
STDIN

Page 1

SYNOPSIS
	 # OBJECT-ORIENTED INTERFACE (PREFERRED INTERFACE)

	 # create object
	 # e.g, compute average elevation in boxes of 2x2
	 # no data required at this point
	 my $binner = PDL::NDBin->new(
		 axes => [['x', min => 0, max => 10, step => 2],
		 ['y', min => 0, max => 10, step => 2]],
		 vars => [['elevation', 'Avg']],
);
	 # or any sort of computation:
	 # elevation => sub { (shift->selection->stats)[2] } # median
	 # elevation => sub { shift->selection->min } # minimum
	 # elevation => \&user_defined_function # anything

	 # feed and process data
	 my($x, $y, $z) = get_data();
	 $binner->feed(x => $x, y => $y, elevation => $z);
	 $binner->process;

	 # or feed and process in one step
	 $binner->process(x => $x, y => $y, elevation => $z);

	 # output
	 my $average_elevation = $binner->output->{ elevation };

	 # or as a hash
	 my %results = $binner->output;
	 print $results{ elevation }, "\n";

	 # WRAPPER FUNCTIONS

	 # bin the values
	 # pdl(1,1,2)
	 # in 3 bins with a width of 1, starting at 0:
	 my $histogram = ndbinning(pdl(1,1,2), 1, 0, 3);
	 # returns the one-dimensional histogram
	 # long(0,2,1)

	 # bin the values
	 $x = pdl(1,1,1,2,2);
	 $y = pdl(2,1,1,1,1);
	 # along two dimensions, with 3 bins per dimension:
	 my $histogram = ndbinning($x => (1,0,3),
	 $y => (1,0,3));
	 # returns the two-dimensional histogram
	 # long([0,0,0],
	 # [0,2,2],
	 # [0,1,0])

STDIN

Page 2

DESCRIPTION
In scientific (and other) applications, it is frequently necessary to classify
 a series of values in a
number of bins. For instance, particles may be
 classified according to particle size in a number of bins
of, say, 0.01 mm
 wide, yielding a histogram. Or, to take an example from my own work: satellite

measurements taken all over the globe must often be classified in
 latitude/longitude boxes for further
processing.

PDL has a dedicated function to make histograms, hist(). To create a
 histogram of particle size from 0
mm to 10 mm, in bins of 0.1 mm, you would
 write:

	 my $histogram = hist $particles, 0, 10, 0.1;

This will count the number of particles in every bin, yielding the 100 counts
 that form the histogram.
But what if you wanted to perform other computations
 on the values in the bins? It is actually not that
difficult to perform the
 binning by hand. The key is to associate a bin number with every data value.

With fixed-size bins of 0.1 mm wide, that is accomplished with

	 my $bin_numbers = PDL::long($particles/0.1);

(Note that the formulation above does not take care of data beyond 10 mm, but
 PDL::NDBin does.)
We now have two arrays of data: the actual particle sizes in
 $particles, and the bin numbers
associated with every data value in
 $bin_numbers. The histogram could now be produced with the
following loop, $N
 being 100:

	 my $histogram = zeroes(long, $N);
	 for my $bin (0 .. $N-1) {
		 my $want = which($bin_numbers == $bin);
		 $histogram->set($bin, $want->nelem);
	 }

But, once we have the indices of the data values corresponding to any bin, it
 is a small matter to
extend the loop to actually extract the data values in the
 bin. A user-supplied subroutine can then be
invoked on the values in every bin:

	 my $output = zeroes(long, $N)->setbadif(1);
	 for my $bin (0 .. $N-1) {
		 my $want = which($bin_numbers == $bin);
		 my $selection = $particles->index($want);
		 my $value = eval { $coderef->($selection) };
		 if(defined $value) { $output->set($bin, $value) }
	 }

(This is how early versions of PDL::NDBin were implemented.) The user
 subroutine could do anything
with the values in the currently selected bin,
 $selection, including counting the number of elements.
But the subroutine could
 also output the data to disk, or to a plot. Or the data could be collected to

perform a regression. Anything that can be expressed with a subroutine, can now
 easily be plugged
into this core loop.

This basic idea can even be extended by noticing that it is also possible to do
 multidimensional
binning with the same core loop. The solution is to 'flatten'
 the bins, much like C and Perl flatten
multidimensional arrays to a
 one-dimensional array in memory. So, you could perfectly bin satellite
data
 along both latitude and longitude:

	 my($latitude, $longitude); # somehow get these data as 1-D vars
	 my $flattened = 0;
	 for my $var ($latitude, $longitude) {
		 my $bin_numbers = long(($var - $min)/$step);
		 $bin_numbers->inplace->clip(0, $n-1);

STDIN

Page 3

		 $flattened = $flattened * $n + $bin_numbers;
	 }

$flattened now contains pseudo-one-dimensional bin numbers, and can be used
 in the core loop
shown above.

I've left out many details to illustrate the idea. The basic idea is very
 simple, but the implementation
does get a bit messy when multiple variables are
 binned in multiple dimensions, with user-defined
actions. Of course, ideally,
 you'd like this to be very performant, so you can handle several millions of

data values without hitting memory constraints or running out of time.
 PDL::NDBin is there to handle
the details for you, so you can write

	 my $average_flux = ndbin($longitude, min => -70, max => 70, step => 20,
	 $latitude, min => -70, max => 70, step => 20,
	 vars => [[$flux => 'Avg']]);

to obtain the average of the flux, binned in boxes of 20x20 degrees latitude
 and longitude.

The rest of the documentation goes into more detail on the methods and
 implementation. You may
also want to check out the examples (see EXAMPLES),
 or the comparison of PDL::NDBin with
alternative solutions on CPAN (see SEE ALSO and further).

Please note that, although I do not anticipate major API changes, the interface
 and implementation
are subject to change.

METHODS
add_axis()

Add an axis to the current object, with optional axis specifications. The
 argument list must be a list of
key-value pairs. The name of the axis is
 mandatory.

	 $self->add_axis(name => 'longitude', min => -70, max => 70, n => 14);

The following axis specifications are available:

name

The name of this axis.

min

The lowest value of the first bin. Values below this minimum will be binned in
 the first bin.
Optional; will be determined from the actual minimum value in
 the data if not supplied.

max

The highest value of the last bin. Values above this maximum will be binned in
 the last bin.
Optional; will be determined from the actual maximum value in the
 data if not supplied.

step

The width of the bins. Currently only a fixed step size is allowed, which means
 that all the bins
have equal width. Optional; will be determined from the data
 range and the number of bins if
not supplied.

n

The number of bins. Optional; will be determined from the data range and the
 step size if not
supplied. If the step size is not supplied, n will be set
 to the number of data values, or to 100,
whichever is smaller.

round

Round min and max to the nearest multiple of this value.

STDIN

Page 4

Note that you cannot specify all specifications at the same time, because some
 may conflict.

add_var()
Add a variable to the current object. The argument list must be a list of
 key-value pairs. The name of
the variable and the action are both mandatory.

	 $self->add_var(name => 'flux', action => 'Avg');

The following variable specifications are available:

name

The name of this variable.

action

The action to perform on this variable. May be either a code reference (a
 reference to a
named or anonymous subroutine) or a class name.

The action classes that are available as of PDL::NDBin v0.004 are:

PDL::NDBin::Action::Avg

PDL::NDBin::Action::Count

PDL::NDBin::Action::StdDev

PDL::NDBin::Action::Sum

They provide optimized implementations, coded in C, for the corresponding
 operations. The class
names may be abbreviated to the part after the last ::.

new()
Construct a PDL::NDBin object. The argument list must be a list of key-value
 pairs. No arguments are
required, but you will want to add at least one axis
 eventually to do meaningful work.

	 my $obj = PDL::NDBin->new(axes => [['x', min => -1, max => 1, step =>
.1],
	 ['y', min => -1, max => 1, step =>
.1]],
	 vars => [['F', 'Count']]);

The accepted keys are the following:

axes

Specifies the axes along which to bin. The axes are supplied as an arrayref
 containing
anonymous arrays, one per axis, as follows:

	 axes => [
	 [$name1, $key11 => $value11, $key12 => $value12, ...],
	 [$name2, $key21 => $value21, $key22 => $value22, ...],
	 ...
]

Only the name is required. All other specifications are optional and will be
 determined
automatically as required. For a list of allowed axis
 specifications, consult add_axis(). Note
that you cannot specify all
 specifications at the same time, because some may conflict.

At least one axis will eventually be required, although it needn't be specified
 at constructor
time, and can be added later with add_axis(), if desired.

vars

STDIN

Page 5

Specifies the values to bin. The variables are supplied as an arrayref
 containing anonymous
arrays, one per variable, as follows:

	 vars => [
	 [$name1 => $action1],
	 [$name2 => $action2],
	 ...
]

Here, both the name and the action are required. In order to produce a
 histogram, supply
'Count' as the action.

No variables are required (an n-dimensional histogram is produced if no
 variables are
supplied), but they can be specified at constructor time, or at a
 later time with add_var() if
desired.

axes()
Retrieve the axes. Returns a list in list context, and an array reference in
 scalar context.

vars()
Retrieve the variables. Returns a list in list context, and an array reference
 in scalar context.

feed()
Set the piddles that will eventually be used for the axes and variables.
 Arguments must be specified
as key-value pairs, the keys being the name, and
 the values being the piddle for every piddle that is to
be set.

	 $binner->feed(latitude => $latitude, longitude => $longitude);

Note that not all piddles need be set in one call. This function can be called
 repeatedly to set all
piddles. This can be very useful when data must be read
 from disk, as in the following example
(assuming $nc is an object that reads
 data from disk):

	 my $binner = PDL::NDBin->new(axes => [[x => ...], [y => ...]]);
	 for my $f ('x', 'y') { $binner->feed($f => $nc->get($f)) }
	 $binner->process;

autoscale_axis()
Determine the following parameters for one axis automatically, if they have not
 been supplied by the
user: the step size, the lowest bin, and the number of
 bins. Use whatever combination is needed of
the specifications that have been
 supplied by the user, and the data itself. Obviously, the piddles
containing
 the data must have been set before calling this subroutine. Details of the
 automatic
parameter calculation are given in the section on IMPLEMENTATION NOTES below.

It is not usually required to call this method, as it is called automatically
 by autoscale().

autoscale()
Determine the following parameters for all axes automatically, if they have not
 been supplied by the
user: the step size, the lowest bin, and the number of
 bins. It will use whatever combination is needed
of the specifications that
 have been supplied by the user, and the data itself. Obviously, the piddles

containing the data must have been set before calling this subroutine. For more
 details on the
autoscaling, consult autoscale_axis().

	 $binner->autoscale(x => $x, y => $y, z => $z);

autoscale() accepts, but does not require, arguments. They must be key-value
 pairs as for feed(), and
indicate piddle data that must be fed into the object
 prior to autoscaling. Note that the autoscaling
applies to all axes, and not
 only supplied as arguments.

STDIN

Page 6

It is not usually required to call this method, as it is called automatically
 by process().

labels()
Return the labels for the bins as a list of lists of ranges.

process()
The core method. The actual piddles to be used for the axes and variables can
 be supplied to this
function, although the argument list can be empty if all
 piddles have already been supplied. The
argument list is the same as the one of
 feed(), i.e., a list of key-value pairs specifying name and
piddle.

	 # if all piddles have already been set with feed()
	 $binner->process();

process() returns $self for chained method calls.

output()
Return the output computed by the previous call(s) to process(). Each output
 variable is reshaped to
make the number of dimensions equal to the number of
 axes, and the extent of each dimension equal
to the number of bins along the
 axis.

The return value in list context is a hash, the keys and values of which
 correspond to the names and
data of the variables. The return value in scalar
 context is a reference to this hash. When no variables
have been supplied, a
 hash with a single key called histogram is returned.

	 my $result = $binner->output;
	 print $result->{average};

Note that it is not possible to call process() after having called output(),
 because the piddle data may
have been reshaped.

_consume()
	 _consume BLOCK LIST

Shift and return (zero or more) leading items from LIST meeting the
 condition in BLOCK. Sets $_ for
each item of LIST in turn.

For internal use.

_random_name()
Generate a random, hopefully unique name for a pdl.

For internal use.

WRAPPER FUNCTIONS
PDL::NDBin provides the two functions ndbinning() and ndbin(), which are
 (almost) drop-in
replacements for histogram() and hist(), except that they
 handle an arbitrary number of dimensions.

ndbinning() and ndbin() are actually wrappers around the object-oriented
 interface of PDL::NDBin,
and may be the most convenient way to work with
 PDL::NDBin for simple cases. For more advanced
usage, the object-oriented
 interface may be required.

ndbinning()
Calculate an n-dimensional histogram from one or more piddles. The
 arguments must be specified
(almost) like in histogram() and histogram2d().
 That is, each axis must be followed by its three
specifications step, min
 and n, being the step size, the minimum value, and the number of bins,

respectively. The difference with histogram2d() is that the axis specifications
 follow the piddle
immediately, instead of coming at the end.

STDIN

Page 7

	 my $hist = ndbinning($pdl1, $step1, $min1, $n1,
	 $pdl2, $step2, $min2, $n2,
	 ...);

Variables may be added using the same syntax as the constructor new():

	 my $hist = ndbinning($pdl1, ...,
	 vars => [[$var1, $action1],
	 [$var2, $action2],
	 ...]);

If no variables are supplied, the behaviour of histogram() and histogram2d() is
 emulated, i.e., an n
-dimensional histogram is produced. This function,
 although more flexible than the former two, is likely
slower. If all you need
 is a one- or two-dimensional histogram, use histogram() and histogram2d()

instead. Note that, when no variables are supplied, the returned histogram is
 of type long, in contrast
with histogram() and histogram2d(). The
 histogramming is achieved by passing an action which
simply counts the number
 of elements in the bin.

Unlike the output of output(), the resulting piddles are output as an array
 reference, in the same order
as the variables passed in. There are as many
 output piddles as variables, and exactly one output
piddle if no variables have
 been supplied. The output piddles take the type of the variables. All values
in
 the output piddles are initialized to the bad value, so missing bins can be
 distinguished from zero.

ndbin()
Calculate an n-dimensional histogram from one or more piddles. The
 arguments must be specified
like in hist(). That is, each axis may be followed
 by at most three specifications min, max, and step,
being the the
 minimum value, maximum value, and the step size, respectively.

	 my $hist = ndbin($pdl1, $min1, $max1, $step1,
	 $pdl2, $min2, $max2, $step2,
	 ...);

Note that $min, $max, and $step may be omitted, and will be calculated
 automatically from the data,
as in hist(). Variables may be added using the
 same syntax as the constructor new():

	 my $hist = ndbin($pdl1, ...,
	 vars => [[$var1, $action1],
	 [$var2, $action2],
	 ...]);

If no variables are supplied, the behaviour of hist() is emulated, i.e., an n-dimensional histogram is
produced. This function, although more flexible
 than the other, is likely slower. If all you need is a
one-dimensional
 histogram, use hist() instead. Note that, when no variables are supplied, the
 returned
histogram is of type long, in contrast with hist(). The
 histogramming is achieved by passing an action
which simply counts the number
 of elements in the bin.

Unlike the output of output(), the resulting piddles are output as an array
 reference, in the same order
as the variables passed in. There are as many
 output piddles as variables, and exactly one output
piddle if no variables have
 been supplied. The output piddles take the type of the variables. All values
in
 the output piddles are initialized to the bad value, so missing bins can be
 distinguished from zero.

EXAMPLES
A few examples are included with this distribution, in the directory examples/.

Histogram and stem-and-leaf plot
The basic usage of PDL::NDBin is illustrated below by constructing a histogram.
 Suppose we have a
data table as follows (only the first 8 lines of data are
 shown):

STDIN

Page 8

	 # Prestige Income Education Occupation
	 97 76 97 Physician
	 93 64 93 Professor
	 92 78 82 Banker
	 90 75 92 Architect
	 90 64 86 Chemist
	 90 80 100 Dentist
	 89 76 98 Lawyer
	 88 72 86 Civil engineer
	 ...

(The table is also included in the example files, and is taken from John Fox,
 Applied Regression
Analysis, Linear Models, and Related Methods, SAGE
 Publications, Inc., 1997). We will now write a
script to compute the histogram
 of the Income field, in bins of 10 units wide.

	 use PDL;
	 use PDL::NDBin;

Note that loading PDL::NBBin does not automatically export PDL to your
 namespace, so you need to
load PDL explicitly.

	 my $binner = PDL::NDBin->new(axes => [['Income', min => 0, max => 100,
step => 10]],
	 vars => [['Income', 'Count']]);

First we build the object with a call to new(). Note that the same name can be
 used in both axes and
variables (in this case, Income). step signifies
 the width of the bins. By associating the action Count
with Income, we
 will produce a histogram of the elements in Income. (The action name is
 actually the
name of a class in the PDL::NDBin::Action namespace.)

	 my($prestige, $income, $education) = rcols 'table';

Next, we read the data from the data file. The PDL function rcols() is very
 convenient to read tabular
data of the kind shown above.

	 $binner->process(Income => $income);

The data is then 'fed' into the binning object, with a call to process(). Note
 that you need to specify the
name that was given in the constructor call in
 order to associate the numerical data with the axis and
variable.

	 my %results = $binner->output;
	 my $histogram = $results{Income};

We now recover the histogram with output(), which returns a hash with the
 results, keyed by name
(again the same name as used in the constructor). To
 find the number of elements in the bin with 40
<= income < 50, for instance,
 you could also use the following awk(1) script:

	 $2 >= 40 && $2 < 50 { cnt++ }
	 END { print cnt }

Of course, for this very simple example, the histogram could as well be
 calculated with the following
built-in function of PDL:

	 my $histogram = hist($income, 0, 100, 10);

If you'd rather print a stem-and-leaf plot, you could modify the constructor
 call as follows:

STDIN

Page 9

	 my $binner = PDL::NDBin->new(axes => [['Income', min => 0, max => 100,
step => 10]],
	 vars => [['Income', \&stem_and_leaf_plot]
]);

Now the action associated with $income is no longer Count (which counts
 the elements in each bin),
but a reference to the user-supplied subroutine
 stem_and_leaf_plot(). The latter could be
implemented as shown below.

	 sub stem_and_leaf_plot
	 {
		 my $iter = shift;
		 my $bin = $iter->bin;
		 my @list = map { $_ % 10 } sort $iter->selection->list;
		 printf "%d | %s\n", $bin, join '', @list;
	 }

The only argument supplied to our callback stem_and_leaf_plot() is an object of
 the type
PDL::NDBin::Iterator. This object is used to iterate over the bins
 of the variable ($income). With the
method bin(), we can recover the current
 bin number. With selection(), we recover those elements of
$income that fall in
 the current bin. Those elements are then printed in a neat list (retaining only
 the
last digit).

To actually produce the stem-and-leaf plot, we still need to call

	 $binner->process(Income => $income);

The result is the following neat diagram:

	 0 | 77899
	 1 | 245667
	 2 | 1111299
	 3 | 46
	 4 | 12224788
	 5 | 355
	 6 | 02447
	 7 | 2256668
	 8 | 01
	 9 |

Note that it is not necessary to call output(), as we are not interested in the
 return value of
stem_and_leaf_plot().

Local averaging of two-dimensional data
This is a slightly more complicated example, where PDL::NDBin is used to
 average two-dimensional
data in boxes of 1x1. Suppose you have elevation data
 of a particular area in the form of (x,y)-located
samples:

	 # x y height
	 0.3 6.1 870.0
	 1.4 6.2 793.0
	 2.4 6.1 755.0
	 3.6 6.2 690.0
	 5.7 6.2 800.0
	 1.6 5.2 800.0
	 ...

STDIN

Page 10

(The data have been taken from Example 14 of the GMT Cookbook. You can find
 more information
on GMT under SEE ALSO.) Note that the samples are not
 distributed uniformly over the area. We
want to compute the average
 elevation in boxes of 1 by 1, replacing multiple samples in any given
box by
 the mean of those samples (e.g., prior to computing a surface through these
 points). When
using the Generic Mapping Tools, you'd do it as follows:

	 blockmean table -R0/7/0/7 -I1

How to do this with PDL::NDBin is shown below.

	 use PDL;
	 use PDL::NDBin;
	 my($x, $y, $z) = rcols 'table';

As in the first example.

	 my $binner = PDL::NDBin->new(axes => [['x', min=>-0.5, max=>7.5,
step=>1],
	 ['y', min=>-0.5, max=>7.5,
step=>1]],
	 vars => [['x', 'Avg'],
	 ['y', 'Avg'],
	 ['z', 'Avg']]);

The constructor call specifies two axes for two-dimensional binning, and will
 compute the average in
each bin of three variables simultaneously: x- and
 y-coordinate, and elevation ($z). We need to
average the coordinates, as we
 want to replace multiple points with a single, average point; that is
why x
 and y appear in the axes as well as in the variables.

To produce a table with averaged data, proceed (roughly) like in the first
 example:

	 $binner->process(x => $x, y => $y, z => $z);
	 my %results = $binner->output;
	 my @avg = map { $_->flat } @results{ qw/x y z/ };
	 wcols @avg;

wcols() is the inverse of rcols() and will print out the data in tabular
 format.

Average and standard deviation of sampled satellite data
The next example shows how to deal with large data volumes. Suppose you have
 the following data:

	 # longitude latitude albedo flux windspeed
	 -28.5789718628 -17.6553726196 0.0973502323031 84.5 7.1533331871
	 -12.5770769119 -20.5219345093 0.094131320715 81 6.69999980927
	 -16.9122467041 1.0953686237 0.0729057863355 87.25 6.04666662216
	 -16.2659015656 -11.5013151169 0.0838633701205 89 8.14666652679
	 0.3412319422 -27.6491680145 0.151734098792 78.75 6.48000001907
	 -32.6132278442 39.7315559387 0.128813564777 104.5 6.19333314896
	 -33.4954719543 33.6763381958 0.0628560185432 80 5.28666687012
	 11.4981594086 35.1409721375 0.0674269720912 84.25 5.2266664505
	 ...

The data are actual satellite data obtained with the GERB instrument
 (http://gerb.oma.be). The data
are located by longitude, latitude, and the
 task at hand is to assign each sample to boxes of m
degrees longitude by n degrees latitude, and then to average all samples belonging to any given
 box,
as well as computing the standard deviation. An example of this kind of
 binning in Python is shown
here.
 In awk(1), you could compute the average flux in the box bounded by -60 <
 longitude < -20 and

STDIN

Page 11

-60 < latitude < -20 as follows:

	 $1 > -60 && $1 < -20 && $2 > -60 && $2 < -20 { sum += $4; cnt++ }
	 END { print sum/cnt }

For the purpose of this example, the data sets have been stripped down very
 much, and the number
of lat/lon boxes has been reduced greatly. A variant of
 this script is used to bin and average the
samples for a complete month of
 data, totalling around 4GB of input data and more than 60 million
samples.

The constructor call is

	 my $binner = PDL::NDBin->new(axes => [[longitude => min => -60, max =>
60, step => 40],
	 [latitude => min => -60, max =>
60, step => 40]],
	 vars => [[avg => 'Avg'],
	 [stddev => 'StdDev'],
	 [count => 'Count']]);

In an application, a large volume of data would likely be spread over multiple
 data files. Suppose that
the data are distributed over a number of .txt
 files (in a real application, a binary format would be
preferred over plain
 text). The following loop then processes all files without loading the entire
 data
volume into memory:

	 for my $file (glob '??.txt') {
		 my($longitude, $latitude, $albedo, $flux, $windspeed) = rcols $file;
		 $binner->process(longitude => $longitude,
		 latitude => $latitude,
		 avg => $flux,
		 stddev => $flux,
		 count => $flux);
	 }

Note how the data are read from disk and immediately processed. After the call
 to process(), the data
are no longer required, and can be discarded! The
 actions Avg, StdDev and Count (and also Sum
which is not shown in
 this example) keep an internal state which allows them to 'chain' multiple
 calls
to process(). Note how the same variable $flux is fed three times to
 three different actions in order to
obtain its average, standard deviation, and
 count, respectively.

The results are recovered as usual with

	 my %results = $binner->output;
	 print "Average flux:\n", $results{avg}, "\n";
	 print "Standard deviation of flux:\n", $results{stddev}, "\n";
	 print "Number of observations per bin:\n", $results{count}, "\n";

Another point to note in this example is that the optimized action classes Avg (and similar) are
required for performance when processing large volumes
 of data. The average could in principle also
be computed with a coderef:

	 avg => sub { shift->selection->avg }

Although the result will be the same, the computation will be much slower,
 since the call to selection()
is very time-consuming.

STDIN

Page 12

IMPLEMENTATION NOTES
Lowest and highest bin

All data equal to or less than the minimum (either supplied or automatically
 determined) will be binned
in the lowest bin. All data equal to or larger than
 the maximum (either supplied or automatically
determined) will be binned in the
 highest bin. This is a slight asymmetry, as all other bins contain their
lower
 bound but not their upper bound. However, it does the right thing when binning
 floating-point
data.

Flattening multidimensional bin numbers
In PDL, the first dimension is the contiguous dimension, so we have to work
 back from the last axis to
the first when building the flattened bin number.

Here are some examples of flattening multidimensional bins into one dimension:

	 (i) = i
	 (i,j) = j*I + i
	 (i,j,k) = (k*J + j)*I + i = k*J*I + j*I + i
	 (i,j,k,l) = ((l*K + k)*J + j)*I + i = l*K*J*I + k*J*I + j*I + i

Actions
You are required to supply an action with every variable. An action can be
 either a code reference
(i.e., a reference to a subroutine, or an anonymous
 subroutine), or the name of a class that
implements the methods new(),
 process() and result().

The actions will be called in the order they are given for each bin, before
 proceeding to the next bin.
You can depend on this behaviour, for instance,
 when you have an action that depends on the result
of a previous action within
 the same bin.

Code reference

In case the action specifies a code reference, this subroutine will be called
 with the following
argument:

	 $coderef->($iterator)

$iterator is an object of the class PDL::NDBin::Iterator, which will have been
 instantiated for you.
Important to note is that the action will be called for
 every bin, with the given variable. The iterator
must be used to retrieve
 information about the current bin and variable. With $iterator->selection(),
 for
instance, you can access the elements that belong to this variable and this
 bin.

Class name

In case the action specifies a class name, an object of the class will be
 instantiated with

	 $object = $class->new($N)

where $N signifies the total number of bins. The variables will be processed by
 calling

	 $object->process($iterator)

where $iterator again signifies an iterator object. Results will be collected
 by calling

	 $object->result

The object is responsible for correct bin traversal, and for storing the result
 of the operation. The class
must implement the three methods.

When supplying a class instead of an action reference, it is possible to
 compute multiple bins at once
in one call to process(). This can be much more
 efficient than calling the action for every bin,

STDIN

Page 13

especially if the loop can be
 coded in XS.

Exceptions in actions

There is no protection from exceptions raised in actions, i.e., exceptions in
 actions will be propagated
to the package that calls PDL::NDBin. This feature
 protects you from typos inside the action:

	 my $binner = PDL::NDBin->new(
		 axes => [...],
		 vars => [[variable => sub { shift->selection->avearge }]]
);

In this example, average() is misspelled. If the action were executed in an eval block, the typo would
go unnoticed, and all values of the output piddle
 would be undefined. If you want to trap exceptions in
actions, use a wrapper
 action defined as follows:

	 variable => sub {
		 my $iter = shift;
		 eval { $your_action->($iter) };
	 }

Iteration strategy
By default, ndbin() will loop over all bins, and create a piddle per bin
 holding only the values in that
bin. This piddle is accessible to your actions
 via the iterator object. This ensures that every action will
only see the data
 in one bin at a time. You need to do this when, e.g., you are taking the
 average of
the values in a bin with the standard PDL function avg(). However,
 the selection and extraction of the
data is time-consuming. If you have an
 action that knows how to deal with indirection, you can do
away with the
 selection and extraction. Examples of such actions are:
 PDL::NDBin::Action::Count,
PDL::NDBin::Action::Sum, etc. They take the original
 data and the flattened bin numbers and produce
an output piddle in one step.

Note that empty bins are not skipped. If you want to use an action that cannot
 handle empty piddles
(e.g., PDL method min()), you can wrap the action as
 follows to skip empty bins:

	 variable => sub {
		 my $iter = shift;
		 return unless $iter->want->nelem;
		 $your_action->($iter);
	 }

Remember that returning undef from the action will not fill the current bin.
 Note that the evaluation of
$iter->want entails a performance penalty,
 even if the bin is empty and not processed further.

Automatic axis parameter calculation
Range

The range, when not given explicitly, is calculated from the data by calling
 min() and max() on the
data. An exception will be thrown if the data range is
 zero. autoscale_axis() honours the round key to
round bin boundaries to the
 nearest multiple of round.

Number of bins

The number of bins n, when not given explicitly, is determined
 automatically. If the step size is defined
and positive, the number of bins is
 calculated from the range and the step size as discussed below. If
neither the
 number of bins, nor the step size have been supplied by the user, the number of
 bins is
taken equal to the number of data values, or equal to 100, whichever is
 smaller.

The calculation of the number of bins is based on the formula

	 n = range / step

STDIN

Page 14

but needs to be modified. First, n calculated in this way may well be
 fractional. When n is ultimately
used in the binning, it is converted to int by truncating. To have sufficient bins, n must be rounded up
to the
 next integer. Second, the computation of n is and should be different for
 floating-point data and
integral data.

For floating-point data, n is calculated as follows:

	 n = ceil(range / step)

The calculation is slightly different for integral data. When binning an
 integral number, say 4, it really
belongs in a bin that spans the range 4
 through 4.99...; to bin a list of data values with, say, min = 3
and max
 = 8, we must consider the range to be 9-3 = 6. A step size of 3 would yield 2
 bins, one
containing the values (3, 4, 5), and another containing the values
 (6, 7, 8). The correct formula for
calculating the number of bins for integral
 data is therefore

	 n = ceil((range+1) / step)

The modified formula for integral data values leads to more natural results, as
 the following example
shows:

	 my $data = short(1, 2, 3, 4);
	 my($min, $max, $step) = (1, 4, 1);

	 print ndbin($data, $min, $max, $step);
	 # prints [1 1 1 1], as expected

	 print scalar hist($data, $min, $max, $step);
	 # prints [1 1 2] at the time of writing (PDL v2.4.11)

Step size

The step size, when not given explicitly, is determined from the range and the
 number of bins n as
follows:

	 step = range / n

for floating-point data, and

	 step = (range+1) / n

for integral data.

The step size may have a fractional part, even for integral data. The step size
 must not be less than
one, however. If this happens, there are more bins than
 distinct numbers in the data, and the function
will abort.

Note that when the number of n is not given either, a default value is
 substituted for it by PDL::NDBin,
as described above.

TIPS & TRICKS
Find the total number of bins

	 use List::Util 'reduce';
	 my $binner = PDL::NDBin->new(axes => [['x', ...], ['y', ...]]);
	 $binner->autoscale(x => $x, y => $y);
	 my $N = reduce { our $a * our $b } map { $_->{n} } $binner->axes;

STDIN

Page 15

Hook a progress bar to PDL::NDBin
For long-running computations, you may want to hook a progress bar to
 PDL::NDBin. There is an
example in the examples/ directory, but here is the
 gist:

	 use List::Util 'reduce';
	 use Term::ProgressBar::Simple;

	 my $progress;
	 my $binner = PDL::NDBin->new(
		 axes => [['x', ...], ['y', ...]],
		 vars => [...,
		 ['dummy' => sub { $progress++; return }]]
);
	 $binner->autoscale(x => $x,
	 y => $y,
	 dummy => null);
	 my $N = reduce { our $a * our $b } map { $_->{n} } $binner->axes;
	 $progress = Term::ProgressBar::Simple->new($N);
	 $binner->process();

Note that, although we don't care about the return value of the anonymous sub
 associated with
dummy, Term::ProgressBar::Simple doesn't like being returned
 from a function. (Hence the return.)

SEE ALSO
The PDL::NDBin::Action:: namespace

The PDL documentation

There are a few histogramming modules on CPAN:

PDL::Basic offers the histogramming functions hist(), whist()

PDL::Primitive offers the histogramming functions histogram(),
 histogram2d(), whistogram(),
whistogram2d()

Math::GSL::Histogram and Math::GSL::Histogram2D

Math::Histogram

Math::SimpleHisto::XS

Other tools:

awk(1) is a fantastic tool that can be used to do many tasks like gridding
 or averaging with
very concise scripts. Working with very large data volumes in
 plain text can be a bit slow,
though.

The Generic Mapping Tools (written in C) are
 focused on creating high-quality graphics but
can also be used for tasks like
 gridding, local averaging, and more.

The following sections give a detailed overview of features, limitations, and
 performance of
PDL::NDBin and related distributions on CPAN.

FEATURES AND LIMITATIONS
The following table gives an overview of the features and limitations of
 PDL::NDBin and related
distributions on CPAN:

	
+---+---------+--------+---
-----+-----------+----------+

STDIN

Page 16

	 | Feature | MGH | MH |
MSHXS | PDL | PND |
	
+---+---------+--------+---
-----+-----------+----------+
	 | Allows piecewise data processing | - | - | -
 | - | X |
	 | Allows resampling the histogram | - | - | X
 | X | - |
	 | Automatic parameter calculation based on the data | - | - | -
 | X | X |
	 | Bad value support | - | - | -
 | X | X |
	 | Can bin multiple variables at once | - | - | -
 | - | X |
	 | Core implementation | C | C | C
 | C | C/Perl |
	 | Define and use callbacks to apply to the bins | - | - | -
 | - | Perl+C |
	 | Facilities for data structure serialization | X | X | X
 | X | - |
	 | Has overflow and underflow bins by default | - | X | X
 | - | - |
	 | Interface style | Proc. | OO |
OO | Proc. | OO+Proc. |
	 | Maximum number of dimensions | 2 | N | 1
 | 2 | N |
	 | Native data type | Scalars | Arrays |
Arrays | Piddles | Piddles |
	 | Performance | Low | Medium |
High | Very high | High |
	 | Support for weighted histograms | X | X | X
 | X | - |
	 | Uses PDL threading | - | - | -
 | X | - |
	 | Variable-width bins | X | X | X
 | - | - |
	
+---+---------+--------+---
-----+-----------+----------+

	 MGH = Math::GSL 0.26 (Math::GSL::Histogram and Math::GSL::Histogram2D)
	 MH = Math::Histogram 1.03
	 MSHXS = Math::SimpleHisto::XS 1.28
	 PDL = PDL 2.4.11
	 PND = PDL::NDBin 0.004

An explanation and discussion of each of the features is provided below.

Allows piecewise data processing

The ability to process data piecewise means that the input data (i.e., the data
 points) required
to produce the output (e.g., a histogram) do not have to be
 fed all at once. Instead, the input
data can be fed in chunks of any size. The
 resulting output is of course identical, whether the
input data be fed
 piecewise or all at once. However, the input data do not have to fit in
memory
 all at once, which is very useful when dealing with very large data sets.

An example may help to understand this feature. Suppose you want to calculate
 the monthly

STDIN

Page 17

mean cloud cover over an area of the globe, in boxes of 1 by 1
 degree. The total amount of
cloud cover data is too large to fit in memory, but
 fortunately, the data are spread of several
files, one by day. With PDL::NDBin,
 you can do the following:

	 my $binner = PDL::NDBin->new(
		 axes => [['latitude', min => -60, max => 60, step => 1],
		 ['longitude', min => -60, max => 60, step => 1]],
		 vars => [['cloud_cover', 'Avg']],
);
	 for my $file (@all_files) {
		 # suppose $file contains the geolocated cloud cover data for
		 # one day of the month
		 my $lat = $file->read('latitude');
		 my $lon = $file->read('longitude');
		 my $cc = $file->read('cloud_cover');
		 $binner->process(latitude => $lat,
		 longitude => $lon,
		 cloud_cover => $cc);
	 }
	 my $avg = $binner->output->{cloud_cover};

In this example, only the data of a single day have to be kept in memory. The
 $binner object
keeps a running average of the data, and retains the proper
 counts until the output $avg must
be generated.

Only PDL::NDBin offers this feature. It can be simulated with other libraries
 for histograms, as
long as histograms can be added together. PDL::NDBin extends
 the feature of piecewise data
processing to sums, averages, and standard
 deviations.

Allows resampling the histogram

To resample a histogram means to put in a histogram of N bins, the data that
 were originally in
a histogram of M bins, where N and M are different.

Only Math::SimpleHisto::XS and PDL support this feature. In PDL, the function
 is known as
rebin() (to be found in PDL::ImageND).

Automatic parameter calculation based on the data

If a minimum bin, maximum bin, or step size are not supplied, PDL and
 PDL::NDBin will
calculate them from the data. Other libraries require the user
 to specify them manually.

Bad value support

Bad value support, when it is present, allows to distinguish missing or invalid
 data from valid
data. The missing or invalid data are excluded from the
 processing. Only the PDL-based
libraries PDL and PDL::NDBin support bad values.

Can bin multiple variables at once

When data is co-located, e.g., cloud cover, cloud phase, and cloud optical
 thickness on a
latitude-longitude grid, some time can be saved by binning the
 cloud variables together. Once
the bin number has been determined for the given
 latitude and longitude, it can be reused for
all cloud variables. This is
 marginally faster than binning the cloud variables separately. Only
PDL::NDBin
 supports this feature.

Core implementation

Math::GSL::Histogram is a wrapper around the GSL library, which is written in
 C.

Math::Histogram is a wrapper around an N-dimensional histogramming library
 written in C.

Math::SimpleHisto::XS, by the same author as Math::Histogram, is implemented in
 C.

The core histogramming functions of PDL are implemented in C.

The core loops of PDL::NDBin are implemented partly in Perl, partly in C.

STDIN

Page 18

Define and use callbacks to apply to the bins

PDL::NDBin can handle any type of calculation on the values in the bins that
 you can express
in Perl or C, not only counting the number of elements in order
 to produce a histogram. At the
time of writing (version 0.004), PDL::NDBin
 supports counting, summing, averaging, and
taking the standard deviation of the
 values in each bin. Additionally, Perl or C subroutines can
be defined and used
 to perform any operation on the values in each bin.

This feature, arguably the most important feature of PDL::NDBin, is not found
 in other
modules.

Facilities for data structure serialization

Serialization is the process of storing a histogram to disk, or retrieving it
 from disk.
Math::GSL::Histogram, Math::Histogram, Math::SimpleHisto::XS, and
 PDL all have built-in
support for serialization. PDL::NDBin doesn't, but the
 serialization facilities of PDL can be
used to store and retrieve data. (I
 usually store computed data in netCDF files with
PDL::NetCDF.)

Has overflow and underflow bins by default

Data lower than the lowest range of the first bin, or higher than the highest
 range of the last
bin, are treated differently in different modules.

Math::GSL::Histogram ignores out-of-range values.

Math::Histogram and Math::SimpleHisto::XS have overflow bins, i.e., by default
 they create
more bins than you define. These so-called overflow bins are
 situated at either end of every
dimension. Out-of-range values end up in the
 overflow bins.

The histogramming functions of PDL, and PDL::NDBin, store low out-of-range
 values in the
first bin, and high out-of-range values in the last bin.

To ignore out-of-range values with PDL::NDBin, define an additional bin at
 either end of every
dimension, and disregard the values in these additional
 bins.

To simulate overflow and underflow bins with PDL::NDBin, define an additional
 bin at either
end of every dimension.

Interface style

Proc. means that the module has a procedural interface. OO means that the
 module has an
object-oriented interface. PDL::NDBin has both. Which interface
 you should use is largely a
matter of preference, unless you want to use
 advanced features such as piecewise data
feeding, which require the
 object-oriented interface.

Math::GSL::Histogram has a somewhat awkward interface, requiring the user to
 explicitly
deallocate the data structure after use.

Maximum number of dimensions

The maximum number of dimensions that can be processed. Math::Histogram and

PDL::NDBin can handle an arbitrary number of dimensions.

Native data type

Obviously, deep down, all data values are just C scalars. By 'native data type'
 is meant the
data type used to communicate with the library in the most
 efficient way.

At the time of writing (Math::GSL version 0.27), Math::GSL::Histogram did not
 have a facility to
enter multiple data points at once. It accepts only Perl
 scalars, and requires the user to input
the data points one by one. Similarly,
 to produce the final histogram, the bins must be queried
one by one.

Math::Histogram and Math::SimpleHisto::XS accept Perl arrays filled with values
 (although
they also accept data points one by one as Perl scalars). Passing
 large amounts of data in an
array is generally more efficient than passing the
 data points one by one as scalars.

PDL and PDL::NDBin operate on piddles only, which are memory-efficient, packed
 data

STDIN

Page 19

arrays. This could be considered both an advantage and a disadvantage. The
 advantage is
that the piddles can be operated on very efficiently in C. The
 disadvantage is that PDL is
required!

Performance

In the next section (see PERFORMANCE), the performance of all modules is
 examined in
detail.

Support for weighted histograms

In a weighted histogram, data points contribute by a fractional amount (or
 weight) between 0
and 1. All libraries, except PDL::NDBin, support weighted
 histograms. In PDL::NDBin, the
weight of all data points is fixed at 1.

Uses PDL threading

In PDL, threading is a technique to automatically loop certain operations over
 an arbitrary
number of dimensions. An example is the sumover() operation, which
 calculates the row sum.
It is defined over the first dimension only (i.e., the
 rows in PDL), but it will be looped
automatically over all remaining
 dimensions. If the piddle is three-dimensional, for instance,
sumover() will
 calculate the sum in every row of every matrix.

Threading is supported by the PDL functions histogram(), whistogram(), and
 their
two-dimensional counterparts, but not by hist() or whist(). PDL::NDBin
 does not (yet) support
threading.

Variable-width bins

In a histogram with variable-width bins, the width of the bins needn't be
 equal. This feature can
be useful, for example, to construct bins on a
 logarithmic scale. Math::GSL, Math::Histogram,
and Math::SimpleHisto::XS
 support variable-width bins; PDL and PDL::NDBin do not and are
limited to
 fixed-width bins.

PERFORMANCE
One-dimensional histograms

This section aims to give an idea of the performance of PDL::NDBin. Some of the
 most important
features of PDL::NDBin aren't found in other modules on CPAN.
 But there are a few histogramming
modules on CPAN, and it is interesting to
 examine how well PDL::NDBin does in comparison.

I've run a number of tests with PDL version 0.004 on a laptop with an Intel i3
 CPU running at 2.40
GHz, and on a desktop with an Intel i7 CPU running at 2.80
 GHz and fast disks. The following table,
obtained with 100 bins and a data file
 of 2 million data points, shows typical results on the laptop:

	 Benchmark: timing 50 iterations of MGH, MH, MSHXS, PND, hist, histogram...
	 MGH: 41 wallclock secs (40.83 usr + 0.00 sys = 40.83 CPU) @
1.22/s (n=50)
	 MH: 6 wallclock secs (5.60 usr + 0.00 sys = 5.60 CPU) @
8.93/s (n=50)
	 MSHXS: 2 wallclock secs (2.22 usr + 0.00 sys = 2.22 CPU) @
22.52/s (n=50)
	 PND: 1 wallclock secs (1.43 usr + 0.00 sys = 1.43 CPU) @
34.97/s (n=50)
	 hist: 2 wallclock secs (1.09 usr + 0.00 sys = 1.09 CPU) @
45.87/s (n=50)
	 histogram: 1 wallclock secs (1.08 usr + 0.00 sys = 1.08 CPU) @
46.30/s (n=50)

	 Relative performance:
	 Rate MGH MH MSHXS PND hist
histogram
	 MGH 1.22/s -- -86% -95% -96% -97%

STDIN

Page 20

-97%	 MH 8.93/s 629% -- -60% -74% -81%
 -81%
	 MSHXS 22.5/s 1739% 152% -- -36% -51%
-51%
	 PND 35.0/s 2755% 292% 55% -- -24%
-24%
	 hist 45.9/s 3646% 414% 104% 31% --
-1%
	 histogram 46.3/s 3681% 419% 106% 32% 1%
--

From this test and other tests, it can be concluded that PDL::NDBin (shown as
 'PND' in the table) is,
roughly speaking,

1. faster than Math::GSL::Histogram (shown as MGH in the table)

Although this module is actually a wrapper around the C library GSL, the
 performance is
rather low. The process of getting a large number of data points
 into Math::GSL::Histogram's
data structures is inefficient, as the data points
 have to be input one by one.

2. faster than Math::Histogram (shown as MH)

This library wraps another multidimensional histogramming library written in C.
 It allows
inputting multiple data points at once. It is quite a bit faster than
 Math::GSL::Histogram, but
does not offer the raw performance of PDL or
 Math::Histogram's cousin
Math::SimpleHisto::XS.

3. faster than Math::SimpleHisto::XS (shown as MSHXS)

Math::SimpleHisto::XS, by the same author as Math::Histogram, is similar to the
 latter library,
but implemented in XS for speed, and limited to one-dimensional
 histograms. It is generally
somewhat slower than PDL::NDBin, but outperforms it
 for small files or large bin counts
(10,000 bins or more).

4. slower than PDL

Although PDL::NDBin outperforms hist() by 10 to 20% in some of the tests, PDL's
 built-in
functions hist() and histogram() are, on average, the fastest
 functions. Given that the core of
these routines runs in pure C, this is not
 very surprising. The PDL functions have very low
overhead and are very
 memory-efficient.

Note that, in the tests, various data conversions between piddles and ordinary
 Perl arrays were
required. The timings exclude these conversions, and count
 only the time required to produce a
histogram from the "natural" data
 structure, i.e. piddles for PDL-based modules, and ordinary Perl
arrays for the
 other modules.

Note also that the histograms produced by the different methods were verified
 to be equal.

Two-dimensional histograms
Similar conclusions are obtained for two-dimensional histograms. The following
 table shows results
on the laptop for 2 million data points with 100 bins:

	 Benchmark: timing 50 iterations of MGH2d, PND2d, histogram2d...
	 MGH2d: 65 wallclock secs (64.38 usr + 0.09 sys = 64.47 CPU) @
0.78/s (n=50)
	 PND2d: 6 wallclock secs (5.96 usr + 0.00 sys = 5.96 CPU) @
8.39/s (n=50)
	 histogram2d: 2 wallclock secs (2.16 usr + 0.01 sys = 2.17 CPU) @
23.04/s (n=50)

	 Relative performance:

STDIN

Page 21

	 Rate MGH2d PND2d histogram2d
	 MGH2d 0.776/s -- -91% -97%
	 PND2d 8.39/s 982% -- -64%
	 histogram2d 23.0/s 2871% 175% --

(It was not possible to run the test with Math::Histogram to completion.)

Scaling w.r.t. number of data points
Performance figures for a few tests on a particular machine don't say much. As
 PDL::NDBin is
intended to handle large amounts of data, it is important to
 check how well PDL::NDBin's performance
scales as the problem size increases.

The first and most obvious way in which a problem may be 'large', is the number
 of data points. If a
given method cannot process a large number of data points,
 or can only do so with increased effort, it
is not suitable for large problems.
 How large that is, depends on the application, but in the field of
satellite
 data retrieval (where I work), 33 million data points is not exceptional at all
 (but it is the
largest size I could test). In this section, we examine how well
 PDL::NDBin's performance scales with
the number of data points, and compare
 with alternative modules.

The following table shows timing data on the laptop for 100 bins, but with a
 variable number of data
points:

	 +-----------+------------+----------+-------+------------+---------------+
	 | method | # points | CPU time | n | time/iter. | time/i./point |
	 | | | (s) | | (ms) | (ns) |
	 +-----------+------------+----------+-------+------------+---------------+
	 | MGH | 66,398 | 38.84 | 1,500 | 25.893 | 389.972 |
	 | MGH | 2,255,838 | 43.06 | 50 | 861.200 | 381.765 |
	 +-----------+------------+----------+-------+------------+---------------+
	 | MH | 66,398 | 6.21 | 1,500 | 4.140 | 62.351 |
	 | MH | 2,255,838 | 5.65 | 50 | 113.000 | 50.092 |
	 +-----------+------------+----------+-------+------------+---------------+
	 | MSHXS | 66,398 | 2.11 | 1,500 | 1.407 | 21.185 |
	 | MSHXS | 2,255,838 | 2.26 | 50 | 45.200 | 20.037 |
	 +-----------+------------+----------+-------+------------+---------------+
	 | PND | 66,398 | 1.79 | 1,500 | 1.193 | 17.972 |
	 | PND | 2,255,838 | 1.38 | 50 | 27.600 | 12.235 |
	 | PND | 33,358,558 | 2.28 | 5 | 456.000 | 13.670 |
	 +-----------+------------+----------+-------+------------+---------------+
	 | histogram | 66,398 | 0.99 | 1,500 | 0.660 | 9.940 |
	 | histogram | 2,255,838 | 1.12 | 50 | 22.400 | 9.930 |
	 | histogram | 33,358,558 | 1.65 | 5 | 330.000 | 9.893 |
	 +-----------+------------+----------+-------+------------+---------------+

Note that the tests couldn't be run with Math::GSL::Histogram, Math::Histogram,
 and
Math::SimpleHisto::XS on the largest data file (33 million points), due to
 insufficient memory.

The methods show a linear increase in time per iteration with the number of
 data points, which
translates to a fixed time per iteration per data point.
 This is the desired behaviour: it guarantees that
the effort required to
 produce a histogram does not increase faster than the problem size. Every

method examined here displays this behaviour.

Quite notable is the high CPU time per iteration per data point of PDL::NDBin
 for small data files. For
large data files, the time per iteration per data
 point is more or less constant. This effect is not fully
understood, but may
 indicate high overhead or start-up cost.

The results suggest that PDL::NDBin scales well with the number of data points,
 and that it is
therefore well suited for large data. PDL::NDBin and histogram()
 (and hist()) are currently the only

STDIN

Page 22

methods that allow processing very large
 data files.

Scaling w.r.t. number of bins
The number of data points may not be the only way in which a problem may be
 'large' or hard. The
number of bins may also be high. In applications with
 satellite data, for instance, a latitude/longitude
grid with a resolution of
 only 5 degrees already yields more than 2000 bins, and raising the resolution

to 1 degree yields approximately 64,000 bins.

Most of the methods depend in some way on the number of bins. If the execution
 time depends to a
significant extent on the number of bins, the method is not
 suitable for large numbers of bins. In this
section, we examine how well
 PDL::NDBin's performance scales with the number of bins, and
compare with
 alternative modules.

The following table shows timing data on the laptop for 2 million data points,
 with a variable number of
bins:

	 +-----------+-----------+----------+----+------------+
	 | method | # bins | CPU time | n | time/iter. |
	 | | | (s) | | (ms) |
	 +-----------+-----------+----------+----+------------+
	 | MGH | 10 | 42.57 | 50 | 851.400 |
	 | MGH | 50 | 42.35 | 50 | 847.000 |
	 | MGH | 100 | 42.53 | 50 | 850.600 |
	 | MGH | 1,000 | 43.06 | 50 | 861.200 |
	 | MGH | 10,000 | 42.96 | 50 | 859.200 |
	 | MGH | 100,000 | 46.60 | 50 | 932.000 |
	 | MGH | 1,000,000 | 78.75 | 50 | 1575.000 |
	 +-----------+-----------+----------+----+------------+
	 | MH | 10 | 5.53 | 50 | 110.600 |
	 | MH | 50 | 5.51 | 50 | 110.200 |
	 | MH | 100 | 5.53 | 50 | 110.600 |
	 | MH | 1,000 | 5.65 | 50 | 113.000 |
	 +-----------+-----------+----------+----+------------+
	 | MSHXS | 10 | 2.26 | 50 | 45.200 |
	 | MSHXS | 50 | 2.21 | 50 | 44.200 |
	 | MSHXS | 100 | 2.22 | 50 | 44.400 |
	 | MSHXS | 1,000 | 2.26 | 50 | 45.200 |
	 | MSHXS | 10,000 | 2.30 | 50 | 46.000 |
	 | MSHXS | 100,000 | 2.65 | 50 | 53.000 |
	 | MSHXS | 1,000,000 | 6.22 | 50 | 124.400 |
	 +-----------+-----------+----------+----+------------+
	 | PND | 10 | 1.41 | 50 | 28.200 |
	 | PND | 50 | 1.40 | 50 | 28.000 |
	 | PND | 100 | 1.40 | 50 | 28.000 |
	 | PND | 1,000 | 1.38 | 50 | 27.600 |
	 | PND | 10,000 | 1.37 | 50 | 27.400 |
	 | PND | 100,000 | 1.40 | 50 | 28.000 |
	 | PND | 1,000,000 | 1.95 | 50 | 39.000 |
	 +-----------+-----------+----------+----+------------+
	 | histogram | 10 | 1.09 | 50 | 21.800 |
	 | histogram | 50 | 1.09 | 50 | 21.800 |
	 | histogram | 100 | 1.08 | 50 | 21.600 |
	 | histogram | 1,000 | 1.12 | 50 | 22.400 |
	 | histogram | 10,000 | 1.15 | 50 | 23.000 |
	 | histogram | 100,000 | 1.21 | 50 | 24.200 |
	 | histogram | 1,000,000 | 1.45 | 50 | 29.000 |
	 +-----------+-----------+----------+----+------------+

STDIN

Page 23

Note that some data are missing because the associated test didn't run
 successfully (e.g.,
segmentation fault).

The methods show more or less constant execution time per iteration,
 independent of the number of
bins. This is the desired behaviour: the overhead
 of managing the bins does not dominate the
execution time.

Quite notable is the behaviour of PDL::NDBin at high bin counts: beyond 1,000
 bins, execution time
rises significantly. The cause of this problem is not
 known.

The results suggest that PDL::NDBin scales well with the number of bins up to
 1,000. Beyond 1,000
bins, the performance decreases significantly.

BUGS
None reported.

TODO
As is probably obvious from this manual, there are quite a few areas where
 PDL::NDBin can be
improved. In particular:

PDL:NDBin does not currently have a way to collect and return the values in a
 bin as a list or
piddle; this would be very useful for plotting or output.

PDL::NDBin does not currently support variable-width bins and weighted
 histograms.

PDL::NDBin has some performance issues with very small datasets or large bin
 counts; some
profiling is in order.

The documentation can be expanded and improved in a few places.

The axes should be refactored into objects instead of bare hashrefs, with
 methods such as
labels(), n(), step(), etc.

The action classes Min and Max would be useful and easy to add.

