
Module 1 1

Module 1: A Small Talk about Objects

This module contains a brief introduction to the ideas of object–oriented

programming. Basic concepts such as objects and messages are presented. The

notions of class and instance, and the advantages of a class hierarchy are

explained. The way in which the correct methods are identified after a message

send is described.

In this module we also briefly describe Smalltalk, its origins and the way in

which it is used. This introduces the student to the later modules of the series,

giving a glimpse of the way in which Smalltalk is different to other

programming languages. In particular we outline the elements that combine to

make Smalltalk — the language, the programming environment, the class

library and the implementation.

Module 1: A Small Talk about Objects..1
1.1. Objects..2
1.2. Messages..2
1.3. Classes and Instances..4
1.4. Class Hierarchy..5
1.5. Methods..7
1.6. What is Smalltalk?...7

1.6.1. A Language..8
1.6.2. A Programming Environment...8
1.6.3. A Class Library..9
1.6.4. A Persistent Object Store..9

1.7. The Books...10
1.8. Typographical Conventions...10

© Trevor Hopkins and Bernard Horan, 1994

Module 1 2

1.1. Objects

The fundamental concept that underpins Object–Oriented Programming is that

of the Object. An object is a combination of two parts:

“Data” — the state of the object is maintained within that object.

“Operations” — all the mechanisms to access and manipulate that state.

The internal representation of an object consists of variables which either hold

data directly or act as pointers to other objects (figure 1.1). The internal variables

within the object are not directly accessible from outside that object — the barrier

that this provides is called information hiding. In an object–oriented language,

the “natural” view of objects is from the outside; the inside of the object is only

of interest to itself. Therefore, no object can read or modify the state of any other

object, i.e. unlike a data structure (for example, a Pascal record or a C struct), an

external entity cannot force a change of state in an object. Access to any part of the

state of an object is only possible if the object itself permits it.

Internal variables

op
er

at
io

ns

operations

operations

Figure 1.1: An Object

1.2. Messages

Object–Oriented programming languages use message–sending as their only

means of performing operations. If the receiving object understands the message

it has been sent, then one of its internal operations (or m e t h o d s) will be

performed. This, in turn, may cause some computation to take place (by acting

© Trevor Hopkins and Bernard Horan, 1994

Module 1 3

on one or more of the object’s internal variables). A result is always returned (i.e.

an Object).

Message

Message

Message

Method

Figure 1.2: Objects send messages to each other;
the receiver’s corresponding method determines the operations to be performed.

Since an object’s internal state is private and cannot be directly accessed from the

outside, the only way of accessing that state is by sending a message to the object.

The set of messages to which an object responds is called its message interface.

However, it is important to note that a message specifies only w h i c h operation is

requested, not h o w that operation is to be fulfilled. The object receiving the

message (the receiver) determines from its methods (described in some object–

oriented language) how to carry out that operation. Similarly, a method that is

being performed in response to the receipt of a message may only manipulate

other objects (including the receiver’s internal variables) by sending them

messages. Program flow may therefore be illustrated in terms of communication

between many objects (see figure 1.2).

© Trevor Hopkins and Bernard Horan, 1994

Module 1 4

For example, a we could request an object to carry out some activity by sending it

a message. One or more arguments may be sent to an object along with the name

of the message (called the selector). The object receiving the message may be able

to perform the action entirely on its own; alternatively, it may ask other objects

for information, to carry out computation, etc., by sending messages.

The same message sent to different objects can produce different results, since it

is the receiver of the message, not the sender, that decides what will happen as a

result of a message–send. In this respect sending a message is fundamentally

different to calling a procedure in a conventional programming language such as

C.

Let us examine the result of sending the message + 5. Here the selector is +, and

the argument is the integer 5.

6 + 5 returns 11

(7@2) + 5 returns (12@7).

The result of sending the message +5 to the object integer 6 (equivalent to the

expression 6 + 5) is 11. However, the result of sending the same message to the

point (7@2) is (12@7). In the first case the receiver is an Integer, and an Integer is

returned. In the second case, where the receiver is a Point1, the operation and the

result are different. In this case the addition of a scalar to a point returns another

point. This feature — in which many objects are able to respond to the same

message in different ways — is called polymorphism.

Ex 1.1: Imagine that you are building a software model of the room in which you are
sitting. Produce a list containing some of the objects in the model.

1.3. Classes and Instances

In theory, a programmer could implement an object in terms of the variables it

contains and the set of messages to which it responds or understands (and the

methods corresponding to those messages). However, it is more useful to share

this information between similar objects. Not only does this approach save

memory, it also provides a means of re–using code.

The information is shared by grouping together those objects that represent the

same kind of entity into what is called a class. Every object in an object–oriented

programming system is a member of a single class — it is called an instance of

that class. Furthermore, every object contains a reference to the class of which it

1See module 4.

© Trevor Hopkins and Bernard Horan, 1994

Module 1 5

is an instance. The class of an object acts as a template to determine the number

of internal variables an instance will have, and holds a table of methods (a

method dictionary) which corresponds to the messages to which all instances of

the class will respond.

Therefore, we can see that if objects did not obtain their behaviour from classes,

each object would have to “carry around” with it a copy of all the code it could

evaluate. By using classes we avoid the potential efficiency problems in a fine–

grain object–oriented system. Consequently, the behaviour of an object,

expressed in terms of messages to which it responds, depends on its class. All

objects of the same class have common methods, and therefore uniform

behaviour, but they may have different state.

Ex 1.2: Identify the classes from the list of objects in Ex 1.1. For each class, describe the
behaviour its instances might have.

1.4. Class Hierarchy

Classes are arranged in a class hierarchy. Every class has a parent class — or

superclass — and may also have subclasses. A subclass inherits both the

behaviour of its superclass (in terms of its method dictionary), and also the

structure of its internal variables. At the top of the hierarchy is the only class

without a superclass, called class Object in Smalltalk. Class Object defines the

basic structure of all objects, and the methods corresponding to the messages to

which every object will respond.

For example, referring to figure 1.3, we can see a class hierarchy where thomas is

an instance of class Persian, which itself is a subclass of class Cat, which is a

subclass of class Mammal , which may be a subclass of class Vertebrate , etc.

A superclass of which no instances should be created is known as an abstract

superclass. Such classes are intended to support partial implementations of

features that are completed (differently) in subclasses.

Inheritance supports differential programming (or programming by

modification), i.e. a new class of object may be defined which is similar to an

existing one (its superclass) except for a few minor differences. Subclasses

therefore allow the programmer to ref ine, or specialise, the behaviour of the

parent class. This can take a number of forms:

• additional or modified behaviour provided by extra methods;

• the re–implementation of the internal representation of the object’s state;

© Trevor Hopkins and Bernard Horan, 1994

Module 1 6

• the addition of extra internal variables;

• any combination of the above.

Mammal

Dog Cat

Persian

thomas
harriet

oliver

Subclasses of
Mammal

superclass subclass

has instance

instance of

Figure 1.3: An Example of a Class Hierarchy and its instances.

We may therefore exploit inheritance as another technique for re–using code.

For example, if the message odd is sent to the Integer 12, the result false will be

returned even though the class Integer does not have a method specifying how

to make this test. This is because the method corresponding to the message odd is

defined in class Number, which is a superclass of class Integer. This means that

all subclasses of class Number, including integers, are able to respond to the

message odd , since they inherit this method.

© Trevor Hopkins and Bernard Horan, 1994

Module 1 7

Within Smalltalk, the class structure is implemented as a single inheritance

hierarchy. This means that a subclass can only inherit from one parent

superclass. Other Object–Oriented programming languages support multiple

inheritance, in which case a subclass may inherit from multiple parent

superclasses.

Ex 1.3: Arrange the classes (identified in Ex 1.2) in a hierarchy (if appropriate). Are any
of your classes abstract?

1.5. Methods

A message is sent to an object which is an instance of some class. A search is

made in the class’s method dictionary for the method corresponding to the

message selector. If the method is found there, then it is bound to the message

and evaluated, and the appropriate response returned. If the appropriate method

is not found, then a search is made in the instance’s class’s immediate superclass.

This process repeats up the class hierarchy until either the method is located or

there are no further superclasses. In the latter case, the system notifies the

programmer that a run–time error has occurred.

The object–oriented message passing mechanism can be compared to a function

call in a conventional programming language such as C. It is similar in that the

point of control is moved to the receiver; the object sending the message is

suspended until a response is received. It is different in that the receiver of a

message is not determined when the code is created (“compile time”), but is

determined when the message is actually sent (“run time”). This dynamic (or

late) binding mechanism is the feature which gives Smalltalk its polymorphic

capabilities.

Ex 1.4: Identify some of methods for each class (from Ex 1.3).

1.6. What is Smalltalk?

Smalltalk can be seen as just another programming language, with its own rules

of syntax for describing classes, objects, methods and messages; and its own rules

of grammar for parsing expressions. However, most implementations of

Smalltalk provide more than just a language — they provide a programming

environment, a library of classes and a persistent object store. Each of these

combines to produce a unified framework for the development of object–

oriented applications. Each is described in detail below.

© Trevor Hopkins and Bernard Horan, 1994

Module 1 8

1.6.1. A Language

Compared to conventional programming languages such as C or Pascal,

Smalltalk has an unusual syntax. In addition, Smalltalk has no notion of “type”.

Objects are employed to represent everything in Smalltalk, including all the

conventional data types that may be found in any programming language:

integers, booleans, floating point numbers, characters, strings, arrays, etc. In

addition, objects are used to represent display items such as menus, windows,

etc., and even the compiler itself. Smalltalk is therefore described as a uniformly

object–oriented language.

However, the rules of Smalltalk syntax (see module 2) are simple and consistent.

When you have mastered these rules and have gained a certain familiarity, it is a

straightforward language both to read and write. The problems are no greater

than mastering the syntax of Lisp, APL and Forth and, like the adherents of those

languages, most Smalltalk programmers argue that the syntax is one of the

strengths of the language.

1.6.2. A Programming Environment

Smalltalk was one of the first systems to pioneer the so–called “WIMP” interface

(Windows, Icons, Menus & Pointer). It is not surprising, then, to discover that

current environments provide numerous tools to enable programmers to

browse existing classes and copy and modify pre–written code (module 3).

Additional editing tools enable programmers to amend and correct newly created

code effortlessly. Other tools allow the programmer access to the underlying

filing system (module 3), from which existing source code my be “filed–in”.

Additionally, Smalltalk provides change management tools. These are in the

form of Projects that may be used to contain code specific to particular software

Projects and also Browsers to view recent changes. Since Smalltalk is extensible,

programmers can tailor these existing tools or create new ones for their own use.

Smalltalk also pioneered the use of an incremental compiler. This means that

programmers can avoid lengthy sessions of compiling and linking, and get

“instant gratification” from the speed of compilation, thus enabling them to

adopt a more exploratory approach to software development. This approach

enables the programmer to develop software in a piecemeal fashion, exploring

ideas as the application takes shape.

The combination of an incremental compiler and a symbolic debugger (giving

interactive access to source code) allows the programmer to inspect and modify

currently active objects, carry out in–line testing and modify and re–compile

© Trevor Hopkins and Bernard Horan, 1994

Module 1 9

existing code, and then restart the evaluation of the expressions. By inserting

break points at suitable points, the programmer is able to step through the

evaluation of the code (see module 11).

Thus, the Smalltalk programming environment promotes a programming

process that employs an iterative development style for creating an application.

The programmer is able to develop a partial solution, test it, add new

functionality, test it, and so on, until the complete solution is reached.

1.6.3. A Class Library

Despite its name, Smalltalk is not necessarily small — for example, Smalltalk–80

contains hundreds of classes and thousands of methods, all available on–line in

source code form (Smalltalk is written almost entirely in Smalltalk — a small

kernel is written in machine code). The classes can be further refined using the

inheritance mechanism, or they can be used as internal variables by other objects.

Consequently, the effort required to construct new applications is minimised.

The library of classes includes:

• Various subclasses of Number. This includes Integer, Float and Fraction.

• Various data structures. This includes Set , Bag, Array, OrderedCollection,

SortedCollection and Dictionary.

• Classes to represent text, font, colour, etc.

• Geometric representations, e.g. Point, Rectangle , Circle, Polygon, etc.

• Classes to assist in the control of concurrency. For example, Process,

Semaphore.

1.6.4. A Persistent Object Store

A Smalltalk system consists of two parts:

• The virtual image (or “Image”), containing all the objects in the system.

• The virtual machine (or “VM”), consisting of hardware and software

(microcode) to give dynamics to objects in the image1. (VisualWorks

refers to the VM as the “Object Engine”.)

This implementation technique was used for several reasons:

1Each platform requires its own VM.

© Trevor Hopkins and Bernard Horan, 1994

Module 1 10

• To ensure portability of the virtual image. Any Smalltalk image should be

executable on any virtual machine. The image is (mostly) isolated from

the VM implementation (hardware and software).

• The Smalltalk system is very large, but most of the functionality is in the

image. This eases the problems of implementation, as only a relatively

simple VM has to be constructed.

Because the complete working environment is saved (the image), Smalltalk also

acts as a persistent object store. This allows the programmer to create new classes,

and even new instances, and keep them from one working session to another.

Ex 1.5: How would you best represent the internal implementation of each of your classes?
Describe each class and the relationship between them.

1.7. The Books

Throughout the modules you will see occasional reference to the “Orange Book”

or the “Blue Book”, etc. Here we refer to one of the four books to be written by

authors who were (and some who still are) involved with the development of

Smalltalk–80. The “colour” of the book indicates the colour of the background of

the illustration on the front cover (as well as for the Addison–Wesley logo on

the spine). The full references of the books are as follows:

Blue Book Goldberg, Adele, and David Robson, Smalltalk–80: The
language and Its Implementation, Addison–Wesley, 1983.

Orange Book Goldberg, Adele, Smalltalk–80: The Interactive Programming
Environment, Addison–Wesley, 1984.

Green Book Krasner, Glenn, ed., Smalltalk–80: Bits of History, Words of
Advice, Addison–Wesley, 1983.

Purple Book Goldberg, Adele, and David Robson, Smalltalk–80: The
language, Addison–Wesley, 1989.1

These notes are adapted from Smalltalk: An Introduction to Application

Development using VisualWorks, by Trevor Hopkins and Bernard Horan, due

to be published by Prentice Hall in 1995.

1.8. Typographical Conventions

In the module notes the standard typeface is a serif font. Other fonts are used to

distinguish special terms, as follows:

1The Purple book is an update⁄revision of the Blue book.

© Trevor Hopkins and Bernard Horan, 1994

Module 1 11

• Menu items are in bold sans–serif, e.g. Workspace.

• Smalltalk expressions or variables, as they appear in the system, appear in

sans–serif, such as Transcript show: 'Hello'.

• Place holders and variables used in examples are in italics sans–serif

typeface, for example aCollection.

• Keys that appear on the keyboard are indicated by angle brackets. For

example the “carriage return” key: <CR>, or a function key: <F1>.

From now on, when we mention Smalltalk, we shall be referring to the

Smalltalk–80 language, unless stated otherwise.

© Trevor Hopkins and Bernard Horan, 1994

