
Module 2 1

Module 2: Interacting with the Language

This module presents a brief introduction to the items seen on the screen, and

their relationship to things within the environment. The items include

Browsers , Workspaces, Prompters and Menus. The mouse⁄cursor combination,

the screen and the keyboard will be mentioned.

This is followed by an indication of how to start (and stop!) VisualWorks;

naturally, this aspect is somewhat dependent on the users’ local machine and

operating system. A discussion of the importance of snapshots and the “sources”

and “changes” files is provided.

The Smalltalk language syntax is straightforward, but is rather unusual

compared with more conventional languages. This module gives an

introduction to the syntax, covering all of the most important features, but

leaving some more complex aspects to later modules. Topics include the

expression syntax, literals and variables, the parsing rules, a brief introduction to

blocks and an introduction to variables.

Finally, we provide a complete introduction to the typing and editing functions

built–in to the user interface, using the Workspace as an example. Operations

include simple selection and editing using the mouse, copy, cut and paste

operations, and search and replace operations. The use of the cursor keys and

special key combinations will also be described. Simple evaluation of expressions

will also be discussed. This will be extensively illustrated with pictures taken

from the screen.

This module will include extensive small exercises, to ensure that the reader is

completely familiar with this level of operation of the VisualWorks system. This

is very important, as all further modules will rely on these skills.

Module 2: Interacting with the Language...1
2.1. Windows..3
2.2. Menus, Prompters, etc...3
2.3. The Mouse..4
2.4. Cursors..5
2.5. Using VisualWorks..6

2.5.1. Unix..7
2.5.2. MS–Windows...7
2.5.3. Macintosh..7

2.6. The Launcher...8
2.7. <Window> Button Menu Operations...9
2.8. The Window Menu...11

© Trevor Hopkins and Bernard Horan, 1994

Module 2 2

2.9. Smalltalk Expression Syntax..11
2.10. Literals...12

2.10.1. Numbers..12
2.10.2. Characters..12
2.10.3. Strings...12
2.10.4. Symbols..12
2.10.5. Literal Arrays..13
2.10.6. Byte Arrays..13

2.11. Variables...13
2.12. Pseudo–Variables..14
2.13. Messages..14

2.13.1. Unary Messages..14
2.13.2. Binary Messages...14
2.13.3. Keyword Messages...15

2.14. Parsing Rules...15
2.15. Assignments..17
2.16. Returning...18
2.17. Blocks...18
2.18. Comments..18
2.19. Using Workspaces..18
2.20. Typing and Selecting..19
2.21. Editing...23
2.22. Evaluating Smalltalk Code...26
2.23. The Settings Tool..30
2.24. Help..31

© Trevor Hopkins and Bernard Horan, 1994

Module 2 3

2.1. Windows

The VisualWorks user interface consists of one or more (potentially)

overlapping windows, each of which may contain text or graphics. The windows

are managed by the host platform’s standard window manager, and not part of

VisualWorks. On UNIX systems, this will be X–windows, together with a

window manager such as twm, olwm (OpenLook) or mwm (Motif). On PC

machines it will be MS–Windows, and on the Macintosh it will be its own

distinctive user interface. Each window is manipulated using the mechanisms of

the native window manager, but can also be manipulated through VisualWorks.

Several types of windows are available as standard. These include windows with

the following labels:

VisualWorks a window with menu options and buttons for

launching other windows (herein after known as

the ‘Launcher’). It may also contain an area known

as the ‘System Transcript’ (see below). We

recommend that you keep this window open so

that you can see the messages are they are displayed.

Workspace a general work⁄edit area.

System Browser for managing (parts of) the class hierarchy.

Class Browser for managing a single class.

System Transcript displaying “system” messages.

File Browser access to underlying file system.

Inspector discover⁄change state of any object.

Debugger following⁄modifying evaluation paths.

The VisualWorks image contains much code and a uniform mechanism for

creating new windows.

2.2. Menus, Prompters, etc.

A number of other “things” can appear on the screen. These include:

© Trevor Hopkins and Bernard Horan, 1994

Module 2 4

Menus These are widely used in conjunction with windows.

These allow the user to select one of several items

using the mouse.

Confirmers These request the user to confirm or deny a request.

Prompters A mechanism for prompting the user for some typed

response.

Informers These typically inform the user that some user

request has failed.

Notifiers The means by which VisualWorks indicates that

some event has occurred. This may be an error

condition, a user interrupt or some other exception

condition.

The use of many of these items will be demonstrated later in the course.

2.3. The Mouse

VisualWorks requires the use of some form of pointing device — it is used for

much of the user’s interaction with the environment. A cursor on the display

screen follows the movement of the pointing device. Typically, the pointing

device will be a mouse with three buttons1.

Because VisualWorks also runs on machines with one– and two–button mice,

use of the terms “left”, “middle” and “right” is discouraged. The names for the

mouse buttons are:

<Select> is the left button (also called the “red” button in VisualWorks).

<Operate> is the middle button (also called the “yellow” button in

VisualWorks).

<Window> is the right button (also called the “blue” button in

VisualWorks).

Despite the recommendations, much Smalltalk code still uses the colour names!

The following terminology for the use of the mouse buttons is normally used:

1If you are using a Macintosh or a PC, now would be a good time to consult your manual to discover how to
simulate a three button mouse on your single–button (Macintosh) or double–button (PC) mouse.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 5

Press press and hold the button down.

Release release the button.

Click press and release the button without moving the mouse.

Double Click click the button twice without moving the mouse between
clicks.

When over a VisualWorks window, the general operations associated with

mouse buttons are as follows:

<Select> button Selecting and positioning within the “application”

displayed in the window.

<Operate> button “Application” (window) specific menu items.

<Window> button Window control function menu items, common to

all standard VisualWorks windows.

2.4. Cursors

Eight standard cursors are used to give feedback about VisualWorks’ activities

and the current mouse position. The eight cursors are described below:

shape name description

normal The cursor looks like this for most of the time. The

point of selection (or hot–spot) is the tip of the arrow.

execute The system is compiling a method, evaluating an

expression, etc. During this time, mouse button

movements are ignored and keyboard inputs are

deferred.

wait The system is carrying out some operation that

prevents it from responding to your input.

read Data is being read from an external file. User input is

ignored⁄deferred.

write Data is being written to an external file. User input is

ignored⁄deferred.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 6

garbage

collector

Non–compacting garbage–collection is taking place.

This occurs only during “low–space conditions”. User

input is ignored⁄deferred.

memory

compactor

Memory is being compacted. This occurs when free

memory if heavily fragmented. User input is

ignored⁄deferred.

compacting

garbage

collector

A full compacting garbage–collection is taking place.

This only occurs during “low–space conditions”. User

input is ignored⁄deferred.

The wait and⁄or execute cursors are used when evaluating messages that require

several seconds to complete. The read and write cursors are used when file I⁄O is

being performed.

2.5. Using VisualWorks

At least the following files should be present:

visual.im this is the image file, representing the current (suspended)
state of your Smalltalk evaluation.

visual.sou this file contains the source code for all the classes and
methods in the image1.

visual.cha this file contains the changes made to the image file since the
sources file was created. Every new or modified method, and
all evaluations performed are recorded here.

If any of these files is missing, you will not be able to run VisualWorks. It is very

important that the visual.im and visual.cha files remain consistent, so we

recommend that you do not directly modify either file.

The actions required to start your VisualWorks session depend on the platform

you are using. Here we will consider three possibilities: UNIX, MS–Windows

and Macintosh. You should consult your manual or system administrator if you

feel may need help accessing or installing the software.

1On distributed file systems, you may find that this file is elsewhere.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 7

2.5.1. Unix1

To start the VisualWorks system, type visualworks visual.im. This starts the

Smalltalk Virtual Machine and loads the image file. A number of messages will

be printed in the console window as the image is loaded.

2.5.2. MS–Windows

Double click on the icon named ‘Visual’ in the appropriate Program Manager

window. This starts the Smalltalk Virtual Machine and loads the image file.

2.5.3. Macintosh

Double click on the icon named ‘Visual.im’ in the appropriate folder (usually

contained in a folder also called ‘Visual’). This starts the Smalltalk Virtual

Machine and loads the image file.

Once the image is loaded, two windows will appear on the screen: the Launcher

(labelled ‘VisualWorks’) and a Workspace.

Figure 2.1: Confirm that you wish to quit the VisualWorks image

To leave the VisualWorks environment, select the Exit VisualWorks… option

from the File menu of the Launcher. A Confirmer will appear (figure 2.1); select

Exit from this. Any changes you have made are not saved. If you want to save

the changes you have made to the image, then you should select the

Save, then Exi t option. A Prompter will appear, asking for a filename to be

used for the image (figure 2.2).

1Note that the details here are Sun specific, and may be different on other machines.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 8

Figure 2.2: Specifying the file name to be used

Ex 2.1: Exit and save the VisualWorks image (when asked to specify the file name, simply
press <CR>). Then restart the image — you should note that the VisualWorks
windows are in exactly the same state as when you quit the image.

The image can also be saved without stopping the VisualWorks system by using

the S a v e a s … option from the File menu of the Launcher.

Ex 2.2: Select the S a v e a s … option from the File menu of the Launcher. Use the default
image file name (visual); type <CR> in the Prompter. Move the existing windows
around the screen and then quit without saving. Restart VisualWorks; note the
window positions are those of the saved image.

2.6. The Launcher

The Launcher is a window that is always available (see figure 2.3). The Launcher

allows a wide variety of VisualWorks windows to be opened, and may

incorporate an area called the ‘System Transcript’ (see later).

Figure 2.3: The VisualWorks Launcher

The Launcher consists of a menu bar containing seven menus, and seven

buttons (each button acts as a shortcut to a menu option):

© Trevor Hopkins and Bernard Horan, 1994

Module 2 9

File Various special options, including saving the image

to a file, forcing a full garbage collection cycle, and

setting the user’s preferences.

Browse Allows a variety of browsers to be opened, including

System and Class browsers (module 3), and access to

VisualWorks’ “resources” (module 14).

Tools Allows file handling (module 3) and Workspace

windows to be opened. Additionally provides access

to VisualWorks window–building tools and other

advanced utilities (if available). The menu also

includes an option to specify if the System Transcript

should be included in the Launcher.

Changes Allows several different kinds of windows to be

opened, which support change management.

Database Allows access to database connectivity tools.

Window Provides window management features (see later).

Help Allows access to on–line documentation and

examples.

2.7. <Window> Button Menu Operations

Every window has a standard <window> button menu (figure 2.4), which

provides operations to control the window. The options provided by the menu

will usually be identical for each window.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 10

Figure 2.4: The <window> button menu

relabel as… Allows the user to change the label that identifies the

window.

refresh Re–displays the entire window contents.

move This permits a window to be moved without

changing its size. Click the <select> button to

establish the top left corner of the window’s new

position.

resize This permits a window to be re–sized. You are

prompted for the new top–left and bottom–right

positions of the window.

front Forces the window to the top of any stack of

overlapping windows.

back Forces the window to the bottom of any stack.

collapse Collapses the window to an icon1.

close The window is permanently removed. If there is

anything in the window that has been changed but

not “saved” (see later), then a Confirmer is used to

ensure that this is what you want to do2.

1It is not possible to reduce a window to an icon on the Macintosh. Instead the window is collapsed to the size of
the window’s title bar.
2Beware of different names: E.g. OpenLook’s “close” is the same as collapse, “quit” means close.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 11

Ex 2.3: Create a new Workspace by selecting the Workspace item from the Tools menu of
the Launcher. Then experiment with the operations on the <window> button menu.
Also, try the window manager operations provided by the host platform.

2.8. The Window Menu

The Window menu available from the Launcher (figure 2.5) contains more

options to control window management1.

Figure 2.5: The Window menu

The menu options are described below:

Refresh All re–draws all the open windows.

Collapse All collapses all the open windows, with the
exception of the Launcher.

Restore All expands all collapsed windows.

Windows provides a sub–menu containing a list of window
labels. Selecting an item from this menu will
bring the corresponding window to the front.

2.9. Smalltalk Expression Syntax

Clearly, an expression syntax is required to express how objects interact with one

another. An expression is a sequence of characters which describe an object,

called the va lue of the expression.

Four types of expression are permitted:

• Literals describe constant objects (numbers, characters, strings, symbols and

arrays).

• Variable names describe accessible variables. The value of the variable

name is the current value of the variable with that name.

• Message expressions describe messages sent to receivers. The value of the

expression is determined by the method it invokes.

1The Macintosh version also includes a ‘window’ menu on its screen menu bar.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 12

• Block expressions describe deferred activities. Blocks are often used for

control structures.

2.10. Literals

One of the simplest forms of Smalltalk expression is the “literal expression”.

Here we describe the syntax of these constant objects:

2.10.1. Numbers

A Number is represented as a sequence of digits, with an optional leading unary

minus sign and optional decimal point. There is no unary plus sign. Examples

include:

8 12.7 –0.0007

Numbers can also be represented in other bases, by preceding the base with a

radix and the letter ‘r’:

8r177 16r5E 2r100011 16r–12.37

Numbers can also be expressed in “scientific notation”, using the suffix letter ‘e’.

For example:

2.23e5 8r177e6 3e-2

Finally, numbers can also be represented as “fixed–point” (used, for example, to

represent currency values) using the suffix letter ‘f’. For example:

2.23f 177f6 3f-2

2.10.2. Characters

A Character is an individual letter of an alphabet. It is represented by a single

alphanumeric letter preceded by a ‘$’ sign. Examples include:

$D $+ $$ $9 $x

2.10.3. Strings

A String is a sequence of Characters surrounded by quote marks. Examples

include:

'test string' 'string with '' embedded single quote'

2.10.4. Symbols

A Symbol is an object that represents a string used for a name in Smalltalk. A

Symbol is represented using the ‘#’ sign, and is optionally surrounded by quote

marks. Symbols are always unique. Examples include:

#initialize #W80 #temp #'3x'

© Trevor Hopkins and Bernard Horan, 1994

Module 2 13

2.10.5. Literal Arrays

The literals are surrounded by brackets and preceded by the ‘#’ sign. Embedded

arrays may avoid the use of the ‘#’ sign. Examples:

#(40 41 42) #((1 '2') ('first' #second)) #(1 'one' ($5 'five'))

2.10.6. Byte Arrays

A Byte Array is a sequence of bytes (integers between 0 and 255) surrounded by

square brackets and preceded by a ‘#’ sign. For example:

#[1 2 3 0] #[16rff 0 2r111 2e2]

2.11. Variables

A variable points to an object. The variable’s name is an expression referring to

that object. Variable names are identifiers made up of letters and digits with an

initial letter:

someObject Integer Smalltalk temp3

When made up from more than one word, the first letter of each subsequent

word in the identifier is capitalised. You are strongly encouraged to conform

with this convention — it is used consistently throughout VisualWorks.

The “private” memory of an object has already been introduced. The term used

to describe the variables that represent an object’s private memory is instance

variables, since they are used to represent the private memory of an instance of a

class. Instance variables are only available to the specific object in which they are

contained. They are simply names for pointers to other objects.

Other types of variables are also provided; they are described below:

Temporary

Variables

exist only for the duration of some activity (e.g. the

evaluation of a method).

Class Variables are shared by all instances of a single class.

Global Variables are shared by all instances of all classes (i.e. all

objects). Try not to use Global variables except for

experimentation.

Pool variables are shared by all instances of some classes, and are

thus a way of creating common storage between

object classes. Pool variables are very rarely used.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 14

By convention, private variables (instance variables, temporary variables) start

with an initial lower–case letter, whereas shared variables (class variables, global

variables, pool variables) start with an initial upper–case letter. We shall return

to different kinds of variables later in the course: module 4 gives examples of

global variables, and module 5 gives examples of class and pool variables.

2.12. Pseudo–Variables

A pseudo–variable name refers to an object which cannot be changed; these

include:

nil A value used when no other is appropriate, such as uninitialized

variables. nil is the sole instance of class UndefinedObject.

true Represents truth. It is the sole instance of class True.

false Represents falsehood. It is the sole instance of class False.

Classes True and False are subclasses of Boolean.

2.13. Messages

A message expression comprises a receiver, a selector and possibly some

arguments. The basic specification for sending a message in Smalltalk is

<receiver> <message>

where <receiver> is the name of some known object, and <message> is a unary,

binary, or keyword message including arguments.

2.13.1. Unary Messages

Unary messages are the simplest type of message in Smalltalk. An object is

followed by a single word (the message selector) and no arguments. The selector

must contain no colons. Examples:

3 negated

100 factorial

Window new

anArray size

theta sin

4 even

2.13.2. Binary Messages

Binary messages are more complex, since they also have one argument specified

with them. The selector is one or two non–alphabetic letters, the second of which

© Trevor Hopkins and Bernard Horan, 1994

Module 2 15

must not be a minus sign. Existing binary messages in the current Smalltalk

image include:

+ - / *
= < > ~=
<= >=
& (logical “and”) | (logical “or”)
, (string concatenation)

These binary messages will be described in more detail in later modules.

Examples:

2 + 3

true & false

3 * 4

100 // 17

index – 1

2.13.3. Keyword Messages

Keyword messages are the most complex type of message. The structure of a

keyword message comprises one or more keywords each with its own argument.

For instance, in the message

anArray copyFrom: 1 to: 3

copyFrom: and to: are the keywords, and the numbers 1 and 3 are arguments.

Note that each keyword must end with a colon. A message can have no more

than 255 keywords. An argument can be an expression representing any object.

Other examples:

index max: limit

anArray at: first put: 'aardvark'

2.14. Parsing Rules

The order of evaluation in a Smalltalk statement is:

1) Unary messages left to right;

2) Binary messages left to right;

3) Keyword messages left to right.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 16

Multiple expressions are separated by full stops1.

These rules are quite unlike those in many other languages, where precedence

depends on the function. There is no algebraic hierarchy. However, as with

many other languages, parentheses (round brackets) can be used to alter the order

of precedence. It is worthwhile considering some examples:

In the example:

1.5 tan rounded

the unary message tan is sent to 1.5, and the unary message rounded is sent to the

resulting object.

Similarly for binary messages:

a + b * 2

returns the result “twice (a+b)”. To get “(twice b)+a”, the expression should be

written:

a + (b * 2)

Parentheses also have precedence over unary messages.

In the example:

(anArray at: 14) even

the message even is sent to the 14th element of anArray , while:

anArray at: 14 even

the message even is sent to 14, and an attempt is made to use the resulting object

(true) as an index to anArray . This is probably an error.

When multiple keywords appear in an expression, they are parsed as a single

keyword message. For example:

frame scale: factor max: 5

contains a keyword message selector (scale:max:) with two arguments, factor and

5. Conversely:

frame scale: (factor max: 5)

sends the keyword message max: 5 to factor, and uses the resulting object as the

argument to the keyword message selector scale: sent to frame.

1For North American readers, a “full stop” is a “period”.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 17

It is important therefore to exercise care when putting keyword messages

together:

2 raisedTo: 3 raisedTo: 7

As there is no raisedTo:raisedTo: message selector, the above expression will

result in an error. Similarly it is important to note that:

(2 raisedTo: 3) raisedTo: 7 is not equal to 2 raisedTo: (3 raisedTo: 7)

Omitting the parentheses in these sorts of cases is a common source of errors.

Parentheses can always be used to clarify the intention of an expression.

Nevertheless, use with care, otherwise your expressions will become very

cluttered.

Ex 2.4: What is the result for each of the following Smalltalk expressions?

2 + 3 negated

2 raisedTo: 3 + 7

(2 raisedTo: 3) + 7

2 raisedTo: 3 + 7 negated

(2 raisedTo: 3) + 7 negated

(2 raisedTo: 3 + 7) negated

2.15. Assignments

A variable name can refer to different objects at different times. The assignment

expression can be used to assign an object to a variable. It looks like:

<variable> := <message send>

Examples:

newIndex := 1

this := that

someString := 'Part Two'

anArray := #(1 2 3 4 5)

Assignment expressions return values (like other expressions) so several

assignments can be made together.

this := that := theOther

stop := end := 0

Ex 2.5: What is the result of the following assignment expressions?

a := 5 - 4.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 18

a := 5 raisedTo: 3.

a := (b := 5) * 66.

a := 3 * (2 raisedTo: (b := 36 // 42)).

2.16. Returning

Every method returns a value to the sender when it has finished evaluating. If

this is not specified, the receiver itself is returned.

If something else must be specified, the ‘^’ symbol is used to return the value and

end the evaluation of the current method. Any object can be returned this way.

2.17. Blocks

A Block represents a deferred sequence of actions. A block is represented by a

sequence of expressions (separated by full stops), enclosed by square brackets. For

example:

aBlock := [index + 2]

aBlock := [anArray at: newIndex put: 42]

A block is evaluated when it receives the message value. For example:

aBlock := [a := 0].
aBlock value

when aBlock receives the message value, it is evaluated, causing the variable a to

refer to the integer 0.

Blocks are used to implement control structures (see module 10). Examples

include:

aNumber even
ifTrue: [aString := 'even']
ifFalse: [aString := 'odd']

[index > 0]
whileTrue: [index := index 1]

2.18. Comments

Sequences of characters (i.e. “words”) purely for documentation purposes are

indicated by their enclosure in double quotes (‘"’).

2.19. Using Workspaces

In any programming system, you will of course spend a great deal of time typing

at the keyboard. Unless you are a perfect typist, and also never make

programming mistakes, you will undoubtedly want to edit what you have typed.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 19

The VisualWorks environment recognises these facts, and much effort has been

put into facilitating the process of editing (particularly Smalltalk code).

In this section, we will describe how text is manipulated within the VisualWorks

system. We will concentrate on using Workspaces, which are a simple kind of

edit⁄compile interface. However, you should remember that the same editing

mechanisms are available in all places where you can type; this is because all the

editors behind the Workspaces and other text areas are instances of the same

class, or at least instances of related classes.

2.20. Typing and Selecting

This section considers simple text editing within the VisualWorks system. First,

you will need to open a Workspace (unless, of course, you already have one open

somewhere on the screen). To do this, you need to select the Workspace item1

from the Tools menu on the Launcher (see figure 2.6). The Workspace should

now be the active window (the one in which your typing will appear), if

necessary move the cursor over it and click the <select> (left) button.

Figure 2.6: The Tools menu of the Launcher

Now type some text into the Workspace. You will see that new characters are

placed at a location just after the caret, the symbol which looks like ‘ˆ’. You can

1Note that the item is preceded by an icon which matches one found on the Launcher itself.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 20

position the caret anywhere within the text by clicking the <select> button at the

desired position or by using the cursor keys. The Workspace will now appear

something like figure 2.71.

Figure 2.7: Entering text into a Workspace

Characters can be deleted using the <delete> or <backspace> key on the keyboard.

This key deletes the character immediately to the left of the caret, in the usual

way. Also the entire word to the left of the caret can be deleted in one go, using

the <control–w> key combination (<control> key held down while <w> is

typed).

Most of the remaining editing commands rely on the notion of a text selection

(or just selection). Because this notion is so widely used, VisualWorks provides a

number of ways in which to make a selection.

One or more characters can be selected (i.e. identified as the selection) by

positioning the cursor at the desired start position using the mouse, pressing

down the <select> mouse button and, while holding the <select> button down,

drawing through the text. The selected characters will be highlighted (see

figure 2.8). The selection is completed by releasing the <select> mouse button.

The selection can be deleted using the <delete> or <backspace> key. This is a

convenient way of quickly deleting a “chunk” of text. Alternatively, the selection

can be replaced simply by typing new characters at the keyboard. The characters

are inserted in the place of the current selection.

1The description that follows is specific to the “default look” of VisualWorks, your window manager may
provide an alternative style.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 21

To extend the text selection, hold down a <shift> key and then click at the new

end point. To de–select the text selection, simply click once anywhere in the

active window.

Figure 2.8: Making a text selection

There are several other “shorthand” ways of making selections more quickly.

One which is particularly useful is to use the <escape>–<tab> key combination

(<escape> key fo l lowed by the <tab> key) to select all the text just typed (i.e. since

the caret was last moved, or since an editing operation was performed). This is

particularly useful should you wish to perform some operation on everything

you have just entered. You may find that this selection method is faster than

using the mouse, since you do not have to move your hands from the keyboard.

Another useful selection mechanism is “double–clicking” the <select> mouse

button. Double–clicking within a “word” selects the entire word; this is handy

should you wish to replace an entire word. Double–clicking at the beginning or

end of a line of text (up to the next carriage return) selects the entire line. All the

text in a Workspace may be selected by double–clicking at its beginning or its end.

You should note that the double–click selection is not determined by the speed of

clicking, but by location; the first click positions the caret, and a subsequent click

in the same location as the caret selects the word, line or complete text

appropriately.

A final mechanism by which double–clicking can be used to make selections

quickly is where there is a section of text surrounded by delimiters. These include

round brackets ‘()’, square brackets ‘[]’, curly brackets ‘{ }’, angle brackets ‘< >’,

single quote marks ‘' '’ and double quotes ‘" "’. The text within any of these

delimiters can be selected by double–clicking between the delimiter and the first

© Trevor Hopkins and Bernard Horan, 1994

Module 2 22

(or last) character of the enclosed text. Almost all of these delimiters have some

meaning in the syntax of the Smalltalk language.

A great many of the keys on the keyboard have different functions when used in

combination with the <control> key or the <escape> key. We have already seen

the <control–w> and <escape>–<tab> combinations in operation. Several other

<escape> key combinations affect the selection in interesting and useful ways (see

figure 2.9):

<Escape>– makes the selected text bold (heavy) font. <Escape>–
makes it normal weight font.

<Escape>–<i> makes the selected text italic. <Escape>–<I> reverses the
effect.

<Escape>–<u> makes the selected text underlined. <Escape>–<U> reverses
the effect.

<Escape>–<+> increases the font size of the selected text. <Escape>–<->
decreases the font size of the selected text.

<Escape>–<x> “normalises” the text to its default size and font.

<Escape>–<f> removes embedded <CR>’s and <tab>’s from the selected text
(effectively re–wraps the text into a single paragraph).

Figure 2.9: Changing Text fonts, using <escape> key combinations

The <escape> key with an opening delimiter character key (such as ‘[’ or ‘"’)

inserts a pair of the appropriate delimiters around the selection, provided they

do not already have a pair of these delimiters surrounding them, in which case

they are removed. The feature, together with the ability to make a selection by

© Trevor Hopkins and Bernard Horan, 1994

Module 2 23

double–clicking within a pair of delimiters, makes it very easy to add and

remove various brackets, and so on.

There are also some <control> key combinations that you may find of use later:

<Control–t> inserts ifTrue:

<Control–f> inserts ifFalse:

<Control–g> inserts :=

<Control–d> inserts the current date.

Ex 2.6: Try opening a Workspace, and then typing some text into it. Add characters at
different places within the Workspace, moving the caret by using the <select>
mouse button and cursor keys.

Ex 2.7: Experiment with removing characters from the Workspace using the <backspace>,
<delete> and <control–W> keys. Try determining what Smalltalk considers to be a
“word”, when using the <control–W key>. Hint: consider the syntax of the
Smalltalk language.

Ex 2.8: Try making text selections by “drawing through” using the <select> mouse button.
Try deleting the text (using the <delete> or <backspace> key) and replacing the
text by typing in new characters.

Ex 2.9: Experiment with different ways of making selections, including using the
<escape>–<tab> key combination, double–clicking within words and at the
beginning of lines and so on. Also, try selecting the text within various kinds of
delimiters by double–clicking.

Ex 2.10 Experiment with changing the font of the text selection using the <escape> key
combinations. Also, experiment with inserting and deleting pairs of delimiters
around the selection.

Ex 2.11 Experiment with the <control> key combinations (but be careful with <control–c>).

2.21. Editing

In this section, we will consider further editing operations. These operations

invariably operate on the text selection (introduced in the previous section).

Editing operations are selected from the pop–up menu attached to the <operate>

mouse button.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 24

Figure 2.10: Using the cut, copy and paste options (1)

The copy, cut and paste options on the <operate> button menu provide fairly

conventional cut–and–paste style editing functions. The cut option removes the

current selection, and puts it in a (hidden) paste buffer (figure 2.10). This can be

pasted back using the paste option; the text is inserted at the caret, or is used to

replace the current selection, just as if the text had been typed in at the keyboard

(figure 2.11). The resulting Workspace is shown in figure 2.12. The copy option

operates just like the cut option, except that the selection is not removed from

the Workspace.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 25

Figure 2.11: Using the cut , copy and paste options (2)

Figure 2.12: Using the cut , copy and paste options (3)

You should note that the paste buffer is global, and is therefore shared by all text–

editing operations. This means that is possible to cut or copy text from one

Workspace, for example, and paste it into another Workspace. If a copy or cut

operation is performed outside VisualWorks, placing text in the operating

system’s clipboard, that text will be used instead. If the paste option is selected

from the <operate> button menu with a <shift> key held down, a list will appear

containing the last five items put into the paste buffer, possibly including the

contents of the operating system’s clipboard. You can then select the text you

actually want to paste into the Workspace from this list. You can also cut and

paste to and from non–VisualWorks windows.

© Trevor Hopkins and Bernard Horan, 1994

Module 2 26

Any editing operation can be reversed by selecting the undo option from the

<operate> button menu. This operation behaves as a toggle; undoing the

previously undone operation reverts to the original.

Ex 2.12: Try using the copy, cut and paste options from the <operate> button menu. You
should be able to remove text from one part of the Workspace, and replace it
elsewhere. You should also try inserting the same text several times, in different
places.

Ex 2.13: Also, try copying text between different Workspaces. You may have to open another
Workspace window, using the Launcher Tools menu. You may also wish to try the
paste option, using a <shift> key, to display the current contents of the paste
buffer.

Ex 2.14: Try repeatedly replacing a piece of text using the replace… option from the
<operate> button menu. Also, try the effect of the undo <operate> button menu
option.

Ex 2.15: Try searching for text in a Workspace, using the f ind… option.

2.22. Evaluating Smalltalk Code

Unlike most systems, the primary “command” interface to Smalltalk is a

compiler; in fact, the Smalltalk language compiler. “Commands” are therefore

written in the Smalltalk language itself. There is no notion of a separate

“command interpreter”, as in MS–DOS or UNIX, for example.

Workspaces, and other text areas, allow textual expressions to be entered by the

user and sent to the compiler. Once again, it is the text selection which is

important. The d o i t option on the Workspace <operate> button menu

evaluates the selection. This means that simple expressions in the Smalltalk

language can be typed in and evaluated immediately.

More precisely, the text in the selection is fed to the Smalltalk compiler (an

instance of class Compiler, of course). This parses the text and, if there are no

syntax errors, generates code that can be evaluated by the underlying virtual

machine. This code is then evaluated. In practice, it takes less time to compile

and evaluate simple expressions than it takes to explain the process (see

figure 2.13).

Frequently, we will wish to see the result of evaluating an expression. We can do

this by using the print it option from the <operate> button menu. This

compiles and evaluates the selected expression(s) just like the d o i t option but,

in addition, the object resulting from evaluating the code is sent the message

printString. Every object understands this message, and answers with a String

which represents its internal state. The characters in the string are then added to

© Trevor Hopkins and Bernard Horan, 1994

Module 2 27

the Workspace just after the expression which was selected and evaluated, and

they become the current selection.

Figure 2.13: Selecting and evaluating a simple expression

In a Workspace, two kinds of variable may be used, global and temporary. The

code is not being evaluated as a method in some specified class, therefore

instance variables, class variables, and pool variables are not accessible.

Look at the example shown in figure 2.13. When compiled and evaluated, the

selected expression 3+4 causes the message +4 to be sent to the object 3 (an

instance of class SmallInteger). The message comprises a binary message selector,

+, and the argument 4. The resulting object 7 (also an instance of SmallInteger)

then receives the message printString. The resulting String, '7', which just

contains a single character $7 is then placed in the Workspace and made the

current text selection (see figure 2.14).

© Trevor Hopkins and Bernard Horan, 1994

Module 2 28

Figure 2.14: The result of evaluating a simple expression

But what happens if the expression contains syntax errors? The answer is that

the error is detected and indicated. There is also an error correction mechanism

available, which attempts to correct simple typing mistakes and other silly errors.

Consider selecting and evaluating (using the print it option) the following

expression:

2 raiedTo: 10 "Note the spelling error!"

The correct message selector is raisedTo: . On evaluating this expression, a

Confirmer appears (see figure 2.15). The heading of the Confirmer tells us that

the message selector is new; there is no corresponding method in any class,

anywhere in the image. The Confirmer offers three options: you can give up

immediately and edit the text yourself, using abort; you can carry on regardless,

using the proceed option, or you can invoke the correction mechanism, using

the correct it option. If correct it is selected, then one or more message

selectors which are the nearest match to the error are found and presented to the

user (see figure 2.16); if you select a suggested correction, the error is corrected in

the source text, and the compilation and evaluation proceeds. In this example,

there are no further syntax errors, so the compilation and evaluation is

completed (figure 2.17).

© Trevor Hopkins and Bernard Horan, 1994

Module 2 29

Figure 2.15: Syntax error correction in operation (1)

Figure 2.16: Syntax error correction in operation (2)

Figure 2.17: Correction complete

The other options on the <operate> button menu will be considered later.

Ex 2.16: Use the following expressions in a Workspace to discover (a) the current number of
object unused object pointers; and (b) the current amount of free memory:

ObjectMemory current oopsLeft

ObjectMemory current availableFreeBytes

© Trevor Hopkins and Bernard Horan, 1994

Module 2 30

Ex 2.17: Try selecting and evaluating other simple expressions using the print i t <operate>
button menu option. For example, you might like to try some of the other expressions
in figure 5.12.

Ex 2.18: Try inserting deliberate syntax errors and provoke the correction mechanism into
assisting you. You should note that Smalltalk is unable to correct all syntax errors.
In some cases, the correction mechanism will give up.

2.23. The Settings Tool

As its name suggests, the Settings Tool (figure 2.18) contains information useful

to “install” your VisualWorks image. (It may be opened by selecting the

Settings option from the File menu of the Launcher.) These include

initialising the source file manager, selecting the appropriate time zone, default

text style and look–and–feel preferences.

Figure 2.18: The Settings Tool

Ex 2.19: Change the time zone so that it is appropriate for your machine and geographical
location. Ensure that your setting is correct by printing out the result of the
following expression in a Workspace

Time now

© Trevor Hopkins and Bernard Horan, 1994

Module 2 31

(i.e. type and select the expression, then evaluate it using the print i t option from
the <operate> menu.)

2.24. Help

The Help menu (figure 2.20) on the Launcher provides access to the help system.

The menu contains four items; the first two both open the online

documentation (the latter goes directly to the chapter entitled ‘Database Quick

Start Guides’). The third option opens a Browser containing all the methods in

the VisualWorks image that give the user an opportunity to experiment with an

example. The last menu option opens a window describing your release of

VisualWorks.

Figure 2.20: The Help menu

Ex 2.20: Experiment with the example methods.

The online documentation is divided into three “books”, “chapters” and pages.

The titles of the books are: ‘Database Cookbook’ (containing one Chapter),

‘Database Quick Start Guides’ (containing six chapters — only one of which is

complete), and ‘VisualWorks Cookbook’ (containing 31 chapters). It’s worth

taking some time to examine the online documentation, using it as a

complement to this course. For example, Chapter 1 of the ‘VisualWorks

Cookbook’ describes similar material to this module (figure 2.21).

© Trevor Hopkins and Bernard Horan, 1994

Module 2 32

Figure 2.21: The Online Documentation

The window containing the online documentation also provides buttons to gain

access to examples, and to search the chapters.

Ex 2.21: Browse the examples in chapter 1 of the VisualWorks Cookbook chapter of the
online documentation.

© Trevor Hopkins and Bernard Horan, 1994

