
CIPP Reference Guide

Copyright 1999 dimedis GmbH
All Rights Reserved

http://www.dimedis.de/
http://www.perl.com/CPAN/modules/by-authors/id/J/JR/JRED/

Table Of Contents
 . 7
. . 8

 . . 9
. 9
 . 9
10

. 10
 10
 11
 12
 12
 13

 . 14
 14
 14
Introduction .
CIPP generates Perl code .

Environments where CIPP can be used .
CGI::CIPP .
Apache::CIPP .
new.spirit .

Basic Syntax Rules .
CIPP command structure .
Case sensitivity of CIPP parameters
CIPP return parameters .
Context of CIPP commands .
Add comments to your source .

Error messages .
CIPP errors .
Perl errors .
Table Of Contents iii

Table Of Contents

 17
20
21
22

. 23

. 25
 25
 26
26
26

 27
27
27

 27
 28
. 28

 29
 29
31
32
3
35
37
38
40
42
44
 46
 47
48
49
51
CGI::CIPP. .
Using a extra ScriptAlias .
Using mod_rewrite .
CGI::SpeedyCGI and CIPP::CGI .

Apache::CIPP .

Command Groups.
Variables and Scoping .
Control Structures .
Import .
Exception Handling .
SQL .
URL- and Form Handling .
HTML Tag Replacements .
Interface .
Apache .
Preprocessor .

Alphabetical Reference .
A .
APGETREQUEST .
APREDIRECT .
AUTOCOMMIT . 3
AUTOPRINT .
BLOCK .
CATCH .
COMMIT .
CONFIG .
DBQUOTE .
DO .
ELSE .
ELSIF .
FOREACH .
FORM .
iv Table Of Contents

Table Of Contents

55
6
57
0

62
 63
64

65
68
70
71
73
74
76

 77
9

81
 83
 88
90
91
93
94
95
97
GETPARAM .
GETPARAMLIST . 5
GETURL .
HIDDENFIELDS . 6
HTMLQUOTE .
IF .
IMG .
INCINTERFACE .
INCLUDE .
INPUT .
INTERFACE .
LIB .
LOG .
MY .
PERL .
ROLLBACK . 7
SAVEFILE .
SQL .
SUB .
TEXTAREA .
THROW .
TRY .
URLENCODE .
VAR .
WHILE .
Table Of Contents v

Table Of Contents
vi Table Of Contents

CHAPTER 1 CIPP - CGI Perl
Preprocessor
sed

rver
ram-
ro-

ut
e

e
f the

nary
amic
g
This chapter gives a high-level overview about what CIPP is, where it can be u
and introduces you to the general syntax of the language.

Introduction

The name CIPP is an acronym for CgI Perl Preprocessor. With CGI, a web se
calls a program which generates a HTML page. The CGI allows passing of pa
eters, so the returned page might look different depending on the input to the p
gram. This is what is commonly refered to as a „dynamic“ page.

CGI programms are just like normal ones, only there is a lot of code printing o
HTML statements. The majority of the code is concerned about the layout of th
generated page. This is a nuisance for two reasons: first, it is difficult to see th
structure of the generated page by looking at the source code, second, a lot o
code just consists of „print“ statements - these are boring to write.

CIPP takes another approach to CGI programming: you basically write an ordi
HTML page and insert into the page the code, which is responsible for the dyn
parts. This way, you can easily see the structure of the page and for generatin
HTML, you can simply write the HTML directly onto the page.
Introduction 7

CIPP - CGI Perl Preprocessor <?>

8

edded

h an
op-

f the
ing

ari-

d to
save

ming.
s

 the
CIPP generates Perl code

CIPP is a preprocessor which generates pure Perl code out of your CIPP emb
HTML pages. Depending on your environment, this Perl code can either be
installed as a CGI program on the webserver or is executed immediately throug
appropriate handler. More details about the different environments and their pr
erties are discussed later in this document.

Here is a little example of a CIPP code snippet to demonstrate the simplicity o
preprocessing mechanism (this anticipates some basics of the CIPP programm
language, a detailed description of the language follow beyond this chapter).

<?IF COND=“$event eq ’show’“>
 The value of the variable ’foo’ is:

 $foo
<?/IF>

You will get a HTML formatted content of the Perl variable $foo, assumed the v
able $event contains the string ’show’.

CIPP will generate Perl code similar to this.

if ($event eq ’show’) {
 print “The value of the variable ’foo’ is:
\n“;
 print “$foo\n“;
}

This was really a simple example. The CIPP <?IF> is translated to a Perl ’if ’ com-
mand. The non CIPP text blocks (usually containing some HTML) are translate
a Perl ’print’ command. There are many, more complex CIPP commands that
you a lot of work.

So, here you can see the difference between CIPP and ordinary CGI program
With CIPP, HTML is normal and code is embedded in a way which almost look
like HTML. CGI programs, on the other hand, contain a lot of print statements
which makes them hard to read.

Ok, message understood. Now you know what CIPP basically does for you. In
next chapter you will learn in what way and environment you can apply it.
Introduction

Environments where CIPP can be used <?>

 CIPP

GI

 of
tion

able
sing.

ents
when

on-
u-

red
 be

h
ML
ic

he
e
Environments where CIPP can be used

As mentioned above there are three different environments where you can use
programs:

• CIPP::CGI - using CIPP via a central CGI wrapper program

• Apache::CGI - using CIPP as a module inside the Apache webserver

• new.spirit - managing projects of many CIPP files, generating standalone C
programs for production web systems.

A discussion of these three possible use cases follows, where the architecture
each environment is described briefly. There are extra chapters with configura
details about all of them.

CGI::CIPP

CGI::CIPP is a Perl module which enables you to use CIPP on every CGI cap
webserver. It is based on a central wrapper script, which does all the preproces
It executes the generated Perl code directly afterwards. Additionally, it implem
a filesystem based cache for the generated code. Preprocessing is done only
the corresponding CIPP source code changed on disk, otherwise this step is
skipped.

CGI::CIPP is prepared for usage inside a persistent Perl environment, e.g. in c
junction with the CGI::SpeedyCGI module, which is not part of the CIPP distrib
tion, but freely available on CPAN. CGI::CIPP will cache the Perl compiled
programs as subroutines. Subsequent calls to the same CIPP page are answe
immediately, because neither CIPP preprocessing nor Perl compiling needs to
done in this case.

Your CIPP source files are placed in a particular directory on a webserver. Wit
some additional webserver configuration you can handle them as „normal“ HT
documents beneath other webserver documents like images or traditional stat
HTML documents. See the chapter about CGI::CIPP configuration for details.

Apache::CIPP

The architecture of the Apache::CIPP is very similar to the one of CGI::CIPP. T
main difference is that the central CGI wrapper of CGI::CIPP is plugged into th
Apache webserver as a Request Handler using mod_perl, which extends the
Environments where CIPP can be used 9

CIPP - CGI Perl Preprocessor <?>

10

ura-

t
t the
e,
our
l code

ess-

ntax
it

e
 dif-

-

Apache webserver with a Perl interpreter. Another difference ist that the config
tion options for Apache::CIPP are placed into the webserver configuration file.

All the caching is done exactly like CGI::CIPP does. See the chapter about
Apache::CIPP configuration for details.

new.spirit

new.spirit uses CIPP in a different way. new.spirit is a web based developmen
environment for creating software projects based on CIPP. In this environmen
Perl code generated by CIPP for each page will be stored as a CGI executabl
installed in a cgi-bin path of your webserver. This prevents you from installing y
CIPP sources on the productive webserver system, only the preprocessed Per
is installed there.

Another difference using CIPP with new.spirit is the naming convention for adr
ing CIPP programs. CGI::CIPP and Apache::CIPP use URL’s as adresses,
new.spirit expects a special dot-separated notation. See the chapter „Basic sy
rules“ for details. For new.spirit CIPP configuration please refer to the new.spir
documentation.

Basic Syntax Rules

This chapter describes the CIPP syntax rules.

CIPP command structure

CIPP commands are embedded into HTML code, so the syntax is related to th
HTML syntax. CIPP commands are written as tags, like HTML does. The main
ference is that CIPP command tags begin with <? instead of <.

Like in HTML, there are two kinds of commands: single commands and block
commands. Block commands have a start and end tag. A block command influ
ences the HTML respectively CIPP code surrounded by it.

<?COMMAND [par =value ...] >
Basic Syntax Rules

Basic Syntax Rules <?>

ot
to a

o

sh

e
low).

lly the
 stage.
s usu-

are
 in
PP
or

<?COMMAND [par =value ...]>
 HTML or CIPP code
<?/ COMMAND [par =value ...]>

Whitespaces between <? and COMMAND are ignored. The command names are n
case sensitive. Parameters are written als par=value pairs. Assigning a value
parameters is optional. A parameter without a value is called a switch.

A parameter with value has the following syntax:

parameter_name = parameter_value

Whitespaces before and behind the = sign are ignored. If the value you want t
assign contains whitespaces you must quote the value using double quotes.

<?COMMAND par_1 =value_without_whitespaces
 par_2 =“value with whitespaces“ >

If your value contains double quotes you must escape them using the backsla
character.

<?COMMAND par_2 =“value with \“double quotes\““ >

You may place Perl variables inside your value string, they are expanded in th
usual way (there is one exception regarding return parameters, see section be

A switch without a value has this simple syntax:

<?COMMAND SWITCH_NAME>

Case sensitivity of CIPP parameters

Due to historical reasons parameter names are also not case sensitive. Actua
CIPP preprocessor converts all parameter names to lower case at a very early
So the exact case notation of the parameters is lost for later processing. This i
ally no problem and works as you expect. HTML behaves the same.

Important Note: This approach has some side effects which you need to be aw
of. For certain CIPP commands, you will be expected to specify Perl variables
the same syntactical manner of CIPP parameters. Not matter what you do, CI
Basic Syntax Rules 11

CIPP - CGI Perl Preprocessor <?>

12

any

ls

om-
ans
turn

 see
, for
y).

ined
will always work on the lower case version of these names - without giving you
warning.

The CIPP commands affected by this are: <?MY>, <?INCLUDE>, <?GETURL>
and <?HIDDENFIELDS>. Please refer to the CIPP Reference chapter for detai
about these commands.

Important Hint: Always use lower case variable names!

CIPP return parameters

There are many CIPP commands that return parameters back to you. Since c
mands are inside tags, there is no way to use them in an assignment. This me
that you have to specify a variable (or more than one) which should hold the re
values.

These return variables are treated different from input variables.

$foo = “whatever“; $bar = “x“;
...
<?COMMAND input =$foo output =$bar>

is the same as

<?COMMAND input =“whatever“ output =$bar>

but no the same as

<?COMMAND input =$foo output =“x“>

So, the return value from the command will be placed inside $bar. You cannot
from the syntax alone which parameter is expanded and which isn’t. However
each CIPP command there is a desription of return parameters (if there are an

Context of CIPP commands

There are three different contexts which CIPP knows. They are listed and expla
below. CIPP switches from one context to another only by certain block com-
mands. Normal CIPP commands do not change the context.
Basic Syntax Rules

Basic Syntax Rules <?>

-
tic

erl

the

on for

you
m-

d-

ode.
we
1. HTML

This is the default context your CIPP program is in. That means, if your pro
gram does not contain any CIPP commands, you will produce a simple, sta
HTML page.

Inside HTML context, Perl variables are expanded with their content, like P
does it if you use variables in a double quoted string.

In fact HTML contexts are translated to a Perl print command, which prints
whole HTML block using some kind of double quotes.

2. Variable Assignment

This is a special context which is only existent inside of a <?VAR> block. Inside
this block no other CIPP commands are allowed. Perl variables will be
expanded. Perl expressions are also possible - see the command descripti
details.

With <?/VAR> you terminate the assignment block and CIPP goes back to
HTML context.

3. Perl

The block command <?PERL> switches to this context. The whole block will
be interpreted as pure Perl code. No automatic HTML output is done here,
have to use print yourself to do that. You may also use only certain CIPP co
mands inside a Perl block, which are <?INCLUDE> and <?SQL>. This list of
such commands will be expanded in future.

With <?/PERL> you terminate the command block and CIPP goes back to
HTML context.

Add comments to your source

CIPP uses a similar mechanism for writing comments like Perl does. Each line
which begins with a # sign is interpreted as a comment and is fully ignored. Lea
ing whitespace is ignored; you’re free to indent your comments.

It is not possible to preceed a CIPP comment by a CIPP command or HTML c
This would prevent you from using # in HTML code (and the least things that
want is to mess up HTML code - that is any more than it already is).
Basic Syntax Rules 13

CIPP - CGI Perl Preprocessor <?>

14

ter-

ing on
ges

 the
 error
gram.
e
ns

 by

xe-
r
These lines show valid CIPP comments:

<?PERL>
 # this is indented comment
<?/PERL>
this comment is not indented

The following example is invalid. The comment will be printed, because it is in
preted in HTML context (see section above about HTML context).

<?PERL> $path = ’/’ <?/PERL> # setting the path

The corresponding web page will contain your comment:

setting the path

Error messages

There are two kinds of error messages a CIPP developer must handle, depend
the stage the error occured: in CIPP preprocessing or Perl execution. Both sta
have their own error messages.

CIPP errors

These errors occur while translating your CIPP code to Perl. They regard only
CIPP syntax, no Perl syntax checking is done at this stage. The corresponding
messages and line numbers point to the appropriate sections of your CIPP pro
In CGI::CIPP and Apache::CIPP environments you’ll get a HTML page with th
CIPP error messages. The source code is printed out with the according sectio
highlighted.

Perl errors

Perl errors occur while executing the Perl program, which has been generated
CIPP. There are two classes of Perl errors: compiler and runtime errors.

Normally, a compiler error in a CGI program results in a „Server Error“, if you e
cute it on your webserver. The error messages may be written to the webserve
error log file, depending on your webserver software and configuration.
Error messages

Error messages <?>

P

first
rated
 for

iffer-
urs.
re the
sage
p-

r mes-
ode

e. So
.

With CIPP generated programs you should never see a „Server Error“. All CIP
environments (CGI::CIPP, Apache::CIPP and new.spirit) initiate a Perl syntax
check after translating the CIPP code and before executing the Perl code the
time. Perl compiler errors are caught this way and a HTML error page is gene
for you. This saves you the hassle of digging into your webserver error log file
detailed information.

Runtime errors are caught by the CIPP execption handler and can appear in d
ent ways, depending on the location inside your program, where the error occ
The exception handler prints out the error message, at the actual position, whe
error occured. Maybe you produced already some HTML output, the error mes
will appear right beyond it. If you’re using some complex table layout, it can ha
pen, that your webbrowser is unable to render the page correctly and the erro
sage is invisible due to this. You have to look into the produced HTML source c
to see the error message in this case.

All Perl error messages refer to the generated Perl code, not to your CIPP cod
line numbers are not comparable with the line numbers of your CIPP program
Error messages 15

CIPP - CGI Perl Preprocessor <?>

16
 Error messages

CHAPTER 2 CIPP Configuration
able
ssing.
ents
when

on
CGI
This chapter describes the configuration details for usage in connection with
CGI::CIPP and Apache::CIPP. If you use CIPP in conjunction with new.spirit
please refer to the according section of the new.spirit handbook.

CGI::CIPP

CGI::CIPP is a Perl module which enables you to use CIPP on every CGI cap
webserver. It is based on a central wrapper script, which does all the preproce
It executes the generated Perl code directly afterwards. Additionally, it implem
a filesystem based cache for the generated code. Preprocessing is done only
the corresponding CIPP source code changed on disk, otherwise this step is
skipped.

First fetch CGI::CIPP from your next CPAN mirror and install it the usual way
(perl Makefile.PL; make test; make install).

Now create a CGI program in a directory, where CGI programs usually reside
your server (e.g. /cgi-bin/cipp), or configure this program another way to be a
program.
CGI::CIPP 17

CIPP Configuration CGI::CIPP

18

tion
 is a
This program is the central CGI::CIPP wrapper. It only consists of a single func
call to the CGI::CIPP module, with a hash of parameters for configuration. This
example:

#!/usr/local/bin/perl

The URL of this program is /cgi-bin/cipp

use strict;
use CGI::CIPP;

CGI::CIPP->request (
document_root => ’/www/cippfiles’,
directoy_index => ’index.cipp’,
cache_dir => ’/tmp/cipp_cache’,
databases => {

test => {
data_source => ’dbi:mysql:test’,
user => ’dbuser’,
password => ’dbpassword’,
auto_commit => 1

},
foo => {

...
}

}
default_database => ’test’,
lang => ’EN’

);
CGI::CIPP

CIPP Configuration CGI::CIPP

c-

r

f
e,

A brief description of the parameters passed to the CGI::CIPP->request call
follows:

document_root This is the base directory where all your CIPP files
resides. You will place CIPP programs, Includes
and Config files inside this subdirectory. Using
subdirectories is permitted.

Beware that if you place your CIPP files into a
subdirectory of your webservers document root,
you risk that someone can fetch your CIPP source
files, if he knows the URL of your CIPP document
root. If you do not use the mod_rewrite configura-
tion explained beyond, you never should place
your CIPP files into your webservers document
root. There is no advantage of doing this.

directory_index If you want CGI::CIPP to treat a special filename
as a directory index file, pass this filename here. If
you access a directory with CGI::CIPP and a
according index file is found there, it will be exe-
cuted.

cache_dir This names the directory where CGI::CIPP can
store the preprocessed CIPP programs. If the dire
tory does not exist it will be created. Aware, the the
directory must have write access for the user unde
which your webserver software is running.

databases This parameter contains a hash reference, which
defines several database configurations. The key o
this hash is the CIPP internal name of the databas
which can be addressed by the DB parameter of all
CIPP SQL commands. The value is a hash refer-
ence with the following keys defined.

 data_source This must be a DBI conforming data source string.
Please refer to the DBI documentation for details
about this.

 user This is the username CIPP uses to connect to the
database

 password This password is used for the database user.
CGI::CIPP 19

CIPP Configuration CGI::CIPP

20

w/
e

e

er
IPP

side
se

ve

sy

The CGI wrapper program uses the CGI feature PATH_INFO to determine which
page should be executed. To execute the CIPP page ’test.cipp’ located in ’/ww
htdocs/cippfiles/foo/test.cipp’ you must specify the following URL (assuming th
configuration of the example above):

http://somehost/cgi-bin/cipp/foo/test.cipp

You simply add the path of your page (relative to the path you specified with th
document_root parameter) to the URL of the CGI wrapper.

Be aware of the real URL of your page if you use relative URL’s to non CIPP
pages. In the above example relative URL’s must consider that the CGI wrapp
program is located in a different location as the directory you declared as the C
document root. To avoid confusion about this, you should configure your web-
server in that way, that the CGI wrapper program has a URL which is located in
your webservers document root. This way using relative URLs is easier, becau
you never left the document root of your webserver.

If you’re using the Apache webserver (what is always recommended :) you ha
several alternatives of doing this.

• using a extra ScriptAlias

• using mod_rewrite

Using a extra ScriptAlias

This is a example configuration of using a ScriptAlias to configure CIPP for ea
usage of relative URLs.

 auto_commit This parameter sets the initial state of the Auto-
Commit flag. Please refer to the description of the
<?AUTOCOMMIT> command or the DBI docu-
mentation for details about AutoCommit.

default_database This takes the name of the default database. This
database is always used, if a CIPP SQL command
ommits the DB parameter. The value passed here
must be a defined key in the databases hash.

lang CIPP has multilanguage support for its error mes-
sages, actually english (’EN’) and german (’DE’)
are supported.
CGI::CIPP

CIPP Configuration CGI::CIPP

 is a

ipp-
or
h nor-

re the
che

ing

o a
These are the corresponding basic Apache configuration parameters:

Now the CGI wrapper program URL is located inside your document root. This
example URL for a CIPP page located in /www/htdocs/cipp/foo/test.cipp

http://somehost/cipp/foo/test.cipp

The disadvantage of this configuration is, that your CIPP root directory /www/c
files cannot contain other files than CIPP files. It is not possible to put images
static HTML documents here, because you cannot reach these documents wit
mal URLs.

Using mod_rewrite

You avoid the above mentioned disadvantage if you use mod_rewrite. These a
corresponding basic Apache configuration parameters (please refer to the Apa
documentation for details). You will need Apache version 1.2.x or better for us
mod_rewrite.

The CGI wrapper program is still located in a extra cgi-bin directory. But the
RewriteRule directs all URL's with the suffix .cipp, no matter where they are
located, to the CIPP CGI wrapper program.

Now we have to change the CGI::CIPP configuration:

This is slightly different. We now declare the Apache DocumentRoot also to be
the document_root of CGI::CIPP, so no special subdirectory is needed. The
Apache rewrite engine is responsible for translating URL’s with the suffix .cipp t
appropriate call of the CGI wrapper program.

DocumentRoot “/www/htdocs“

ScriptAlias “/cipp“ “/www/cgi-bin/cipp“

DocumentRoot “/www/htdocs“

ScriptAlias “/cgi-bin“ “/www/cgi-bin“

RewriteEngine “on“

RewriteRule “^/(.*\.cipp.*)“

“/cgi-bin/cipp/$1“ [PT]

document_root /www/htdocs
CGI::CIPP 21

CIPP Configuration CGI::CIPP

22

le-

eely
so

erl

edy-
ol the

. If a
This is a example URL for a CIPP page located in /www/htdocs/foo/test.cipp

http://somehost/foo/test.cipp

Now you are able to place CIPP files on your webserver wherever you want,
because there is no special CIPP directory anymore. Only the suffix .cipp is re
vant, due to the RewriteRule above.

CGI::SpeedyCGI and CIPP::CGI

There exists a really nice module called CGI::SpeedyCGI, which is available fr
via CPAN. It implements a nifty way of making Perl CGI processes persistent,
subseqeuent CGI calls are answered much more faster.

Using CIPP::CGI together with CGI::SpeedyCGI is easy. Simply replace the p
interpreter path in the shebang line #!/usr/local/bin/perl with the accord-
ing path to the speedy program, e.g.: #!/usr/local/bin/speedy .

Refer to the CGI::SpeedyCGI documentation for details about configuring Spe
CGI. We recommend the usage of the -r and -t switch, so you are able to contr
number of parallel living speedy processes, e.g.

#!/usr/local/bin/speedy -- -r30 -t120

Each speedy process now answeres a maximum of 30 requests and then dies
process is idle for longer than 120 secs it dies also.
CGI::CIPP

CIPP Configuration Apache::CIPP

/

ters
-

in a

erl

e to
s is
Apache::CIPP

If you use the Apache::CIPP module you have all advantages of a CGI::CIPP
CGI::SpeedyCGI configuration, particular regarding the persistence stuff. Also
configuration of Apache::CIPP is simplier, because you put all required parame
into the Apache configuration file(s). All above mentioned CGI::CIPP configura
tion tasks to make CGI::CIPP work as transparently as possible are needless
Apache::CIPP environment.

Apache::CIPP needs the Apache module mod_perl to run, so first fetch mod_p
and Apache::CIPP from your next CPAN mirror and install them.

This is a example of the section you have to add to your httpd.conf:

<Location ~ “.*\.cipp“>
SetHandler “perl-script“
PerlHandler Apache::CIPP

PerlSetVar cache_dir /tmp/cipp_cache
PerlSetVar debug 1
PerlSetVar lang DE
PerlSetVar databases test, foo
PerlSetVar default_db test

PerlSetVar db_test_data_source dbi:mysql:test
PerlSetVar db_test_user dbuser
PerlSetVar db_test_password dbpassword
PerlSetVar db_test_auto_commit 1

PerlSetVar db_foo_data_source dbi:Oracle:foo
PerlSetVar db_test_user dbuser2
PerlSetVar db_test_password dbpassword2
PerlSetVar db_test_auto_commit 1
</Location>

The regular expression inside the <Location> tag matches all files with the suf-
fix .cipp, independent from the location on your server. Due to this you are abl
place your CIPP pages everywhere you want. So mixing of .cipp and other file
no problem with this configuration.
Apache::CIPP 23

CIPP Configuration Apache::CIPP

24

n the

c-

r

l

Apache::CIPP Parameters are very similar to the CGI::CIPP parameters:

The following four parameters must be specified for each database you listed i
databases parameter. Replace the * with the appropriate database name.

cache_dir This names the directory where CGI::CIPP can
store the preprocessed CIPP programs. If the dire
tory does not exist it will be created. Aware, the the
directory must have write access for the user unde
which your webserver software is running.

debug If you set the debug parameter to non zero, each
request to Apache::CIPP will be logged in the
apache error logfile, together with some informa-
tion about the internal state of the caches.

databases This parameter lists the CIPP internal names of al
your database configurations. The list is comma
separated, whitspace is ignored.

default_database This takes the name of the default database. This
database is always used, if a CIPP SQL command
ommits the DB parameter. The value passed here
must be a defined value in the databases
parameter.

lang CIPP has multilanguage support for its error mes-
sages, actually english (’EN’) and german (’DE’)
are supported.

db_*_data_source This must be a DBI conforming data source string.
Please refer to the DBI documentation for details
about this.

db_*_username This is the username CIPP uses to connect to the
database

db_*_password This password is used for the database user.

db_*_auto_commit This parameter sets the initial state of the Auto-
Commit flag. Please refer to the description of the
<?AUTOCOMMIT> command or the DBI docu-
mentation for details about AutoCommit.
Apache::CIPP

CHAPTER 3 CIPP Command
Reference
ce
.

pe:
This chapter describes all CIPP commands in alphabetical order. Each referen
contains syntax notation, textual description and examples for each command

Command Groups

For better overview the following table lists all CIPP commands grouped by ty

Variables and Scoping

VAR Definition of a variable

MY Declaring a private (block local) variable

BLOCK Creation of a block context to limit the scope of
private variables
Command Groups 25

CIPP Command Reference <?>

26
Control Structures

Import

Exception Handling

IF Conditional execution of a block

ELSIF Subsequent conditional execution

ELSE Alternative execution of a block

WHILE Loop with condition check before first iteration

DO Loop with condition check after first iteration

FOREACH Loop iterating with a variable over a list

PERL Insertion of pure Perl code

SUB Definition of a Perl subroutine

INCLUDE Insertion of a CIPP Include file in the actual CIPP
code

LIB Import a Perl module in your program

CONFIG Import a config file in your program

TRY Secured execution of a block. Any exceptions
thrown in the encapsulated block are caught.

CATCH Execution of a block if a particular exception was
thrown in a preceding TRY block.

THROW Explicite creation of an exception.

LOG Write a entry in a logfile.
Command Groups

Command Groups <?>

t

SQL

URL- and Form Handling

HTML Tag Replacements

Interface

SQL Execution of a SQL statement

COMMIT Commit a transaction

ROLLBACK Rollback a transaction

AUTOCOMMIT Control of transaction behaviour

DBQUOTE Quoting of a variable for usage in a SQL statemen

GETDBHANDLE Returns the internal DBI database handle

GETURL Creation of a CIPP object URL

URLENCODE URL encoding of a variable

HTMLQUOTE HTML encoding of a variable

HIDDENFIELDS Producing a number of hidden formular fields

A Replaces <A> tag

FORM Replaces <FORM> tag

IMG Replaces tag

INPUT Replaces <INPUT> tag

TEXTAREA Replaces <TEXTAREA> tag

INTERFACE Declaration of a CGI interface for a CIPP program

INCINTERFACE Declaration of a interface for CIPP Include

GETPARAM Recieving a non declared CGI input parameter

GETPARAMLIST Returns a list of all CGI input parameter names

SAVEFILE Storing a client side upload file
Command Groups 27

CIPP Command Reference <?>

28
Apache

Preprocessor

APGETREQUEST Returns the internal Apache request object

APREDIRECT Redirects to another URL internally

AUTOPRINT Controls automatic output of HTML code
Command Groups

Alphabetical Reference <?A>

irit
Alphabetical Reference

Type

HTML Tag Replacement

Syntax

<?A HREF=hyperlinked_object_name[#anchor]
 [additional_<A>_parameters ...] >
...
<?/ A>

Description

This command replaces the <A> HTML tag. You will need this in a new.sp
environment to set a link to a CIPP CGI or HTML object.

Parameter

HREF
This parameter takes the name of the hyperlinked object. You may
optionally add an anchor (which should be defined using <A NAME> in the
referred page) using the # character as a delimiter.

This paremeter is expected as an URL in CGI::CIPP or Apache::CIPP
environments and in dot-separated object notation in a new.spirit
environment.

additional_<A>_parameters
All additional parameters are taken into the generated <A> tag.

Example

Textual link to ’MSG.Main’, in a new.spirit environment.

<?A HREF=“MSG.Main“>Back to the main menu<?/A>

A

Alphabetical Reference 29

CIPP Command Reference <?A>

30
Image link to ’/main/menu.cgi’, in a CGI::CIPP or Apache::CIPP environ-
ment:

<?A HREF=“/main/menu.cgi“>
<?IMG SRC=“/images/logo.gif“ BORDER=0>
<?/A>
Alphabetical Reference

Alphabetical Reference <?APGETREQUEST>

cific

le
Type

Apache

Syntax

<?APGETREQUEST [MY] VAR=request_variable >

Description

This command is only working if CIPP is used as an Apache module.

It returns the internal Apache request object, so you can use Apache spe
features.

Parameter

VAR
This is the variable where the request object will be stored.

MY
If you set the MY switch, the created variable will be declared using ’my’.
Its scope reaches to the end of the block which surrounds the
APGETREQUEST command.

Example

The Apache request object will be stored in the implicitely declared variab
$ar.

<?APGETREQUEST MY VAR=$ar>

APGETREQUEST
Alphabetical Reference 31

CIPP Command Reference <?APREDIRECT>

32

xe-

web-
Type

Apache

Syntax

<?APREDIRECT URL=new_URL >

Description

This command is only working if CIPP is used as an Apache module.

It results in an internal Apache redirect. That means, the new url will be ’e
cuted’ without notifying the client about this.

Parameter

URL
This expression is used for the new URL.

Note:

The program which uses <?APREDIRECT> should not produce any output,
otherwise this may confuse the webserver or the client, if more then one
HTTP header is sent. So you should use <?AUTOPRINT OFF> at the top of
the program to circumvent that.

Example

This commands redirect internally to the homepage of the corresponding
site:

<?AUTOPRINT OFF>
<?APREDIRECT URL=“/“>

APREDIRECT
Alphabetical Reference

Alphabetical Reference <?AUTOCOMMIT>

I

d

the

 the

uld
Type

SQL

Syntax

<?AUTOCOMMIT (ON | OFF)
 [DB=database_name]
 [THROW=exception] >

Description

The <?AUTOCOMMIT> command corresponds directly to the underlying DB
AutoCommit mechanism.

If AutoCommit is activated each SQL statement will implicitely be execute
in its own transaction. Think of a <?COMMT> after each statement. Explicite
use of <?COMMIT> or <?ROLLBACK> is forbidden in AutoCommit mode.

If AutoCommit is deactivated you have to call <?COMMIT> or <?ROLL-
BACK> yourself. CIPP will rollback any uncommited open transactions at
end of the program.

Parameter

ON|OFF
Switch AutoCommit modus either on or off.

DB
This is the CIPP internal name of the database for this command. In
CGI::CIPP or Apache::CIPP environment this name has to be defined in
appropriate global configuration. In a new.spirit environment this is the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

THROW
With this parameter you can provide a user defined exception which sho
be thrown on failure. The default exception thrown by this statement is
autocommit .

If the underlying database is not capable of transactions (e.g. MySQL)
setting AutoCommit to ON will throw an exception.

AUTOCOMMIT
Alphabetical Reference 33

CIPP Command Reference <?AUTOCOMMIT>

34
Example

Switch AutoCommit on for the database ’foo’.

<?AUTOCOMMIT ON DB=“foo“>

Switch AutoCommit off for the database ’bar’ and throw the user defined
exception ’myautocommit’ on failure.

<?AUTOCOMMIT OFF DB=“bar“ THROW=“myautocommit“>
Alphabetical Reference

Alphabetical Reference <?AUTOPRINT>

d

ce

.
Type

Preprocessor

Syntax

<?AUTOPRINT OFF>

Description

With the <?AUTOPRINT OFF> command the preprocessor can be advise
to suppress the generation of print statements for non CIPP blocks. The
default setting is ON and it is only possible to switch it OFF and not the other
way around.

Parameter

OFF
Automatic generation of print statements for non CIPP blocks will be
deactivated.

Note

Use this with care. Because this is a preprocessor command it will produ
strange results if you use this in CIPP Includes.

Instead you should use this command at the very top of your program file
CIPP will not generate any HTTP headers for you, if you use <?AUTOPRINT
OFF>, so you have to do this on your own.

AUTOPRINT
Alphabetical Reference 35

CIPP Command Reference <?AUTOPRINT>

36

Example

This program sends a GIF image to the client, after generating the proper
HTTP header. (For another example, see <?APREDIRECT>)

<?AUTOPRINT OFF>
These lines will never be printed, they are fully
ignored!!!
<?PERL>
 my $file = “/tmp/image.gif“;
 my $size = -s $file;

 print “Content-type: image/gif\n“;
 print “Content-length: $size\n\n“;

 open (GIF, $file) or die “can’t open $file“;
 while (<GIF>) {
 print;
 }
 close GIF;
<?/PERL>
Alphabetical Reference

Alphabetical Reference <?BLOCK>

Type

Variables and Scoping

Syntax

<?BLOCK>
...
<?/ BLOCK>

Description

Use the <?BLOCK> command to divide your program into logical blocks to
control variable scoping. Variables declared with <?MY> inside a block are
not valid outside.

Example

The variable $example does not exist beyond the block.

<?BLOCK>
 <?MY $example>
 $example is known.
<?/BLOCK>

$example does not exist here. This will
result in a Perl compiler error, because
$example is not declared here.

BLOCK
Alphabetical Reference 37

CIPP Command Reference <?CATCH>

38

g

d

ts
Type

Exception Handling

Syntax

<?CATCH [THROW=exception]
 [MY]
 [EXCVAR=variable_for_exception]
 [MSGVAR=variable_for_error_message] >
...
<?/ CATCH>

Description

Typically a <?CATCH> block follows after a <?TRY> block. You can process
one particular or just any exception with the <?CATCH> block.

<?CATCH> and <?TRY> has to be placed inside the same block.

See the description of <?TRY> for details about the CIPP exception handlin
mechanism.

Parameter

THROW
If this parameter is omitted, all exceptions will be processed here.
Otherwise the <?CATCH> block is executed only if the appropriate
exception was thrown.

EXCVAR
Names the variable, where the exception identifier should be stored in.
Usefull if you use <?CATCH> for a generic exception handler and omitte
the THROW parameter.

MSGVAR
Name the variable, where the error message should be stored in.

MY
If you set the MY switch the created variable will be declared using ’my’. I
scope reaches to the end of the block which surrounds the <?CATCH>
command.

CATCH
Alphabetical Reference

Alphabetical Reference <?CATCH>

ned,
ry
base
Example

We try to insert a row into a database table, which has a primary key defi
and commit the transcation. We catch two exceptions: the possible prima
key constraint violation and a possible commit exception, maybe the data
is not capable of transactions.

<?TRY>
 <?SQL SQL=“insert into persons
 (firstname, lastname)
 values (’John’, ’Doe’)“><?/SQL>
 <?COMMIT>
<?/TRY>

<?CATCH THROW=sql MY MSGVAR=$message>
 <?LOG MSG=“Can’t insert data: $message“
 TYPE=“database“>
<?/CATCH>

<?CATCH THROW=commit MSGVAR=$message>
 <?LOG MSG=“COMMIT rejected: $message“
 TYPE=“database“>
<?/CATCH>
Alphabetical Reference 39

CIPP Command Reference <?COMMIT>

40

ll

 the

uld
Type

SQL

Syntax

<?COMMIT [DB=database_name]
 [THROW=exception] >

Description

The <?COMMIT> command concludes the actual transaction and makes a
changes to the database permanent.

Using <?COMMIT> in <?AUTOCOMMIT ON> mode is not possible.

If you are not in <?AUTOCOMMIT ON> mode a transaction begins with the
first SQL statement and end either with a <?COMMIT> or <?ROLLBACK>
command.

Parameter

DB
This is the CIPP internal name of the database for this command. In
CGI::CIPP or Apache::CIPP environment this name has to be defined in
appropriate global configuration. In a new.spirit environment this is the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

THROW
With this parameter you can provide a user defined exception which sho
be thrown on failure. The default exception thrown by this statement is
commit .

If the underlying database is not capable of transactions (e.g. MySQL)
execution of this command will throw an exception.

COMMIT
Alphabetical Reference

Alphabetical Reference <?COMMIT>

. We
ble
Example

We insert a row into a database table and commit the change immediately
throw a user defined exeption, if the commit fails. So be safe we first disa
AutoCommiting.

<?AUTOCOMMIT OFF>
<?SQL SQL=“insert into foo (num, str)
 values (42, ’bar’);“>
<?/SQL>
<?COMMIT THROW=“COMMIT_Exception“>
Alphabetical Reference 41

CIPP Command Reference <?CONFIG>

42

sm
g

ent

he
.
Type

Import

Syntax

<?CONFIG NAME=config_file
 [RUNTIME] [NOCACHE]
 [THROW=exception] >

Description

The <?CONFIG> command reads a config file. This is done via a mechani
similar to Perl’s require, so the config file has to be pure Perl code definin
global variables.

<?CONFIG> ensures a proper load of the configuration file even in persist
Perl environments.

In contrast to “require“ <?CONFIG> will reload a config file when the file
was altered on disk. Otherwise the file will only be loaded once.

Parameter

NAME
This is the name of the config file, expected as an URL in CGI::CIPP or
Apache::CIPP environments and in dot-separated object notation in a
new.spirit environment.

RUNTIME
This switch makes sense only in a new.spirit environment. If you set it t
NAME parameter will be resolved at runtime, so it can contain variables
new.spirit will not check the existance of the file in this case. Normally
you’ll get a CIPP error message, if the adressed file does not exist.

In CGI::CIPP and Apache::CIPP environments the NAME parameter will
always be resolved at runtime.

CONFIG
Alphabetical Reference

Alphabetical Reference <?CONFIG>

f
ent,

own

 in

on-

vi-
NOCACHE
This switch is useful in persistant Perl environments. It forces <?CONFIG>
to read the config file even if it did not change on disk. You’ll need this i
your config file does some calculations based on the request environm
e.g. if the value of some variables depends on the clients user agent.

THROW
With this parameter you can provide a user defined exception to be thr
on failure. The default exception thrown by this statement is config .

An exception will be thrown, if the config file does not exist or is not
readable.

Example

Load of the configuration file “/lib/general.conf“, with disabled cache, used
CGI::CIPP or Apache::CIPP environment:

<?CONFIG NAME=“/lib/general.conf“ NOCACHE>

Load of the configuration file object x.custom.general in a new.spirit envir
ment:

<?CONFIG NAME=“x.custom.general“>

Load of a config file with a name determined at runtime, in a new.spirit en
ronment, throwing “myconfig“ on failure:

<?CONFIG NAME=“$config_file“ RUNTIME
 THROW=“myconfig“>
Alphabetical Reference 43

CIPP Command Reference <?DBQUOTE>

44

nts

n

ari-
har-

ted.

ould
able

ts
Type

SQL

Syntax

<?DBQUOTE VAR=variable
 [MY]
 [DBVAR=quoted_ result_variable]
 [DB=database_name] >

Description

<?SQL> (and DBI) has a nice way of quoting parameters to SQL stateme
(called parameter binding). Usage of that mechanism is generally recom-
mended (see <?SQL> for details). However if you need to construct your ow
SQL statement, <?DBQUOTE> will let you do so.

<?DBQUOTE> will generate the string representation of the given scalar v
able as fit for an SQL statement. That is, it takes care of quoting special c
acteres.

Parameter

VAR
This is the scalar variable containing the parameter you want to be quo

DBVAR
This optional parameters takes the variable where the quoted content sh
be stored. The surrounding ’ characters are part of the result, if the vari
is not undef. A value of undef will result in NULL (without the surrounding
’), so the quoted variable can be placed directly in a SQL statement.

If you ommit DBVAR, the name of the target variable is computed by
placing the prefix ’db_’ in front of the VAR name.

MY
If you set the MY switch the created variable will be declared using ’my’. I
scope reaches to the end of the block which surrounds the <?DBQUOTE>
command.

DBQUOTE
Alphabetical Reference

Alphabetical Reference <?DBQUOTE>

 the

ed
DB
This is the CIPP internal name of the database for this command. In
CGI::CIPP or Apache::CIPP environment this name has to be defined in
appropriate global configuration. In a new.spirit environment this is the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

Example

This quotes the variable $name, the result will be stored in the just declar
variable $db_name.

<?DBQUOTE MY VAR=“$name“>

This quotes $name, but stores the result in the variable $quoted_name.

<?DBQUOTE VAR=“$name“ MY DBVAR=“$quoted_name“>

The quoted variable can be used in a SQL statement this way:

<?SQL SQL=“insert into persons (name)
 values ($quoted_name)“>
Alphabetical Reference 45

CIPP Command Reference <?DO>

46

ndi-
t the

ult)
Type

Control Structure

Syntax

<?DO>
...
<?/ DO COND=condition >

Description

The <?DO> block repeats executing the contained code as long as the co
tion evaluates true. The condition is checked afterwards. That means tha
block will always be executed at least once.

Parameter

COND
This takes a Perl condition. As long as this condition is true the <?DO>
block will be repeated.

Example

Print “Hello World“ $n times. (note: for n=0 and n=1 you get the same res

<?DO>
 Hello World

<?/DO COND=“--$n > 0“>

DO
Alphabetical Reference

Alphabetical Reference <?ELSE>

Type

Control Structure

Syntax

<?ELSE>

Description

<?ELSE> closes an open <?IF> or <?ELSIF> conditional block and opens
a new block (which is later terminated by <?/IF>) . The block is only exe-
cuted if the condition of the preceding block was evaluated and failed.

<?MY> variables are only visible inside this block.

(Or short: it works as you would expect.)

Example

Only Larry gets a personal greeting message:

<?IF COND=“$name eq ’Larry’“>
 Hi Larry, you’re welcome!
<?ELSE>
 Hi Stranger!
<?/IF>

ELSE
Alphabetical Reference 47

CIPP Command Reference <?ELSIF>

48

pre-
Type

Control Structure

Syntax

<?ELSIF COND=condition >

Description

<?ELSIF> closes an open <?IF> or <?ELSIF> conditional block and
opens a new block. The condition is only evaluated if the condition of the
ceding block was evaluated and failed.

<?MY> variables are only visible inside this block.

(Or short: it works as you would expect.)

Parameter

COND
Takes the Perl condition.

Example

Larry and Linus get personal greeting messages:

<?IF COND=“$name eq ’Larry’“>
 Hi Larry, you’re welcome!
<?ELSIF COND=“$name eq ’Linus’“>
 Hi Linus, you’re velkomma!
<?ELSE>
 Hi Stranger!
<?/IF>

ELSIF
Alphabetical Reference

Alphabetical Reference <?FOREACH>

g
 of

 a

g

y
Type

Control Structure

Syntax

<?FOREACH [MY] VAR=running_variable
 LIST =perl_list >
...
<?/ FOREACH>

Description

<?FOREACH> corresponds directly the Perl foreach command. The runnin
variable will iterate of the list, executing the enclosed block for each value
the list.

Parameter

VAR
This is the scalar running variable.

LIST
You can write any Perl list here, e.g. using the bracket notation or pass
array variable using the @ notation.

MY
If you set the MY switch the created running variable will be declared usin
’my’. Its scope reaches to the end of the block which surrounds the
<?FOREACH> command.

Note: this is a slightly different behaviour compared to a Perl “foreach m
$var (@list)“ command, where the running variable $var is valid only
inside of the foreach block.

FOREACH
Alphabetical Reference 49

CIPP Command Reference <?FOREACH>

50
Example

Counting up to ’three’:

<?FOREACH MY VAR=“$cnt“
 LIST=“(’one’, ’two’, ’three’)“>
 $cnt
<?/FOREACH>
Alphabetical Reference

Alphabetical Reference <?FORM>

e is

in

ced
Type

HTML Tag Replacement

Syntax

<?FORM ACTION=cgi_file
 [additional_<FORM>_parameters ...] >
...
<?/ FORM>

Description

<?FORM> generates a HTML <FORM> tag, setting the ACTION option to the
appropriate URL. The request METHOD defaults to POST if no other valu
given.

Parameter

ACTION
This is the name of the form target CGI program, expected as an URL
CGI::CIPP or Apache::CIPP environments and in dot-separated object
notation in a new.spirit environment.

additional_<FORM>_parameters
All additional parameters are taken over without changes into the produ
<FORM> tag. If you ommit the METHOD parameter it will default to POST.

Example

Creating a named form with a submit button, pointing to the CGI object
“x.login.start“, in a new.spirit environment:

<?FORM ACTION=“x.login.start“ NAME=“myform“>
<?INPUT TYPE=SUBMIT VALUE=“ Start “>
<?/FORM>

FORM
Alphabetical Reference 51

CIPP Command Reference <?FORM>

52

re in
Creating a similar form, but the action is written as an URL because we a
CGI::CIPP or Apache::CIPP environment:

<?FORM ACTION=“/login/start.cgi“ NAME=“myform“>
<?INPUT TYPE=SUBMIT VALUE=“ Start “>
<?/FORM>
Alphabetical Reference

Alphabetical Reference <?FORM>

hich

ts

 the

irit
Type

SQL

Syntax

<?GETDBHANDLE [DB=database_name] [MY]
 VAR =handle_variable >

Description

This command returns a reference to the internal Perl database handle, w
is the object references returned by DBI->connect .

With this handle you are able to perform DBI specific functions which are
currently not directly available through CIPP.

Parameter

VAR
This is the variable where the database handle will be stored.

MY
If you set the MY switch the created variable will be declared using ’my’. I
scope reaches to the end of the block which surrounds the
<?GETDBHANDLE> command.

DB
This is the CIPP internal name of the database for this command. In
CGI::CIPP or Apache::CIPP environment this name has to be defined in
appropriate global configuration. In a new.spirit environment this is the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

Example

We get the database handle for the database object ’x.Oracle’ in a new.sp
environment and perform a select query using this handle.

GETDBHANDLE
Alphabetical Reference 53

CIPP Command Reference <?FORM>

54

Ok, you simply can do this with the <?SQL> command, but now you can see
how much work is done for you through CIPP :)

<?GETDBHANDLE DB=“MSG.Oracle“ MY VAR=“$dbh“>

<?PERL>
 my $sth = $dbh->prepare (qq{
 select n,s from TEST_table
 where n between 10 and 20
 });
 die “my_sql\t$DBI::errstr“ if $DBI::errstr;

 $sth->execute;
 die “my_sql\t$DBI::errstr“ if $DBI::errstr;

 my ($n, $s);
 while (($n, $s) = $sth->fetchrow) {
 print “n=$n s=$s
\n“;
 }
 $sth->finish;
 die “my_sql\t$DBI::errstr“ if $DBI::errstr;

<?/PERL>
Alphabetical Reference

Alphabetical Reference <?GETPARAM>

l if
 are

ut

ed.
rray

ts

r
Type

Interfaces

Syntax

<?GETPARAM NAME=parameter_name
 [MY] [VAR=content_variable] >

Description

With this command you can explicitely get a CGI parameter. This is usefu
your CGI program uses dynamically generated parameter names, so you
not able to use <?INTERFACE> for them.

Refer to <?INTERFACE> to see how easy it is to handle standard CGI inp
parameters.

Parameter

NAME
Identifier of the CGI input parameter

VAR
This is the variable where the content of the CGI parameter will be stor
This can be either a scalar variable (indicated through a $ sign) or an a
variable (indicated through a @ sign).

MY
If you set the MY switch the created variable will be declared using ’my’. I
scope reaches to the end of the block which surrounds the <?GETPARAM>
command.

Example

We recieve two parameters, one staticly named parameter and one scala
parameter, which has a dynamic generated identifier.

<?GETPARAM NAME=“listparam“ MY VAR=“@list“>
<?GETPARAM NAME=“scalar$name“ MY VAR=“$scalar“>

GETPARAM
Alphabetical Reference 55

CIPP Command Reference <?GETPARAMLIST>

56

m-

 be
Type

Interfaces

Syntax

<?GETPARAMLIST [MY] VAR=variable >

Description

This command returns a list containing the identifiers of all CGI input para
eters.

Parameter

VAR
This is the variable where the identifiers of all CGI input parameters will
stored in. It must be an array variable, indicated through a @ sign.

MY
If you set the MY switch the created list variable will be declared using
’my’. Its scope reaches to the end of the block which surrounds the
<?GETPARAMLIST> command.

Example

The list of all CGI input parameter identifiers will be stored into the array
variable @input_param_names.

<?GETPARAMLIST MY VAR=“@input_param_names“>

GETPARAMLIST
Alphabetical Reference

Alphabetical Reference <?GETURL>

eal

use
e its

or

ts
Type

URL and Form Handling

Syntax

<?GETURL NAME=object_file
 [MY] URLVAR=url_variable
 [RUNTIME] [THROW=exception] >
 [PARAMS=parameters_variables]
 [PAR_1=value_1 ... PAR_n=value_n] >

Description

This command returns a URL, optionally with parameters. In a new.spirit
environment you use this to resolve the dot-separated object name to a r
life URL.

In CGI::CIPP and Apache::CIPP environments this is not necessary, beca
you work always with real URLs. Nevertheless it also useful there, becaus
powerfull possibilities of generating parmeterized URLs.

Parameter

NAME
This is the name of the specific file, expected as an URL in CGI::CIPP
Apache::CIPP environments and in dot-separated object notation in a
new.spirit environment.

URLVAR
This is the scalar variable where the generated URL will be stored in.

MY
If you set the MY switch the created variable will be declared using ’my’. I
scope reaches to the end of the block which surrounds the <?GETURL>
command.

GETURL
Alphabetical Reference 57

CIPP Command Reference <?GETURL>

58

will

e.

 and

ign).

e

y
ram
n

rical
u
e
RUNTIME
This switch makes only sense in a new.spirit environment. The NAME
parameter will be resolved at runtime, so it can contain variables. CIPP
not check the existance of the file in this case. Normally you get a CIPP
error message, if the adressed file does not exist.

In CGI::CIPP and Apache::CIPP environments the NAME parameter will
always be resolved at runtime.

THROW
With this parameter you can define the exception to be thrown on failur
The default exception thrown by this statement is geturl .

An exception will be thrown, if the adressed file does not exist.

PARAMS
This takes a comma separated list of parameters, which will be encoded
added to the generated URL. You may pass scalar variables (indicated
through the $ sign) and also array variables (indicated through the @ s

With the PARAMS option you can only pass parameters whose values ar
stored in variables with the same name (where case is significant). The
variables listed in PARAMS will be treated case sensitive.

PAR_1..PAR_n
Any additional parameters to <?GETURL> are interpreted as named
parameters for the URL. You can pass scalar and array values this wa
(using $ and @). Variables passed this way are seen by the called prog
as lower case written variable names, no matter which case you used i
<?GETURL>.

Note

It is highly recommended to use lower case variable names. Due to histo
reasons CIPP converts parameter names to lower case without telling yo
about it. If this ever gets “fixed“ and you have uppercase latters, your cod
will break. So, use lowercase.
Alphabetical Reference

Alphabetical Reference <?GETURL>

 a

e the
 vari-

y
Example

We are in a new.spirit environment and produce a tag, pointing to
new.spirit object (btw: the easiest way of doing this is the <?IMG> com-
mand):

<?GETURL NAME=“x.Images.Logo“ MY URLVAR=$url>

Now we link the CGI script “/secure/messager.cgi“ in a CGI::CIPP or
Apache::CIPP environment. We pass some parameters to this script. (Not
case sensitivity of the parameter names, we really should use lower case
ables all the time!)

<?VAR MY NAME=$Username>hans<?/VAR>
<?VAR MY NAME=@id>(1,42,5)<?/VAR>
<?GETURL NAME=“/secure/messager.cgi“ MY URLVAR=$url
 PARAMS=“$Username, @id“ EVENT=delete>
delete messagse

The CGI program “/secure/messager.cgi“ recieves the parameters this wa
(note that the $Username parameter is seen as $Username , but EVENT is
seen as $event). If you find this confusing, use always lower case variable
names.

<?INTERFACE INPUT=“$event, $Username, @id“>
<?IF COND=“$event eq ’delete’“>
 <?MY $id_text>
 <?PERL>$id_text = join (“, “ @id)<?PERL>
 You are about to delete
 $username’s ID’s?: $id_text

<?/IF>
Alphabetical Reference 59

CIPP Command Reference <?HIDDENFIELDS>

60

f
ters

 and

e

ing $
ower
Type

URL and Form Handling

Syntax

<?HIDDENFIELDS [PARAMS=parameter_variables]
 [PAR_1=value_1 ... PAR_n=value_n] >

Description

This command produces a number of <INPUT TYPE=HIDDEN> HTML
tags, one for each parameter you specify. Use this to transport a bunch o
parameters via a HTML form. This command takes care of special charac
in the parameter values and quotes them if necessary.

Parameter

PARAMS
This takes a comma separated list of parameters, which will be encoded
transformed to a <INPUT TYPE=HIDDEN> HTML tag. You may pass
scalar variables (indicated through the $ sign) and also array variables
(indicated through the @ sign).

With the PARAMS option you can only pass parameters whose values ar
stored in variables with the same name (where case is significant).

PAR_1..PAR_n
Any additional parameters to <?HIDDENFIELDS> are interpreted as
named parameters. You can pass scalar and array values this way (us
and @). Variables passed this way are seen by the called program as l
case written variable names, no matter which case you used in
<?HIDDENFIELDS>.

HIDDENFIELDS
Alphabetical Reference

Alphabetical Reference <?HIDDENFIELDS>

Example

This is a form in a new.spirit environment, pointing to the object
“x.secure.messager“. The two parameters $username and $password are
passed via PARAMS, the parameter “event“ is set to “show“.

<?FORM ACTION=“x.secure.messager“>
<?HIDDENFIELDS PARAMS=“$username, $password“
 event=“show“>
<INPUT TYPE=SUBMIT VALUE=“show messages“>
<?/FORM>
Alphabetical Reference 61

CIPP Command Reference <?HTMLQUOTE>

62

ide a
s.

ted.

nt

ts

xt.
Type

URL and Form Handling

Syntax

<?HTMLQUOTE VAR=variable_to_encode
 [MY] HTMLVAR=target_variable >

Description

This command quotes the content of a variable, so that it can be used ins
HTML option or <TEXTAREA> block without the danger of syntax clashe
The following conversions are done in this order:

 & => &
 < => <
 “ => "

Parameter

VAR
This is the scalar variable containing the parameter you want to be quo

HTMLVAR
This non-optional parameter takes the variable where the quoted conte
will be stored.

MY
If you set the MY switch the created variable will be declared using ’my’. I
scope reaches to the end of the block which surrounds the
<?HTMLQUOTE> command.

Example

We produce a <TEXTAREA> tag with a quoted instance of the variable $te
Note: you can also use the <?TEXTAREA> command for this purpose.

<?HTMLQUOTE VAR=“$text“ MY HTMLVAR=“$html_text“>
<TEXTAREA NAME=“text“>$html_text</TEXTAREA>

HTMLQUOTE
Alphabetical Reference

Alphabetical Reference <?IF>

Type

Control Structure

Syntax

<?IF COND=condition >
...
[<? ELSIF COND=condition >]
...
[<? ELSE>]
...
<?/ IF >

Description

The <?IF> command executes the enclosed block if the condition is true.
<?ELSE> and <?ELSIF> can be used inside an <?IF> block in the com-
mon manner.

Parameter

COND
This takes a Perl condition. If this condition is true, the code inside the
<?IF> block is executed.

Example

Only Larry gets a greeting message here.

<?IF COND=“$name eq ’Larry’“>
 Hi Larry!
<?/IF>

IF
Alphabetical Reference 63

CIPP Command Reference <?IMG>

64

ting

f a
Type

HTML Tag Replacement

Syntax

<?IMG SRC=image_file
 [additional__parameters ...] >

Description

A HTML Tag will be generated, whoms SRC option points to the
appropriate image URL.

Parameter

SRC
This is the name of the image, expected as an URL in CGI::CIPP or
Apache::CIPP environments and in dot-separated object notation in a
new.spirit environment.

additional__parameters
All additional parameters are taken without changes into the produced
 tag.

Example

In a new.spirit environment we produce a image link to another page, set
the border to 0.

<?A HREF=“x.main.menu“>
<?IMG SRC=“x.images.logo“ BORDER=0>
<?/A>

In CGI::CIPP or Apache::CIPP environment we provide an URL instead o
dot-separated object name.

<?A HREF=“/main/menu.cgi“>
<?IMG SRC=“/images/logo.jpg“ BORDER=0>
<?/A>

IMG
Alphabetical Reference

Alphabetical Reference <?INCINTERFACE>

 this
se

ays
ou
r-
to the
sed to

bles
Type

Interface

Syntax

<?INCINTERFACE [INPUT=list_of_variables]
 [OPTIONAL=list_of_variables
 [NOQUOTE=list_of_variables]
 [OUTPUT=list_of_variables] >

Description

Use this command to declare an interface for an Include file. You can use
inside the Include file. In order to declare the interface of a CGI file this, u
the <?INTERFACE> command.

You can declare mandatory and optional parameters. Parameters are alw
identified by name, not by position like in many programming languages. Y
can pass all types of Perl variables (scalars, arrays and hashes, also refe
ences). Also you can specify output parameters, which are passed back
caller. Even these parameters are named, which requires some getting u
for most people. However it is very useful. :)

All input parameters declared this way are visible as the appropriate varia
inside the Include file. They are always declared with my to prevent name
clashes with other parts of the program.

Parameter

All parameters of <?INCINTERFACE> expect a comma separated list of
variables. All Perl variable types are supported: scalars ($), arrays (@)and
hashes (%). Whitespaces are ignored. Read the note beneath the NOQUOTE
section about passing non scalar values to an Include.

Note: You have to use lower case variable names, because the <?INCLUDE>
command converts all variable names to lower case.

INPUT
This parameters takes the list of variables the caller must provide in his
<?INCLUDE> command (mandatory parameters).

INCINTERFACE
Alphabetical Reference 65

CIPP Command Reference <?INCINTERFACE>

66

s

st

tants
 the

e

rs
side a

rs
ill

ra-

-
ry so
OPTIONAL
The variables listed here are optional input parameters. They are alway
declared with my and visible inside the Include, but are set to undef , if the
caller ommits them.

OUTPUT
If you want your Include to pass values back to the caller, list the
appropriate variables here. This variables are declared with my. Set them
everywhere in your Include, they will be passed back automatically.

Note: the name of the variable receiving the output from the include mu
be different from the name of the output parameter. This is due to
restrictions of the internal implementation.

NOQUOTE
By default all input parameters are defined by assigning the given value
using double quotes. This means it is possible to pass either string cons
or string expressions to the Include, which are interpreted at runtime, in
same manner. Often this is the behaviour you expect.

You have to list input (no output) parameters in the NOQUOTE parameter if
you want them to be interpreted as a real Perl expression, and not in th
string context (e.g. $i+1 will result in a string containing the value of $i
concatenated with +1 in a string context, but in an incremented $i
otherwise).

Note: Also you have to list all non-scalar and reference input paramete
here, because array, hash and reference variables are also computed in
string context by default, and this is usually not what you expect.

Note: Maybe this will change in future. Listing array and hash paramete
in NOQUOTE will be optional, the default behaviour for those variables w
change, so that they are not computed in string context by default.

Notes

The <?INCINTERFACE> command may occur several times inside one
Include file. The position inside the source code does not matter. All decla
tions will be added to an interface accordingly.

If you ommit a <?INCINTERFACE> command inside your Include, its inter
face is empty. That means, you cannot pass any parameters to it. If you t
this will result in an error message at CIPP compile time.
Alphabetical Reference

Alphabetical Reference <?INCINTERFACE>

. Note
ns

-

Example

This example declares an interface, expecting some scalars and an array
the usage of NOQUOTE for the array input parameter. The Include also retur
a scalar and an array parameter.

<?INCINTERFACE INPUT=“$firstname, $lastname“
 OPTIONAL=“@id“
 OUTPUT=“$scalar, @list“
 NOQUOTE=“@id“>
...
<?PERL>
 $scalar=“returning a scalar“;
 @list= (“returning“, “a“, “list“);
<?/PERL>

The caller may use this <?INCLUDE> command. Note that all input parame
ter names are converted to lower case.

<?INCLUDE NAME=“/include/test.inc“
 FIRSTNAME=“Larry“
 lastname=“Wall“
 ID=“(5,4,3)“
 MY
 $s=SCALAR
 @l=LIST>
Alphabetical Reference 67

CIPP Command Reference <?INCLUDE>

68

 are

u

r

d
 the
Type

Import

Syntax

<?INCLUDE NAME=include_name
 [input_parameter_1 =Wert1 ...]
 [MY]
 [variable_1 =output_parameter_1 ...] >

Description

Use Includes to divide your project into reusable pieces of code. Includes
defined in separate files. They have a well defined interface due to the
<?INCINTERFACE> command. CIPP performs parameter checking for yo
and complain about unknown or missing parameters.

The Include file code will be inserted at the same position you write
<?INCLUDE>, inside of a Perl block. Due to this variables declared inside
the Include are not valid outside.

Please refer to the <?INCINTERFACE> chapter to see how parameters are
processed by an Include.

Parameter

NAME
This is the name of the Include file, expected as an URL in CGI::CIPP o
Apache::CIPP environments and in dot-separated object notation in a
new.spirit environment.

INPUT-PARAMETERS
You can pass parameters to the Include using the usual
PARAMETER=VALUE notation. Note that parameter names are converte
to lower case. For more details about Include input parameters refer to
appropriate section of the <?INCINTERFACE> chapter.

OUTPUT-PARAMETERS
You can recieve parameters from the Include using the notation

{$@%}variable=output_parameter

INCLUDE
Alphabetical Reference

Alphabetical Reference <?INCLUDE>

d to
he
eter.

te

e
se

se of
 you

Note that the name of the output parameters are automatically converte
lower case. Note also that the caller must not use the same name like t
output parameter for the local variable which recieves the output param
That means for the above notation that variable must be different from
output_parameter , ignoring the case.

For more details about Include output parameters refer to the appropria
section of the <?INCINTERFACE> chapter.

MY
If you set the MY switch all created output parameter variables will be
declared using ’my’. Their scope reaches to the end of the block which
surrounds the <?INCLUDE> command.

Important note

The actual CIPP implementation does really include the Include code at the
position where the <?INCLUDE> command occurs. This affects variable
scoping. All variables visible at the callers source code where you write th
<?INCLUDE> command are also visible inside your Include. So you can u
these variables, although you never declared them inside your Include. U
this feature is discouraged, in fact you should avoid the usage of variables
did not declared in your scope.

Short notation

In a new.spirit environment the <?INCLUDE> command can be abbreviated
in the following manner:

<?include_name
 [input_parameter_1 =Wert1 ...]
 [MY]
 [variable_1 =output_parameter_1 ...] >

Example

See example of <?INCINTERFACE>.
Alphabetical Reference 69

CIPP Command Reference <?INPUT>

70

e

oth
Type

HTML Tag Replacement

Syntax

<?INPUT [VALUE=parameter_value]
 [additional_<INPUT>_parameters ...] >

Description

This generates a HTML <INPUT> tag where the content of the VALUE
option is escaped to prevent HTML syntax clashes.

Parameter

VALUE
This is the VALUE of the corresponding <INPUT> tag. Its content will b
escaped.

additional_<INPUT>_parameters
All additional parameters are taken without changes into the generated
<INPUT> tag.

Example

We generate two HTML input fields, a simple text and a password field, b
initialized with some values.

<?VAR MY NAME=$username>larry<?/VAR
<?VAR MY NAME=$password>this is my “password“<?/VAR>
<?INPUT TYPE=TEXT SIZE=40 VALUE=$username>
<?INPUT TYPE=PASSWORD SIZE=40 VALUE=$password>

This will produce the following HTML code:

<INPUT TYPE=TEXT SIZE=40 VALUE=“larry“>
<INPUT TYPE=TEXT SIZE=40
 VALUE=“this ist my "password"“>

INPUT
Alphabetical Reference

Alphabetical Reference <?INTERFACE>

man-
r

bles

 no
 use

 at

ey
ration

CGI
Type

Interface

Syntax

<?INTERFACE [INPUT=list_of_variables]
 [OPTIONAL=list_of_variables] >

Description

This command declares the interface of a CGI program. You can declare
datory and optional parameters. Parameters are always identified by thei
name. You can recieve scalar and array parameters.

All input parameters declared this way are visible as the appropriate varia
inside the CGI program. They are always declared with my to prevent name
clashes with other parts of the program.

Using <?INTERFACE> is optional, if you are not in ’use strict’ mode. If you
ommit <?INTERFACE> all actual parameters are passed to your program,
parameter checking is done in this case. But it is strongly recommended to
<?INTERFACE> because CIPP checks the consistency of your CGI calls
runtime.

If you are in ’use strict’ mode (which is the default), using <?INTERFACE>
is mandatory, because one cannot create lexical variables at runtime. Th
must be declared in this manner, so CIPP can add the appropriate decala
statements to the generated source code.

Parameter

All parameters of <?INTERFACE> expect a comma separated list of vari-
ables. Scalars ($) and arrays (@) are supported. Whitespaces are ignored.

Note: It is recommended that you use lower case variable names for your
interfaces, because some CIPP commands for generating URLs (e.g.
<?GETURL>) convert parameter names to lower case.

INPUT
This parameters takes the list of variables the caller must pass to the CGI
program.

INTERFACE
Alphabetical Reference 71

CIPP Command Reference <?INTERFACE>

72

s

-
 will

ng
OPTIONAL
The variables listed here are optional input parameters. They are alway
declared with my and visible inside the program, but are set to undef , if
the caller ommits them.

Notes

The <?INTERFACE> command may occur several times inside a CGI pro
gram, the position inside the source code does not matter. All declarations
be added to an interface accordingly.

Example

We specify an interface for two scalars and an array.

<?INTERFACE INPUT=“$firstname, $lastname“
 OPTIONAL=“@id“>

A HTML form which adresses this CGI program may look like this (assumi
we are in a CGI::CIPP or Apache::CIPP environment).

<?VAR MY NAME=“@id“ NOQUOTE>(1,2,3,4)<?/VAR>

<?FORM ACTION=“/user/save.cgi“>
 <?HIDDENFIELDS PARAMS=“@id“>
 <P>firstname:
 <?INPUT TYPE=TEXT NAME=firstname>
 <P>lastname:
 <?INPUT TYPE=TEXT NAME=lastname>
<?/FORM>
Alphabetical Reference

Alphabetical Reference <?LIB>

 can

by

 are

-

Type

Import

Syntax

<?LIB NAME=perl_module >

Description

With this command you can access the extensive Perl module library. You
access any Perl module which is installed on your system.

In a new.spirit environment you can place user defined modules in the prod/
lib directory of your project, which is included in the library search path
default.

Parameter

NAME
This is the name of the module you want to use. Nested module names
delimited by :: . This is exactly what the Perl use pragma expects (you
guessed right, CIPP simply translates <?LIB> to use :-).

It is not possible to use a variable or expression for NAME, you must always
use a literal string here.

Example

The standard modules File::Path and Text::Wrap are imported to your pro
gram.

<?LIB NAME=“File::Path“>
<?LIB NAME=“Text::Wrap“>

LIB
Alphabetical Reference 73

CIPP Command Reference <?LOG>

74

r
e
-

d the

e.
.

h of

own

ot
Type

Exception Handling

Syntax

<?LOG MSG=error_message
 [TYPE=type_of_message]
 [FILENAME=special_logfile]
 [THROW=exception] >

Description

The <?LOG> command adds a line to the project specific logfile, if no othe
filename is specified. In new.spirit environments the default filename of th
logfile is prod/log/cipp.log . In CGI::CIPP and Apache::CIPP environ
ments messages are written to /tmp/cipp.log (c:\tmp\cipp.log
under Win32) by default.

Log file entries contain a timestamp, client IP adress, a message type an
message itself.

Parameter

MSG
This is the message.

TYPE
You can use the TYPE parameter to speficy a special type for this messag
This is simply a string. You can use this feature to ease logfile analysis

FILENAME
If you want to add this message to a special logfile you pass the full pat
this file with FILENAME.

THROW
With this parameter you can provide a user defined exception to be thr
on failure. The default exception thrown by this statement is log .

An exception will be thrown, if the log file is not writable or the path is n
reachable.

LOG
Alphabetical Reference

Alphabetical Reference <?LOG>

ile.

e
Example

If the variable $error is set a simple entry will be added to the default logf

<?IF COND=“$error != 0“>
 <?LOG MSG=“internal error: $error“>
<?/IF>

The error message “error in SQL statement“ is added to the special logfil
with the path /tmp/my.log . This entry is marked with the special type
dberror . If this file is not writable an exception called fileio is thrown.

<?LOG MSG=“error in SQL statement“
 TYPE=“dberror“
 FILE=“/tmp/my.log“
 THROW=“fileio“>
Alphabetical Reference 75

CIPP Command Reference <?MY>

76

this

hould
 not

n
his
dable.
Type

Variables and Scoping

Syntax

<?MY [VAR=list_of_variables]
 variable_1 ... variable_N >

Description

This command declares private variables, using the Perl command my inter-
nally. Their scope reaches to the end of the block which surrounds the <?MY>
command, for example only inside a <?IF> block.

All types of Perl variables (Scalars, Arrays and Hashes) can be declared
way.

If you want to initialize the variables with a value you must use the <?VAR>
command or Perl commands directly. <?MY> only declares variables. Their
initial value is undef .

Parameter

VAR
This parameter takes a comma separated list of variable names, that s
be declared. With this option it is possible to declare variables which are
in lower case.

variable_1..variable_N
You can place additionel variables everywhere inside the <?MY>
command. This variables are always declared in lower case notation.

Note:

If you need a new variable for another CIPP command, you can most ofte
use the MY switch of that command, which declares the variable for you. T
saves you one additional CIPP command and makes your code more rea

Example

See <?BLOCK>.

MY
Alphabetical Reference

Alphabetical Reference <?PERL>

r

p-

n

 by
Type

Control Structure

Syntax

<?PERL [COND=condition] >
...
<?/ PERL>

Description

With this command you open a block with pure Perl commands. You may
place any valid Perl code inside this block.

You may use the Perl print statement to produce HTML code (or whateve
output you want) for the client.

At the moment, there are only two CIPP commands which are actually su
ported inside a <?PERL> block: <?INCLUDE> and <?SQL>. Support of
more commands will be added in the future.

Parameter

COND
If you set the COND parameter, the Perl block is only executed, if the give
condition is true.

Example

All occurences of the string ’nt’ in the scalar variable $str will be replaced
’no thanks’. The result will be printed to the client.

<?PERL>
 $text =~ s/nt/no thanks/g;
 print $text;
<?/PERL>

PERL
Alphabetical Reference 77

CIPP Command Reference <?PERL>

78
If this list contains some elements a string based on the list is generated.

<?PERL COND=“scalar(@list) != 0“>
 my ($string, $element);
 foreach $element (@list) {
 $string .= $element;
 }
 print $string;
<?/PERL>
OK, its easier to use ’join’, but it’s
only an example... :-)
Alphabetical Reference

Alphabetical Reference <?ROLLBACK>

ls

 the

uld
Type

SQL

Syntax

<?ROLLBACK [DB=database_name]
 [THROW=exception] >

Description

The <?ROLLBACK> command concludes the actual transaction and cance
all changes to the database.

Using <?ROLLBACK> in <?AUTOCOMMIT ON> mode is not possible.

If you are not in <?AUTOCOMMIT ON> mode a transaction begins with the
first SQL statement and ends either with a <?COMMIT> or <?ROLLBACK>
command.

Parameter

DB
This is the CIPP internal name of the database for this command. In
CGI::CIPP or Apache::CIPP environment this name has to be defined in
appropriate global configuration. In a new.spirit environment this is the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

THROW
With this parameter you can provide a user defined exception which sho
be thrown on failure. The default exception thrown by this statement is
rollback .

If the underlying database is not capable of transactions (e.g. MySQL)
execution of this command will throw an exception.

ROLLBACK
Alphabetical Reference 79

CIPP Command Reference <?ROLLBACK>

80

. We
 not
Example

We insert a row into a database table and rollback the change immediately
throw a user defined exeption, if the rollback fails, maybe the database is
capable of transactions.

<?SQL SQL=“insert into foo (num, str)
 values (42, ’bar’);“>
<?/SQL>
<?ROLLBACK THROW=“ROLLBACK_Exception“>
Alphabetical Reference

Alphabetical Reference <?SAVEFILE>

vers

nt

uld

Type

Interface

Syntax

<?SAVEFILE FILENAME=server_side_filename
 VAR=upload_formular_variable
 [SYMBOLIC]
 [THROW=exception] >

Description

This command saves a file which was uploaded by a client in the webser
filesystem.

Parameter

FILENAME
This is the fully qualified filename where the file will be stored.

VAR
This is the identifier you used in the HTML form for the filename on clie
side, the value of the <INPUT NAME> parameter) .

SYMBOLIC
If this switch is set, VAR is the name of the variable which contains the
<INPUT TYPE=FILE> identifier. Use this if you want to determine the
name of the field at runtime.

THROW
With this parameter you can provide a user defined exception which sho
be thrown on failure. The default exception thrown by this statement is
savefile .

Note

The client side file upload will only function proper if you set the encoding
type of the HTML form to ENCTYPE=“multipart/form-data“ . Oth-
erwise you will get a exception, that the file could not be fetched.

SAVEFILE
Alphabetical Reference 81

CIPP Command Reference <?SAVEFILE>

82

n
Example

First we provide a HTML form with the file upload field.

<?FORM METHOD=“POST“ ACTION=“/image/save.cgi“
 ENCTYPE=“multipart/form-data“>
Fileupload:
<INPUT TYPE=FILE NAME=“upfilename“ SIZE=45>

<INPUT TYPE=“reset“>
<INPUT TYPE=“submit“ NAME=“submit“ VALUE=“Upload“>
</FORM>

The /image/save.cgi program has the following code to store the file i
the filesystem.

<?SAVEFILE FILENAME=“/tmp/upload.tmp“
 VAR=“upfilename“
 THROW=my_upload>

The same procedure using the RUNTIME parameter.

<?VAR MY=$field_name>upfilename<?/VAR>
<?SAVEFILE FILENAME=“/tmp/upload.tmp“
 SYMBOLIC
 VAR=“$field_name“
 THROW=upload>
Alphabetical Reference

Alphabetical Reference <?SQL>

ific

be
Type

SQL

Syntax

<?SQL SQL=sql_statement
 [VAR=list_of_ variables _for_the_result]
 [PARAMS=input_parameter]
 [WINSTART=start_row]
 [WINSIZE=number_of_rows_to_fetch]
 [RESULT=sql_return_code]
 [DB=database_name]
 [THROW=exception] >
 [MY]
...
<?/ SQL>

Description

Use the <?SQL> command to execute arbitrary SQL statements in a spec
database. You can fetch results from a SELECT query, or simply execute
INSERT, UPDATE or other SQL statements.

When you execute a SELECT query (resp. set the VAR parameter, see below)
the code inside the <?SQL> block will be repeated for every row returned
from the database.

Parameter

SQL
This takes the SQL statement to be executed. A trailing semicolon will
stripped off.

The statement may contain ? placeholders. They will be replaced by the
expressions listed in the PARAMS parameter. See the PARAMS section for
details about placeholders.

This is an example of a simple insert without placeholders.

<?SQL SQL=“insert into foo values (42, ’bar’)“>
<?/SQL>

SQL
Alphabetical Reference 83

CIPP Command Reference <?SQL>

84

f the

ely

lt

ues

s or

e

s is
VAR
If you set the VAR parameter, CIPP asumes that you execute a SQL
statement which returns a result set (normally a SELECT statement).

The VAR parameter takes a list of scalar variables. Each variable
corresponds to the according column of the result set, so the position o
variables inside the list is relevant.

You can use this variable inside the <?SQL> block to access the actual
processed row of the result set. Below the <?SQL> block the variable
contains the values of the last row fetched, even when they are implicit
declared via a MY switch.

This is an example of creating a simple HTML table out of an SQL resu
set.

<TABLE>
 <?SQL SQL=“select num, str from foo“
 MY VAR=“$n, $s“>
 <TR>
 <TD>$n</TD>
 <TD>$s</TD>
 </TR>
 <?/SQL>
</TABLE>

PARAMS
All placeholders inside your SQL statement will be replaced with the val
given in PARAMS. It expects a comma separated list (white spaces are
ignored) of Perl expressions, normally variables (scalar or array), literal
constants. The Perl value undef will be translated to the SQL value NULL.
The content of the first expression substitutes the first placeholder in th
SQL string, etc.

Values of parameters are quoted, if necessary, before substitution. Thi
the main advantage of PARAMS in this context. (You could place the perl
variables into the SQL statement as such, but you would have to use
<?DBQUOTE> on them first. Or else.).
Alphabetical Reference

Alphabetical Reference <?SQL>

e.
rs
ent

ee the

.

irst
Beware that you cannot use placeholders to contain (parts of) SQL cod
The SQL must contain the syntactically complete statement - placeholde
can only contain values. (The main reason for this is that the SQL statem
is parsed by most databases before the placeholders are substituted. S
DBI manpage for details about placeholders.)

Here are some examples which demonstate the usage of placeholders

<?VAR MY NAME=$n>42<?/VAR>
<?VAR MY NAME=$s>Hello ’World’<?/VAR>
<?SQL SQL=“insert into foo values (?, ?, ?)“
 PARAMS=“$n, $s, time()“>
<?/SQL>

<?VAR MY NAME=$where_num>42<?/VAR>
<?SQL SQL=“select num,str from foo
 where num = ?“
 PARAMS=“$where_num“>
 MY VAR=“$column_n, $column_s“>
 n=$column_n s=’$column_s’

<?/SQL>

<?SQL SQL=“update foo
 set str=?
 where n=?“
 PARAMS=“$s, $where_num“>
<?/SQL>

WINSTART
If you want to process only a part of the result set you can specfiy the f
row you want to see with the WINSTART parameter. All rows before the
given WINSTART row will be fetched but ignored. Execution of the
<?SQL> block begins with the WINSTART row.

The row count begins with 1.

Here is an example. The first 5 rows will be skipped.

<?SQL SQL=“select num, str from foo“
 MY VAR=“$n, $s“
 WINSTART=6
 n=$n s=’$s’

<?/SQL>
Alphabetical Reference 85

CIPP Command Reference <?SQL>

86

You

ows
ake

 the

uld

WINSIZE
Set this parameter to specify the number of rows you want to process.
can combine this parameter with WINSTART to process a “window“ of the
result set.

This is an example of doing this (skipping 5 rows, processing 5 rows).

<?SQL SQL=“select num, str from foo“
 MY VAR=“$n, $s“
 WINSTART=6 WINSIZE=5
 n=$n s=’$s’

<?/SQL>

RESULT
Some SQL statements return a scalar result value, e.g. the number of r
processed (e.b. UPDATE and DELETE). The variable placed here will t
the SQL result code, if there is one.

Example:

<?SQL SQL=“delete from foo where num=42“
 MY RESULT=$deleted>
<?/SQL>
Successfully deleted $deleted rows!

DB
This is the CIPP internal name of the database for this command. In
CGI::CIPP or Apache::CIPP environment this name has to be defined in
appropriate global configuration. In a new.spirit environment this is the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

THROW
With this parameter you can provide a user defined exception which sho
be thrown on failure. The default exception thrown by this statement is
sql .

MY
If you set the MY switch all created variables will be declared using ’my’.
Their scope reaches to the end of the block which surrounds the <?SQL>
command.
Alphabetical Reference

Alphabetical Reference <?SQL>
Example

Please refer to the examples in the parameter sections above.
Alphabetical Reference 87

CIPP Command Reference <?SUB>

88

P

. But
O

e for
Type

Control Structure

Syntax

<?SUB NAME=subroutine_name >
...
<?/ SUB>

Description

This defines the <?SUB> block as a Perl subroutine. You may use any CIP
commands inside the block.

Generally Includes are the best way to create reusable modules with CIPP
sometimes you need real Perl subroutines, e.g. if you want to do some O
programming.

Parameter

NAME
This is the name of the subroutine. Please refer to the perlsub manpag
details about Perl subroutines.

It is not possible to declare protoyped subroutines with <?SUB>.

Example

This is a subroutine to create a text input field in a specific layout.

<?SUB NAME=print_input_field>
 # Catch the input parameters
 <?MY $label $name $value>
 <?PERL>
 ($label, $name, $value) = @_;
 <?/PERL>

 # print the text field
 <P>
 $label:

 <?INPUT TYPE=TEXT SIZE=40 NAME=$name VALUE=$value>
<?/SUB>

SUB
Alphabetical Reference

Alphabetical Reference <?SUB>
You may call this subroutine from every Perl context this way.

<?PERL>
 print_input_field (’Firstname’, ’firstname’,
 ’Larry’);
 print_input_field (’Lastname’, ’surname’,
 ’Wall’);
<?/PERL>
Alphabetical Reference 89

CIPP Command Reference <?TEXTAREA>

90

to
Type

HTML Tag Replacement

Syntax

<?TEXTAREA [additional_<TEXTAREA>_parameters ...]>
...
<?/ TEXTAREA>

Description

This generates a HTML <TEXTAREA> tag, with a HTML quoted content
prevent from HTML syntax clashes.

Parameter

additional_<TEXTAREA>_parameters
There are no special parameters. All parameters you pass to
<?TEXTAREA> are taken in without changes.

Example

This creates a <TEXTAREA> initialized with the content of the variable
$fulltext.

<?VAR MY NAME=$fulltext>HTML Text<?/VAR>
<?TEXTAREA NAME=fulltext ROWS=10
COLS=80>$fulltext<?/TEXTAREA>

This leads to the following HTML code.

<TEXTAREA NAME=fulltext ROWS=10
COLS=80>HTML Text</TEXTAREA>

TEXTAREA
Alphabetical Reference

Alphabetical Reference <?THROW>

a

he
Type

Exception Handling

Syntax

<?THROW THROW=exception [MSG=message] >

Description

This command throws an user specified exception.

Parameter

THROW
This is the exception identifier, a simple string. It is the criteria for the
<?CATCH> command.

MSG
Optionally, you can pass a additional message for your exception, e.g.
error message you have got from a system call.

Example

We try to open a file and throw a exception if this fails.

<?MY $error>
<?PERL>
 open (INPUT, ’/bar/foo’) or $error=$!;
<?/PERL>

<?IF COND=“$error“>
 <?THROW THROW=“open_file“
 MSG=“file /bar/foo, $error“>
<?/IF>

Note

If you want to throw a exception inside a Perl block you can do this with t
Perl die function. The die argument must follow this convention:

 identifier TAB message

THROW
Alphabetical Reference 91

CIPP Command Reference <?THROW>

92
This is the above example using this technique.

<?PERL>
 open (INPUT, ’/bar/foo’)
 or die “open_file\tfile /bar/foo, $!“;
<?/PERL>
Alphabetical Reference

Alphabetical Reference <?TRY>

r/

-

 on.

the
Type

Exception Handling

Syntax

<?TRY >
...
<?/ TRY >

Description

Normally your program exits with a general exception message if an erro
exception occurs or is thrown explicitely. The general exception handler
which is responsible for this behaviour is part of any program code which
CIPP generates.

You can provide your own exception handling using the <?TRY> and
<?CATCH> commands.

All exceptions thrown inside a <?TRY> block are caught. You can use a sub
sequent <?CATCH> block to process the exceptions to set up your own
exception handling.

If you ommit the <?CATCH> block, nothing will happen. You never see
something of the exception, it will be fully ignored and the program works

Example

We try to insert a row into a database table and write a log file entry with
error message, if the INSERT fails.

<?TRY>
 <?SQL SQL=“insert into foo values (42, ’bar’)“>
 <?/SQL>
<?/TRY>

<?CATCH THROW=“insert“ MY MSGVAR=“$msg“>
 <?LOG MSG=“unable to insert row, $msg“
 TYPE=“database“>
<?/CATCH>

TRY
Alphabetical Reference 93

CIPP Command Reference <?URLENCODE>

94

eters
syn-

ts

vari-

Type

URL and Form Handling

Syntax

<?URLENCODE VAR=unencoded_variable
 [MY] ENCVAR=encoded_variable >

Description

Use this command to URL encode the content of a scalar variable. Param
passed via URL always have to be encoded this way, otherwise you risk
tax clashes.

Parameter

VAR
This is the variable you want to be encoded.

ENCVAR
The encoded result will be stored in this variable.

MY
If you set the MY switch the created variable will be declared using ’my’. I
scope reaches to the end of the block which surrounds the
<?URLENCODE> command.

Example

In this example we link an external CGI script and pass the content of the
able $query after using <?URLENCODE> on it.

<?URLENCODE VAR=$query MY ENCVAR=$enc_query>

find something

Hint: in CGI::CIPP and Apache::CIPP environments you also can use the
<?A> command for doing this.

URLENCODE
Alphabetical Reference

Alphabetical Reference <?VAR>

tent
y

d
Type

Variables and Scoping

Syntax

<?VAR NAME=variable
 [MY]
 [DEFAULT=value]
 [NOQUOTE]>
...
<?/ VAR>

Description

This command defines and optionally declares a Perl variable of any type
(scalar, array and hash). The value of the variable is derived from the con
of the <?VAR> block. You can assign constants, string expressions and an
Perl expressions this way.

It is not possible to nest the <?VAR> command or to use any CIPP comman
inside the <?VAR> block. The content of the <?VAR> block will be evaluated
and assigned to the variable.

Parameter

NAME
This is the name of the variable. You must specify the full Perl variable
here, including the $, @ or % sign to indicate the type of the variable.

These are some examples for creating variables using <?VAR>.

<?VAR NAME=$skalar>a string<?/VAR>
<?VAR NAME=@liste>(1,2,3,4)<?/VAR>
<?VAR NAME=%hash>(1 => ’a’, 2 => ’b’)<?/VAR>

DEFAULT
If you set the DEFAULT parameter, this value will be assigned to the
variable, if the variable is actually undef. In this case the content of the
<?VAR> block will be ignored.

Setting the DEFAULT parameter is only supported for scalar variables.

VAR
Alphabetical Reference 95

CIPP Command Reference <?VAR>

96

this

ht.

ble
ing

r

ts
You can use this feature to provide default values for input parameters
way.

<?VAR NAME=$event DEFAULT=“show“>$event<?/VAR>

Hint: you may think there must be a easier way of doing this. You are rig
:-) We recommend you using this alternative code, the usage of DEFAULT
is deprecated.

<?PERL>
 $event ||= ’show’;
<?/PERL>

NOQUOTE
By default the variable is defined by assigning the given value using dou
quotes. This means it is possible to assign either string constants or str
expressions to the variable without using extra quotes.

If you do not want the content of <?VAR> block to be evaluated in string
context set the NOQUOTE switch. E.g., so it is possible to assign an intege
expression to the variable.

This is an example of using NOQUOTE for an non string expression.

<?VAR MY NAME=$element_cnt NOQUOTE>
 scalar(@liste)
<?/VAR>

MY
If you set the MY switch the created variable will be declared using ’my’. I
scope reaches to the end of the block which surrounds the <?VAR>
command.

Example

Please refer to the examples in the parameter sections above.
Alphabetical Reference

Alphabetical Reference <?WHILE>

he

tical
Type

Control Structure

Syntax

<?WHILE COND=condition >
...
<?/ WHILE>

Description

This realizes a loop, where the condition is checked first before entering t
loop code.

Parameter

COND
As long as this Perl condition is true, the <?WHILE> block will be
repeated.

Example

This creates a HTML table out of an array using <?WHILE> to iterate over
the two arrays @firstname and @lastname, assuming that they are of iden
size.

<TABLE>
<?VAR MY NAME=$i>0<?/VAR>
<?WHILE COND=“$i++ < scalar(@lastname)“>
 <TR>
 <TD>$lastname[$i]</TD>
 <TD>$firstname[$i]</TD>
 </TR>
<?/WHILE>
</TABLE>

WHILE
Alphabetical Reference 97

CIPP Command Reference <?WHILE>

98
 Alphabetical Reference

	CIPP Reference Guide
	Copyright 1999 dimedis GmbH All Rights Reserved

	Table Of Contents
	CHAPTER 1 CIPP - CGI Perl Preprocessor
	Introduction
	CIPP generates Perl code

	Environments where CIPP can be used
	CGI::CIPP
	Apache::CIPP
	new.spirit

	Basic Syntax Rules
	CIPP command structure
	Case sensitivity of CIPP parameters
	CIPP return parameters
	Context of CIPP commands
	1. HTML
	2. Variable Assignment
	3. Perl

	Add comments to your source

	Error messages
	CIPP errors
	Perl errors

	CHAPTER 2 CIPP Configuration
	CGI::CIPP
	Using a extra ScriptAlias
	Using mod_rewrite
	CGI::SpeedyCGI and CIPP::CGI

	Apache::CIPP

	CHAPTER 3 CIPP Command Reference
	Command Groups
	Variables and Scoping
	Control Structures
	Import
	Exception Handling
	SQL
	URL- and Form Handling
	HTML Tag Replacements
	Interface
	Apache
	Preprocessor

	Alphabetical Reference
	A
	APGETREQUEST
	APREDIRECT
	AUTOCOMMIT
	AUTOPRINT
	BLOCK
	CATCH
	COMMIT
	CONFIG
	DBQUOTE
	DO
	ELSE
	ELSIF
	FOREACH
	FORM
	GETPARAM
	GETPARAMLIST
	GETURL
	HIDDENFIELDS
	HTMLQUOTE
	IF
	IMG
	INCINTERFACE
	INCLUDE
	INPUT
	INTERFACE
	LIB
	LOG
	MY
	PERL
	ROLLBACK
	SAVEFILE
	SQL
	SUB
	TEXTAREA
	THROW
	TRY
	URLENCODE
	VAR
	WHILE

