Reference Guide Local

NAME
Time::Local - efficiently compute time from local and GMT time

SYNOPSIS

$time = timelocal($sec,$min,$hours,$mday,$mon,$year);
$time = timegm($sec,$min,$hours,$mday,$mon,$year);

DESCRIPTION

These routines are quite efficient and yet are always guaranteed to agrelcaitime() and

gmtime() . We manage this by caching the start times of any months we've seen before. If we know the
start time of the month, we can always calculate any time within the month. The start times themselves are
guessed by successive approximation starting at the current time, since most dates seen in practice are close
to the current date. Unlike algorithms that do a binary search (calling gmtime once for each bit of the time
value, resulting in 32 calls), this algorithm calls it at most 6 times, and usually only once or twice. If you hit

the month cache, of course, it doesn't call it at all.

timelocal is implemented using the same cache. We just assume that we're translating a GMT time, and then
fudge it when we'‘re done for the timezone and daylight savings arguments. The timezone is determined by
examining the result of localtime(0) when the package is initialized. The daylight savings offset is currently
assumed to be one hour.

Both routines return -1 if the integer limit is hit. l.e. for dates after the 1st of January, 2038 on most
machines.

08-0Oct-1996 Version 5.003 521

diagnostics Perl Programmers Reference Guide diagnostics

NAME

diagnostics — Perl compiler pragma to force verbose warning diagnostics

splain — standalone program to do the same thing

SYNOPSIS

As a pragma:

use diagnostics;
use diagnostics —verbose;

enable diagnostics;
disable diagnostics;

Aa a program:

perl program 2>diag.out
splain [-V] [-p] diag.out

DESCRIPTION

The diagnostics Pragma

This module extends the terse diagnostics normally emitted by both the perl compiler and the perl interpeter,
augmenting them with the more explicative and endearing descriptions fopedldiag Like the other
pragmata, it affects the compilation phase of your program rather than merely the execution phase.

To use in your program as a pragma, merely invoke
use diagnostics;

at the start (or near the start) of your program. (Note thatt@senable perl's-w flag.) Your whole
compilation will then be subject(ed :-) to the enhanced diagnostics. These stillYDREIRR.

Due to the interaction between runtime and compiletime issues, and because it's probably not a very good
idea anyway, you may not us® diagnostics to turn them off at compiletime. However, you may
control there behaviour at runtime using ttisable() andenable() methods to turn them off and on
respectively.

The -verbose flag first prints out theperldiag introduction before any other diagnostics. The
$diagnostics::PRETTY variable can generate nicer escape sequences for pagers.

The splain Program

While apparently a whole nuther prograsplain is actually nothing more than a link to the (executable)
diagnostics.pmmodule, as well as a link to tliagnostics.podlocumentation. Thev flag is like theuse
diagnostics —verbose directive. The—p flag is like the$diagnostics::PRETTY variable.
Since you're post—processing withplain there's no sense in being ableetoable() or disable()
processing.

Output fromsplainis directed t&TDOUT, unlike the pragma.

EXAMPLES

The following file is certain to trigger a few errors at both runtime and compiletime:

use diagnostics;

print NOWHERE "nothing\n";

print STDERR "\n\tThis message should be unadorned.\n";
warn "\tThis is a user warning";

print \nDIAGNOSTIC TESTER: Please enter a <CR> here: ";
my $a, $b = scalar <STDIN>;

print "\n";

print $x/$y;

522

Version 5.003 08-0ct—-1996

diagnostics Perl Programmers Reference Guide diagnostics

If you prefer to run your program first and look at its problem afterwards, do this:

perl —w test.pl 2>test.out
splain < test.out

Note that this is not in general possible in shells of more dubious heritage, as the theoretical

(perl —w test.pl >/dev/tty) >& test.out
splain < test.out

Because you just moved the existsigout to somewhere else.

If you don‘t want to modify your source code, but still have on-the—fly warnings, do this:
exec 3>&1; perl —w test.pl 2>&1 1>&3 3>&— | splain 1>&2 3>&-

Nifty, eh?

If you want to control warnings on the fly, do something like this. Make sure you ds¢hérst, or you
won't be able to get at thenable() ordisable() methods.

use diagnostics; # checks entire compilation phase
print "\ntime for 1st bogus diags: SQUAWKINGS\n";
print BOGUS1 'nada’;
print "done with 1st bogus\n®;

disable diagnostics; # only turns off runtime warnings
print "\ntime for 2nd bogus: (squelched)\n";
print BOGUS2 'nada’;
print "done with 2nd bogus\n";

enable diagnostics; # turns back on runtime warnings
print "\ntime for 3rd bogus: SQUAWKINGS\n";
print BOGUS3 'nada’;
print "done with 3rd bogus\n®;

disable diagnostics;
print "\ntime for 4th bogus: (squelched)\n";
print BOGUS4 'nada’;
print "done with 4th bogus\n";

INTERNALS
Diagnostic messages derive from fterldiag.podfile when available at runtime. Otherwise, they may be
embedded in the file itself when the splain package is built. Sédatkefile for details.

If an extant$SIG{__WARN__} handler is discovered, it will continue to be honored, but only after the
diagnostics::splainthis() function (the module'$SIG{__WARN__} interceptor) has had its
way with your warnings.

There is a$diagnostics::DEBUG variable you may set if you're desperately curious what sorts of
things are being intercepted.

BEGIN { $diagnostics:DEBUG =1}
BUGS
Not being able to say "no diagnostics" is annoying, but may not be insurmountable.

The-pretty directive is called too late to affect matters. You have to to this insteateéoréyou load
the module.

BEGIN { $diagnostics::PRETTY =1}

| could start up faster by delaying compilation until it should be needed, but this gets a "panic: top_level
when using the pragma form in 5.001e.

08-0Oct-1996 Version 5.003 523

diagnostics Perl Programmers Reference Guide diagnostics

While it's true that this documentation is somewhat subserious, if you use a program spgaied/ou
should expect a bit of whimsy.

AUTHOR
Tom Christiansertchrist@mox.perl.com>25 June 1995.

524 Version 5.003 08-0Oct-1996

integer Perl Programmers Reference Guide integer

NAME
integer — Perl pragma to compute arithmetic in integer instead of double

SYNOPSIS

use integer;
$x = 10/3;
$x is now 3, not 3.33333333333333333

DESCRIPTION

This tells the compiler that it's okay to use integer operations from here to the end of the enclosing BLOCK.
On many machines, this doesn‘t matter a great deal for most computations, but on those without floating
point hardware, it can make a big difference.

SeePragmatic Modules

08-0Oct-1996 Version 5.003 525

less Perl Programmers Reference Guide less

NAME
less — perl pragma to request less of something from the compiler
SYNOPSIS
use less; # unimplemented
DESCRIPTION
Currently unimplemented, this may someday be a compiler directive to make certain trade—offs, such as
perhaps

use less 'memory’;
use less 'CPU’;
use less 'fat’;

526 Version 5.003 08-0Oct-1996

lib Perl Programmers Reference Guide lib

NAME
lib — manipulate @INC at compile time

SYNOPSIS
use lib LIST;
no lib LIST;

DESCRIPTION
This is a small simple module which simplifies the manipulation of @INC at compile time.

It is typically used to add extra directories to perl's search path so thauidateor require statements
will find modules which are not located on perl‘s default search path.

ADDING DIRECTORIES TO @INC
The parameters tose lib are added to the start of the perl search path. Saying

use lib LIST,;
is almostthe same as saying
BEGIN { unshift(@INC, LIST) }

For each directory in LIST (callefidir here) the lib module also checks to see if a directory called
$dir/$archname/auto exists. If so th&dir/$archname directory is assumed to be a corresponding
architecture specific directory and is added to @INC in frofdot

If LIST includes both$dir and $dir/$archname then $dir/$archname will be added to @INC
twice (if $dir/$archname/auto exists).

DELETING DIRECTORIES FROM @INC

You should normally only add directories to @INC. If you need to delete directories from @INC take care
to only delete those which you added yourself or which you are certain are not needed by other modules in
your script. Other modules may have added directories which they need for correct operation.

By default theno lib statement deletes tfiiest instance of each named directory from @INC. To delete
multiple instances of the same name from @INC you can specify the name multiple times.

To deleteall instances oéll the specified names from @INC you can specify “ALL’ as the first parameter
ofnolib . For example:

no lib qw(:ALL .);

For each directory in LIST (callefidir here) the lib module also checks to see if a directory called
$dir/$archname/auto exists. If so thé&dir/$archname directory is assumed to be a corresponding
architecture specific directory and is also deleted from @INC.

If LIST includes bottsdir and$dir/$archname then$dir/$archname will be deleted from @INC
twice (if $dir/$archname/auto exists).

RESTORING ORIGINAL @INC

When the lib module is first loaded it records the current value of @INC in an@iilayORIG_INC
To restore @INC to that value you can say

@INC = @lib::ORIG_INC;
SEE ALSO
FindBin - optional module which deals with paths relative to the source file.

AUTHOR
Tim Bunce, 2nd June 1995.

08-0Oct-1996 Version 5.003 527

overload Perl Programmers Reference Guide overload

NAME

overload — Package for overloading perl operations

SYNOPSIS

package SomeThing;

use overload

'+’ =>\&myadd,
‘=’ =>\&mysub;
etc

package main;

$a = new SomeThing 57;
$b=5+%3;

if (overload::Overloaded $b) {...}

$strval = overload::StrVval $b;

CAVEAT SCRIPTOR

Overloading of operators is a subject not to be taken lightly. Neither its precise implementation, syntax, nor
semantics are 100% endorsed by Larry Wall. So any of these may be changed at some point in the future.

DESCRIPTION

Declaration of overloaded functions

The compilation directive

package Number;

use overload
"+" =>\&add,
=" =>"muas";

declares functioumber::add() for addition, and methochuas() in the "class’Number (or one of its
base classes) for the assignment féenof multiplication.

Arguments of this directive come in (key, value) pairs. Legal values are values legal i&$ide Ja
call, so the name of a subroutine, a reference to a subroutine, or an anonymous subroutine will all work.
Legal keys are listed below.

The subroutineadd will be called to execut§a+3$b if $a is a reference to an object blessed into the
packageNumber, or if $a is not an object from a package with defined mathemagic additio$bbist a
reference to aNumber. It can also be called in other situations, liRe+=7, or $a++. See
MAGIC AUTOGENERATION (Mathemagical methods refer to methods triggered by an overloaded
mathematical operator.)

Calling Conventions for Binary Operations

The functions specified in these overload ... directive are called with three (in one particular case
with four, sed_ast Resojtarguments. If the corresponding operation is binary, then the first two arguments
are the two arguments of the operation. However, due to general object calling conventions, the first
argument should always be an object in the package, so in the situalio®aof the order of the arguments

is interchanged. It probably does not matter when implementing the addition method, but whether the
arguments are reversed is vital to the subtraction method. The method can query this information by
examining the third argument, which can take three different values:

FALSE the order of arguments is as in the current operation.

528

Version 5.003 08-0ct—-1996

overload Perl Programmers Reference Guide overload

TRUE the arguments are reversed.

undef the current operation is an assignment variant (égair=7), but the usual function is called
instead. This additional information can be used to generate some optimizations.

Calling Conventions for Unary Operations

Unary operation are considered binary operations with the second argumentubdéeig. Thus the
functions that overload$++"} is called with argumen{$a,undef,") when$a++ is executed.

Overloadable Operations
The following symbols can be specifieduse overload

e Arithmetic operations
||+|| ||+:|| n_mn on _n Nygent n*_n, ||/|| u/ " "O/" n% ||,

AN k! Mgl Mgt IS s s ||X|| =t neon

3) 3 7 vy Ty

For these operations a substituted nhon—assignment variant can be called if the assignment variant is
not available. Methods for operations",’ "-", "+=", and "-=" can be called to automatically
generate increment and decrement methods. The operaticari be used to autogenerate missing

methods for unary minus abs .

e Comparison operations
< <_.. T R sy
cmp",

,gt’, "ge’, "eq’,

If the corresponding "spaceship" variant is available, it can be used to substitute for the missing
operation. Duringort ing arrayscmp is used to compare values subjeaise overload

e Bit operations
||&|| nan nln nnegn u!n n ||,

"neg" stands for unary minus. If the method farg is not specified, it can be autogenerated using
the method for subtraction. If the method fbF Is not specified, it can be autogenerated using the
methods for bool ", or "\"\" ", or "0+".

e Increment and decrement
g m__n

If undefined, addition and subtraction methods can be used instead. These operations are called both
in prefix and postfix form.

e Transcendental functions

"atan2", "cos", "sin", "exp",

, "log", "sqrt",

If abs is unavailable, it can be autogenerated using methods for "<" or "<=>" combined with either
unary minus or subtraction.
e Boolean, string and numeric conversion
IIbOOIII, II\II\IIII, IIO+II,

If one or two of these operations are unavailable, the remaining ones can be used busibats

used in the flow control operators (likénile) and for the ternary?: " operation. These functions

can return any arbitrary Perl value. If the corresponding operation for this value is overloaded too,
that operation will be called again with this value.

e Special

"nomethod", "fallback",
seeSPECIAL SYMBOLS FO#se overload

See'"Fallback” for an explanation of when a missing method can be autogenerated.

08-0Oct-1996 Version 5.003 529

overload Perl Programmers Reference Guide overload

SPECIAL SYMBOLS FOR use overload
Three keys are recognized by Perl that are not covered by the above description.

Last Resort

"nomethod" should be followed by a reference to a function of four parameters. If defined, it is called
when the overloading mechanism cannot find a method for some operation. The first three arguments of this
function coincide with the arguments for the corresponding method if it were found, the fourth argument is
the symbol corresponding to the missing method. If several methods are tried, the last one is used. Say,
1-%$a can be equivalent to

&nomethodMethod($a,1,1,"-")

if the pair*nomethod" => "nomethodMethod" was specified in thase overload directive.

If some operation cannot be resolved, and there is no function assigmedngthod” , then an exception

will be raised viadie() — unless'fallback” was specified as a key use overload directive.

Fallback

The key "fallback" governs what to do if a method for a particular operation is not found. Three

different cases are possible depending on the valtfaltifack"

o undef Perl tries to use a substituted method (8EeGIC AUTOGENERATION If this
fails, it then tries to callsnomethod" value; if missing, an exception will be
raised.

e TRUE The same as for thendef value, but no exception is raised. Instead, it silently

reverts to what it would have done were thereis@overload present.

e defined, but FALSE No autogeneration is tried. Perl tries to calbmethod" value, and if this is
missing, raises an exception.

Copy Constructor

The value for'=" is a reference to a function with three arguments, i.e., it looks like the other vahges in
overload . However, it does not overload the Perl assignment operator. This would go against Camel hair.

This operation is called in the situations when a mutator is applied to a reference that shares its object with
some other reference, such as

$a=$b;

$at++;

To make this changga and not changéb, a copy of$$a is made, an®a is assigned a reference to this
new object. This operation is done during execution o$#ie-, and not during the assignment, (so before
the incremeng$a coincides with$$b). This is only done ifr+ is expressed via a method fer’ or
‘+=" . Note that if this operation is expressed‘#ia a nonmutator, i.e., as in

$a=$b;
$a=%a+1;

then$a does not reference a new copy$8h, since$$a does not appear as Ivalue when the above code is
executed.

If the copy constructor is required during the execution of some mutator, but a methwed faras not
specified, it can be autogenerated as a string copy if the object is a plain scalar.

Example
The actually executed code for
$a=$b;
Something else which does not modify $a or $b....
++$a;

530 Version 5.003 08-0Oct-1996

overload Perl Programmers Reference Guide overload

may be

$a=$b;
Something else which does not modify $a or $b....
$a = $a—>clone(undef,"");
$a->incr(undef,");

if $b was mathemagical, and+ was overloaded with&incr, ‘=" was overloaded with
\&clone.
MAGIC AUTOGENERATION
If a method for an operation is not found, and the valuée'faitback" is TRUE or undefined, Perl tries

to autogenerate a substitute method for the missing operation based on the defined operations.
Autogenerated method substitutions are possible for the following operations:
Assignment forms of arithmetic operations

$a+=$b can use the method for" if the method fof+=" is not defined.

Conversion operations
String, numeric, and boolean conversion are calculated in terms of one another if not
all of them are defined.

Increment and decrement

The ++$a operation can be expressed in terms$af=1 or $a+1, and$a—in
terms of$a—-=1 and$a-1.

abs(%a) can be expressed in terms$ai<0 and-$a (or 0-%$a).

Unary minus can be expressed in terms of subtraction.

Negation I andnot can be expressed in terms of boolean conversion, or string or numerical
conversion.

Concatenation can be expressed in terms of string conversion.

Comparison operations
can be expressed in terms of its "spaceship" counterpart: €ithesr cmp:

<, >, <=,>=5, =5, 1= in terms of <=>
It, gt, le, ge, eq, ne in terms of cmp
Copy operator can be expressed in terms of an assignment to the dereferenced value, if this value is

a scalar and not a reference.

WARNING

The restriction for the comparison operation is that even if, for examggy' ‘should return a blessed
reference, the autogeneratdid * function will produce only a standard logical value based on the numerical
value of the result ofcmp’. In particular, a working numeric conversion is needed in this case (possibly
expressed in terms of other conversions).

Similarly, .= andx= operators lose their mathemagical properties if the string conversion substitution is
applied.

When youchop() a mathemagical object it is promoted to a string and its mathemagical properties are lost.
The same can happen with other operations as well.

Run-time Overloading

Since alluse directives are executed at compile—time, the only way to change overloading during run—time
is to

eval 'use overload "+" => \&addmethod’;

08-0Oct-1996 Version 5.003 531

overload Perl Programmers Reference Guide overload

You can also use
eval 'no overload "+", "—-", "<="";

though the use of these constructs during run—time is questionable.

Public functions

Packageverload.pm provides the following public functions:

overload::StrVval(arg)
Gives string value odirg as in absence of stringify overloading.

overload::Overloaded(arg)
Returns true ifirg is subject to overloading of some operations.

overload::Method(obj,op)
Returnsundef or a reference to the method that implemepts

IMPLEMENTATION

What follows is subject to change RSN.

The table of methods for all operations is cached as magic in the symbol table hash for the package. The
table is rechecked for changes duede overload ,nooverload , and @ISA only duringpless ing;
so if they are changed dynamically, you'll need an additionallffdss ing to update the table.

(Every SVish thing has a magic queue, and magic is an entry in that queue. This is how a single variable may
participate in multiple forms of magic simultaneously. For instance, environment variables regularly have
two forms at once: their %ENV magic and their taint magic.)

If an object belongs to a package using overload, it carries a special flag. Thus the only speed penalty during
arithmetic operations without overloading is the checking of this flag.

In fact, if use overload is not present, there is almost no overhead for overloadable operations, so most
programs should not suffer measurable performance penalties. A considerable effort was made to minimize
the overhead when overload is used and the current operation is overloadable but the arguments in question
do not belong to packages using overload. When in doubt, test your speagsavitiverload and

without it. So far there have been no reports of substantial speed degradation if Perl is compiled with
optimization turned on.

There is no size penalty for data if overload is not used.

Copying $a=%$b) is shallow; however, a one-level-deep copying is carried out before any operation that
can imply an assignment to the obj&et (or $b) refers to, likeba++. You can override this behavior by
defining your own copy constructor (s&opy Constructor).

It is expected that arguments to methods that are not explicitly supposed to be changed are constant (but this
is not enforced).

AUTHOR

llya Zakharevich #ya@math.mps.ohio-state.etu

DIAGNOSTICS

BUGS

When Perl is run with theDo switch or its equivalent, overloading induces diagnostic messages.

Because it is used for overloading, the per—package associative array %OVERLOAD now has a special
meaning in Perl.

As shipped, mathemagical properties are not inherited via the @ISA tree.

This document is confusing.

532

Version 5.003 08-0ct—-1996

sigtrap Perl Programmers Reference Guide sigtrap

NAME
sigtrap — Perl pragma to enable simple signal handling
SYNOPSIS
use sigtrap;

use sigtrap qw(stack—-trace old-interface—signals); # equivalent
use sigtrap qw(BUS SEGV PIPE ABRT);
use sigtrap qw(die INT QUIT);
use sigtrap qw(die normal-signals);
use sigtrap qw(die untrapped normal-signals);
use sigtrap qw(die untrapped normal-signals
stack-trace any error—signals);

use sigtrap 'handler’ =>\&my_handler, 'normal-signals’;
use sigtrap gw(handler my_handler normal-signals

stack-trace error—signals);

DESCRIPTION

The sigtrap pragma is a simple interface to installing signal handlers. You can have it install one of two
handlers supplied bsigtrap itself (one which provides a Perl stack trace and one which siligly s), or
alternately you can supply your own handler for it to install. It can be told only to install a handler for
signals which are either untrapped or ignored. It has a couple of lists of signals to trap, plus you can supply
your own list of signals.

The arguments passed to e statement which invokesigtrap are processed in order. When a signal
name or the name of one sifitrap’s signal lists is encountered a handler is immediately installed, when an
option is encountered it affects subsequently installed handlers.

OPTIONS

SIGNAL HANDLERS
These options affect which handler will be used for subsequently installed signals.

stack-trace
The handler used for subsequently installed signals will output a Perl stack trace to STDERR and then
tries to dump core. This is the default signal handler.

die The handler used for subsequently installed signals d#ls (actually croak) with a message
indicating which signal was caught.
handler your-handler
your—handlerwill be used as the handler for subsequently installed siggalg—handlercan be any
value which is valid as an assignment to an elemeiiSita
SIGNAL LISTS
sigtrap has two built-in lists of signals to trap. They are:

normal-signals
These are the signals which a program might normally expect to encounter and which by default cause
it to terminate. They are HUP, INT, PIPE and TERM.

error—signals
These signals usually indicate a serious problem with the Perl interpreter or with your script. They are
ABRT, BUS, EMT, FPE, ILL, QUIT, SEGV, SYS and TRAP.

old-interface—signals

These are the signals which were trapped by default by trségdtdp interface, they are ABRT, BUS,
EMT, FPE, ILL, PIPE, QUIT, SEGV, SYS, TERM, and TRAP. If no signals or signals lists are passed
to sigtrap this list is used.

08-0Oct-1996 Version 5.003 533

sigtrap Perl Programmers Reference Guide sigtrap

OTHER

untrapped

This token tellssigtrap only to install handlers for subsequently listed signals which aren‘t already
trapped or ignored.

any This token tellssigtrap to install handlers for all subsequently listed signals. This is the default
behavior.

signal

Any argument which looks like a signals name (that\[&-Z][A-Z0-9]*$/) is taken as a signal
name and indicates thsigtrap should install a handler for it.

number
Require that at least versiommberof sigtrap is being used.

EXAMPLES
Provide a stack trace for the old-interface—signals:

use sigtrap;
Ditto:
use sigtrap qw(stack—-trace old-interface—signals);
Provide a stack trace on the 4 listed signals only:
use sigtrap qw(BUS SEGV PIPE ABRT);
Die on INT or QUIT:
use sigtrap qw(die INT QUIT);
Die on HUP, INT, PIPE or TERM:
use sigtrap qw(die normal-signals);

Die on HUP, INT, PIPE or TERM, except don‘t change the behavior for signals which are already trapped or
ignored:

use sigtrap qw(die untrapped normal-signals);

Die on receipt one of an of thermal-signals which is currentlyuntrapped, provide a stack trace on
receipt ofany of theerror-signals:

use sigtrap qw(die untrapped normal-signals
stack-trace any error—signals);

Installmy_handler() as the handler for theormal-signals
use sigtrap 'handler’, \&my_handler, 'normal-signals’;

Installmy_handler() as the handler for the normal-signals, provide a Perl stack trace on receipt of one of
the error—signals:

use sigtrap gw(handler my_handler normal-signals
stack-trace error—signals);

534 Version 5.003 08-0Oct-1996

strict Perl Programmers Reference Guide strict

NAME
strict — Perl pragma to restrict unsafe constructs

SYNOPSIS
use strict;
use strict "vars";
use strict "refs";

use strict "subs";
use strict "untie";

use strict;
no strict "vars";
DESCRIPTION

If no import list is supplied, all possible restrictions are assumed. (This is the safest mode to operate in, but is
sometimes too strict for casual programming.) Currently, there are four possible things to be strict about:

"subs", "vars", "refs", and "untie".

strict refs
This generates a runtime error if you use symbolic referencepgdes).

use strict 'refs’;

$ref = \$foo;

print $$ref; # ok

$ref = "foo";

print $$ref; # runtime error; normally ok

strict vars

This generates a compile—time error if you access a variable that wasn'‘t localizeg(yisor
wasn't fully qualified. Because this is to avoid variable suicide problems and subtle dynamic
scoping issues, a merdhcal() variable isn‘t good enough. Sew andlocal.

use strict 'vars’;

$X::foo = 1; # ok, fully qualified
my $foo = 10; # ok, my() var
local $foo = 9; # blows up

The local() generated a compile-time error because you just touched a global name without
fully qualifying it.
strict subs

This disables the poetry optimization, generating a compile—time error if you try to use a bareword
identifier that's not a subroutine, unless it appears in curly braces or on the left hand side of the

"=>" symbol.
use strict 'subs’;
$SIG{PIPE} = Plumber; # blows up
$SIG{PIPE} = "Plumber"; # just fine: bareword in curlies always ok
$SIG{PIPE} = \&Plumber; # preferred form
strict untie

This generates a runtime error if any references to the object returtied Kpr tied) still exist
when untie is called. Note that to get this strict behaviour, tlse strict ‘untie’
statement must be in the same scope asritie . Seetie, untie, tied andperltie.

use strict 'untie’;
$a = tie %a, 'SOME_PKG’;
$b = tie %b, 'SOME_PKG’;

08-0Oct-1996 Version 5.003 535

strict Perl Programmers Reference Guide strict

$b = 0;

tie %c, PKG;

$c = tied %.c;

untie %a ; # blows up, $a is a valid object reference.
untie %b; # ok, $b is not a reference to the object.

untie %:c ; # blows up, $c is a valid object reference.

SeePragmatic Modules

536 Version 5.003 08-0Oct-1996

subs Perl Programmers Reference Guide subs

NAME
subs — Perl pragma to predeclare sub names

SYNOPSIS

use subs qw(frob);
frob 3..10;

DESCRIPTION

This will predeclare all the subroutine whose names are in the list, allowing you to use them without
parentheses even before they‘re declared.

SeePragmatic Modulesndsubs

08-0Oct-1996 Version 5.003 537

vars Perl Programmers Reference Guide vars

NAME
vars — Perl pragma to predeclare global variable names
SYNOPSIS
use vars gw($frob @mung %seen);
DESCRIPTION

This will predeclare all the variables whose names are in the list, allowing you to use them under "use
strict”, and disabling any typo warnings.

Packages such as theitoLoader and SelfLoader that delay loading of subroutines within packages can
create problems with package lexicals defined usiyg) . While thevars pragma cannot duplicate the

effect of package lexicals (total transparency outside of the package), it can act as an acceptable substitute by
pre—declaring global symbols, ensuring their availability to to the later—-loaded routines.

SeePragmatic Modules

538 Version 5.003 08-0Oct-1996

	perl
	NAME
	SYNOPSIS
	DESCRIPTION
	Many usability enhancements
	Simplified grammar
	Lexical scoping
	Arbitrarily nested data structures
	Modularity and reusability
	Object-oriented programming
	Embeddable and Extensible
	POSIX compliant
	Package constructors and destructors
	Multiple simultaneous DBM implementations
	Subroutine definitions may now be autoloaded
	Regular expression enhancements

	ENVIRONMENT
	HOME
	LOGDIR
	PATH
	PERL5LIB
	PERL5DB
	PERLLIB

	AUTHOR
	FILES
	SEE ALSO
	DIAGNOSTICS
	BUGS
	NOTES

	perldata
	NAME
	DESCRIPTION
	Variable names
	Context
	Scalar values
	Scalar value constructors
	List value constructors
	Typeglobs and FileHandles

	perlsyn
	NAME
	DESCRIPTION
	Declarations
	Simple statements
	Compound statements
	Loop Control
	For Loops
	Foreach Loops
	Basic BLOCKs and Switch Statements
	Goto
	PODs: Embedded Documentation

	perlop
	NAME
	SYNOPSIS
	DESCRIPTION
	Terms and List Operators (Leftward)
	The Arrow Operator
	Autoincrement and Autodecrement
	Exponentiation
	Symbolic Unary Operators
	Binding Operators
	Multiplicative Operators
	Additive Operators
	Shift Operators
	Named Unary Operators
	Relational Operators
	Equality Operators
	Bitwise And
	Bitwise Or and Exclusive Or
	C-style Logical And
	C-style Logical Or
	Range Operator
	Conditional Operator
	Assignment Operators
	Comma Operator
	List Operators (Rightward)
	Logical Not
	Logical And
	Logical or and Exclusive Or
	C Operators Missing From Perl
	unary &
	unary *
	(TYPE)

	Quote and Quotelike Operators
	Regexp Quotelike Operators
	?PATTERN?
	m/PATTERN/gimosx
	/PATTERN/gimosx
	q/STRING/
	`STRING'
	qq/STRING/
	"STRING"
	qx/STRING/
	`STRING`
	qw/STRING/
	s/PATTERN/REPLACEMENT/egimosx
	tr/SEARCHLIST/REPLACEMENTLIST/cds
	y/SEARCHLIST/REPLACEMENTLIST/cds

	I/O Operators
	Constant Folding
	Integer arithmetic

	perlre
	NAME
	DESCRIPTION
	Regular Expressions
	(?#text)
	(?:regexp)
	(?=regexp)
	(?!regexp)
	(?imsx)

	Backtracking
	Version 8 Regular Expressions
	WARNING on \1 vs �$1�

	perlrun
	NAME
	SYNOPSIS
	DESCRIPTION
	1.
	2.
	3.
	Switches
	-0[digits]
	-a
	-c
	-d
	-d:foo
	-Dnumber
	-Dlist
	-e commandline
	-Fpattern
	-h
	-i[extension]
	-Idirectory
	-l[octnum]
	-m[-]module
	-M[-]module
	-M[-]`module ...'
	-[mM][-]module=arg[,arg]...
	-n
	-p
	-P
	-s
	-S
	-T
	-u
	-U
	-v
	-V
	-V:name
	-w
	-x directory

	perlfunc
	NAME
	DESCRIPTION
	Perl Functions by Category
	Functions for SCALARs or strings
	Regular expressions and pattern matching
	Numeric functions
	Functions for real @ARRAYs
	Functions for list data
	Functions for real %HASHes
	Input and output functions
	Functions for fixed length data or records
	Functions for filehandles, files, or directories
	Keywords related to the control flow of your perl program
	Keywords related to scoping
	Miscellaneous functions
	Functions for processes and process groups
	Keywords related to perl modules
	Keywords related to classes and object-orientedness
	Low-level socket functions
	System V interprocess communication functions
	Fetching user and group info
	Fetching network info
	Time-related functions
	Functions new in perl5
	Functions obsoleted in perl5

	Alphabetical Listing of Perl Functions
	-X FILEHANDLE
	-X EXPR
	-X
	abs VALUE
	accept NEWSOCKET,GENERICSOCKET
	alarm SECONDS
	atan2 Y,X
	bind SOCKET,NAME
	binmode FILEHANDLE
	bless REF,CLASSNAME
	bless REF
	caller EXPR
	caller
	chdir EXPR
	chmod LIST
	chomp VARIABLE
	chomp LIST
	chomp
	chop VARIABLE
	chop LIST
	chop
	chown LIST
	chr NUMBER
	chroot FILENAME
	close FILEHANDLE
	closedir DIRHANDLE
	connect SOCKET,NAME
	continue BLOCK
	cos EXPR
	crypt PLAINTEXT,SALT
	dbmclose ASSOC_ARRAY
	dbmopen ASSOC,DBNAME,MODE
	defined EXPR
	delete EXPR
	die LIST
	do BLOCK
	do SUBROUTINE(LIST)
	do EXPR
	dump LABEL
	each ASSOC_ARRAY
	eof FILEHANDLE
	eof ()
	eof
	eval EXPR
	eval BLOCK
	exec LIST
	exists EXPR
	exit EXPR
	exp EXPR
	fcntl FILEHANDLE,FUNCTION,SCALAR
	fileno FILEHANDLE
	flock FILEHANDLE,OPERATION
	fork
	format
	formline PICTURE, LIST
	getc FILEHANDLE
	getc
	getlogin
	getpeername SOCKET
	getpgrp PID
	getppid
	getpriority WHICH,WHO
	getpwnam NAME
	getgrnam NAME
	gethostbyname NAME
	getnetbyname NAME
	getprotobyname NAME
	getpwuid UID
	getgrgid GID
	getservbyname NAME,PROTO
	gethostbyaddr ADDR,ADDRTYPE
	getnetbyaddr ADDR,ADDRTYPE
	getprotobynumber NUMBER
	getservbyport PORT,PROTO
	getpwent
	getgrent
	gethostent
	getnetent
	getprotoent
	getservent
	setpwent
	setgrent
	sethostent STAYOPEN
	setnetent STAYOPEN
	setprotoent STAYOPEN
	setservent STAYOPEN
	endpwent
	endgrent
	endhostent
	endnetent
	endprotoent
	endservent
	getsockname SOCKET
	getsockopt SOCKET,LEVEL,OPTNAME
	glob EXPR
	gmtime EXPR
	goto LABEL
	goto EXPR
	goto &NAME
	grep BLOCK LIST
	grep EXPR,LIST
	hex EXPR
	import
	index STR,SUBSTR,POSITION
	index STR,SUBSTR
	int EXPR
	ioctl FILEHANDLE,FUNCTION,SCALAR
	join EXPR,LIST
	keys ASSOC_ARRAY
	kill LIST
	last LABEL
	last
	lc EXPR
	lcfirst EXPR
	length EXPR
	link OLDFILE,NEWFILE
	listen SOCKET,QUEUESIZE
	local EXPR
	localtime EXPR
	log EXPR
	lstat FILEHANDLE
	lstat EXPR
	m//
	map BLOCK LIST
	map EXPR,LIST
	mkdir FILENAME,MODE
	msgctl ID,CMD,ARG
	msgget KEY,FLAGS
	msgsnd ID,MSG,FLAGS
	msgrcv ID,VAR,SIZE,TYPE,FLAGS
	my EXPR
	next LABEL
	next
	no Module LIST
	oct EXPR
	open FILEHANDLE,EXPR
	open FILEHANDLE
	opendir DIRHANDLE,EXPR
	ord EXPR
	pack TEMPLATE,LIST
	package NAMESPACE
	pipe READHANDLE,WRITEHANDLE
	pop ARRAY
	pos SCALAR
	print FILEHANDLE LIST
	print LIST
	print
	printf FILEHANDLE LIST
	printf LIST
	prototype FUNCTION
	push ARRAY,LIST
	q/STRING/
	qq/STRING/
	qx/STRING/
	qw/STRING/
	quotemeta EXPR
	rand EXPR
	rand
	read FILEHANDLE,SCALAR,LENGTH,OFFSET
	read FILEHANDLE,SCALAR,LENGTH
	readdir DIRHANDLE
	readlink EXPR
	recv SOCKET,SCALAR,LEN,FLAGS
	redo LABEL
	redo
	ref EXPR
	rename OLDNAME,NEWNAME
	require EXPR
	require
	reset EXPR
	reset
	return LIST
	reverse LIST
	rewinddir DIRHANDLE
	rindex STR,SUBSTR,POSITION
	rindex STR,SUBSTR
	rmdir FILENAME
	s///
	scalar EXPR
	seek FILEHANDLE,POSITION,WHENCE
	seekdir DIRHANDLE,POS
	select FILEHANDLE
	select
	select RBITS,WBITS,EBITS,TIMEOUT
	semctl ID,SEMNUM,CMD,ARG
	semget KEY,NSEMS,FLAGS
	semop KEY,OPSTRING
	send SOCKET,MSG,FLAGS,TO
	send SOCKET,MSG,FLAGS
	setpgrp PID,PGRP
	setpriority WHICH,WHO,PRIORITY
	setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
	shift ARRAY
	shift
	shmctl ID,CMD,ARG
	shmget KEY,SIZE,FLAGS
	shmread ID,VAR,POS,SIZE
	shmwrite ID,STRING,POS,SIZE
	shutdown SOCKET,HOW
	sin EXPR
	sleep EXPR
	sleep
	socket SOCKET,DOMAIN,TYPE,PROTOCOL
	socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
	sort SUBNAME LIST
	sort BLOCK LIST
	sort LIST
	splice ARRAY,OFFSET,LENGTH,LIST
	splice ARRAY,OFFSET,LENGTH
	splice ARRAY,OFFSET
	split /PATTERN/,EXPR,LIMIT
	split /PATTERN/,EXPR
	split /PATTERN/
	split
	sprintf FORMAT,LIST
	sqrt EXPR
	srand EXPR
	stat FILEHANDLE
	stat EXPR
	study SCALAR
	study
	sub BLOCK
	sub NAME
	sub NAME BLOCK
	substr EXPR,OFFSET,LEN
	substr EXPR,OFFSET
	symlink OLDFILE,NEWFILE
	syscall LIST
	sysopen FILEHANDLE,FILENAME,MODE
	sysopen FILEHANDLE,FILENAME,MODE,PERMS
	sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
	sysread FILEHANDLE,SCALAR,LENGTH
	system LIST
	syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
	syswrite FILEHANDLE,SCALAR,LENGTH
	tell FILEHANDLE
	tell
	telldir DIRHANDLE
	tie VARIABLE,CLASSNAME,LIST
	tied VARIABLE
	time
	times
	tr///
	truncate FILEHANDLE,LENGTH
	truncate EXPR,LENGTH
	uc EXPR
	ucfirst EXPR
	umask EXPR
	umask
	undef EXPR
	undef
	unlink LIST
	unpack TEMPLATE,EXPR
	untie VARIABLE
	unshift ARRAY,LIST
	use Module LIST
	use Module
	use Module VERSION LIST
	use VERSION
	utime LIST
	values ASSOC_ARRAY
	vec EXPR,OFFSET,BITS
	wait
	waitpid PID,FLAGS
	wantarray
	warn LIST
	write FILEHANDLE
	write EXPR
	write
	y///

	perlvar
	NAME
	DESCRIPTION
	Predefined Names
	$ARG
	$_
	$<digit>
	$MATCH
	$&
	$PREMATCH
	$`
	$POSTMATCH
	$'
	$LAST_PAREN_MATCH
	$+
	$MULTILINE_MATCHING
	$*
	input_line_number HANDLE EXPR
	$INPUT_LINE_NUMBER
	$NR
	$.
	input_record_separator HANDLE EXPR
	$INPUT_RECORD_SEPARATOR
	$RS
	$/
	autoflush HANDLE EXPR
	$OUTPUT_AUTOFLUSH
	$|
	output_field_separator HANDLE EXPR
	$OUTPUT_FIELD_SEPARATOR
	$OFS
	$,
	output_record_separator HANDLE EXPR
	$OUTPUT_RECORD_SEPARATOR
	$ORS
	$\
	$LIST_SEPARATOR
	$"
	$SUBSCRIPT_SEPARATOR
	$SUBSEP
	$;
	$OFMT
	$#
	format_page_number HANDLE EXPR
	$FORMAT_PAGE_NUMBER
	$%
	format_lines_per_page HANDLE EXPR
	$FORMAT_LINES_PER_PAGE
	$=
	format_lines_left HANDLE EXPR
	$FORMAT_LINES_LEFT
	$-
	format_name HANDLE EXPR
	$FORMAT_NAME
	$~
	format_top_name HANDLE EXPR
	$FORMAT_TOP_NAME
	$^
	format_line_break_characters HANDLE EXPR
	$FORMAT_LINE_BREAK_CHARACTERS
	$:
	format_formfeed HANDLE EXPR
	$FORMAT_FORMFEED
	$^L
	$ACCUMULATOR
	$^A
	$CHILD_ERROR
	$?
	$OS_ERROR
	$ERRNO
	$!
	$EXTENDED_OS_ERROR
	$^E
	$EVAL_ERROR
	$@
	$PROCESS_ID
	$PID
	$$
	$REAL_USER_ID
	$UID
	$<
	$EFFECTIVE_USER_ID
	$EUID
	$
	$REAL_GROUP_ID
	$GID
	$(
	$EFFECTIVE_GROUP_ID
	$EGID
	$)
	$PROGRAM_NAME
	$0
	$[
	$PERL_VERSION
	$]
	$DEBUGGING
	$^D
	$SYSTEM_FD_MAX
	$^F
	$^H
	$INPLACE_EDIT
	$^I
	$OSNAME
	$^O
	$PERLDB
	$^P
	$BASETIME
	$^T
	$WARNING
	$^W
	$EXECUTABLE_NAME
	$^X
	$ARGV
	@ARGV
	@INC
	%INC
	$ENV{expr}
	$SIG{expr}

	perlsub
	NAME
	SYNOPSIS
	DESCRIPTION
	Private Variables via �my()�
	Temporary Values via �local()�
	Passing Symbol Table Entries (typeglobs)
	Pass by Reference
	Prototypes
	Overriding Builtin Functions
	Autoloading

	SEE ALSO

	perlmod
	NAME
	DESCRIPTION
	Packages
	Symbol Tables
	Package Constructors and Destructors
	Perl Classes
	Perl Modules

	NOTE
	THE PERL MODULE LIBRARY
	Pragmatic Modules
	diagnostics
	integer
	less
	ops
	overload
	sigtrap
	strict
	subs
	vars

	Standard Modules
	AnyDBM_File
	AutoLoader
	AutoSplit
	Benchmark
	Carp
	Config
	Cwd
	DB_File
	Devel::SelfStubber
	DynaLoader
	English
	Env
	Exporter
	ExtUtils::Liblist
	ExtUtils::MakeMaker
	ExtUtils::Manifest
	ExtUtils::Mkbootstrap
	ExtUtils::Miniperl
	Fcntl
	File::Basename
	File::CheckTree
	File::Find
	FileHandle
	File::Path
	Getopt::Long
	Getopt::Std
	I18N::Collate
	IPC::Open2
	IPC::Open3
	Net::Ping
	POSIX
	SelfLoader
	Safe
	Socket
	Test::Harness
	Text::Abbrev

	Extension Modules

	CPAN
	Modules: Creation, Use and Abuse
	Guidelines for Module Creation
	Do similar modules already exist in some form?
	Try to design the new module to be easy to extend and reuse.
	Some simple style guidelines
	Select what to export.
	Select a name for the module.
	Have you got it right?
	README and other Additional Files.
	Adding a Copyright Notice.
	Give the module a version/issue/release number.
	How to release and distribute a module.
	Take care when changing a released module.

	Guidelines for Converting Perl 4 Library Scripts into Modules
	There is no requirement to convert anything.
	Consider the implications.
	Make the most of the opportunity.
	The pl2pm utility will get you started.

	Guidelines for Reusing Application Code
	Complete applications rarely belong in the Perl Module Library.
	Many applications contain some perl code which could be reused.
	Break-out the reusable code into one or more separate module files.
	Take the opportunity to reconsider and redesign the interfaces.
	In some cases the `application' can then be reduced to a small

	perlform
	NAME
	DESCRIPTION
	1.
	2.
	3.
	Format Variables

	NOTES
	Footers
	Accessing Formatting Internals

	WARNING

	perli18n
	NAME
	DESCRIPTION
	USING LOCALES
	locale -a
	nlsinfo
	ls /usr/lib/nls/loc
	ls /usr/lib/locale
	ls /usr/lib/nls
	CHARACTER TYPES
	COLLATION

	ENVIRONMENT
	PERL_BADLANG
	LC_ALL
	LC_CTYPE
	LC_COLLATE
	LANG

	perlref
	NAME
	DESCRIPTION
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	1.
	2.
	3.
	4.
	Symbolic references
	Not-so-symbolic references

	WARNING
	SEE ALSO

	perldsc
	NAME
	DESCRIPTION
	arrays of arrays
	hashes of arrays
	arrays of hashes
	hashes of hashes
	more elaborate constructs
	recursive and self-referential data structures
	objects

	REFERENCES
	COMMON MISTAKES
	CAVEAT ON PRECEDENCE
	WHY YOU SHOULD ALWAYS �use strict�
	DEBUGGING
	CODE EXAMPLES
	LISTS OF LISTS
	Declaration of a LIST OF LISTS
	Generation of a LIST OF LISTS
	Access and Printing of a LIST OF LISTS

	HASHES OF LISTS
	Declaration of a HASH OF LISTS
	Generation of a HASH OF LISTS
	Access and Printing of a HASH OF LISTS

	LISTS OF HASHES
	Declaration of a LIST OF HASHES
	Generation of a LIST OF HASHES
	Access and Printing of a LIST OF HASHES

	HASHES OF HASHES
	Declaration of a HASH OF HASHES
	Generation of a HASH OF HASHES
	Access and Printing of a HASH OF HASHES

	MORE ELABORATE RECORDS
	Declaration of MORE ELABORATE RECORDS
	Declaration of a HASH OF COMPLEX RECORDS
	Generation of a HASH OF COMPLEX RECORDS

	Database Ties
	SEE ALSO
	AUTHOR

	perllol
	NAME
	DESCRIPTION
	Declaration and Access of Lists of Lists
	Growing Your Own
	Access and Printing
	Slices
	SEE ALSO
	AUTHOR

	perlobj
	NAME
	DESCRIPTION
	1.
	2.
	3.
	An Object is Simply a Reference
	A Class is Simply a Package
	A Method is Simply a Subroutine
	Method Invocation
	Default UNIVERSAL methods
	isa (CLASS)
	can (METHOD)
	VERSION ([VERSION])
	class ()
	is_instance ()

	Destructors
	WARNING
	Summary
	Two-Phased Garbage Collection

	SEE ALSO

	perltie
	NAME
	SYNOPSIS
	DESCRIPTION
	Tying Scalars
	TIESCALAR classname, LIST
	FETCH this
	STORE this, value
	DESTROY this

	Tying Arrays
	TIEARRAY classname, LIST
	FETCH this, index
	STORE this, index, value
	DESTROY this

	Tying Hashes
	USER
	HOME
	CLOBBER
	LIST
	TIEHASH classname, LIST
	FETCH this, key
	STORE this, key, value
	DELETE this, key
	CLEAR this
	EXISTS this, key
	FIRSTKEY this
	NEXTKEY this, lastkey
	DESTROY this

	Tying FileHandles
	TIEHANDLE classname, LIST
	PRINT this, LIST
	READLINE this
	DESTROY this

	SEE ALSO
	BUGS
	AUTHOR

	perlbot
	NAME
	DESCRIPTION
	OO SCALING TIPS
	1
	2
	3
	4
	5
	6
	7
	8
	9

	INSTANCE VARIABLES
	SCALAR INSTANCE VARIABLES
	INSTANCE VARIABLE INHERITANCE
	OBJECT RELATIONSHIPS
	OVERRIDING SUPERCLASS METHODS
	USING RELATIONSHIP WITH SDBM
	THINKING OF CODE REUSE
	CLASS CONTEXT AND THE OBJECT
	INHERITING A CONSTRUCTOR
	DELEGATION

	perlipc
	NAME
	DESCRIPTION
	Signals
	Named Pipes
	Using �open()� for IPC
	Safe Pipe Opens
	Bidirectional Communication

	Sockets: Client/Server Communication
	Internet TCP Clients and Servers
	Unix-Domain TCP Clients and Servers
	UDP: Message Passing

	SysV IPC
	WARNING
	NOTES
	BUGS
	AUTHOR
	SEE ALSO

	perldebug
	NAME
	DESCRIPTION
	The Perl Debugger
	Debugger Commands
	h [command]
	p expr
	x expr
	V [pkg [vars]]
	X [vars]
	T
	s [expr]
	n
	<CR>
	c [line]
	l
	l min+incr
	l min-max
	l line
	l subname
	-
	w [line]
	.
	f filename
	/pattern/
	?pattern?
	L
	S [[!]pattern]
	t
	t expr
	b [line] [condition]
	b subname [condition]
	d [line]
	D
	a [line] command
	1
	2
	3
	4
	5
	A
	O [opt[=val]] [opt"val"] [opt?]...
	recallCommand, ShellBang
	pager
	arrayDepth, hashDepth
	compactDump, veryCompact
	globPrint
	DumpDBFiles
	DumpPackages
	quote, HighBit, undefPrint
	tkRunning
	signalLevel, warnLevel. dieLevel
	< command
	> command
	! number
	! -number
	! pattern
	!! cmd
	H -number
	q or ^D
	R
	|dbcmd
	||dbcmd
	= [alias value]
	command
	p expr

	Debugger Customization
	Readline Support
	Editor Support for Debugging
	The Perl Profiler
	Debugger Internals
	TTY
	noTTY
	ReadLine
	NonStop
	LineInfo

	Other resources

	BUGS

	perldiag
	NAME
	DESCRIPTION
	"my" variable %s can`t be in a package
	"my" variable %s masks earlier declaration in same scope
	"no" not allowed in expression
	"use" not allowed in expression
	% may only be used in unpack
	%s (...) interpreted as function
	%s argument is not a HASH element
	%s did not return a true value
	%s found where operator expected
	%s had compilation errors.
	%s has too many errors.
	%s matches null string many times
	%s never introduced
	%s syntax OK
	%s: Command not found.
	%s: Expression syntax.
	%s: Undefined variable.
	%s: not found
	-P not allowed for setuid/setgid script
	-T and -B not implemented on filehandles
	500 Server error
	?+* follows nothing in regexp
	@ outside of string
	accept() on closed fd
	Allocation too large: %lx
	Arg too short for msgsnd
	Ambiguous use of %s resolved as %s
	Args must match #! line
	Argument "%s" isn`t numeric
	Array @%s missing the @ in argument %d of %s()
	assertion botched: %s
	Assertion failed: file "%s"
	Assignment to both a list and a scalar
	Attempt to free non-arena SV: 0x%lx
	Attempt to free temp prematurely
	Attempt to free unreferenced glob pointers
	Attempt to free unreferenced scalar
	Attempt to use reference as lvalue in substr
	Bad arg length for %s, is %d, should be %d
	Bad associative array
	Bad filehandle: %s
	Bad free() ignored
	Bad name after %s::
	Bad symbol for array
	Bad symbol for filehandle
	Bad symbol for hash
	Badly placed ()`s
	BEGIN failed‘compilation aborted
	bind() on closed fd
	Bizarre copy of %s in %s
	Callback called exit
	Can`t "last" outside a block
	Can`t "next" outside a block
	Can`t "redo" outside a block
	Can`t bless non-reference value
	Can`t break at that line
	Can`t call method "%s" in empty package "%s"
	Can`t call method "%s" on unblessed reference
	Can`t call method "%s" without a package or object reference
	Can`t chdir to %s
	Can`t coerce %s to integer in %s
	Can`t coerce %s to number in %s
	Can`t coerce %s to string in %s
	Can`t create pipe mailbox
	Can`t declare %s in my
	Can`t do inplace edit on %s: %s
	Can`t do inplace edit without backup
	Can`t do inplace edit: %s > 14 characters
	Can`t do inplace edit: %s is not a regular file
	Can`t do setegid!
	Can`t do seteuid!
	Can`t do setuid
	Can`t do waitpid with flags
	Can`t do {n,m} with n > m
	Can`t emulate -%s on #! line
	Can`t exec "%s": %s
	Can`t exec %s
	Can`t execute %s
	Can`t find label %s
	Can`t find string terminator %s anywhere before EOF
	Can`t fork
	Can`t get filespec - stale stat buffer?
	Can`t get pipe mailbox device name
	Can`t get SYSGEN parameter value for MAXBUF
	Can`t goto subroutine outside a subroutine
	Can`t localize a reference
	Can`t localize lexical variable %s
	Can`t locate %s in @INC
	Can`t locate object method "%s" via package "%s"
	Can`t locate package %s for @%s::ISA
	Can`t mktemp()
	Can`t modify %s in %s
	Can`t modify non-existent substring
	Can`t msgrcv to readonly var
	Can`t open %s: %s
	Can`t open bidirectional pipe
	Can`t open error file %s as stderr
	Can`t open input file %s as stdin
	Can`t open output file %s as stdout
	Can`t open output pipe (name: %s)
	Can`t open perl script "%s": %s
	Can`t rename %s to %s: %s, skipping file
	Can`t reopen input pipe (name: %s) in binary mode
	Can`t reswap uid and euid
	Can`t return outside a subroutine
	Can`t stat script "%s"
	Can`t swap uid and euid
	Can`t take log of %g
	Can`t take sqrt of %g
	Can`t undef active subroutine
	Can`t unshift
	Can`t untie: %d inner references still exist
	Can`t upgrade that kind of scalar
	Can`t upgrade to undef
	Can`t use "my %s" in sort comparison
	Can`t use %s for loop variable
	Can`t use %s ref as %s ref
	Can`t use \1 to mean $1 in expression
	Can`t use string ("%s") as %s ref while "strict refs" in use
	Can`t use an undefined value as %s reference
	Can`t use global %s in "my"
	Can`t use subscript on %s
	Can`t write to temp file for -e: %s
	Can`t x= to readonly value
	Cannot open temporary file
	chmod: mode argument is missing initial 0
	Close on unopened file <%s>
	connect() on closed fd
	Corrupt malloc ptr 0x%lx at 0x%lx
	corrupted regexp pointers
	corrupted regexp program
	Deep recursion on subroutine "%s"
	Did you mean &%s instead?
	Did you mean $ or @ instead of %?
	Do you need to predeclare %s?
	Don`t know how to handle magic of type `%s'
	do_study: out of memory
	Duplicate free() ignored
	elseif should be elsif
	END failed‘cleanup aborted
	Error converting file specification %s
	Execution of %s aborted due to compilation errors.
	Exiting eval via %s
	Exiting subroutine via %s
	Exiting substitution via %s
	Fatal VMS error at %s, line %d
	fcntl is not implemented
	Filehandle %s never opened
	Filehandle %s opened only for input
	Filehandle only opened for input
	Final $ should be \$ or $name
	Final @ should be \@ or @name
	Format %s redefined
	Format not terminated
	Found = in conditional, should be ==
	gdbm store returned %d, errno %d, key "%s"
	gethostent not implemented
	get{sock,peer}name() on closed fd
	getpwnam returned invalid UIC %#o for user "%s"
	Glob not terminated
	Global symbol "%s" requires explicit package name
	goto must have label
	Had to create %s unexpectedly
	Hash %%s missing the % in argument %d of %s()
	Ill-formed logical name |%s| in prime_env_iter
	Illegal division by zero
	Illegal modulus zero
	Illegal octal digit
	Illegal octal digit ignored
	Insecure dependency in %s
	Insecure directory in %s
	Insecure PATH
	Internal inconsistency in tracking vforks
	internal disaster in regexp
	internal urp in regexp at /%s/
	invalid [] range in regexp
	ioctl is not implemented
	junk on end of regexp
	Label not found for "last %s"
	Label not found for "next %s"
	Label not found for "redo %s"
	listen() on closed fd
	Literal @%s now requires backslash
	Method for operation %s not found in package %s during blessing
	Might be a runaway multi-line %s string starting on line %d
	Misplaced _ in number
	Missing $ on loop variable
	Missing comma after first argument to %s function
	Missing operator before %s?
	Missing right bracket
	Missing semicolon on previous line?
	Modification of a read-only value attempted
	Modification of non-creatable array value attempted, subscript %d
	Modification of non-creatable hash value attempted, subscript "%s"
	Module name must be constant
	msg%s not implemented
	Multidimensional syntax %s not supported
	Name "%s::%s" used only once: possible typo
	Negative length
	nested *?+ in regexp
	No #! line
	No %s allowed while running setuid
	No -e allowed in setuid scripts
	No comma allowed after %s
	No command into which to pipe on command line
	No DB::DB routine defined
	No dbm on this machine
	No DBsub routine
	No error file after 2> or 2>> on command line
	No input file after < on command line
	No output file after > on command line
	No output file after > or >> on command line
	No Perl script found in input
	No setregid available
	No setreuid available
	No space allowed after -I
	No such pipe open
	No such signal: SIG%s
	Not a CODE reference
	Not a format reference
	Not a GLOB reference
	Not a HASH reference
	Not a perl script
	Not a SCALAR reference
	Not a subroutine reference
	Not a subroutine reference in %OVERLOAD
	Not an ARRAY reference
	Not enough arguments for %s
	Not enough format arguments
	Null filename used
	NULL OP IN RUN
	Null realloc
	NULL regexp argument
	NULL regexp parameter
	Odd number of elements in hash list
	oops: oopsAV
	oops: oopsHV
	Operation `%s' %s: no method found,
	Operator or semicolon missing before %s
	Out of memory for yacc stack
	Out of memory!
	page overflow
	panic: ck_grep
	panic: ck_split
	panic: corrupt saved stack index
	panic: die %s
	panic: do_match
	panic: do_split
	panic: do_subst
	panic: do_trans
	panic: goto
	panic: INTERPCASEMOD
	panic: INTERPCONCAT
	panic: last
	panic: leave_scope clearsv
	panic: leave_scope inconsistency
	panic: malloc
	panic: mapstart
	panic: null array
	panic: pad_alloc
	panic: pad_free curpad
	panic: pad_free po
	panic: pad_reset curpad
	panic: pad_sv po
	panic: pad_swipe curpad
	panic: pad_swipe po
	panic: pp_iter
	panic: realloc
	panic: restartop
	panic: return
	panic: scan_num
	panic: sv_insert
	panic: top_env
	panic: yylex
	Parens missing around "%s" list
	Perl %3.3f required‘this is only version %s, stopped
	Permission denied
	pid %d not a child
	POSIX getpgrp can`t take an argument
	Possible memory corruption: %s overflowed 3rd argument
	Precedence problem: open %s should be open(%s)
	print on closed filehandle %s
	printf on closed filehandle %s
	Probable precedence problem on %s
	Prototype mismatch: (%s) vs (%s)
	Read on closed filehandle <%s>
	Reallocation too large: %lx
	Recompile perl with -DDEBUGGING to use -D switch
	Recursive inheritance detected
	Reference miscount in sv_replace()
	regexp memory corruption
	regexp out of space
	regexp too big
	Reversed %s= operator
	Runaway format
	Scalar value @%s[%s] better written as $%s[%s]
	Script is not setuid/setgid in suidperl
	Search pattern not terminated
	seek() on unopened file
	select not implemented
	sem%s not implemented
	semi-panic: attempt to dup freed string
	Semicolon seems to be missing
	Send on closed socket
	Sequence (?#... not terminated
	Sequence (?%s...) not implemented
	Sequence (?%s...) not recognized
	Server error
	setegid() not implemented
	seteuid() not implemented
	setrgid() not implemented
	setruid() not implemented
	Setuid/gid script is writable by world
	shm%s not implemented
	shutdown() on closed fd
	SIG%s handler "%s" not defined.
	sort is now a reserved word
	Sort subroutine didn`t return a numeric value
	Sort subroutine didn`t return single value
	Split loop
	Stat on unopened file <%s>
	Statement unlikely to be reached
	Subroutine %s redefined
	Substitution loop
	Substitution pattern not terminated
	Substitution replacement not terminated
	substr outside of string
	suidperl is no longer needed since...
	syntax error
	syntax error at line %d: `%s' unexpected
	System V IPC is not implemented on this machine
	Syswrite on closed filehandle
	tell() on unopened file
	Test on unopened file <%s>
	That use of $[is unsupported
	The %s function is unimplemented
	The crypt() function is unimplemented due to excessive paranoia.
	The stat preceding -l _ wasn`t an lstat
	times not implemented
	Too few args to syscall
	Too many (`s
	Too many)`s
	Too many args to syscall
	Too many arguments for %s
	trailing \ in regexp
	Translation pattern not terminated
	Translation replacement not terminated
	truncate not implemented
	Type of arg %d to %s must be %s (not %s)
	umask: argument is missing initial 0
	Unable to create sub named "%s"
	Unbalanced context: %d more PUSHes than POPs
	Unbalanced saves: %d more saves than restores
	Unbalanced scopes: %d more ENTERs than LEAVEs
	Unbalanced tmps: %d more allocs than frees
	Undefined format "%s" called
	Undefined sort subroutine "%s" called
	Undefined subroutine &%s called
	Undefined subroutine called
	Undefined subroutine in sort
	Undefined top format "%s" called
	unexec of %s into %s failed!
	Unknown BYTEORDER
	unmatched () in regexp
	Unmatched right bracket
	unmatched [] in regexp
	Unquoted string "%s" may clash with future reserved word
	Unrecognized character \%03o ignored
	Unrecognized signal name "%s"
	Unrecognized switch: -%s
	Unsuccessful %s on filename containing newline
	Unsupported directory function "%s" called
	Unsupported function %s
	Unsupported socket function "%s" called
	Unterminated <> operator
	Use of $# is deprecated
	Use of $* is deprecated
	Use of %s in printf format not supported
	Use of %s is deprecated
	Use of bare << to mean <<"" is deprecated
	Use of implicit split to @_ is deprecated
	Use of uninitialized value
	Useless use of %s in void context
	Variable "%s" is not exported
	Variable syntax.
	Warning: unable to close filehandle %s properly.
	Warning: Use of "%s" without parens is ambiguous
	Write on closed filehandle
	X outside of string
	x outside of string
	Xsub "%s" called in sort
	Xsub called in sort
	You can`t use -l on a filehandle
	YOU HAVEN`T DISABLED SET-ID SCRIPTS IN THE KERNEL YET!
	You need to quote "%s"
	[gs]etsockopt() on closed fd
	\1 better written as $1
	`|' and `<' may not both be specified on command line
	`|' and `>' may not both be specified on command line

	perlsec
	NAME
	DESCRIPTION
	Laundering and Detecting Tainted Data
	Cleaning Up Your Path
	Security Bugs

	perltrap
	NAME
	DESCRIPTION
	Awk Traps
	C Traps
	Sed Traps
	Shell Traps
	Perl Traps
	Perl4 to Perl5 Traps
	Discontinuance, Deprecation, and BugFix traps
	Parsing Traps
	Numerical Traps
	General data type traps
	Context Traps - scalar, list contexts
	Precedence Traps
	General Regular Expression Traps using s///, etc.
	Subroutine, Signal, Sorting Traps
	OS Traps
	DBM Traps
	Unclassified Traps

	Discontinuance, Deprecation, and BugFix traps
	Discontinuance
	Deprecation
	BugFix
	Discontinuance
	Discontinuance
	Discontinuance
	BugFix
	Discontinuance
	Discontinuance
	Deprecation
	Discontinuance

	Parsing Traps
	Parsing
	Parsing
	Parsing

	Numerical Traps
	Numerical
	Numerical
	Numerical

	General data type traps
	(Arrays)
	(Arrays)
	(Hashes)
	(Globs)
	(Scalar String)
	(Constants)
	(Scalars)
	(Variable Suicide)

	Context Traps - scalar, list contexts
	(list context)
	(scalar context)
	(scalar context)
	(list, builtin)

	Precedence Traps
	Precedence
	Precedence
	Precedence
	Precedence
	Precedence
	Precedence
	Precedence

	General Regular Expression Traps using s///, etc.
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression
	Regular Expression

	Subroutine, Signal, Sorting Traps
	(Signals)
	(Sort Subroutine)
	warn() specifically implies STDERR

	OS Traps
	(SysV)
	(SysV)

	Interpolation Traps
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation

	DBM Traps
	DBM
	DBM

	Unclassified Traps
	Unclassified

	perlstyle
	NAME
	DESCRIPTION

	perlpod
	NAME
	DESCRIPTION
	Embedding Pods in Perl Modules
	SEE ALSO
	AUTHOR

	perlbook
	NAME
	DESCRIPTION

	perlembed
	NAME
	DESCRIPTION
	PREAMBLE
	Use C from Perl?
	Use a UNIX program from Perl?
	Use Perl from Perl?
	Use C from C?
	Use Perl from C?

	ROADMAP
	Compiling your C program
	Adding a Perl interpreter to your C program
	Calling a Perl subroutine from your C program
	Evaluating a Perl statement from your C program
	Performing Perl pattern matches and substitutions from your C program
	Fiddling with the Perl stack from your C program
	Using Perl modules, which themselves use C libraries, from your C program

	MORAL
	AUTHOR

	perlapio
	NAME
	SYNOPSIS
	DESCRIPTION
	PerlIO *
	PerlIO_stdin(), PerlIO_stdout(), PerlIO_stderr()
	PerlIO_open(path, mode), PerlIO_fdopen(fd,mode)
	PerlIO_printf(f,fmt,...), PerlIO_vprintf(f,fmt,a)
	PerlIO_stdoutf(fmt,...)
	PerlIO_read(f,buf,count), PerlIO_write(f,buf,count)
	PerlIO_close(f)
	PerlIO_puts(s,f), PerlIO_putc(c,f)
	PerlIO_ungetc(c,f)
	PerlIO_getc(f)
	PerlIO_eof(f)
	PerlIO_error(f)
	PerlIO_fileno(f)
	PerlIO_clearerr(f)
	PerlIO_flush(f)
	PerlIO_tell(f)
	PerlIO_seek(f,o,w)
	PerlIO_getpos(f,p), PerlIO_setpos(f,p)
	PerlIO_rewind(f)
	PerlIO_tmpfile()
	Co-existence with stdio
	PerlIO_importFILE(f,flags)
	PerlIO_exportFILE(f,flags)
	PerlIO_findFILE(f)
	PerlIO_releaseFILE(p,f)
	PerlIO_setlinebuf(f)
	PerlIO_has_cntptr(f)
	PerlIO_get_ptr(f)
	PerlIO_get_cnt(f)
	PerlIO_canset_cnt(f)
	PerlIO_fast_gets(f)
	PerlIO_set_ptrcnt(f,p,c)
	PerlIO_set_cnt(f,c)
	PerlIO_has_base(f)
	PerlIO_get_base(f)
	PerlIO_get_bufsiz(f)

	perlxs
	NAME
	DESCRIPTION
	Introduction
	On The Road
	The Anatomy of an XSUB
	The Argument Stack
	The RETVAL Variable
	The MODULE Keyword
	The PACKAGE Keyword
	The PREFIX Keyword
	The OUTPUT: Keyword
	The CODE: Keyword
	The INIT: Keyword
	The NO_INIT Keyword
	Initializing Function Parameters
	Default Parameter Values
	The PREINIT: Keyword
	The SCOPE: Keyword
	The INPUT: Keyword
	Variable-length Parameter Lists
	The PPCODE: Keyword
	Returning Undef And Empty Lists
	The REQUIRE: Keyword
	The CLEANUP: Keyword
	The BOOT: Keyword
	The VERSIONCHECK: Keyword
	The PROTOTYPES: Keyword
	The PROTOTYPE: Keyword
	The ALIAS: Keyword
	The INCLUDE: Keyword
	The CASE: Keyword
	The �&� Unary Operator
	Inserting Comments and C Preprocessor Directives
	Using XS With C++
	Interface Strategy
	Perl Objects And C Structures
	The Typemap

	EXAMPLES
	XS VERSION
	AUTHOR

	perlxstut
	NAME
	DESCRIPTION
	VERSION CAVEAT
	DYNAMIC VERSUS STATIC
	EXAMPLE 1
	EXAMPLE 2
	WHAT HAS GONE ON?
	WRITING GOOD TEST SCRIPTS
	EXAMPLE 3
	WHAT`S NEW HERE?
	INPUT AND OUTPUT PARAMETERS
	THE XSUBPP COMPILER
	THE TYPEMAP FILE
	WARNING
	EXAMPLE 4
	WHAT HAS HAPPENED HERE?
	SPECIFYING ARGUMENTS TO XSUBPP
	THE ARGUMENT STACK
	EXTENDING YOUR EXTENSION
	DOCUMENTING YOUR EXTENSION
	INSTALLING YOUR EXTENSION
	SEE ALSO
	Author
	Last Changed

	perlguts
	NAME
	DESCRIPTION
	Datatypes
	What is an "IV"?
	Working with SVs
	What`s Really Stored in an SV?
	Working with AVs
	Working with HVs
	References
	Blessed References and Class Objects

	Creating New Variables
	XSUBs and the Argument Stack
	Mortality
	Stashes
	Magic
	Assigning Magic
	Magic Virtual Tables
	Finding Magic

	Double-Typed SVs
	Calling Perl Routines from within C Programs
	Memory Allocation
	API LISTING
	AvFILL
	av_clear
	av_extend
	av_fetch
	av_len
	av_make
	av_pop
	av_push
	av_shift
	av_store
	av_undef
	av_unshift
	CLASS
	Copy
	croak
	CvSTASH
	DBsingle
	DBsub
	DBtrace
	dMARK
	dORIGMARK
	dowarn
	dSP
	dXSARGS
	dXSI32
	dXSI32
	ENTER
	EXTEND
	FREETMPS
	G_ARRAY
	G_DISCARD
	G_EVAL
	GIMME
	G_NOARGS
	G_SCALAR
	gv_stashpv
	gv_stashsv
	GvSV
	he_free
	hv_clear
	hv_delete
	hv_exists
	hv_fetch
	hv_iterinit
	hv_iterkey
	hv_iternext
	hv_iternextsv
	hv_iterval
	hv_magic
	HvNAME
	hv_store
	hv_undef
	isALNUM
	isALPHA
	isDIGIT
	isLOWER
	isSPACE
	isUPPER
	items
	ix
	LEAVE
	MARK
	mg_clear
	mg_copy
	mg_find
	mg_free
	mg_get
	mg_len
	mg_magical
	mg_set
	Move
	na
	New
	Newc
	Newz
	newAV
	newHV
	newRV
	newSV
	newSViv
	newSVnv
	newSVpv
	newSVrv
	newSVsv
	newXS
	newXSproto
	Nullav
	Nullch
	Nullcv
	Nullhv
	Nullsv
	ORIGMARK
	perl_alloc
	perl_call_argv
	perl_call_method
	perl_call_pv
	perl_call_sv
	perl_construct
	perl_destruct
	perl_eval_sv
	perl_free
	perl_get_av
	perl_get_cv
	perl_get_hv
	perl_get_sv
	perl_parse
	perl_require_pv
	perl_run
	POPi
	POPl
	POPp
	POPn
	POPs
	PUSHMARK
	PUSHi
	PUSHn
	PUSHp
	PUSHs
	PUTBACK
	Renew
	Renewc
	RETVAL
	safefree
	safemalloc
	saferealloc
	savepv
	savepvn
	SAVETMPS
	SP
	SPAGAIN
	ST
	strEQ
	strGE
	strGT
	strLE
	strLT
	strNE
	strnEQ
	strnNE
	sv_2mortal
	sv_bless
	sv_catpv
	sv_catpvn
	sv_catsv
	sv_cmp
	sv_cmp
	SvCUR
	SvCUR_set
	sv_dec
	sv_dec
	SvEND
	sv_eq
	SvGROW
	sv_grow
	sv_inc
	SvIOK
	SvIOK_off
	SvIOK_on
	SvIOK_only
	SvIOK_only
	SvIOKp
	sv_isa
	SvIV
	sv_isobject
	SvIVX
	SvLEN
	sv_len
	sv_len
	sv_magic
	sv_mortalcopy
	SvOK
	sv_newmortal
	sv_no
	SvNIOK
	SvNIOK_off
	SvNIOKp
	SvNOK
	SvNOK_off
	SvNOK_on
	SvNOK_only
	SvNOK_only
	SvNOKp
	SvNV
	SvNVX
	SvPOK
	SvPOK_off
	SvPOK_on
	SvPOK_only
	SvPOK_only
	SvPOKp
	SvPV
	SvPVX
	SvREFCNT
	SvREFCNT_dec
	SvREFCNT_inc
	SvROK
	SvROK_off
	SvROK_on
	SvRV
	sv_setiv
	sv_setnv
	sv_setpv
	sv_setpvn
	sv_setref_iv
	sv_setref_nv
	sv_setref_pv
	sv_setref_pvn
	sv_setsv
	SvSTASH
	SVt_IV
	SVt_PV
	SVt_PVAV
	SVt_PVCV
	SVt_PVHV
	SVt_PVMG
	SVt_NV
	SvTRUE
	SvTYPE
	svtype
	SvUPGRADE
	sv_upgrade
	sv_undef
	sv_unref
	sv_usepvn
	sv_yes
	THIS
	toLOWER
	toUPPER
	warn
	XPUSHi
	XPUSHn
	XPUSHp
	XPUSHs
	XS
	XSRETURN
	XSRETURN_EMPTY
	XSRETURN_IV
	XSRETURN_NO
	XSRETURN_NV
	XSRETURN_PV
	XSRETURN_UNDEF
	XSRETURN_YES
	XST_mIV
	XST_mNV
	XST_mNO
	XST_mPV
	XST_mUNDEF
	XST_mYES
	XS_VERSION
	XS_VERSION_BOOTCHECK
	Zero

	AUTHOR
	DATE

	perlcall
	NAME
	DESCRIPTION
	An Error Handler
	An Event Driven Program

	THE PERL_CALL FUNCTIONS
	perl_call_sv
	perl_call_pv
	perl_call_method
	perl_call_argv

	FLAG VALUES
	G_SCALAR
	1.
	2.

	G_ARRAY
	1.
	2.

	G_DISCARD
	G_NOARGS
	G_EVAL	
	G_KEEPERR
	Determining the Context

	KNOWN PROBLEMS
	1.
	2.

	EXAMPLES
	No Parameters, Nothing returned
	1.
	2.
	3.
	4.
	5.

	Passing Parameters
	1.
	2.
	3.
	4.
	5.
	6.

	Returning a Scalar
	1.
	2.
	3.
	4.
	5.
	6.

	Returning a list of values
	1.
	2.

	Returning a list in a scalar context
	Returning Data from Perl via the parameter list
	Using G_EVAL
	1.
	2.
	3.

	Using G_KEEPERR
	Using perl_call_sv
	Using perl_call_argv
	Using perl_call_method
	Using GIMME
	Using Perl to dispose of temporaries
	Strategies for storing Callback Context Information
	1. Ignore the problem - Allow only 1 callback
	2. Create a sequence of callbacks - hard wired limit
	3. Use a parameter to map to the Perl callback

	Alternate Stack Manipulation
	1.
	2.
	3.

	SEE ALSO
	AUTHOR
	DATE

	Core Modules
	AnyDBM_File
	NAME
	SYNOPSIS
	DESCRIPTION
	DBM Comparisons
	[0]
	[1]
	[2]
	[3]

	SEE ALSO

	AutoLoader
	NAME
	SYNOPSIS
	DESCRIPTION
	__END__
	Loading Stubs
	Package Lexicals
	AutoLoader vs. SelfLoader

	CAVEAT

	AutoSplit
	NAME
	SYNOPSIS
	DESCRIPTION
	CAVEATS
	DIAGNOSTICS

	Benchmark
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	new
	debug

	Standard Exports
	timeit(COUNT, CODE)
	timethis
	timethese
	timediff
	timestr

	Optional Exports

	NOTES
	INHERITANCE
	CAVEATS
	AUTHORS
	MODIFICATION HISTORY

	Carp
	NAME
	SYNOPSIS
	DESCRIPTION

	Cwd
	NAME
	SYNOPSIS
	DESCRIPTION

	Devel
	SelfStubber
	NAME
	SYNOPSIS
	DESCRIPTION

	DirHandle
	NAME
	SYNOPSIS
	DESCRIPTION

	DynaLoader
	NAME
	SYNOPSIS
	DESCRIPTION
	@dl_library_path
	@dl_resolve_using
	@dl_require_symbols
	dl_error()
	$dl_debug
	dl_findfile()
	dl_expandspec()
	dl_load_file()
	dl_find_symbol()
	dl_undef_symbols()
	dl_install_xsub()
	bootstrap()

	AUTHOR

	English
	NAME
	SYNOPSIS
	DESCRIPTION

	Env
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Exporter
	NAME
	SYNOPSIS
	DESCRIPTION
	Selecting What To Export
	Specialised Import Lists
	Module Version Checking
	Managing Unknown Symbols
	Tag Handling Utility Functions

	ExtUtils
	Embed
	NAME
	SYNOPSIS
	DESCRIPTION
	@EXPORT
	FUNCTIONS
	xsinit()
	Examples
	ldopts()
	Examples
	perl_inc()
	ccflags(), ccdlflags()
	ccopts()
	xsi_header()
	xsi_protos(@modules)
	xsi_body(@modules)

	EXAMPLES
	SEE ALSO
	AUTHOR

	Install
	NAME
	SYNOPSIS
	DESCRIPTION

	Liblist
	NAME
	SYNOPSIS
	DESCRIPTION
	For static extensions
	For dynamic extensions
	For dynamic extensions
	EXTRALIBS
	LDLOADLIBS and LD_RUN_PATH
	BSLOADLIBS

	PORTABILITY
	SEE ALSO

	MM_OS2
	NAME
	SYNOPSIS
	DESCRIPTION

	MM_Unix
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	Preloaded methods
	canonpath
	catdir
	catfile
	curdir
	rootdir
	updir

	SelfLoaded methods
	c_o (o)
	cflags (o)
	clean (o)
	const_cccmd (o)
	const_config (o)
	const_loadlibs (o)
	constants (o)
	depend (o)
	dir_target (o)
	dist (o)
	dist_basics (o)
	dist_ci (o)
	dist_core (o)
	dist_dir (o)
	dist_test (o)
	dlsyms (o)
	dynamic (o)
	dynamic_bs (o)
	dynamic_lib (o)
	exescan
	extliblist
	file_name_is_absolute
	find_perl

	Methods to actually produce chunks of text for the Makefile
	force (o)
	guess_name
	has_link_code
	init_dirscan
	init_main
	init_others
	install (o)
	installbin (o)
	libscan (o)
	linkext (o)
	lsdir
	macro (o)
	makeaperl (o)
	makefile (o)
	manifypods (o)
	maybe_command
	maybe_command_in_dirs
	needs_linking (o)
	nicetext
	parse_version
	pasthru (o)
	path
	perl_script
	perldepend (o)
	pm_to_blib
	post_constants (o)
	post_initialize (o)
	postamble (o)
	prefixify
	processPL (o)
	realclean (o)
	replace_manpage_separator
	static (o)
	static_lib (o)
	staticmake (o)
	subdir_x (o)
	subdirs (o)
	test (o)
	test_via_harness (o)
	test_via_script (o)
	tool_autosplit (o)
	tools_other (o)
	tool_xsubpp (o)
	top_targets (o)
	writedoc
	xs_c (o)
	xs_o (o)

	SEE ALSO

	MM_VMS
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods always loaded
	eliminate_macros
	fixpath
	catdir
	catfile
	curdir (override)
	rootdir (override)
	updir (override)

	SelfLoaded methods
	guess_name (override)
	find_perl (override)
	path (override)
	maybe_command (override)
	maybe_command_in_dirs (override)
	perl_script (override)
	file_name_is_absolute (override)
	replace_manpage_separator
	init_others (override)
	constants (override)
	const_loadlibs (override)
	cflags (override)
	const_cccmd (override)
	pm_to_blib (override)
	tool_autosplit (override)
	tool_sxubpp (override)
	xsubpp_version (override)
	tools_other (override)
	dist (override)
	c_o (override)
	xs_c (override)
	xs_o (override)
	top_targets (override)
	dlsyms (override)
	dynamic_lib (override)
	dynamic_bs (override)
	static_lib (override)
	manifypods (override)
	processPL (override)
	installbin (override)
	subdir_x (override)
	clean (override)
	realclean (override)
	dist_basics (override)
	dist_core (override)
	dist_dir (override)
	dist_test (override)
	install (override)
	perldepend (override)
	makefile (override)
	test (override)
	test_via_harness (override)
	test_via_script (override)
	makeaperl (override)
	ext (specific)
	nicetext (override)

	MakeMaker
	NAME
	SYNOPSIS
	DESCRIPTION
	How To Write A Makefile.PL
	Default Makefile Behaviour
	make test
	make install
	PREFIX attribute
	AFS users
	Static Linking of a new Perl Binary
	Determination of Perl Library and Installation Locations
	Which architecture dependent directory?
	Using Attributes and Parameters
	C
	CONFIG
	CONFIGURE
	DEFINE
	DIR
	DISTNAME
	DL_FUNCS
	DL_VARS
	EXCLUDE_EXT
	EXE_FILES
	NO_VC
	FIRST_MAKEFILE
	FULLPERL
	H
	INC
	INCLUDE_EXT
	INSTALLARCHLIB
	INSTALLBIN
	INSTALLDIRS
	INSTALLMAN1DIR
	INSTALLMAN3DIR
	INSTALLPRIVLIB
	INSTALLSCRIPT
	INSTALLSITELIB
	INSTALLSITEARCH
	INST_ARCHLIB
	INST_BIN
	INST_EXE
	INST_LIB
	INST_MAN1DIR
	INST_MAN3DIR
	INST_SCRIPT
	LDFROM
	LIBPERL_A
	LIBS
	LINKTYPE
	MAKEAPERL
	MAKEFILE
	MAN1PODS
	MAN3PODS
	MAP_TARGET
	MYEXTLIB
	NAME
	NEEDS_LINKING
	NOECHO
	NORECURS
	OBJECT
	OPTIMIZE
	PERL
	PERLMAINCC
	PERL_ARCHLIB
	PERL_LIB
	PERL_SRC
	PL_FILES
	PM
	PMLIBDIRS
	PREFIX
	PREREQ_PM
	SKIP
	TYPEMAPS
	VERSION
	VERSION_FROM
	XS
	XSOPT
	XSPROTOARG
	XS_VERSION

	Additional lowercase attributes
	clean
	depend
	dist
	dynamic_lib
	installpm
	linkext
	macro
	realclean
	tool_autosplit

	Overriding MakeMaker Methods
	Hintsfile support
	Distribution Support
	make distcheck
	make skipcheck
	make distclean
	make manifest
	make distdir
	make disttest
	make tardist
	make dist
	make uutardist
	make shdist
	make zipdist
	make ci

	SEE ALSO
	AUTHORS

	Manifest
	NAME
	SYNOPSIS
	DESCRIPTION
	MANIFEST.SKIP
	EXPORT_OK
	GLOBAL VARIABLES
	DIAGNOSTICS
	Not in MANIFEST: file
	No such file: file
	MANIFEST: $!
	Added to MANIFEST: file

	SEE ALSO
	AUTHOR

	Miniperl
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	Mkbootstrap
	NAME
	SYNOPSIS
	DESCRIPTION

	Mksymlists
	NAME
	SYNOPSIS
	DESCRIPTION
	NAME
	DL_FUNCS
	DL_VARS
	FILE
	FUNCLIST
	DLBASE

	AUTHOR
	REVISION

	testlib
	NAME
	SYNOPSIS
	DESCRIPTION

	xsubpp
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	-C++
	-except
	-typemap typemap
	-v
	-prototypes
	-noversioncheck

	ENVIRONMENT
	AUTHOR
	MODIFICATION HISTORY
	SEE ALSO

	Fatal
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Fcntl
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE

	File
	Basename
	NAME
	SYNOPSIS
	DESCRIPTION
	fileparse_set_fstype
	fileparse

	EXAMPLES
	basename
	dirname

	CheckTree
	NAME
	SYNOPSIS
	DESCRIPTION

	Copy
	NAME
	SYNOPSIS
	DESCRIPTION
	Special behavior under VMS
	rmscopy($from,$to[,$date_flag])

	RETURN
	AUTHOR

	Find
	NAME
	SYNOPSIS
	DESCRIPTION

	Path
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHORS
	REVISION

	FileCache
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS

	FileHandle
	NAME
	SYNOPSIS
	DESCRIPTION
	$fh->print
	$fh->printf
	$fh->getline
	$fh->getlines

	SEE ALSO
	BUGS

	FindBin
	NAME
	SYNOPSIS
	DESCRIPTION
	EXPORTABLE VARIABLES
	KNOWN BUGS
	AUTHORS
	COPYRIGHT
	REVISION

	Getopt
	Long
	NAME
	SYNOPSIS
	DESCRIPTION
	<none>
	!
	=s
	:s
	=i
	:i
	=f
	:f
	Linkage specification
	Aliases and abbreviations
	Non-option call-back routine
	Option starters
	Return value

	COMPATIBILITY
	EXAMPLES
	CONFIGURATION VARIABLES
	$Getopt::Long::autoabbrev
	$Getopt::Long::getopt_compat
	$Getopt::Long::order
	$Getopt::Long::bundling
	$Getopt::Long::ignorecase
	$Getopt::Long::VERSION
	$Getopt::Long::error
	$Getopt::Long::debug

	Std
	NAME
	SYNOPSIS
	DESCRIPTION

	I18N
	Collate
	NAME
	SYNOPSIS
	DESCRIPTION

	IO
	File
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRUCTOR
	new ([ARGS])

	METHODS
	open(FILENAME [,MODE [,PERMS]])

	SEE ALSO
	HISTORY
	REVISION

	Handle
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRUCTOR
	new ()
	new_from_fd (FD, MODE)

	METHODS
	$fh-getline
	$fh-getlines
	$fh-fdopen (FD, MODE)
	$fh-write (BUF, LEN [, OFFSET }\])
	$fh-opened

	NOTE
	SEE ALSO
	BUGS
	HISTORY

	Pipe
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRCUTOR
	new ([READER, WRITER])

	METHODS
	reader ([ARGS])
	writer ([ARGS])
	handles ()

	SEE ALSO
	AUTHOR
	REVISION
	COPYRIGHT

	Seekable
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	HISTORY
	REVISION

	Select
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRUCTOR
	new ([HANDLES])

	METHODS
	add (HANDLES)
	remove (HANDLES)
	can_read ([TIMEOUT])
	can_write ([TIMEOUT])
	has_error ([TIMEOUT])
	count ()
	select (READ, WRITE, ERROR [, TIMEOUT])

	EXAMPLE
	AUTHOR
	REVISION
	COPYRIGHT

	Socket
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTRUCTOR
	new ([ARGS])

	METHODS
	accept([PKG])
	timeout([VAL])
	sockopt(OPT [, VAL])
	sockdomain
	socktype
	protocol

	SUB-CLASSES
	IO::Socket::INET
	METHODS
	sockaddr ()
	sockport ()
	sockhost ()
	peeraddr ()
	peerport ()
	peerhost ()

	IO::Socket::UNIX
	METHODS
	hostpath()
	peerpath()

	AUTHOR
	REVISION
	COPYRIGHT

	IPC
	Open2
	NAME
	SYNOPSIS
	DESCRIPTION
	WARNING
	SEE ALSO

	Open3
	NAME
	SYNOPSIS
	DESCRIPTION

	Math
	BigFloat
	NAME
	SYNOPSIS
	DESCRIPTION
	number format
	Error returns `NaN'
	Division is computed to

	BUGS
	AUTHOR

	BigInt
	NAME
	SYNOPSIS
	DESCRIPTION
	Canonical notation
	Input
	Output

	EXAMPLES
	BUGS
	AUTHOR

	Complex
	NAME
	SYNOPSIS
	DESCRIPTION
	OPERATIONS
	CREATION
	STRINGIFICATION
	USAGE
	BUGS
	AUTHOR

	NDBM_File
	NAME
	SYNOPSIS
	DESCRIPTION

	Net
	Ping
	NAME
	SYNOPSIS
	DESCRIPTION
	Parameters
	hostname
	timeout

	WARNING

	ODBM_File
	NAME
	SYNOPSIS
	DESCRIPTION

	Opcode
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	WARNING
	Operator Names and Operator Lists
	an operator name (opname)
	an operator tag name (optag)
	a negated opname or optag
	an operator set (opset)

	Opcode Functions
	opcodes
	opset (OP, ...)
	opset_to_ops (OPSET)
	opset_to_hex (OPSET)
	full_opset
	empty_opset
	invert_opset (OPSET)
	verify_opset (OPSET, ...)
	define_optag (OPTAG, OPSET)
	opmask_add (OPSET)
	opmask
	opdesc (OP, ...)
	opdump (PAT)

	Manipulating Opsets
	TO DO (maybe)
	Predefined Opcode Tags
	:base_core
	:base_mem
	:base_loop
	:base_io
	:base_orig
	:base_math
	:default
	:filesys_read
	:sys_db
	:browse
	:filesys_open
	:filesys_write
	:subprocess
	:ownprocess
	:others
	:still_to_be_decided
	:dangerous

	SEE ALSO
	AUTHORS

	POSIX
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	CAVEATS
	FUNCTIONS
	_exit
	abort
	abs
	access
	acos
	alarm
	asctime
	asin
	assert
	atan
	atan2
	atexit
	atof
	atoi
	atol
	bsearch
	calloc
	ceil
	chdir
	chmod
	chown
	clearerr
	clock
	close
	closedir
	cos
	cosh
	creat
	ctermid
	ctime
	cuserid
	difftime
	div
	dup
	dup2
	errno
	execl
	execle
	execlp
	execv
	execve
	execvp
	exit
	exp
	fabs
	fclose
	fcntl
	fdopen
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	fileno
	floor
	fmod
	fopen
	fork
	fpathconf
	fprintf
	fputc
	fputs
	fread
	free
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	fstat
	ftell
	fwrite
	getc
	getchar
	getcwd
	getegid
	getenv
	geteuid
	getgid
	getgrgid
	getgrnam
	getgroups
	getlogin
	getpgrp
	getpid
	getppid
	getpwnam
	getpwuid
	gets
	getuid
	gmtime
	isalnum
	isalpha
	isatty
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	kill
	labs
	ldexp
	ldiv
	link
	localeconv
	localtime
	log
	log10
	longjmp
	lseek
	malloc
	mblen
	mbstowcs
	mbtowc
	memchr
	memcmp
	memcpy
	memmove
	memset
	mkdir
	mkfifo
	mktime
	modf
	nice
	offsetof
	open
	opendir
	pathconf
	pause
	perror
	pipe
	pow
	printf
	putc
	putchar
	puts
	qsort
	raise
	rand
	read
	readdir
	realloc
	remove
	rename
	rewind
	rewinddir
	rmdir
	scanf
	setgid
	setjmp
	setlocale
	setpgid
	setsid
	setuid
	sigaction
	siglongjmp
	sigpending
	sigprocmask
	sigsetjmp
	sigsuspend
	sin
	sinh
	sleep
	sprintf
	sqrt
	srand
	sscanf
	stat
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	stroul
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strxfrm
	sysconf
	system
	tan
	tanh
	tcdrain
	tcflow
	tcflush
	tcgetpgrp
	tcsendbreak
	tcsetpgrp
	time
	times
	tmpfile
	tmpnam
	tolower
	toupper
	ttyname
	tzname
	tzset
	umask
	uname
	ungetc
	unlink
	utime
	vfprintf
	vprintf
	vsprintf
	wait
	waitpid
	wcstombs
	wctomb
	write

	CLASSES
	POSIX::SigAction
	new

	POSIX::SigSet
	new
	addset
	delset
	emptyset
	fillset
	ismember

	POSIX::Termios
	new
	getattr
	getcc
	getcflag
	getiflag
	getispeed
	getlflag
	getoflag
	getospeed
	setattr
	setcc
	setcflag
	setiflag
	setispeed
	setlflag
	setoflag
	setospeed
	Baud rate values
	Terminal interface values
	c_cc field values
	c_cflag field values
	c_iflag field values
	c_lflag field values
	c_oflag field values

	PATHNAME CONSTANTS
	Constants

	POSIX CONSTANTS
	Constants

	SYSTEM CONFIGURATION
	Constants

	ERRNO
	Constants

	FCNTL
	Constants

	FLOAT
	Constants

	LIMITS
	Constants

	LOCALE
	Constants

	MATH
	Constants

	SIGNAL
	Constants

	STAT
	Constants
	Macros

	STDLIB
	Constants

	STDIO
	Constants

	TIME
	Constants

	UNISTD
	Constants

	WAIT
	Constants
	Macros

	CREATION

	SDBM_File
	NAME
	SYNOPSIS
	DESCRIPTION

	Safe
	NAME
	SYNOPSIS
	DESCRIPTION
	a new namespace
	an operator mask

	WARNING
	RECENT CHANGES
	Methods in class Safe
	permit (OP, ...)
	permit_only (OP, ...)
	deny (OP, ...)
	deny_only (OP, ...)
	trap (OP, ...)
	untrap (OP, ...)
	share (NAME, ...)
	share_from (PACKAGE, ARRAYREF)
	varglob (VARNAME)
	reval (STRING)
	rdo (FILENAME)
	root (NAMESPACE)
	mask (MASK)

	Some Safety Issues
	Memory
	CPU
	Snooping
	Signals
	State Changes

	AUTHOR

	Search
	Dict
	NAME
	SYNOPSIS
	DESCRIPTION

	SelectSaver
	NAME
	SYNOPSIS
	DESCRIPTION

	SelfLoader
	NAME
	SYNOPSIS
	DESCRIPTION
	The __DATA__ token
	SelfLoader autoloading
	Autoloading and package lexicals
	SelfLoader and AutoLoader
	__DATA__, __END__, and the FOOBAR::DATA filehandle.
	Classes and inherited methods.

	Multiple packages and fully qualified subroutine names

	Shell
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Socket
	NAME
	SYNOPSIS
	DESCRIPTION
	inet_aton HOSTNAME
	inet_ntoa IP_ADDRESS
	INADDR_ANY
	INADDR_LOOPBACK
	INADDR_NONE
	sockaddr_in PORT, ADDRESS
	sockaddr_in SOCKADDR_IN
	pack_sockaddr_in PORT, IP_ADDRESS
	unpack_sockaddr_in SOCKADDR_IN
	sockaddr_un PATHNAME
	sockaddr_un SOCKADDR_UN
	pack_sockaddr_un PATH
	unpack_sockaddr_un SOCKADDR_UN

	Symbol
	NAME
	SYNOPSIS
	DESCRIPTION

	Sys
	Hostname
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHOR

	Syslog
	NAME
	SYNOPSIS
	DESCRIPTION
	openlog $ident, $logopt, $facility
	syslog $priority, $format, @args
	setlogmask $mask_priority
	closelog

	EXAMPLES
	DEPENDENCIES
	SEE ALSO
	AUTHOR

	Term
	Cap
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES

	Complete
	NAME
	SYNOPSIS
	DESCRIPTION
	<tab>
	^D
	^U
	, <bs>

	DIAGNOSTICS
	BUGS
	AUTHOR

	ReadLine
	NAME
	SYNOPSIS
	DESCRIPTION
	Minimal set of supported functions
	ReadLine
	new
	readline
	addhistory
	IN, $OUT
	MinLine
	findConsole
	Features

	EXPORTS

	Test
	Harness
	NAME
	SYNOPSIS
	DESCRIPTION
	The test script output

	EXPORT
	DIAGNOSTICS
	All tests successful.\nFiles=%d, Tests=%d, %s
	FAILED tests %s\n\tFailed %d/%d tests, %.2f%% okay.
	Test returned status %d (wstat %d)
	Failed 1 test, %.2f%% okay. %s
	Failed %d/%d tests, %.2f%% okay. %s

	SEE ALSO
	AUTHORS
	BUGS

	Text
	Abbrev
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE

	ParseWords
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHORS

	Soundex
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	LIMITATIONS
	AUTHOR

	Tabs
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS
	AUTHOR

	Wrap
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	AUTHOR

	Tie
	Hash
	NAME
	SYNOPSIS
	DESCRIPTION
	TIEHASH classname, LIST
	STORE this, key, value
	FETCH this, key
	FIRSTKEY this
	NEXTKEY this, lastkey
	EXISTS this, key
	DELETE this, key
	CLEAR this

	CAVEATS
	MORE INFORMATION

	Scalar
	NAME
	SYNOPSIS
	DESCRIPTION
	TIESCALAR classname, LIST
	FETCH this
	STORE this, value
	DESTROY this

	MORE INFORMATION

	SubstrHash
	NAME
	SYNOPSIS
	DESCRIPTION
	CAVEATS

	Time
	Local
	NAME
	SYNOPSIS
	DESCRIPTION

	diagnostics
	NAME
	SYNOPSIS
	DESCRIPTION
	The �diagnostics� Pragma
	The �splain� Program

	EXAMPLES
	INTERNALS
	BUGS
	AUTHOR

	integer
	NAME
	SYNOPSIS
	DESCRIPTION

	less
	NAME
	SYNOPSIS
	DESCRIPTION

	lib
	NAME
	SYNOPSIS
	DESCRIPTION
	ADDING DIRECTORIES TO @INC
	DELETING DIRECTORIES FROM @INC
	RESTORING ORIGINAL @INC

	SEE ALSO
	AUTHOR

	overload
	NAME
	SYNOPSIS
	CAVEAT SCRIPTOR
	DESCRIPTION
	Declaration of overloaded functions
	Calling Conventions for Binary Operations
	FALSE
	TRUE
	undef

	Calling Conventions for Unary Operations
	Overloadable Operations
	Arithmetic operations
	Comparison operations
	Bit operations
	Increment and decrement
	Transcendental functions
	Boolean, string and numeric conversion
	Special

	SPECIAL SYMBOLS FOR �use overload�
	Last Resort
	Fallback
	undef
	TRUE
	defined, but FALSE

	Copy Constructor
	Example

	MAGIC AUTOGENERATION
	Assignment forms of arithmetic operations
	Conversion operations
	Increment and decrement
	abs($a)
	Unary minus
	Negation
	Concatenation
	Comparison operations
	Copy operator

	WARNING
	Run-time Overloading
	Public functions
	overload::StrVal(arg)
	overload::Overloaded(arg)
	overload::Method(obj,op)

	IMPLEMENTATION
	AUTHOR
	DIAGNOSTICS
	BUGS

	sigtrap
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	SIGNAL HANDLERS
	stack-trace
	die
	handler your-handler

	SIGNAL LISTS
	normal-signals
	error-signals
	old-interface-signals

	OTHER
	untrapped
	any
	signal
	number

	EXAMPLES

	strict
	NAME
	SYNOPSIS
	DESCRIPTION
	strict refs
	strict vars
	strict subs
	strict untie

	subs
	NAME
	SYNOPSIS
	DESCRIPTION

	vars
	NAME
	SYNOPSIS
	DESCRIPTION

