Parse::Eyapp Tutorial

Casiano Rodriguez-Leon

January 25, 2007

Contents
1 NAME 3
2 VERSION 3
3 SYNOPSIS 3
4 Introduction to Parse: :Eyapp 4
5 Input from strings 4
6 Names for attributes 4
7 Lists and Optionals 5
8 Default actions 5
8.1 Compiling with eyapp L e 5
9 Abstract Syntax Trees 6
9.1 Displaying Trees e e e e e 6
9.2 TERMINAL nodes o e s 7
9.3 User Attributes and System Attributes oL oL L 7
9.4 Syntactic and Semantic tokens Lo 7
9.5 Saving the Information In Syntactic Tokens 8
9.6 The directives %syntactic token and %semantic token 8
9.7 The bypass clause and the %no bypass directive Lo 8
9.8 Explictly building nodes with the YYBuildAST method 10
9.9 The child and descendant methods 11
9.10 The alias clause of the %tree directive 11
10 Tree Regular Expressions 12
10.1 The Syntax of Treeregexp o o o e 12
10.2 Separated Compilation with treereg L L L 13
10.3 Regexp Treeregexps« o o i i i e e e e 14
10.4 Matching Trees o . oL e 15
10.5 The SEVERITY option of Parse: :Eyapp::Treeregexp: inew « . .« v v v v v v v oo .. 17
10.6 Array Treeregexp EXpressions L. e 18
11 Translation Schemes 20
11.1 Execution Stages of a Translation Scheme L L. 21
11.2 The ¥begin directive L 22
12 Scope Analysis with Parse: :Eyapp: :Scope 24
13 SEE ALSO 26
14 REFERENCES 27
15 AUTHOR 27
16 ACKNOWLEDGMENTS 27

17 LICENCE AND COPYRIGHT

27

1

NAME

Parse::Eyapp

2 VERSION
1.06503
3 SYNOPSIS

use strict;
use Parse::Eyapp;
use Parse::Eyapp::Treeregexp;

sub TERMINAL: :info {

}

$_[0]{attr}

my $grammar = qf

};

%right =’ # Lowest precedence

%left ’-? ’+’ # + and - have more precedence than = Disambiguate a-b-c as (a-b)-c

%left %’ ?/7 # * and / have more precedence than + Disambiguate a/b/c as (a/b)/c

%left NEG # Disambiguate -a-b as (-a)-b and not as -(a-b)

%tree # Let us build an abstract syntax tree ...

i

line: exp <J)name EXPRESION_LIST + ’;°> { $_[1] } /* list of expressions separated by ’;’ */

s

/* The Yname directive defines the name of the class to which the node being built belongs */

exp:
%name NUM NUM | %name VAR VAR | %name ASSIGN VAR ’=’ exp
| %name PLUS exp ’+’ exp | %name MINUS exp ’-’ exp | ¥%name TIMES exp ’*’ exp
| %name DIV exp ’/’ exp | Jname UMINUS ’-’ exp Y%prec NEG
| (P exp ?)? { $_[2] } /* Let us simplify a bit the tree */
hhh

sub _Error { die "Syntax error near ".($_[0]->YYCurval?$_[0]->YYCurval:"end of file")."\n" }

sub _Lexer {
my ($parser)=shift; # The parser object

for ($parser->YYData->{INPUT}) {
s/~\st//;
$_ eq ’’ and return(’’,undef);
s/~ ([0-9]+(?:\.[0-9]+)7)// and return(’NUM’,$1);
s/~ ([A-Za-z] [A-Za-z0-9_1%)// and return(’VAR’,$1);
s/~(.)//s and return($1,$1);

sub Run {

my ($self)=shift;

$self->YYParse(yylex => \&_Lexer, yyerror => \&_Error,);
}

end grammar

our (@all, $uminus);

Parse: :Eyapp->new_grammar (# Create the parser package/class
input=>$grammar,
classname=>’Calc’, # The name of the package containing the parser

firstline=>7 # String $grammar starts at line 7 (for error diagnostics)
)3
my $parser = Calc->new(); # Create a parser
$parser->YYData->{INPUT} = "2x-3+b*0;--2\n"; # Set the input
my $t = $parser->Run; # Parse it!

local $Parse::Eyapp: :Node::INDENT=2;
print "Syntax Tree:",$t->str;

Let us transform the tree. Define the tree-regular expressions ..
my $p = Parse::Eyapp::Treeregexp->new(STRING => q{
{ # Example of support code

my %0p = (PLUS=>’+’, MINUS => ’-’, TIMES=>’x’, DIV => ?/’);
}
constantfold: /TIMES|PLUS|DIV|MINUS/:bin(NUM($x), NUM($y))
=> {
my $op = $0p{ref($_[01)};
$x->{attr} = eval "$x->{attr} $op $y->{attr}";
$_[0] = $NUM[O];
}
uminus: UMINUS (NUM($x)) => { $x->{attr} = -$x->{attr}; $_[0] = $NUM }
zero_times_whatever: TIMES(NUM($x), .) and { $x->{attr} == 0 } => { $_[0] = $NUM }
whatever_times_zero: TIMES(., NUM($x)) and { $x->{attr} == }=> { ¢$_[0] = $NUM }
},

OUTPUTFILE=> ’main.pm’
)

$p->generate(); # Create the tranformations

$t->s($uminus) ; # Transform UMINUS nodes
$t->s(@all); # constant folding and mult. by zero

local $Parse::Eyapp::Node: :INDENT=0;
print "\nSyntax Tree after transformations:\n",$t->str,"\n";
4 Introduction to Parse: :Eyapp

Parse::Eyapp (Extended yapp) is a collection of modules that extends Francois Desarmenien Parse::Yapp 1.05.
Eyapp extends yacc/yapp syntax with the functionalities briefly described in this section. This is an introductory
tutorial. For a reference guide see Parse::Eyapp. If you are not familiar with yacc or yapp and you can speak
Spanish start reading the contents in http://nereida.deioc.ull.es/~pl/perlexamples/chapter parseeyapp.html.

5 Input from strings

Grammars can be compiled from a file or from source on the fly (See the synopsis section for an example).

6 Names for attributes

Attributes can be referenced by meaningful names instead of the classic error-prone positional approach using
the dot notation like in:

exp : exp.left ’-’ exp.right { $left - $right }

By qualifying the first appearance of the syntactic variable exp with the notation exp.left we can later
refer inside the actions to the associated attribute using the lexical variable $left. The dolar notation $A
can be used as an abbreviation of A.A. For example:

exp: -’ $exp Yprec NEG { -$exp }

7 Lists and Optionals

Lists, optional lists, list separated by tokens, etc. like in the start rule in the Synopsis example can be used:
line: exp <%name EXPRESION_LIST + ’;°> { $_[1] }

which defines 1ine as the language of non empty lists of exp elements separated by semicolons. The use
of Yname EXPRESION_LIST gives a name to the created list. Actually the right hand side of this production
has only one element which is the reference to the list. The associated action { $_[1] } makes the generated
parser to return the reference to such list.

The former rule is almost equivalent to:

line: line ’;’ exp { push $_[1]->{children}, $_[3] 1}
| exp { bless { children => [$_[1] 1 }, ’EXPRESION_LIST’ }

8 Default actions

When no action is specified both yapp and eyapp implicitly insert the semantic action { $_[1] }. InParse: :Eyapp
you can modify such behavior using the %defaultaction { Perl code } directive. The Perl code that follows
the directive is executed when reducing by any production for which no explicit action was specified. See an
example that translates an infix expression like a=b*-3 into a postfix expression like a b 3 NEG * = :

File Postfix.eyp (See the examples/ directory)
Yright ’=

%left Y 4

%1e:ft % 7/7

%left NEG

%defaultaction { return "$left $right $op"; }

hth
line: $exp { print "$exp\n" }

s

exp: $nuM { $NUM }

$VAR { $VAR }

VAR.left ’=’.op exp.right
exp.left ’+’.op exp.right
exp.left ’-’.op exp.right
exp.left ’*’.op exp.right
exp.left ’/’.op exp.right

> $exp %prec NEG { "$exp NEG" }
7(? $exp ?)’ { $exp }

D

Support subroutines as in the Synopsis example

8.1 Compiling with eyapp
The file containing the Eyapp program must be compiled with eyapp:
nereida:”/src/perl/YappWithDefaultAction/examples> eyapp Postfix.eyp
Next, you have to write a client program:

nereida:”~/src/perl/YappWithDefaultAction/examples> cat -n usepostfix.pl
1 #!/usr/bin/perl -w

use strict;

use Postfix;

my $parser = new Postfix();
$parser->Run;

DOV WwN

Now we can run the client program:

nereida:”~/src/perl/YappWithDefaultAction/examples> usepostfix.pl
Write an expression: -(2xa-b*-3)
2 a *x b 3 NEG * - NEG

9 Abstract Syntax Trees

Parse: :Eyapp facilitates the construction of concrete syntax trees and abstract syntax trees (abbreviated AST
from now on) through the %tree directive. Nodes in the AST are blessed in the production name. By default
the name of a production is the concatenation of the left hand side and the production number. The production
number is the ordinal number of the production as they appear in the associated .output file (see option -v of
eyapp) However, a production can be named using the %name directive. Therefore, in the following code:

exp:
%name NUM NUM
| Y%name VAR VAR
| %name ASSIGN VAR ’=’ exp
| %name UMINUS ’-’ exp Y%prec NEG
[(2 exp ?)? { $_[2] } /* Let us simplify a bit the tree */

we are explictly naming the productions. Thus, the node corresponding to the production exp: VAR ’=’
exp will be named ASSIGN. Explicit actions can be specified by the programmer like in

[(2 exp ?)? { $_[2] } /* Let us simplify a bit the tree */

the action receives as arguments the references to the children nodes already built. The programmer can
influence the shape of the tree by inserting this explicit actions. In the example the programmer has decided
to simplify the syntax tree: the nodes associated with the parenthesis are discarded and the reference to the
subtree containing the proper expression is returned.

When a explicit user action returns s.t. that is not a reference no child will be inserted in the father of the
current production.

9.1 Displaying Trees

All the node classes build by %tree inherit from Parse::Eyapp::Node and consequently have acces to the
methods provided in such module. Among them is the str method which dumps the tree. The str method
traverses the syntax tree dumping the type of the node being visited in a string. If the node has a method info
it will be executed and its result concatenated to the string. Thus, in the Synopsis example, by adding the info
method to the class TERMINAL:

sub TERMINAL::info {
$_[0]{attr}
}

we achieve the insertion of attributes in the string build by str (see the partial output of synopsis.pl in
section Syntactic and Semantic tokens).

The existence of some methods (like footnote) and the values of some package variables influence the
behavior of str. Among the most important are:

@PREFIXES = qw(Parse::Eyapp::Node::); # Prefixes to supress

$INDENT = O; # O = compact, 1 = indent, 2 = indent and include Types in closing parenthesis
$STRSEP = ?,7;

$DELIMITER = *[’;

$FOOTNOTE_HEADER = "\n-----———--—mmmmm = \n";

$FOOTNOTE_SEP = ")\n";

$FOOTNOTE_LEFT = *~{’;

$FOOTNOTE_RIGHT = °}’;

$LINESEP = 4;

9.2 TERMINAL nodes

Nodes named TERMINAL correspond to tokens provided by the lexical analyzer. They are Parse: :Eyapp: :Node
nodes (hashes) with an attribute attr holding the attribute provided by the lexical analyzer. The attr method
can be used to get/set the attribute.

9.3 User Attributes and System Attributes

All the nodes in the AST are Parse: :Eyapp: :Node nodes. They are hashes that the user can decorate with
new keys/attributes. The only reserved words are those listed in the reference section. Basically they have a
children key. TERMINAL nodes have the attr key.

9.4 Syntactic and Semantic tokens

Parse: :Eyapp diferences between syntactic tokens and semantic tokens. By default all tokens declared
using string notation (i.e. between quotes like ’*+’, =7 in the Synopsis example) are considered syntactic
tokens. Tokens declared by an identifier (like NUM or VAR in the Synopsis example) are by default considered
semantic tokens. Syntactic tokens are eliminated when building the syntactic tree. Thus, the first
print in the former Synopsis example:

$parser->YYData->{INPUT} = "2x-3+b*0;--2\n";
my $t = $parser->Run;

local $Parse::Eyapp: :Node::INDENT=2;

print "Syntax Tree:",$t->str;

gives as result the following output:

nereida:”/src/perl/YappWithDefaultAction/examples> synopsis.pl
Syntax Tree:
EXPRESION_LIST(
PLUS(
TIMES(
NUM(
TERMINAL[2]
),
UMINUS (
NUM (
TERMINAL[3]
)
) # UMINUS
) # TIMES,
TIMES(
VAR(
TERMINAL[b]
)’
NUM (
TERMINAL[0]
)
) # TIMES
) # PLUS,
UMINUS(
UMINUS(
NUM (
TERMINAL[2]
)
) # UMINUS
) # UMINUS
) # EXPRESION_LIST

9.5 Saving the Information In Syntactic Tokens

The reason for the adjective %syntactic applied to a token is to state that the token influences the shape of
the syntax tree but carries no other information. When the tree is built the node corresponding to the token is
discarded.

Sometimes the difference between syntactic and semantic tokens is blurred. For example the line number
associated with an instance of the syntactic token ’+? can be used later -say during type checking- to emit a more
accurate error diagnostic. But if the node was discarded the information about that line number is no longer
available. When building the syntax tree Parse::Eyapp (namely the method Parse::Eyapp::YYBuildAST)
checks a TERMINAL: : save_attributes method exists and if so it will be called when visiting a syntactic terminal.
The method receives as argument - additionally to the reference to the TERMINAL node - a reference to the node
associated with the left hand side of the production. Here is an example (file examples/Types.eyp) of use:

sub TERMINAL::save_attributes {

$_[0] is a syntactic terminal

$_[1] is the father.

push @{$_[1]1->{1lines}}, $_[0]->[1]; # save the line!
}

9.6 The directives %syntactic token and ’semantic token

The new token declaration directives %syntactic token and Ysemantic token can change the status of a
token. For example (file 15treewithsyntactictoken.pl in the examples/ directory), given the grammar:

%syntactic token b
Y%semantic token ’a’ ’c’
f%tree

i

S: %name ABC
ABC
| Y%name BC
BC

A: Yname A
’a7

B: Yname B

C: Yname C
,C,
%

the tree build for input abc will be ABC(A(TERMINAL) ,B,C(TERMINAL)).

9.7 The bypass clause and the %no bypass directive

The shape of the tree can be also modified using some Y tree clauses as %tree bypass which will produce an
automatic bypass of any node with only one child at tree-construction-time.

A bypass operation consists in returning the only child of the node being visited to the father of the node and
re-typing (re-blessing) the node in the name of the production (if a name is provided).

A node may have only one child at tree-construction-time for one of two reasons.

e The first occurs when the right hand side of the production was already unary like in:

exp:
%name NUM NUM

Here the NUM node will be bypassed and the child TERMINAL built from the information provided by the
lexical analyzer will be renamed as NUM.

e Another reason for a node to be bypassed is the fact that though the right hand side of the production
may have more than one symbol, only one of them is not a syntactic token like in:

exp: *(’ exp)’
As consequence of the blind application of the bypass rule undesired bypasses may occur like in

exp : %name UMINUS
’-? $exp %prec NEG

though the right hand side has two symbols, token ’-’ is a syntactic token and therefore only exp is left.
The bypass operation will be applied when building this node. This bypass can be avoided applying the no
bypass ID directive to the corresponding production:

exp : %no bypass UMINUS
’-? $exp %prec NEG

The following example is the equivalent of the Synopsis example but using the bypass clause instead:

use Parse::Eyapp;
use Parse::Eyapp::Treeregexp;

sub TERMINAL::info { $_[O0]{attr} }
{ no warnings; *VAR::info = *NUM::info = \&TERMINAL::info; }

my $grammar = qf

%right =’ # Lowest precedence

%hleft R

%left I % 7/7

%left NEG # Disambiguate -a-b as (-a)-b and not as -(a-b)
%tree bypass # Let us build an abstract syntax tree ...

hih

line: exp <Y%name EXPRESION_LIST + ’;°’> { $_[1] }

s

exp:
name NUM NUM | %name VAR VAR | %name ASSIGN VAR ’=’ exp
| %name PLUS exp ’+’ exp | %name MINUS exp ’-’ exp | %name TIMES exp ’*’ exp
| %name DIV exp ’/’ exp
| %no bypass UMINUS
’-7 $exp %prec NEG
| 7(: exp ;)7
hh
sub _Error, _Lexer and Run like in the synopsis example
...

}; # end grammar
our (@all, $uminus);
Parse: :Eyapp->new_grammar(# Create the parser package/class

input=>$grammar,
classname=>’Calc’, # The name of the package containing the parser

firstline=>7 # String $grammar starts at line 7 (for error diagnostics)
)3
my $parser = Calc->new(); # Create a parser
$parser->YYData->{INPUT} = "a=2%-3+b*0\n"; # Set the input
my $t = $parser->Run; # Parse it!

print "\mxkkskkskkkxkk\n" . $L->str. "\nkxkkkkokkdokkk\n"

Let us transform the tree. Define the tree-regular expressiomns ..
my $p = Parse::Eyapp::Treeregexp->new(STRING => q{
{ # Example of support code

my %Up = (PLUS=>’+?, MINUS => ’-?, TIMES=>’x%’, DIV => ?/?);
+
constantfold: /TIMES|PLUS|DIV|MINUS/:bin(NUM, NUM)

= {

my $op = $0p{ref($_[01)};
$NUM[O] ->{attr} = eval "$NUM[O]->{attr} $op SNUM[1]->{attr}";
$_[0] = $NUM[O];

}

zero_times_whatever: TIMES(NUM, .) and { $NUM->{attr} == 0 } => { $_[0] = $NUM }
whatever_times_zero: TIMES(., NUM) and { $NUM->{attr} == 0 } => { $_[0] = $NUM }
uminus: UMINUS(NUM) => { $NUM->{attr} = -$NUM->{attr}; $_[0] = $NUM }

T,
OUTPUTFILE=> ’main.pm’
)3

$p->generate(); # Create the tranformations
$t->s(@all); # constant folding and mult. by zero
print $t->str,"\n";
when running this example we obtain the following output:
nereida:”~/src/perl/YappWithDefaultAction/examples> bypass.pl

Aok Kok KKK K
EXPRESION_LIST(ASSIGN (TERMINAL [a] ,PLUS(TIMES (NUM[2] ,UMINUS(NUM[3])),TIMES(VAR[b] ,NUM[0]))))
KKK A KKK K

EXPRESION_LIST(ASSIGN(TERMINAL[al,NUM[-6]))

As you can see the trees are more compact when using the bypass directive.

9.8 Explictly building nodes with the YYBuildAST method

Sometimes the best time to decorate a node with some attributes is just after being built. In such cases the
programmer can take manual control building the node with YYBuildAST to inmediately proceed to decorate it.
The following example illustrates the situation:

Variable:
%name VARARRAY
$ID (°[’ binary °’]’) <Vname INDEXSPEC +>
{

my $self = shift;
my $node = $self->YYBuildAST(@_);
$node->{line} = $ID->[1];
return $node;

}

This example defines the expression to access an array element as an identifier followed by a non empty list
of binary expressions. The node corresponding to the list of indices has been named INDEXSPEC.

When no explicit action is inserted a binary node will be built having as first child the node corresponding to
the identifier $ID and as second child the reference to the list of binary expressions. However, the programmer
wants to decorate the node being built with a 1ine attribute holding the line number in the source code where
the identifier being used appears. The call to the Parse: :Eyapp: :Driver method YYBuildAST does the job of
building the node. After that the node can be decorated and returned.

Actually, the %tree directive is semantically equivalent to:

%default action { goto &Parse::Eyapp::Driver::YYBuildAST }

10

9.9 The child and descendant methods

Access to the children of the AST is achieved through the children and child methods. More general is
the descendant method that returns the descendant of a node given its coordinates. See a session with the
debugger:

DB<7> x $t->child(0)->child(0)->child(1)->child(0)->child(2)->child(1)->str
O M
BLOCK[8:4:test]~{0}(
CONTINUE[10,10]
)
DB<8> x $t->descendant(’.0.0.1.0.2.1%)->str
O M
BLOCK[8:4:test]~{0}(
CONTINUE[10,10]

9.10 The alias clause of the %tree directive

There are occasions however where access by name to the children may be preferable. The use of the alias
clause with the %tree directive creates accessors to the children with names specified by the programmer. The
dot and dolar notations are used for this. When dealing with a production like:

A:
%name A_Node
Node B.bum N.pum $Chip

methods bum, pum and Chip will be created for the class A_Node. Those methods wil provide access to
the respective child (first, second and third in the example). The methods are build at compile-time and
therefore later transformations of the AST modifying the order of the children may invalidate the use of these
getter-setters.

As an example, the CPAN module Language::AttributeGrammar provides AST decorators from an attribute
grammar specification of the AST. To work Language::Attribute Grammar requires named access to the children
of the AST nodes. Follows an example of a small calculator:

use Parse::Eyapp;
use Language::AttributeGrammar;

my $grammar = qf
. # priority declarations. Like in previous examples
%tree bypass alias

o
line: $exp { $_[11 }

3

exp:
Jname NUM
$NUM
| %name VAR
$VAR
............ # as in the bypass example
}; # end grammar

Parse: :Eyapp->new_grammar (
input=>$grammar, classname=>’Rule6’, firstline =>7,
)3
my $parser = Rule6->new();
$parser->YYData->{INPUT} = "a = -(2%3+5-1)\n";
my $t = $parser->Run;
my $attgram = new Language::AttributeGrammar <<’EQ0G’;
Compute the expression
NUM: $/.val = { $<attr> }
TIMES: §/.val = { $<left>.val * $<right>.val }

11

PLUS: $/.val
MINUS: $/.val
UMINUS: $/.val
ASSIGN: $/.val
EOG

{ $<left>.val + $<right>.val }
{ $<left>.val - $<right>.val }
{ -$<exp>.val }

{ $<exp>.val }

my $res = $attgram->apply($t, ’val’);

10 Tree Regular Expressions

Parse: :Eyapp introduces a new language called Tree Regular Ezpressions that easies the transformation of
trees. Let us recall the previous example used in the bypass section:

my $p = Parse::Eyapp::Treeregexp->new(STRING => q{
{ # Example of support code

my %Up = (PLUS=>’+?, MINUS => ’-?, TIMES=>’x%’, DIV => ?/?);
+
constantfold: /TIMES|PLUS|DIVIMINUS/:bin(NUM, NUM)

= {

my $op = $0p{ref($_[01)};

$NUM[O] ->{attr} = eval "$NUM[O]->{attr} $op $NUM[1]->{attr}";

$_[0] = $NUM[O];

}

zero_times_whatever: TIMES(NUM, .) and { $NUM->{attr} == 0 } => { $_[0]
whatever_times_zero: TIMES(., NUM) and { $NUM->{attr} == 0 } => { $_[0]
uminus: UMINUS (NUM) => { $NUM->{attr} = -$NUM->{attr}; $_[0] = $NUM }
1,
OUTPUTFILE=> ’main.pm’

$NUM
$NUM

)

$p->generate(); # Create the tranformations
$t->s(Qall); # constant folding and mult. by zero

The call to the constructor new builds a Parse: :Eyapp: : Treeregexp object. The subsequent call to the
method $p->generate compiles the object producing tree-transformations built according to the specification
given in the treeregexp program. A tree transformation is a Parse: :Eyapp: : YATW object. The example contains
four tree programa transformations named constantfold, zero_times_whatever, whatever_times_zero and
<uminus>. These transformations can be grouped in transformation families. Such families of transformations
can be applied to any Parse: :Eyapp: :Node trees. An special variable @PACKAGE: :all refers to the whole set
of transformations in the program. Here PACKAGE refers to the package where the transformations live. When
no PACKAGE argument is specified in the call to new - as is the case in this example - the package of the caller is
used instead. The call $t->s(@all) proceeds to the execution of the method s (for substitution) using all the
specified transformations. The transformations will be iteratively applied to all nodes of the tree until there are
no changes. Summarizing, that means that

e All UMINUS nodes whose only child is a number NUM will be substituted by the NUM node but with the sign
changed

e Constant folding will be applied: trees representing constants expressions will be substituted by a NUM
node representing its value

e All the TIMES nodes with one child holding the value 0 will be substituted by that child

10.1 The Syntax of Treeregexp

The example illustrates the syntax of the language. A tree transformation conforms to the syntax:

treeregexp:
IDENT ’:’ treereg (’and’ CODE)? (’=>’ CODE)?

like in:

zero_times_whatever: TIMES(NUM, .) and { $NUM->{attr} == 0 } => { $_[0] = $NUM }

12

The IDENT is the name given to the tree transformation. A tree transformation is actually a Parse: :Eyapp: : YATW
object. After generation time two package objects are created per transformation:

e A subroutine with name zero_times_whatever holding the actual code for the tree transformation will
be available and

e A scalar variable named $zero_times_whatever will refer to the Parse: :Eyapp:: YATW tree transforma-
tion object.

These names live in the package specified by the user in the call to new through the PACKAGE argument.
When no package name is specified the name of the caller package is used instead.

After the IDENT and the colon comes the treeregexp. The treeregexp is a term, that is a parenthesized
description of the shape of the tree like TIMES(NUM, .) which says: match nodes of type TIMES whose left child
is a NUM and whose right child is whatever. The dot stands for whatever and is a treeregexp that matches any
node.

Then comes the reserved word and and some Perl code specifying the semantic conditions for the node being
visited to match

{ $NUM->{attr} == 0 }

The code can access to the different subtrees using lexical variables whose names match the type of the
node. Thus, in the example:

zero_times_whatever: TIMES(NUM, .) and { $NUM->{attr} == 0 } => { $_[0] = $NUM }

variable $NUM refers to the left child while variables $TIMES and $_[0] will refer refer to the node being
visited. When more than one node of the same type exists (for instance TIMES (NUM,NUM)) the associated lexical
variable changes its type from scalar to array and thus if several NUM nodes appear in the term we will speak
about $NUM[0], $NUM[1], etc.

10.2 Separated Compilation with treereg

A Treeregexp program can be isolated in a file an compiled with the program treereg. The default extension
is .trg. See the following example:

nereida:”/src/perl/YappWithDefaultAction/examples> cat -n Shift.trg
1 # File: Shift.trg

2 {

3 sub log2 {

4 my $n = shift;

5 return log($n)/log(2);

6 }

7

8 my $power;

9 }

10 mult2shift: TIMES($e, NUM($m)) and { $power = log2($m->{attr}); (1 << $power) == $m->{attr} }
11 => {

12 $_[0]->delete(1);

13 $_[0]->{shift} = $power;
14 $_[0]->type (’SHIFTLEFT’);
15 }

Note that auxiliary support code can be inserted at any point between transformations (lines 2-6). The code
will be inserted (without the defining curly brackets) at that point. Note also that the lexical variable $power
is visible inside the definition of the mult2shift transformation.

A treeregexp like $e matches any node. A reference to the node is saved in the lexical variable $e. The
scope of the variable $e is the current tree transformation, i.e. mult2shift. Such kind of treeregexps are called
scalar treeregexps.

The call to the delete method at line 12 deletes the second child of the node being visited (i.e. NUM($m)).

The call to type at line 14 retypes the node as a SHIFTLEFT node.

The program is compiled using the script treereg:

13

nereida:”/src/perl/YappWithDefaultAction/examples> treereg Shift
nereida:”~/src/perl/YappWithDefaultAction/examples> 1ls -1ltr | tail -1
-rw-rw---- 1 pl users 1405 2006-11-06 14:09 Shift.pm

The module Shift.pm contains the code implementing the tree transformations.
The client program follows:

nereida:”/src/perl/YappWithDefaultAction/examples> cat -n useruleandshift.pl
1 #!/usr/bin/perl -w

2 use strict;

3 use Rule6;

4 use Shift;

5 { no warnings; *TERMINAL::info = \&TERMINAL::attr; }
6

7 sub SHIFTLEFT::info { $_[0]{shift} }
8

9 $Data::Dumper::Indent = 1;

10 my $parser = new Rule6();

11 $parser->YYData->{INPUT} = <>;

12 my $t = $parser->Run;

13 print "sxkkxkkxkkx\n" $t->str,"\n";
14 $t->s(@Shift::all);

156 print "sxkkkkkxkkx\n",$t->str,"\n";

Multiplications by a power of two are substituted by the corresponding shifts:

nereida:”/src/perl/YappWithDefaultAction/examples> useruleandshift.pl
a=b*8

sk ko ook o ok ok ok o
ASSIGN(TERMINAL[a] ,TIMES (VAR (TERMINAL[b]) ,NUM(TERMINAL[8])))

ok Kok Kok Kok KoK

ASSIGN(TERMINAL[a] ,SHIFTLEFT[3])

10.3 Regexp Treeregexps

We can use an ordinary regular expression regexp inside the term part of a treeregexp. The constantfold
transformation in the Synopsis example shows how:

constantfold: /TIMES|PLUS|DIV|MINUS/:bin(NUM($x), NUM($y))
=> {
my $op = $0p{ref($bin)};
$x->{attr} = eval "$x->{attr} $op $y->{attr}";
$_[0] = $NUM[O];
}

The regexp is specified between division slashes /. It is legal to specify options after the second slash (like e,
i, etc.). The optional identifier bin after the regexp indicates the name for the lexical variable holding a copy
that references the node. If no identifier is specified, the special variable $W is used instead. If the treeregexp
has several anonymous regexp or dot treeregexps they will be stored in the array variable @W.

The operation of the ordinary string oriented regexps are slightly modified when they are used inside a
treeregexp. by default the option x will be assumed. The treeregexp compiler will automatically insert it.
Use the new option X (upper case X) if you want to supress such behavior. There is no need also to insert
\b word anchors to delimit identifiers: all the identifiers in a regexp treeregexp are automatically surrounded
by \b. Use the option B (upper case B) to supress this behavior.

The following fragment of the type checking stage of a simple compiler shows that x is implictly assumed:

Binary Operations
bin: / PLUS

[MINUS

[TIMES

[DIV

|MOD

14

|GT
|GE
|LE
[EQ
|NE
|LT
| AND
| EXP
[OR
/($x, $y)
= {
$x = char2int($_[0], 0);
$y = char2int($_[0], 1);

if (($x->{t} == $INT) and ($y->{t} == $INT)) {
$_[0]->{t} = $INT;
return 1;
}
type_error ("Incompatible types with operator ’".($_[0]->lexeme)."’", $_[0]->1line);
}

With the natural Perl regexp semantic the language reserved word WHILE would match the regexp (see the
LE for less or equal) leading to an erroneous type checking. The automatic insertion of word anchors prevent it.

10.4 Matching Trees

Both the transformation objects in Parse: :Eyapp: : YATW and the nodes in Parse: :Eyapp: :Node have a method
named m for matching.
For aParse: :Eyapp: : YATW object, the method -when called in a list context- returns a list of Parse: :Eyapp: :Node: : Matc:
nodes referencing the nodes of the actual tree that have matched. The nodes in the list are organized in a hi-
erarchy.
The nodes are sorted in the list of trees (a forest) according to a depth-first visit of the actual tree $t.
In a scalar context m returns the first element of the list.
Let us denote by $t the actual tree being searched and $r one of the Parse: :Eyapp: :Node: :Match nodes
in the resulting forest. Then we have the following methods:

e The method $r->node return the node $t of the actual tree that matched

e The method $r->father returns the tree in the matching forest. The father is defined by this property:
$r->father->node is the nearest ancestor of $r->node that matched with the treeregexp pattern. That
is, there is no ancestor that matched between $r->node and $r->father->node. Otherwise $r->father
is undef

o The method $r->coord returns the coordinates of the actual tree that matched using s.t similar to the
Dewey notation. for example, the coordinate ".1.3.2" denotes the node $t->child(1)->child(3)->child(2),
where $t is the root of the search.

e The method $r->depth returns the depth of $r->node in $t.

e When called as a Parse: :Eyapp: :Node method, $r->names returns the array of names of the transfor-
mations that matched.

The following example illustrates a use of m as a Parse: :Eyapp: YATW method. It solves a problem of scope
analysis in a C compiler: matching each RETURN statement with the function that surrounds it. The treeregexp
used is:

retscope: /FUNCTION|RETURN/
and the code that solves the problem is:

Scope Analysis: Return-Function
my Qreturns = $retscope->m($t);
for (@returns) {

my $node = $_->node;

15

}

if (ref($node) eq ’RETURN’) {

my $function = $_->father->node;
$node->{function} = $function;
$node->{t} = $function->{t};

The first line gets a list of Parse: :Eyapp: :Node: :Match nodes describing the actual nodes that matched
/FUNCTION|RETURN/. If the node described by $_ is a *RETURN’ node, the expresion $_->father->node must
necessarily point to the function node that surrounds it.

The second example shows the use of m as a Parse: :Eyapp: : Node method.

nereida:”/src/perl/YappWithDefaultAction/examples> cat -n m2.pl

1

O 00 N O b wN

SR S S S O T o e)
O W o0 N O WN = O

21

#!/usr/bin/perl -w

use strict;

use Rule6;

use Parse::Eyapp::Treeregexp;

Parse: :Eyapp: :Treeregexp->new(STRING => qf
fold: /times|plus|div|minus/i:bin(NUM($n), NUM($m))
zero_times_whatever: TIMES(NUM($x), .) and { $x->{attr} == 0 }
whatever_times_zero: TIMES(., NUM($x)) and { $x->{attr} == 0 }
}) ->generate();

Syntax analysis

my $parser = new Rule6();

print "Expression: "; $parser->YYData->{INPUT} = <>;
my $t = $parser->Run;

local $Parse::Eyapp::Node::INDENT = 1;

print "Tree:",$t->str,"\n";

Search
my $m = $t->m(our ($fold, $zero_times_whatever, $whatever_times_zero));
print "Match Node:",$m->str,"\n";

When executed with input 0%0*0 the program generates this output:

nereida:”/src/perl/YappWithDefaultAction/examples> m2.pl
Expression: 0%0x0

Tree:

TIMES(

)

TIMES(

NUM(
TERMINAL

),

NUM (
TERMINAL

)

NUM (

TERMINAL

Match Node:
Match[TIMES:0:whatever_times_zero] (

)

Match[TIMES:1:fold,zero_times_whatever,whatever_times_zero]

The representation of Match nodes by str deserves a comment. Match nodes have their own info method. It
returns a string containing the concatenation of the class of $r->node (i.e. the actual node that matched), the
depth ($r->depth) and the names of the transformations that matched (as provided by the method $r->names)

16

10.5 The SEVERITY option of Parse: :Eyapp::Treeregexp: :new

The SEVERITY option of Parse::Eyapp::Treeregexp: :new controls the way matching succeeds regarding the
number of children. To illustrate its use let us consider the following example. The grammar Rule6é used by
the example is similar to the one in the Synopsis example.

nereida:”~/src/perl/YappWithDefaultAction/examples> cat -n numchildren.pl
1 #!/usr/bin/perl -w

2 use strict;

3 use Rule6;

4 use Parse::Eyapp::Treeregexp;

5 use Parse::Eyapp: :Node;

6

7 sub TERMINAL::info { $_[0]{attr} }

8

9 my $severity = shift || 0O;

10 my $parser = new Rule6();

11 $parser->YYData->{INPUT} = shift || ’0*2’;
12 my $t = $parser->Run;

13

14 my $transform = Parse::Eyapp::Treeregexp->new(
15 STRING => g{

16 zero_times_whatever: TIMES(NUM($x)) and { $x->{attr} == 0 } => { $_[0] = $NUM }
7 3,

18 SEVERITY => $severity,

19 FIRSTLINE => 15,

20)->generate;

21

22 $t->s(our @all);

23

24 print $t->str,"\n";

The program gets the severity level from the command line (line 9). The specification of the term TIMES (NUM($x))
inside the transformation zero_times_whatever does not clearly state that TIMES must have two children.
There are several interpretations of the treregexp depending on the level fixed for SEVERITY:

e 0: TIMES must have at least one child. Don’t care if it has more.
e 1: TIMES must have exactly one child.

e 2: TIMES must have exactly one child. When visit a TIMES node with a different number of children issue
a warning.

e 3: TIMES must have exactly one child. When visit a TIMES node with a different number of children issue
an error.

Observe the change in behavior according to the level of SEVERITY:

nereida:”~/src/perl/YappWithDefaultAction/examples> numchildren.pl O ’0%2°
NUM(TERMINAL[0])
nereida:”~/src/perl/YappWithDefaultAction/examples> numchildren.pl 1 ’0%2°
TIMES (NUM(TERMINAL[O]) ,NUM(TERMINAL[2]))
nereida:”~/src/perl/YappWithDefaultAction/examples> numchildren.pl 2 ’0%2°
Warning! found node TIMES with 2 children.
Expected 1 children (see line 16 of numchildren.pl)"
TIMES (NUM(TERMINAL[O]) ,NUM(TERMINAL[2]))
nereida:”~/src/perl/YappWithDefaultAction/examples> numchildren.pl 3 ’0%2’
Error! found node TIMES with 2 children.
Expected 1 children (see line 16 of numchildren.pl)"

at (eval 2) line 29

17

10.6 Array Treeregexp Expressions

The Treeregexp language permits expressions like:
A(Qa,B($x),Qc)

After the matching variable @A contains the shortest prefix of $A->children that does not match B($x).
The variable @c contains the remaining sufix of $A->children.

The following example uses array treereg expressions to move an assignment out of loop (to be correct, we
have to guarantee that the assignment is an invariant of the loop). See lines 98-111:

nereida:”/src/perl/YappWithDefaultAction/examples> \
cat -n moveinvariantoutofloopcomplexformula.pl

#!/usr/bin/perl -w

use strict;

use Parse::Eyapp;

use Parse::Eyapp::Treeregexp;

DOV WN -

my $grammar = qf

80 }; # end grammar

93 my $program = "a =1000; ¢ = 1; while (a) { ¢ = c*a; b = 5; a = a-1 }n";
94 $parser->YYData->{INPUT} = $program;

95 my $t = $parser->Run;

96 my Q@output = split /\n/, $t->str;

97

98 my $p = Parse::Eyapp::Treeregexp->new(STRING => g{
99 moveinvariant: BLOCK(

100 @prests,

101 WHILE(VAR($b), BLOCK(@a, ASSIGN($x, NUM($e)), @c)),
102 Q@possts

103)

104 => {

105 my $assign = $ASSIGN;

106 $BLOCK[1]->delete($ASSIGN) ;

107 $BLOCK[0] ->insert_before ($WHILE, $assign);
108 by

109 s

110 FIRSTLINE => 99,

111),

112 $p->generate();

113 $moveinvariant->s($t);

114 my Qoutput2 = split /\n/, $t->str;

115

116 my ($nodel, $node2);

117 format STDOUT_TOP =

118 PROGRAM

119 —
120 @ LETEEEEEEErrter et er e et e et e e et et e e e e e ey
121 $program

122 -
123 Before | After

124 - |-
125

126

127 format STDOUT =

128 0<<<KLLLLLLLLLLLLLLLLLLLLLLLO] BLLLLLLLLLLLLLLLLLLLLLL LKL
129 $nodel, 7|7 $node2

130

131

132 for (1..$#output) {

18

133
134
135
136

The call to the method delete at line 106 deletes the ASSIGN child of the second BLOCK. The copy saved in

$nodel =
$node2 =
write;

}

$output [$_];
$output2[$_1;

$assign is inserted as a child of the first block before the loop. Here is the output:

nereida:”/src/perl/YappWithDefaultAction/examples> \
moveinvariantoutofloopcomplexformula.pl | cat -n

PROGRAM

BLOCK (
ASSIGN(
TERMINAL[a],
NUM (
TERMINAL[1000]
)
) # ASSIGN,
ASSIGN(
TERMINAL[c],
NUM (
TERMINAL[1]
)
) # ASSIGN,
WHILE(
VAR(
TERMINAL[a]
),
BLOCK (

ASSIGN(
TERMINAL[c],
TIMES(

VAR(
TERMINAL[c]
)’
VAR(
TERMINAL [a]
)
) # TIMES

) # ASSIGN,

ASSIGN(
TERMINAL[b],
NUM(

TERMINAL[5]
)

) # ASSIGN,

ASSIGN(
TERMINAL[a],
MINUS(

VAR(
TERMINAL[a]
)’
NUM(
TERMINAL[1]
)
) # MINUS

BLOCK(

ASSIGN(
TERMINAL[a],
NUM (

TERMINAL[1000]

)

) # ASSIGN,

ASSIGN(
TERMINAL[c],
NUM (

TERMINAL[1]

)

) # ASSIGN,

ASSIGN(
TERMINAL[b],
NUM (

TERMINAL[5]

)

) # ASSIGN,

WHILE(

VAR(

TERMINAL[a]

)’
BLOCK(

ASSIGN(
TERMINAL[c],
TIMES(

VAR(
TERMINAL[c]
)’
VAR(
TERMINAL [a]
)
) # TIMES

) # ASSIGN,

ASSIGN(
TERMINAL[a],
MINUS(

VAR(
TERMINAL [a]
)’
NUM (
TERMINAL[1]
)
) # MINUS

19

52) # ASSIGN |) # ASSIGN
53) # BLOCK |) # BLOCK

54) # WHILE |) # WHILE

55) # BLOCK |) # BLOCK

11 Translation Schemes

Eyapp allows through the %metatree directive the creation of Translation Schemes as described in the Dragon's
book. Instead of executing the semantic actions associated with the productions, the syntax tree is built. Se-
mantic actions aren’t executed. Instead they are inserted as nodes of the syntax tree. The main difference with
ordinary nodes being that the attribute of such a CODE node is a reference to the anonymous subroutine repre-
senting the semantic action. The tree is later traversed in depth-first order using the $t->translation_scheme
method: each time a CODE node is visited the action is executed.

The following example parses a tiny subset of a typical typed language and decorates the syntax tree with a
new attribute t holding the type of each declared variable:

use strict; # File examples/trans_scheme_simple_decls4.pl
use Data: :Dumper;

use Parse::Eyapp;

our %s; # symbol table

my $ts = q{
%token FLOAT INTEGER NAME

W
our %s;

%}
Ymetatree

ol
Dl: D <k 737>
D : $T { $L->{t} = $T->{t} } $L

B

"FLOAT" }
"INTEGER" }

T : FLOAT { $1hs->{t}
| INTEGER { $lhs->{t}

L : $NAME
{ $NAME->{t} = $1hs->{t}; $s{$NAME->{attr}} = $NAME }
| $NAME { $NAME->{t} = $1hs->{t}; $L->{t} = $1hs->{t} } ’,’ $L
{ $s{$NAME->{attr}} = $NAME }

Wt
}; # end $ts

sub Error { die "Error sintactico\n"; }

{ # Closure of $input, Yreserved_words and $validchars
my $input - nu;
my %reserved_words = ();
my $validchars = "";

sub parametrize__scanner {
$input = shift;
%reserved_words = %{shift()};
$validchars = shift;

}

20

sub scanner {
$input =~ m{\G\s+}gc; # skip whites
if ($input =" m{\G([a-z_A_Z]\wx)\b}gc) {
my $w = uc($1); # upper case the word
return ($w, $w) if exists $reserved_words{$w};
return (’NAME’, $1); # not a reserved word
}
return ($1, $1) if ($input =" m/\G([$validchars])/gc);
die "Not valid token: $1\n" if ($input =" m/\G(\S)/gc);
return (’’, undef); # end of file
}

} # end closure

Parse: :Eyapp->new_grammar (input=>$ts,classname=>’main’,outputfile=>’Types.pm’);
my $parser = main->new(yylex => \&scanner, yyerror => \&Error);

parametrize__scanner (
"float x,y;\ninteger a,b\n",
{ INTEGER => ’INTEGER’, FLOAT => ’FLOAT’},

)3
my $t = $parser->YYParse() or die "Syntax Error analyzing input";
$t->translation_scheme;

$Data: :Dumper: :Indent = 1;
$Data: :Dumper: :Terse = 1;
$Data: :Dumper: :Deepcopy =
$Data: :Dumper: :Deparse = 1;
print Dumper($t);

print Dumper (\%s);

1

Inside a Translation Scheme the lexical variable $1hs refers to the attribute of the father.
11.1 Execution Stages of a Translation Scheme
The execution of a Translation Scheme can be divided in the following stages:
1. During the first stage the grammar is analyzed and the parser is built:
Parse: :Eyapp->new_grammar (input=>$ts,classname=>’main’ ,outputfile=>’Types.pm’);
This stage is called Class Construction Time
2. A parser conforming to the generated grammar is built
my $parser = main->new(yylex => \&scanner, yyerror => \&Error);
This stage is called Parser Construction Time
3. The next phase is Tree construction time. The input is set and the tree is built:
parametrize__scanner (

"float x,y;\ninteger a,b\n",
{ INTEGER => ’INTEGER’, FLOAT => ’FLOAT’},

" Il
b

)3
my $t = $parser->YYParse() or die "Syntax Error analyzing input";

4. The last stage is Fzecution Time. The tree is traversed in depth first order and the CODE nodes are
executed.

21

$t->translation_scheme;

This combination of bottom-up parsing with depth first traversin leads to a semantic behavior similar to LL
and top-down parsers but with several differences:

e The grammar can be left-recursive

o At the time of executing the action the syntax tree is already built, therefore we can refer to nodes on the
right side of the action like in:

D : $T { $L->{t} = $T->{t} } $L

11.2 The %begin directive

The %begin { code } directive can be used when building a translation scheme, i.e. when under the control
of the Ymetatree directive. It indicates that such code will be executed at tree construction time. Therefore
the code receives as arguments the references to the nodes of the branch than is being built. Usually the code
assist in the construction of the tree. Line 39 of the following code shows an example. The action { $exp }
simplifies the syntax tree bypassing the parenthesis node. The example also illustrates the combined use of
default actions and translation schemes.

nereida:”/src/perl/YappWithDefaultAction/examples> \
cat -n trans_scheme_default_action.pl

1 #!/usr/bin/perl -w

2 use strict;

3 use Data::Dumper;

4 use Parse::Eyapp;

5 wuse IO0::Interactive qw(is_interactive);

6

7 my $translationscheme = q{

8 Wl

9 # head code is available at tree construction time
10 use Data: :Dumper;

11 our Y%sym; # symbol table

12 %

13

14 Ydefaultaction { $lhs->{n} = eval " $left->{n} $_[2]->{attr} $right->{n} " }
15

16 Ymetatree

17

18 Yright 7=

19 Jleft R
20 %left S
21
22 %h
23 line: Jname EXP
24 exp <+ ’;’> /* Expressions separated by semicolons */
25 { $1hs->{n} = $_[1]->Last_child->{n} }
26
27
28 exp:
29 Jname PLUS
30 exp.left ’+’ exp.right
31 | %name MINUS
32 exp.left ’-’ exp.right
33 | Y%name TIMES
34 exp.left ’#*’ exp.right
35 | %name DIV
36 exp.left ’/’ exp.right
37 | %name NUM $NUM
38 { $lhs->{n} = $NUM->{attr} }
39 | 2 $exp ’)’ Y%begin { $exp }

22

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

[Y%name VAR

$VAR
{ $1hs->{n} = $sym{$VAR->{attr}}->{n} }
| %name ASSIGN
$VAR =’ $exp
{ $lhs->{n} = $sym{$VAR->{attr}}->{n} = $exp->{n} }

B

%
o/o
tail code is available at tree construction time
sub _Error {
die "Syntax error.\n";

}

sub _Lexer {
my ($parser)=shift;

for ($parser->YYData->{INPUT}) {
defined($_) or return(’’,undef);

s/~\s*//;

s/~ ([0-91+(7:\.[0-9]+)7)// and return(’NUM’,$1);
s/~ ([A-Za-z] [A-Za-z0-9_]%)// and return(’VAR’,$1);
s/~(.)// and return($1,%$1);

s/~ \s*//;
}
}
sub Run {
my ($self)=shift;
return $self->YYParse(yylex => \&_Lexer, yyerror => \&_Error);
}

}; # end translation scheme

$Data: :Dumper: : Indent = 1;
$Data: :Dumper: :Terse = 1;
$Data: :Dumper: :Deepcopy = 1;
my $p = Parse::Eyapp->new_grammar (
input=>$translationschenme,
classname=>’main’,
firstline => 6,
outputfile => ’main.pm’);
die $p->qtables() if $p->Warnings;
my $parser = main->new();
print "Write a sequence of arithmetic expressions: " if is_interactive();
$parser->YYData->{INPUT} = <>;
my $t = $parser->Run() or die "Syntax Error analyzing input";
$t->translation_scheme;
my $treestring = Dumper ($t);
our %sym;
my $symboltable = Dumper (\%sym) ;
print <<"EOR";
ook ok ok ok ok ok T @@ % kokokok sk koo ek ok
$treestring
*okkkokkSymbol tablekskkskkkokkokk
$symboltable
FoksfekokokokskokkokokRe sl Tokok kokkoskok ok kok

$t->{n}

23

100 EOR

12 Scope Analysis with Parse: :Eyapp: :Scope

Parse: :Eyapp provides support for Scope Analysis through the module Parse: :Eyapp: : Scope. Scope Analysis
solves the problem of matching each instance or use of an object in the source text with the definition that
applies to such instance. Since it is a matching problem it can sometimes easily solved using m as it was explained
in section Matching Trees.
The following pieces of code show how to implement scope analysis for a C-like language using Parse: :Eyapp: : Scope

nereida:”~/doc/casiano/PLBO0K/PLBO0K/code/Simple-Types/1ib/Simple> \
sed -n -e ’131,149p’ Types.eyp | cat -n

1 sub reset_file_scope_vars {

2 %st = (); # reset symbol table

3 ($tokenbegin, $tokenend) = (1, 1);

4 %type = (INT => Parse::Eyapp::Node->hnew(’INT’), # like new but
5 CHAR => Parse::Eyapp::Node->hnew(’CHAR’), # creates a DAG
6 VOID => Parse::Eyapp::Node->hnew(’V0ID’),

7)

8 $depth = 0;

9 $ids = Parse::Eyapp::Scope->new(

10 SCOPE_NAME => ’block’,

11 ENTRY_NAME => ’info’,

12 SCOPE_DEPTH => ’depth’,

13)

14 $loops = Parse::Eyapp: :Scope->new(

15 SCOPE_NAME => ‘’exits’,

16)s

17 $ids->begin_scope();

18 $loops->begin_scope();

19 }

Of course you have to include a directive
use Parse::Eyapp: :Scope

in your client program.

The calls to Parse: :Eyapp: : Scope->new method (lines 9-13 and 14-16 in the code above) create two Scope
Manager objects. One scope manager to solve the scope problem for variables ($ids) and another to solve
the scope problem for loops ($loops). The scope problem for loops consists in matching each instance of a
BREAK or CONTINUE with the enclosing loop. The beginning of a scope is set by calling to the begin_scope
method (lines 17 and 18). The end of a scope is signalled by a call to the method end_scope. Of course, sub
reset_file_scope_vars must be executed at the proper time:

nereida:”~/doc/casiano/PLBO0K/PLBO0K/code/Simple-Types/1ib/Simple> \
sed -n -e ’170,203p’ Types.eyp | cat -n

1 program: /* program -> definition + */

2 {

3 reset_file_scope_vars();

4 }

5 definition<Yname PROGRAM +>.program

6 {

7 $program->{symboltable} = { Y%st }; # creates a copy of the s.t.
8 $program->{depth} = 0;

9 $program->{line} = 1;

10 $program->{types} = { %type };

11 $program->{lines} = $tokenend;

12

13 my ($nondec, $declared) = $ids->end_scope($program->{symboltable}, $program, ’type’);
14

15 # Type checking: add a direct pointer to the data-structure

24

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

}

describing the type
$_>{t} = $type{$_->{type}} for @$declared;

if (@$nondec) {
warn "Identifier ".$_->key." not declared at line ".$_->line."\n" for @$nondec;
die ll\nll ;

}

my $out_of_loops = $loops->end_scope($program) ;

if (@$out_of_loops) {
warn "Error: ".ref($.)." outside of loop at line $_->{line}\n" for @$out_of_loops;
die ll\nll ;

3

Check that are not dangling breaks
reset_file_scope_vars();

$program;

Observe the different ways of calling end_scope (lines 13 and 24). When a hash table is provided as first
argument the declared symbols will be automatically inserted in it. In such case the classes of the nodes being
inserted must have a key method that computes the key for such node.

nereida:”~/doc/casiano/PLBO0K/PLBO0K/code/Simple-Types/1ib/Simple> \

1
2
3
4
5
6
7

sed -n -e ’651,657p’ Types.eyp | cat -n

sub VAR::key {
my $self = shift;

return $self->child(0)->{attr}[0];

}

*VARARRAY: :key = *FUNCTIONCALL::key = \&VAR: :key;

Each instance of an scoped object must be declared as belonging to the current scope using the scope_instance
method. The following is an example for the $loops scope manager object:

nereida:”~/doc/casiano/PLBO0K/PLBO0K/code/Simple-Types/1ib/Simple> \

sed -n -e ’335,346p’ Types.eyp | cat -n

1 statement:

2 expression ?;’ { $_[1] }
3 |7;7

4 | %name BREAK

5 $BREAK ’;°

6 {

7 my $self = shift;

8 my $node = $self->YYBuildAST(@_);
9 $node->{1line} = $BREAK->[1];
10 $loops->scope_instance($node) ;
11 return $node;

12 }

and the following illustrates the same for the $ids scope manager:

nereida:”~/doc/casiano/PLBO0K/PLBO0K/code/Simple-Types/1ib/Simple> \

DO W

sed -n -e ’410,425p’ Types.eyp | cat -n

Primary:

Y%name INUM
INUM

| %name CHARCONSTANT

CHARCONSTANT

| $Variable

25

7 {

8 $ids->scope_instance($Variable);

9 return $Variable

10 X

11 | >’ expression)’ { $_[2] }

12 | $function_call

13 {

14 $ids->scope_instance($function_call);
15 return $function_call # bypass

16 }

Of course, in each place where a new scope begins/ends the corresponding calls to begin_scope and
end_scope must be issued. See the following code:

nereida:”~/doc/casiano/PLBO0K/PLBO0K/code/Simple-Types/1ib/Simple> \
sed -n -e ’277,302p’ Types.eyp | cat -n

1 block: /* Production is: block -> ’{’ declaration * statement * ’}’ */
2 *{’ .bracket

3 { $ids->begin_scope(); }

4 declaration<)name DECLARATIONS *>.decs statement<)name STATEMENTS *>.sts ’}’
5 {

6 my %st;

7

8 for my $1st ($decs->children) {

9

10 # control duplicated declarations

11 my $message;

12 die $message if $message = is_duplicated(\%st, $1lst);

13

14 %st = (hst, %$lst);

15 b

16 $sts->{symboltable} = \Yst;

17 $sts->{1line} = $bracket->[1];

18 $sts->type("BLOCK") if (¥st);

19 my ($nondec, $dec) = $ids->end_scope(\)st, $sts, ’type’);
20
21 # Type checking: add a direct pointer to the data-structure
22 # describing the type
23 $_->{t} = $type{$_->{type}} for @$dec;
24
25 return $sts;
26 by

13 SEE ALSO

e perldoc Parse::Eyapp

e The Eyapp.pdf and eyapptut.pdf files accompanying this distribution
e perldoc eyapp,

e perldoc treereg,

o Andlisis Léxico y Sintdctico, (Notes for a course in compiler construction) by Casiano Rodriguez-Leon.
Available at http://nereida.deioc.ull.es/~pl/perlexamples/ Is the more complete and reliable source for
Parse::Eyapp. However is in Spanish.

e Parse::Yapp,

e Man pages of yacc(1),

e Man pages of bison(1),

o Language::Attribute Grammar

e Parse::RecDescent.

26

14 REFERENCES

e The classic book "Compilers: Principles, Techniques, and Tools" by Alfred V. Aho, Ravi Sethi and Jeffrey
D. Ullman (Addison-Wesley 1986)

15 AUTHOR

Casiano Rodriguez-Leon (casiano@ull.es)
A large percentage of code is verbatim taken from Parse::Yapp 1.05. The author of Parse::Yapp is Francois

Desarmenien.

16 ACKNOWLEDGMENTS

This work has been supported by CEE (FEDER) and the Spanish Ministry of Educacion y Ciencia through Plan
Nacional I+D+I number TIN2005-08818-C04-04 (ULL::OPLINK project http://www.oplink.ull.es/). Support
from Gobierno de Canarias was through GC02210601 (Grupos Consolidados). The University of La Laguna has
also supported my work in many ways and for many years.

I wish to thank Francois Desarmenien for his Parse::Yapp module, to my students at La Laguna and to
the Perl Community. Special thanks to my family and Larry Wall.

17 LICENCE AND COPYRIGHT

Copyright (c) 2006-2007 Casiano Rodriguez-Leon (casiano@ull.es). All rights reserved.

Parse::Yapp copyright is of Francois Desarmenien, all rights reserved. 1998-2001

These modules are free software; you can redistribute it and/or modify it under the same terms as Perl itself.
See perlartistic.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY,; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

27

Index

Abstract Syntax Trees, 6
ACKNOWLEDGMENTS, 27

Array Treeregexp Expressions, 18
AUTHOR, 27

Compiling with eyapp, 5

Default actions, 5
Displaying Trees, 6

Execution Stages of a Translation Scheme, 21
Explictly building nodes with the YYBuildAST method,
10

Input from strings, 4
Introduction to Parse::Eyapp, 4

LICENCE AND COPYRIGHT, 27
Lists and Optionals, 5

Matching Trees, 15

NAME, 3
Names for attributes, 4

REFERENCES, 27
Regexp Treeregexps, 14

Saving the Information In Syntactic Tokens, 8
Scope Analysis with Parse::Eyapp::Scope, 24
SEE ALSO, 26

Separated Compilation with treereg, 13
SYNOPSIS, 3

Syntactic and Semantic tokens, 7

TERMINAL nodes, 7

The %begin directive, 22

The alias clause of the %tree directive, 11

The bypass clause and the %no bypass directive, 8

The child and descendant methods, 11

The directives %syntactic token and %semantic to-
ken, 8

The SEVERITY option of Parse::Eyapp::Treeregexp::new,
17

The Syntax of Treeregexp, 12

Translation Schemes, 20

Tree Regular Expressions, 12

User Attributes and System Attributes, 7

VERSION, 3

28

