
Extensions
Manual

Legal Notices Copyright © 1993 – 1999 by Honeywell Inc.

This is version 5.2.1 of the DOME Extensions Manual.

Email: dome-info@htc.honeywell.com
Web: www.htc.honeywell.com/dome

The information contained in this document is subject to change without
notice. Neither Honeywell nor the developers of DOME make any warranty
of any kind with regard to this guide or its associated products, including but
not limited to the implied warranties of merchantability and fitness for a
particular purpose. Neither shall Honeywell nor the developers be liable for
errors contained herein, or direct, indirect, special, incidental, or
consequential damages in connection with the performance or use of this
guide or its associated products.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission notice
identical to this one.

Trademarks Interleaf is a registered trademark of Interleaf, Inc.

Macintosh is a registered trademark of Apple Computer, Inc.

Microsoft Windows 95, and Windows NT are trademarks of Microsoft Corp.
Microsoft and Windows are registered trademarks of Microsoft Corp.

VisualWorks ia a registered trademarks of ObjectShare, Inc.

FrameMaker, PostScript and Adobe are registered trademarks of Adobe
Systems Inc. Adobe also owns copyrights related to the PostScript language
and PostScript interpreter. The trademark PostScript is used herein only to
refer to material supplied by Adobe or to Adobe-defined programs written
in the PostScript language.

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X Window System and X11 are trademarks of X Consortium, Inc.

Other products or services mentioned herein are identified by trademarks
designated by the companies that market those products or services. Make
inquiries concerning such trademarks directly to those companies.

Contents

...Preface About This Guide . vi

Revision History . vii
Related Documents. vii
Conventions Used in This Guide . viii

Appearance of Windows & Screen Elements viii
Typographic Conventions . viii
The Mouse Button Dilemma . ix
Mouse Button Operations . x

How to Reach Us... xi

1...Introduction . . In This Chapter . 1
Extension Language . 2
DOME Extension Languages . 2

Projector . 2
Alter . 3
Inter-Operability . 4
Programming Environment . 4

DOME Extension Facilities . 4

2...Projector . . In This Chapter . 5
Description. 6
Diagrams . 6
Nodes . 7

Procedure . 7
Port . 7
Statement Block . 7
Alter Code . 9
Constant . 9
Variable . 9
Merge . 9
Fork . 9
Conditional . 10

Connectors . 10
Data Flow . 10
Control Flow . 10

3...Alter . . In This Chapter . 11
Description. 12
Extensions to R4 Scheme . 12

General Purpose Extensions . 12
User Interfacing . 12
GrapE Interface . 12
Object Oriented Programming . 15
Operating System Interface . 16
Dictionaries . 17
 Extensions Manual i

Contents
4...Programming
 Tools

. . In This Chapter. 19
Overview. 20
Projector Environment Viewer. 20

Ready Nodes . 21
Data Flows . 21
Control Flows . 21

Alter/Projector Browser . 21
Structure . 21
Types . 22
Methods . 22
Description . 22

Alter Evaluator . 23
Structure . 23
Definitions . 24
Environments . 24
Programs . 25
Expressions . 26
External Representations . 26

Alter Environment Viewer . 26
Structure . 26
Activation Stack . 27
Bindings . 27

Alter Object Inspector . 28
Structure . 29

Alter List Inspector . 29
Structure . 29

5...Programming
 in Projector

. . In This Chapter. 31
Code Generator Example . 32
Initial Setup. 33
Coding Scenario . 33

6...Programming
 in Alter

. . In This Chapter. 47
Opening an Evaluator . 48
Evaluating Expressions . 48
Entering a Program . 49
Evaluating Definitions . 49
Saving your Alter Program . 50
Closing an Evaluator . 50
Opening an Alter Program File 50
Opening a Program File From an Evaluator 50
Printing . 51

7...Plug-In
Functions

. . In This Chapter. 53
Function Calling Mechanism . 54
Function Entry Point . 55
Registering Functions . 55
Examples . 58
ii

Contents
Count all the nodes . 58
Count the semantic nodes . 59
Summarize nodes and arcs . 61
Summary Report . 62

8...Print Drivers . . In This Chapter. 65
Description . 66

Driver Functions . 67
GraphicsContext Operations . 71
Color Operations . 71
The Procedure Map . 71
Registering a Driver . 72

Example Driver . 73

9...Document
Generators

. . In This Chapter. 77
Document Markup. 78

Document Generators . 80
Stylesheets . 81
Text Formatters . 81

The Generation Process. 81

10...SGML
Generators

. . In This Chapter. 83
Query Operations. 84
Registering a Generator . 85
Example Generator . 86

Choosing a DTD . 86
Creating node types . 87
Writing the generator . 88

11...Text
Formatters

. . In This Chapter. 91
Overview. 92
Formatting Operations . 93
Font Operations . 94
Text-Style Operations . 94
Quantity Operations . 95
Registering a Formatter. 96

12...Stylesheets . . In This Chapter. 99
Overview. 100
Registering a Stylesheet . 100
Example Stylesheet . 101

A...Scheme . . In This Appendix . 103
Selected References . 104
Unimplemented R4 Scheme Elements 104

Index .105
 Extensions Manual iii

Contents
iv

Preface

This preface includes the following topics...

• About this guide

• Revision history

• Related documents

• Conventions used in this guide

• How to reach us
 Extensions Manual v

About This Guide Preface
About This
Guide

This manual describes the extension system available within
the DOME toolset that allows the user to extend the
capabilities of the toolset without requiring source code to it.
The manual describes the extension languages that are
available and the facilities that make use of the extension
languages.

This guide includes:

Chapter 1 Introduction — A description of an extension
language, the extension languages available in
DOME, and the facilities built around the extension
languages

Chapter 2 Projector — How to use DOME’s graphic extension
language

Chapter 3 Alter — Describes DOME’s textual extension
language

Chapter 4 Programming Tools — Describes the DOME
extension system programming tools such as the
browsers and debuggers

Chapter 5 Programming in Projector — An example of using
Projector to create a plug-in function

Chapter 6 Programming in Alter — An example of using the
DOME Evaluator to execute simple Alter routines

Chapter 7 Plug-In Functions — Describes how to integrate
plug-in functions to extend the capabilities of
tools

Chapter 8 Print Drivers — Describes how to integrate print
drivers to allow printing of graphs in different
formats

Chapter 9 Document Generators — Describes the document
generation approach taken by the DOME toolset

Chapter 10 SGML Generators — Describes the SGML
generation portion of the document generator

Chapter 11 Text Formatters — Describes the Text Formatter
portion of the document generator

Chapter 12 Stylesheets — Describes the Stylesheet portion of
the document generator

Appendix A Scheme — Contains references to Scheme related
documents
vi

Preface Revision History
Revision
History

Table 1 describes the evolution of this document. When you
communicate with us, please identify the documentation and
software versions you are using.

Table 1 DOME Extension Manual Revision History

Related
Documents

This guide is your primary reference to the DOME extension
system. Other documents describing DOME capabilities and
disciplines include...

DOME Guide
Manual

The primary “how to” and reference for the DOME core tool-
set.

Alter
Programmer’s

Reference Manual

Technical description of Alter, DOME’s resident variant of the
Scheme extension language. A general-purpose programming
language, Alter can be used to write DOME code generators,
document generators, and a host of other specialized tools.

Publication
Number Rev. Date Description

TRG-M99-002 B 3/99 Updated to DOME Version
5.2.1

TRG-M99-002 A 1/99 Updated to DoME Version
5.2

TRG-M98-002 A 8/98 Updated to DoME Version
5.1

TRG-M97-002 A 3/97 Original manual updated
and reorganized to support
DoME version 5.0
 Extensions Manual vii

Conventions Used in This Guide Preface
Conventions
 Used in This

Guide

Throughout this guide and related documents, various
conventions are used to identify technical terms, computer-
language constructs, mouse and keyboard operations, and
window/screen element appearance.

Appearance of
Windows &

Screen Elements

The windows and screen elements shown in this guide depict
what you would typically see in the Microsoft Windows 95
environment. If you are running DOME on the Macintosh,
UNIX, or Windows NT platform, your actual DOME windows
and screen elements will look different with respect to the title
bar, buttons, menus, and other desktop widgetry.

☞ The important point we’d like to make here is that DOME is platform-
independent, and performs identically on UNIX, Macintosh, and all
supported flavors of Windows...regardless of the desktop decor and
widgetry used.

Typographic
Conventions

In this guide and related documentation, you will encounter
various items distinguished by specific fonts or symbols:

Table 2 Formatting Conventions

Example Description

dome_dir Variable—Indicates an
element for which you must
supply a value

~/model.dome Literal text—Often used for
file path-names and
operating system commands

Transcript show: ‘Hello’. Code fragments

<RETURN>, <ESCAPE>,
<CTRL-C>, <SELECT>,
<OPERATE>

Key names/mouse button
names—Brackets and names
are not to be entered literally

APPLY, REVERT,
FILE:NEW,
LAYOUT:ARC:ROUTEARC

Widgetry selections—Button
or menu selections are
indicated by name...sub-
menus are delimited by
colons

☞ Notes, cautions, warnings—
Indicated by this symbol
pointing to the text
viii

Preface Conventions Used in This Guide
The Mouse
Button Dilemma

Since DOME runs under multiple platforms, we’re obliged to
deal with three distinct breeds of mice in a democratic
manner: the one-, two-, and three-button varieties.

In the case of one-button mice, for example, it would be
confusing (if not insulting) to refer to the <LEFT>, <MIDDLE>
and <RIGHT> buttons. (After all, quantity seldom means
quality.)

To bypass the potentially serious problem of button envy
between our three breeds of mice, we’ve decided to follow the
convention that ParcPlace-Digitalk uses in its documentation—
to use mouse button names that are generically descriptive:
<SELECT>, <OPERATE>, and <WINDOW>. Use the descriptions
below to identify your specific mouse button(s) name(s).

Table 3 Mouse Button Names

1 One-button mouse—The lone mouse button is <SELECT>. To
access the <OPERATE> menu, press the <OPTION> key and
click the mouse button. To access the <WINDOW> menu,
press the <COMMAND> key and click the mouse button.

2 Right-handed two-button mouse—The left and right buttons
are <SELECT> and <OPERATE>, respectively. To access the
<WINDOW> menu, press the <CTRL> key and click the
<OPERATE> button simultaneously. (If you operate your
mouse left-handed, these buttons may be reversed.)

3 Right-handed three-button mouse—The correspondence is
from left to right: Left = <SELECT>; Middle = <OPERATE>;
Right = <WINDOW>. (If you operate your mouse left-
handed, these buttons may be reversed.)

<SELECT> Select a window, object, or menu item;
position the pointer or highlight text

<OPERATE> Bring up a menu of operations that are
appropriate for the current view or selected
object; in certain modes, this button may
have special functions

<WINDOW> Bring up the menu of actions that can be
performed in any DOME window (except
dialogs); also used to cancel certain
operations like arc creation and node
placement
 Extensions Manual ix

Conventions Used in This Guide Preface
Mouse Button
Operations

The following table describes the actions you can perform
with your mouse buttons in the DOME environment.

Table 4 Mouse Button Operations

When you see.. Do this...

<CLICK> Press and release the <SELECT>
mouse button.

<DOUBLE-CLICK> Press and release the <SELECT>
mouse button twice in rapid
succession without moving the
mouse pointer.

<SHIFT>-<CLICK>
<CTRL>-<CLICK>
<META>-<CLICK>

While holding down the <SHIFT>,
<CTRL>, or <META> key, press and
release the <SELECT> mouse button.
x

Preface How to Reach Us...
How to
Reach Us...

We’d love to get your feedback on the DOME software and
documentation. Feel free to drop us a note...

Email: dome-info@htc.honeywell.com
Web: www.htc.honeywell.com/dome

With all communications please include the version number of
the software and/or documentation, as well as the type of
computer and operating system you are using.
 Extensions Manual xi

How to Reach Us... Preface
xii

Introduction 1

. . In This
Chapter

This chapter describes...

• What is an extension language (page 2)

• What extension languages are available from within
DOME (page 2)

• Facilities within DOME that make use of the extension
languages (page 4)
 Extensions Manual 1

Extension Language Introduction
Extension
Language

An extension language is the facility by which a Component/
Infrastructure Developer, as described in the DOME Guide
introduction, implements model transformation and analysis
tools. In addition to providing traditional programming
capabilities, an extension language usually provides extended
capabilities required by the tool making use of the extension
language. DOME makes use of two extension languages that
are fully inter-operable.

DOME
Extension

Languages

DOME’s two extension languages are named Project and Alter
and are the basis of the DOME extension system. This
manual describes Projector/Alter with examples covering
Plug-In Functions, Print Drivers, and Document Generators.

With model-based development tools such as DOME, you first
build a formal, graphical description of the system your
customer wants, then you generate artifacts -- including
documentation and source code -- automatically from your
model.

The Projector/Alter extension system sprouted out of our
desire to give our users a way to write generators themselves.
We began with the premise that the user should be able to
specify a translator graphically. This makes the feature a very
natural extension to DOME, and reduces the learning curve
for most users. Since some (but not all) translators were likely
to have a prominent algorithmic component, we quickly
added the concept of a textual face to the language.
Consequently, there are two mutually compatible ways of
specifying artifact generators in DOME; Projector is the
graphical language and Alter is the textual language.

Projector Projector is a visual programming language (VPL) that
resembles a data flow or control block-diagraming language
with operators connected by wires1. Projector operators are
implemented as subdiagrams where each subdiagram
contains a refinement of the operator being defined. Projector
directly supports graph execution. Users can graphically
specify an operation and then immediately execute it.
Execution of a Projector diagram proceeds in a data flow-like
fashion in which operator calls can be made as soon as they
have data available on all inputs. The Projector debugger
allows the user to see the operation executed in an animated
fashion making it easier to check the correctness of the
operation.

1 In fact, the first prototype of Projector was based on an
existing data flow language called ControlH used to specify
control laws for embedded avionics controls applications.
2

Introduction DOME Extension Languages
Projector is a DOME tool, therefore Projector programs are
created using the standard DOME editing functions. If you
have used other DOME tools, Projector will probably feel very
familiar to you and provide you with an intuitive and natural
programming environment. If you haven’t used a DOME tool
before see the DOME Guide for information on the basic steps
involved in creating and editing a DOME model.

Alter Alter is a nearly complete implementation of the R4 Scheme
language2. Alter contains various extensions to standard
Scheme in order to enhance its functionality as a DOME
extension language. These extensions include user interfacing
primitives, operating system primitives, remote procedure call
capabilities, model querying capabilities, and additional
support for object-oriented programming.

2 Clinger, W. and Rees, J. (eds), “Revised4 Report on the
Algorithmic Language Scheme”

As a variant of the Scheme language, Alter provides
programmers with a simple, yet powerful, tool for writing
extensions. Some of the advantages of a Scheme-based
language are simple syntax, straightforward semantics,
extensibility, publicly available formal specification, and
adaptability to many programming paradigms.

Alter provides a simple and elegant tool for expressing
algorithms. If you are unfamiliar with the Scheme language
please refer to the selected references in Appendix A: Scheme
on page 103. Scheme is a member of the family of Lisp-like
languages, a set of programming languages known for their
simplicity and ease of use.

This is one of the great advantages of Lisp-like languages: They
have very few ways of forming compound expressions, and
almost no syntactic structure. All of the formal properties can be
covered in an hour, like the rules of chess. After a short time we
forget about syntactic details of the language (because there are
none) and get on with the real issues -- figuring out what we
want to compute, how we will decompose problems into
manageable parts, and how we will work on the parts.3

You can learn Alter in a short amount of time, leaving you
more time to concentrate on the important task of writing
extensions that will make your modeling environment more
productive and useful.

3 Abelson, Harold, and Gerald Jay Sussman, Structure and
Interpretation of Computer Programs, New York: The MIT Press,
1985, p. xvi.
 Extensions Manual 3

DOME Extension Facilities Introduction
Inter-Operability The Projector and Alter languages overlap significantly in
their data and control architectures. In fact, each can transfer
data and control into the other. Alter operators (procedures in
Scheme parlance) can call operators defined in Projector and
vice versa. If a Projector operator calls an Alter operator,
execution on that operator does not start until all of the input
wires (parameters) have been satisfied with available data. If
an Alter operator calls a Projector operator, that operator can
proceed immediately because Alter code must supply values
for all inputs simultaneously.

The two languages have much of the same functionality but,
they each have a distinctive programming style. Projector’s
strength is describing flows of data and transfer of control, but
it is very weak at describing the intricate algorithmic details
that often lurk in the bowels of any computer program. Alter’s
strength is simply and concisely describing algorithms, but
due to the functional nature of scheme programs they are
often fragmented, and getting a feel for the flow of
information and control within an Alter program can be a
grueling task. The integration of Projector and Alter allows the
user to take advantage of the strengths and avoid the
weaknesses of each language.

Programming
Environment

Whether a translator is implemented in Projector or Alter
there are numerous capabilities available to the user that
directly support the development of a translator. These
capabilities include a system browser, a suite of predefined
operators, a debugging/tracing facility, and an error reporting
mechanism. These capabilities provide for a very functional
iterative development environment.

DOME
Extension
Facilities

DOME provides several facilities that make use of the
extension languages including Plug-In Functions, Print
Drivers, and Document Generators. Each of these facilities are
described in great detail in later chapters of this document.

The Plug-In Function facility allows the user to execute any
Projector/Alter program simply by selecting it from the
TOOLS:PLUG-INS menu of an editor.

The Print Driver facility allows the user to print the contents of
a diagram to a file in a specialized format.

The Document Generator facility allows the user to easily
create new documents.
4

Projector 2

. . In This
Chapter

This chapter describes...

• The Projector Editor (page 6)

• The nodes that may be used in a Projector Diagram
(page 7)

• The connectors that may be used in a Projector Diagram
(page 10)
 Extensions Manual 5

Description Projector
Description This chapter assumes you are familiar with the basic features
of DOME. In particular, this chapter presents Projector, a
visual programming language that is the graphical part of
DOME’s extension languages. If you are unfamiliar with the
basic operations of DOME please refer to the DOME Guide
manual.

One way to think of a Projector program is to envision a flow
of data through the diagram. Input data enters the diagram
through input ports. Data flows transport data between ports.
Procedure nodes perform operations upon data. Control flows
pass control from one node in the diagram to another and can
be used to synchronize operations.

Before getting started, here’s a simple example of what a
Projector diagram looks like. When executed it presents a
dialog to the user specifying the number of nodes in a
diagram. As you can see, there are several tools for creating
nodes and connectors within the diagram. Each tool is
described in detail in the following sections.

Figure 1 Example Projector Diagram

Diagrams All diagrams in a Projector model represent implementations
of procedures except the top most diagram which represents
the starting point for the model.

In addition to the standard properties, a Projector
implementation has the following additional properties:

• Break - If break is set to true then the Projector debugger is
opened at the point when the implementation is to begin
execution.

• Class - The name of the class to associate this
implementation with. Since Projector is object oriented it is
6

Projector Nodes
possible for a procedure to have multiple implementations
each of which handles a different class of object.

• Entry - When a Projector model is used as a Plug-In
Function this value represents the name of the procedure
that should be called upon start-up. This property is only
applicable to the top diagram of the model.

• Load File - When a Projector model is used as a Plug-In
Function the file specified by this value is loaded before
execution of the entry procedure begins. The load file is a
file containing Alter code. This property is only applicable
to the top diagram of the model.

Nodes There are nine different types of nodes that can be placed
inside a Projector diagram. These include Procedures, Ports,
Statement Blocks, Alter Codes, Constants, Variables, Merges,
Forks, and Conditionals.

Procedure A Procedure represents a call to an Alter operation, an Alter
procedure, or a Projector procedure implementation. If the
procedure has no implementation then the procedure must be
a call to either an Alter Operation or an Alter procedure which
has the same name as the procedure. If the procedure has an
implementation then the call is resolved during runtime to
determine if the procedure implementation is executed or an
Alter operation is executed.

Procedure nodes are hierarchical and can have multiple
subdiagrams. The procedures in a projector diagram are
reusable so in addition to the standard editor there is a Shelf of
reusable procedures that can be edited via the Shelf Browser.

In addition to the standard properties, a procedure has the
following additional property:

• Category - The category is used by the Alter/Projector
Browser as an organizational aide.

Port A port is a point where either data enters or exits a node. Ports
can be placed on procedures, statement blocks, and Alter code
nodes.

Statement Block A Statement Block allows for block structuring within a
diagram. It prevents execution of the nodes within it until all
of its input ports have data and all incoming control flows are
ready.

In addition to the standard properties, a statement block has
the following additional property:

• Break - If break is set to true then the Projector debugger is
 Extensions Manual 7

Nodes Projector
opened at the point when the statement block is to begin
execution.
8

Projector Nodes
Alter Code An Alter Code node provides a mechanism to execute alter
code from within a Projector diagram. An Alter Code node
can have multiple inputs and multiple outputs. When an Alter
Code node is executed, an environment is created in which the
input ports’ names are bound to the arguments that were
passed in based strictly on the ordering of the input ports.
When the code is done executing the result is passed directly
to the output port if there is only one output port or the result,
which is a list of associations where the key is the output port
name and the value is the result for the port, is broken apart
and passed to the individual output ports.

In addition to the standard properties, an alter code node has
the following additional property:

• Code - The alter code to be executed.

Constant A Constant passes the result of evaluating its value to each of
its outgoing data flows.

In addition to the standard properties, a constant has the
following additional properties:

• Show - If the constant has no name then the value property
of the constant is normally displayed in its entirety. The
show property specifies how many characters of the value
property should be shown in the diagram. If zero is
specified and no name is present then the entire value
property is displayed.

• Value - The alter code to be executed that computes the
constant. The code can be as complex as necessary or as
simple as the number 1.

Variable A Variable is essentially a global variable. Variables with the
same name used in multiple diagrams represents the same
value.

In addition to the standard properties, a variable has the
following additional property:

• Collect - Should the data being assigned to the variable
replace the data or append it to the end of the current
value where the current value must be a list.

Merge A Merge node is used to pass data on from one of many data
flows to a single data flow. A merge node can execute as soon
as there is data on one incoming data flow.

Fork A Fork is used to split a data flow into two or more data flows.
 Extensions Manual 9

Connectors Projector
Conditional A Conditional node provides a mechanism to pass control to
another node. It accepts a single input. If the input is false then
those nodes connected to the false control port are sent a
control token. If the input is not false then those nodes
connected to the true control port are sent a control token.

Connectors There are two different types of connectors that can be placed
inside a Projector diagram. These are Data Flows and Control
Flows.

Data Flow A Data Flow is used to pass data along to connected nodes.
The data can be transferred in different ways. If the data is
transferred in simple mode then each piece of data is passed
directly down the data flow. If the data is transferred in
maintain mode then the data is kept on the data flow even
after the destination has received the value. If the data is
transferred in build mode then all data on the data flow is
grouped into a collection before it is passed to the destination
node. If the data is transferred in reduce mode then the data,
which must be a collection, has each element placed
individually on the data flow and passed to the destination
node.

In addition to the standard properties, a data flow has the
following additional properties:

• Trace - If trace is set to true then as data is added to and
removed from the data flow a message is shown in the
DOME transcript window stating that fact.

• Transfer - Specifies how the data is transferred to the
destination node. See Above.

Control Flow A Control Flow is used to pass control tokens to destination
nodes. Nodes that have control flows entering them cannot be
executed until all incoming control flows have tokens on
them. After a node is executed all outgoing control flows have
tokens placed on them.
10

Alter 3

. . In This
Chapter

This chapter describes...

• The Alter extension language (page 12)

• The extensions add to Alter (page 12)
 Extensions Manual 11

Description Alter
Description Alter is based on the Scheme programming language. If you
are unfamiliar with the basic syntax and semantics of the
Scheme programming language please see the Scheme
Appendix starting on page 103 for selected references. This
chapter provides an overview of the Alter programming
language.

Alter is a nearly complete implementation of R4 Scheme. Most,
but not all, of the features of R4 Scheme have been
implemented. The Scheme Appendix starting on page 103
contains a description of those elements not currently
implemented in Alter.

Extensions to
R4 Scheme

Alter includes some extensions to R4 Scheme. These
extensions include the following:

• General purpose additions and extensions to primitives

• Extensions for user interfacing

• Extensions for manipulating GrapE structures

• Support for Object-oriented programming (OOP)

• Operating System Interface

• Dictionaries

The following sections briefly describe each of these
extensions. Please see the Alter Programmers Reference
Manual for more information.

General Purpose
Extensions

Some primitives have been added to Alter for performance
and/or convenience purposes. The semantics of some Scheme
primitives have been expanded to function on objects of types
other than those defined in the standard.

User Interfacing Alter operates in a windowed, graphics-capable environment.
In order to take advantage of this environment some extra
primitives are included in Alter. These extra primitives
include procedures to open dialogs that request information
from the user.

Please see “User Requests” in the Alter Programmer’s
Refernce Manual for more information on these user interface
extensions.

GrapE Interface Alter was developed in order to provide a way for users to
write their own back-end generators that would produce code
and documentation, or perform analysis of models. In order to
provide this capability, Alter contains many primitives that
allow the user to traverse, modify, and query the GrapE
objects that comprise DOME models.
12

Alter Extensions to R4 Scheme
A complete list of GrapE Interface primitives can be found in
the Alter Programmer’s Reference Manual. The following
section highlights the capabilities provided by these
extensions.

navigation Several primitives provide the capability to traverse a graph.
These primitives allow users to move from node to node along
the connectors that connect nodes and to move up and down
within a hierarchical model.

Most algorithms for solving problems on a graph examine or
process each node or connector. Such algorithms are often
referred to as graph traversals. The Projector/Alter extension
system provides a user with the ability to write graph
traversal algorithms.

A node in a graph can be connected to other nodes via
connectors. To get a list of the connectors entering the node
use the incoming-arcs method. To get a list of the
connectors leaving the node use the outgoing-arcs
method.

Some nodes in graphs are hierarchical. To get the parent of a
node use the parent method. To get a list of the subdiagrams
of a hierarchical node use the subdiagrams method.

A connector in a graph usually has a direction. The node at the
source of the connector is called the origin and the node at the
end of the connector is called the destination. You can use the
source method to get the source node for a connector and the
destination method to get the destination node for a
connector.

The following example demonstrates how to use the model
querying functions to perform a depth-first search of a graph.

Example 1: Depth-First Search

(find-operation mark!)
(add-method (mark! (node) self)

(letrec
((d (get-property"userSettings"

(graph self)))
(m (dictionary-ref d ’marked-nodes

’())))
(set! m (cons self m))
(dictionary-set! d ’marked-nodes m)
(set-property! "userSettings"

(graph self) d)))
(find-operation unmark!)
(add-method (unmark! (graphmodel) self)

(letrec((d(get-property "userSettings"
self)))
 Extensions Manual 13

Extensions to R4 Scheme Alter
(dictionary-set! d ’marked-nodes ’())
(set-property! "userSettings" self d)))

(find-operation unmarked?)
(add-method (unmarked? (node) self)

(letrec
((d(get-property"userSettings"

(graph self)))
 (m(dictionary-ref d ’marked-nodes ’())))
(if(member self m) #f #t)))

(find-operation dfs)
(add-method (dfs (node) self visit)

(let
((o (map destination

(outgoing-arcs self))))
(visit self)
(mark! self)
(for-each (lambda (n) (dfs n visit))

(select o unmarked?))))

modifying The set-property! primitive provides a general facility for
modifying the values of an object’s properties. Primitives also
exist for adding/removing nodes and connectors to/from a
model and changing the display properties (such as position)
of objects.

querying A DOME model is a web of information similar in some
respects to the World Wide Web. The nodes and connectors in
the model are similar to web pages. Like web pages, nodes
and connectors have content called properties. These properties
contain information of various types, just like a web page can
display several types of information, including links to other
documents. The Projector/Alter extension system provides
the user with the ability to navigate around DOME models in
much the same way you would browse a set of web pages.

To get the value of a property use the get-property
method. To set the value of a property use the set-
property! method. To determine whether an object has a
particular property set use the has-property-set?
method. To remove any value that is bound to a property use
the unset-property! method.

Besides these generic querying methods, many standard
properties can be queried by other predefined methods. For
example the name property of any GrapEThing can be
obtained with the name method and set with the name-set!
method. Please see the GrapE Interface section in the Alter
Programmer’s Reference Manual for a description of other
standard model query methods.
14

Alter Extensions to R4 Scheme
Object Oriented
Programming

Alter provides support for object-oriented programming
(OOP). These extensions allow users to define their own types
and define operations for those types. Alter’s implementation
of types and operations is derived from the Oaklisp language1.
The following section highlights some of the capabilities
provided by Alter’s partial implementation of the Oaklisp
language.2

1 Pearlmutter, Barak, and Kevin Lang, “The Oaklisp Language
Manual”

2 This section is adapted from “The Oaklisp Language
Manual”.

Objects and Types Everything in Alter is an object. Objects are instances of types.
A type defines a set of operations that can be performed on
instances of itself. The make procedure allows users to define
new types as well as create instances of types. Also provided
are primitives for querying objects for their type, subtypes,
supertypes and instance variables.

In order to allow for abstraction and modular design of objects
with complex behavior, a type can have multiple supertypes.

To create an object in Projector/Alter use the make operation.
By default, the Projector/Alter system provides two make
methods.

One method is defined on for objects of type type.

(make type) => an object

This method is used to make instances of the argument type.

The second method is defined for objects of type meta-type.

(make type ivars supertypes) => a type

This method is used to create new types. The new type
inherits from the types in the supertypes list and has instance
variables defined in the ivars list.

Operations and
Methods

Methods for performing operations on an object are provided
by the object’s type. Methods are inherited from supertypes.
Therefore, a subtype only needs to provide those methods
which distinguish it from its supertypes.

Operations are objects in their own right. When an operation
is performed on an object, the method defined for the object’s
type is used. In order for methods to be defined for a
particular operation, the operation must exist. Operations are
created with the find-operation operation.

(find-operation op-name) => an operation
 Extensions Manual 15

Extensions to R4 Scheme Alter
Alter first checks the current lexical environment for a
binding. If one exists and the value is an operation, Alter
returns that value. If one exists and it is not an operation, an
error occurs. If a user-defined binding does not exist, but a
predefined binding does, Alter binds the symbol in the current
lexical environment to a surrogate operation that allows the
user to add methods without disrupting the space of
predefined symbols; a surrogate handles calls just like a
normal operation, except that it can forward calls to the
predefined operation if it is given an object that falls outside of
its interface range.

If neither a user-defined or predefined binding exists, Alter
creates a new operation and binds it to the given symbol. The
return value of find-operation is the new or existing operation
(or surrogate).

Once an operation has been created the add-method
operation can be used to define methods for the operation on
types.

(add-method (op (type) arg-list) body)
=>procedure

Methods are procedures. The procedure defined by the add-
method operation is invoked when the operation op is
performed on an object of type type. The arg-list provides the
formal arguments for the procedure and the body provides the
expressions that make up the body of the procedure. The
procedure created by add-method could also be created by
the following lambda expression.

(lambda (arg-list) body) => procedure

Sometimes a method doesn’t want to override the inherited
method completely, but only wishes to extend its behavior.
The ^super operation allows dispatching to supertypes.

(^super type op self args)

This is just like (op self args) except that the method search
begins at type rather than at the type of self. The argument type
specifies which supertype the method search should begin at.
This is necessary due to the existence of multiple inheritance.

Operating
System Interface

R4 Scheme provides minimal specification of interfaces to the
operating system. Alter functions in an environment that
provides highly portable access to the underlying operating
system. By taking advantage of this operating system
interface, Alter can provide some extra primitives to
programmers to allow them to access the host file system in a
generic way.
16

Alter Extensions to R4 Scheme
Please see the OS Interface section in the Alter Programmer’s
Reference Maanual for more information on these OS interface
extensions.

Dictionaries In order to provide efficient keyed access to information Alter
provides a dictionary-type. A dictionary is like an alist except
that it has an implementation other than a list. This
implementation provides more efficient access to information.

Please see the Dictionaries section in the Alter Programmer’s
Reference Manual for more information on the dictionary-type
and its operations.
 Extensions Manual 17

Extensions to R4 Scheme Alter
18

Programming Tools 4

. . In This
Chapter

This chapter describes...

• The Projector Environment Viewer (page 20)

• The Alter/Projector Browser (page 21)

• The Alter Evaluator (page 23)

• The Alter Environment Viewer (page 26)

• The Alter Object Inspector (page 28)

• The Alter List Inspector (page 29)
 Extensions Manual 19

Overview Programming Tools
Overview DOME provides a set of tools for developing Projector/Alter
programs. The tools include the following:

• Projector Editor (described in the Chapter “Projector” on
page 5)

• Projector Environment Viewer

• Alter/Projector Browser

• Alter Evaluator

• Alter Environment Viewer

• Alter Object Inspector

• Alter List Inspector

To familiarize you with the basic features of the Projector/
Alter Programming Tools, this chapter will lead you through a
brief description of each of the tools.

Projector
Environment

Viewer

The Projector Environment Viewer provides a mechanism for
examining the Projector execution environment, stepping
through a diagram, and debugging a Projector program. It is
opened when a break is encountered on an procedure
implementation or a statement block.

Figure 2 Projector Environment Viewer

The Projector Environment Viewer is made up of three areas:
ready nodes, data flows, and control flows areas.
20

Programming Tools Alter/Projector Browser
Ready Nodes The ready nodes area displays the nodes in the diagram that
are ready to be executed. The user can select any one of the
ready nodes and press the EXECUTE NODE button to have that
node execute. Pressing the EXECUTE ALL NODES button causes
all ready nodes to execute. Pressing the PROCEED button
causes the view to go away and allows execution of the
Projector diagram to continue. Pressing the TERMINATE button
causes the viewer to close and terminate execution of the
diagram. Pressing the VIEW button causes the selected ready
node to be selected in the diagram in which it is contained and
if that diagram is not open it is opened for the user.

Data Flows The data flows area shows all of the data flows that are in the
diagram. Selecting a data flow will cause its value to be
displayed in the Value field.

Control Flows The control flows area shows all of the control flows that are in
the diagram. Selecting a control flow will cause the tokens
field to display the number of tokens on that control flow.
There is also an Environment button in the control flows area
that opens an Alter Environment Viewer for the user.

Alter/
Projector

Browser

The Alter/Projector Browser offers a mechanism for users to
browse types and methods that have been defined in an
environment. Its capabilities include browsing classes,
categories, and methods, and creating instances of methods
for use in Projector diagrams.

To open a Projector Browser (more than one can be open at a
time), select the Tools:Browser menu from a projector editor or
click on the BROWSER button in an Alter Evaluator.

Structure The Alter/Projector Browser has a title bar, a tool bar, three
upper views, and one lower view as shown in Figure 3. Each
view provides a lower level of detail in the environment
library, ending with the description subview, which describes
a single method. The CREATE button is used by Projector
programmers to create operation calls objects in a Projector
diagram. To create an operation call, press the CREATE button,
move to a Projector diagram, and press the <Select> button at
the location where the operation call should be located.
 Extensions Manual 21

Alter/Projector Browser Programming Tools
Figure 3 The Alter/Projector Browser

Types The type of an object determines its behavior when operations
are performed on it. A type specifies the behavior of an object
by providing methods that are used to perform operations on
that object. A single type, such as string-type, can respond to
any number of operations. For the sake of convenience and
conceptual clarity, they are placed in functional groups called
categories. In the second view, all of the categories for the
currently selected type are displayed. For string-type, there
are twelve categories. The “converting” category is selected in
Figure 3.

Methods The third view displays all of the methods in the currently
selected category. These methods are objects in their own
right. They can be created dynamically, stored in data
structures, returned as results of other operations, and so on.

Description The bottom view is not a list manager like the other three. It is
a read only view that provides a description of the method
that is selected in the third view. The description is different
depending on which programming environment was used to
create the method.

Alter methods The description for a method that was implemented using
Alter is given as text. The textual description is formatted in
the following way. The header provides a template for a call to
the method and a description of the type of object the method

TYPES

CATEGORIES

METHODS

DESCRIPTION

CREATE BUTTON
22

Programming Tools Alter Evaluator
evaluates to. Method names in templates are in boldface type,
while arguments are italicized. The symbol “=>’ should be read
“evaluates to”. Thus the header line

(stringcase-down string) => string

indicates that the method stringcase-down takes one
argument, a string, and evaluates to string.

Projector methods The description for a method that was implemented using
Projector is displayed graphically as a Projector Procedure
node. The node displayed is the same as the node displayed
on the Projector shelf.

Alter
Evaluator

The Alter Evaluator is a tool for writing, testing and
debugging Alter programs. The evaluator also provides access
to the other Alter Programming Tools.

To open a new evaluator (more than one can be open at a
time), select TOOLS:ALTER EVALUATOR menu option from the
DOME Launcher main menu or select the TOOLS:ALTER
EVALUATOR menu option from any DOME diagram editor.

Figure 4 The Alter Evaluator

Structure The evaluator has a title bar, a menu bar, a tool bar, two views,
and a field as shown in Figure 4. The TITLEBAR indicates the
filename; the MENUBAR offers access to additional
functionality; the ENVIRONMENT button offers access to the
Alter Environment Viewer; the BROWSER button provides
access to the Projector Browser; the DEFINITIONS view provides
an area for editing expressions and definitions that constitute

DEFINITION VIEW

INPUT FIELD

OUTPUT VIEW
 Extensions Manual 23

Alter Evaluator Programming Tools
an Alter program; the INPUT field allows entry of expressions
to be evaluated interactively; and finally, the OUTPUT view
displays the results of evaluated expressions and definitions.

Definitions The Alter programming language provides a means for using
names to refer to computational objects.1 Such a name
identifies a variable whose value is the object.

In Alter the operator for naming things is called define.

(define pi 3.14)

Evaluating this expression causes the Alter interpreter to
associate the value 3.14 with the name pi.

Once a name has been defined to be a value, the value can be
referred to by its name. For example, if we have evaluated the
define expression from above, then

pi => 3.14

The expression pi evaluates to its value.

Define provides a simple means for abstraction. It allows us
to use simple names to refer to the results of compound
operations. The Alter interpreter allows these name-object
associations, called bindings, to be created incrementally. This
feature promotes incremental development and testing of
programs. Due to this feature, Alter programs often consists of
a large number of simple procedures.

1 This section adapted from Abelson and Sussman, The
Structure and Interpretation of Computer Programs New York:
The MIT Press, 1985.

Environments The possibility of associating values with symbols and later
retrieving them, requires that the interpreter maintain some
memory that keeps track of the bindings. This memory is
called the environment. The memory that contains definitions is
the global, or top-level, environment.

Often we wish to keep track of the history of a system as a
program runs. This state is often kept track of by a variable. In
order to keep track of the state of a system we must have a
way to change the value associated with a name.

Alter has an assignment operator, called set!, that allows
programs to change the value associated with a name. The
name set! reflects the naming convention in Scheme that
operators that change the value of variables end with an
exclamation point.

(set! pi (+ 3 2))
24

Programming Tools Alter Evaluator
Set! changes pi so that its value is the result of evaluating (+
3 2). The operator set! presents a problem. The variable pi is
a name defined in the global environment, and is freely
accessible to any procedure. With the existence of set!, it
becomes necessary to be able to hide some variables so that
their values cannot be indiscriminately changed.

We can use the let procedure to create local environments.
Bindings in local environments are only accessible from within
that environment and environments that are local to it. For
example,

(define circumference
(let ((pi 3.14))

(lambda (radius)
(* pi (* radius radius)))))

In this example, a local environment is created. In this
environment the symbol pi is bound to the value 3.14. A
procedure is defined within the local environment. Inside this
procedure the symbol pi is referenced. Because the procedure
is within the scope of the local environment, it refers to the
value 3.14. The value 3.14 is bound to the symbol pi only in
this local environment. Any bindings in the global
environment still exist. For example, assuming our previous
examples were evaluated in the same environment in which
circumference was defined

(circumference pi) => 78.5

Since pi is bound to 5, the result of (+ 3 2), in the global
environment, a call to circumference with pi as it argument
returns the circumference of a circle with radius 5.

Programs A program consists of a sequence of expressions and
definitions. Programs are typically stored in files or entered
interactively into the DEFINITIONS VIEW of the Evaluator.

Definitions occurring at the top level of a program can be
interpreted declaratively. They cause bindings to be created in
the top level environment. Expressions occurring at the top
level of a program are interpreted imperatively; they are
executed in order when the program is invoked or loaded, and
typically perform some kind of initialization.

Program code that is entered interactively into the DEFINITIONS
VIEW is evaluated upon selection of the EDIT:EVALUATE item
from the menu bar. Program code that is loaded from a file is
evaluated immediately. The result of evaluating each
expression or definition in the program is displayed in the
OUTPUT view of the Evaluator.
 Extensions Manual 25

Alter Environment Viewer Programming Tools
Expressions An Alter expression is a construct that returns a value, such as
a variable reference, literal, procedure call, or conditional.

The INPUT FIELD of the Evaluator allows the user to enter
expressions interactively. The expressions are evaluated in the
top-level environment upon pressing the <RETURN> key and
the results are presented in the Evaluator’s OUTPUT VIEW.

External
Representations

An important concept in Alter is that of the external
representation of an object as a sequence of characters. For
example, an external representation of the integer 28 is the
sequence of characters “28”, and an external representation of
the integers 8 and 13 is the sequence of characters “(8 13)”.

The OUTPUT VIEW of the Evaluator presents the external
representation of objects that result from the evaluation of
expressions and definitions, if one exists. If no external
representation exists, a pound sign (#) followed by a name
enclosed in angle brackets (<>) is displayed. For example, a
procedure might be displayed as “#<procedure1234>”.

Alter
Environment

Viewer

When a program error occurs, an Environment Viewer
appears, displaying the activation stack, which lists
procedures that were waiting for a return when the
breakdown occurred. The Environment Viewer enables you to
trace the program flow leading to the error, examine the
values of arguments at each stage of execution, and view the
bindings that are defined in the execution environment.

You can also invoke the Environment Viewer by pressing the
ENVIRONMENT BUTTON on any Evaluator Window (as with the
Evaluator Window, more that one Environment Viewer can be
open at a time). When the Environment Viewer is invoked this
way, it does not display an error message (no error occurred)
nor does it display anything in the activation stack (nothing is
being executed). In this mode of operation, the Environment
Viewer provides a view of the bindings that are currently
defined in the environment.

Structure The Environment Viewer has a title bar, menubar, two buttons,
a field, and four views as shown in Figure 5. The UP button
causes the previous record in the activation stack to be
displayed; the DOWN button causes the next record in the
activation stack to be displayed; the ERROR view displays the
error message; the PROCEDURE field displays the name of the
procedure that is on the top of the activation stack; the
ARGUMENTS list displays the values of the arguments to the
procedure named in the PROCEDURE field; the BINDINGS list
26

Programming Tools Alter Environment Viewer
displays the symbols that are bound in the environment; and
finally, the VALUE view displays the object that the currently
selected variable in the BINDINGS list is bound to.

Figure 5 The Alter Environment Viewer

Activation Stack The activation stack is a stack of activation records. An
activation record can be thought of as a pair whose car is an
executable (procedure or operation) and whose cdr is the list
of arguments passed to the executable. Each time a procedure
is called it is placed on the activation stack. When a procedure
is through being executed it is removed from the stack.

The activation stack area of the Environment Viewer consists
of the PROCEDURE field, ARGUMENTS list, UP button, and DOWN
button. This area enables the user to select a particular
activation record for viewing (by moving up and down in the
stack) and displays the contents of the current record. The
name of the executable of the selected activation record is
displayed in the PROCEDURE field and the list of arguments is
displayed in the ARGUMENTS list. The user can inspect an
argument by selecting it in the ARGUMENTS list and choosing
INSPECT from the <OPERATE> menu.

Bindings Any identifier that is not a syntactic keyword may be used as a
variable. A variable may name a location where a value can be
stored. A variable that does so is said to be bound to the
location. The set of all visible bindings in effect at some point
in a program is known as the environment in effect at that
point. The value stored in the location to which a variable is
bound is called the variable’s value. By abuse of terminology,

ERROR VIEW

ARGUMENTS LIST

BINDINGS

PROCEDURE FIELD
 Extensions Manual 27

Alter Object Inspector Programming Tools
the variable is sometimes said to name the value or to be
bound to the value. This is not quite accurate, but confusion
rarely results from this practice.

Alter is a statically scoped language with block structure. To
each place where a variable is bound in a program there
corresponds a region of the program text within which the
binding is effective. The region is determined by the particular
binding construct that establishes the binding; if the binding is
established by a lambda expression, for example, then its
region is the entire lambda expression. Every reference to or
assignment of a variable refers to the binding of the variable
that established the innermost of the regions containing the
use.

If there is no binding of the variable whose region contains the
use, then the use refers to the binding for the variable in the
top level environment, if any; if there is no binding for the
identifier, it is said to be unbound.

The initial (or “top level”) Alter environment starts out with a
number of variables bound to locations containing useful
values, most of which are primitive procedures that
manipulate data. These “predefined bindings” are not
displayed in the bindings area of the Environment Viewer.
Only bindings that are created or modified by the user are
displayed.

The bindings area of the Environment Viewer consists of the
VARIABLES list and VALUE view. This area enables the user to
browse the environment that is in effect at the point in the
execution when the error occurred. If the viewer was invoked
manually by the user (not in response to an error), then the
bindings area displays the top level environment.

The VARIABLES list displays all bound variables in the
environment. The VALUE view displays the value that the
currently selected variable is bound to. The user can inspect a
variable by selecting it in the VARIABLES list and choosing
INSPECT from the <OPERATE> menu.

Alter Object
Inspector

An object inspector is a window that is used to examine
objects other than lists (lists are inspected by list inspectors,
see Alter List Inspector below). An object inspector also allows
the user to evaluate code within the environment of the
inspector.

To open an object inspector, use one of the methods available
to inspect bindings on one of the programming tools.
28

Programming Tools Alter List Inspector
Figure 6 Alter Object Inspector

Structure An object inspector has a TITLE BAR, a BINDINGS list and a
VALUE view. The TITLE BAR indicates the type of object being
inspected. The BINDINGS list provides a list of the bound
variables in the inspectors environment. The VALUE view
displays the value bound to the variable selected in the
BINDINGS list. The VALUE view also allows the user to enter
and evaluate Alter expressions. The expression can be simply
evaluated for effect or the result of the expressions can be
printed or inspected.

Alter List
Inspector

A list inspector is a window that is used to examine a list
object. The list inspector displays the contents of the CAR field
and the contents of the CDR field. It also allow either of the
fields to be inspected.

To open a list inspector, use one of the methods available to
inspect bindings on one of the programming tools to inspect a
variable that is bound to a list.

Figure 7 Alter List Inspector

Structure A list inspector has a TITLE BAR, two buttons, and two views.
The TITLE BAR indicates the type of object being inspected.
The INSPECT CAR button allows the user to inspect the
contents of the list’s CAR field. The CAR VIEW displays the

BINDINGS LIST

VALUE VIEW

CAR VIEW

CDR VIEW

INSPECT CAR BUTTON

INSPECT CDR BUTTON
 Extensions Manual 29

Alter List Inspector Programming Tools
contents of the list’s CAR field. The INSPECT CDR button allows
the user to inspect the contents of the list’s CDR field. And
finally, the CDR VIEW displays the contents of the list’s CDR
field.
30

Programming in Projector 5

. . In This
Chapter

This chapter describes...

• How to use Projector to create a Plug-In Function
(page 32)
 Extensions Manual 31

Code Generator Example Programming in Projector
This tutorial provides a tour of the key features of the Projector
language and editing tool1. This is accomplished by the
construction of a sample translator. A code generator to
generate Alter code from a Coad-Yourdon Object-Orient
Analysis (CYOOA) model is designed and implemented.

It is assumed that the reader has a basic knowledge of
computer programming languages. The reader should
certainly be familiar with the Scheme language, and
understand the concepts of Scheme procedures. In addition, it
is assumed that the reader has read the DOME Guide
introduction and understands concepts such as the DOME
inspector and using DOME-wide menus.

1 This example may be found in the .../tools/projector/
examples/cy2alter.dom file that is delivered with DOME.

☞ If you are unfamiliar with the basic operations of DOME please see
the DOME Guide manual.

It is also assumed that the reader is familiar with object-
oriented analysis, design and programming and is familiar
with the CYOOA notation and the DOME CYOOA tool.

☞ If you are unfamiliar with the DOME Coad-Yourdon Object-
Oriented Analysis tool please see the Coad-Yourdon Object-Oriented
Analysis appendix in the DOME Guide manual.

Code
Generator

Example

This tutorial will lead you through the steps necessary to
complete the development of an Alter code generator for the
DOME Coad-Yourdon O-O Analysis tool.

The code generator will produce Alter type definitions for
each of the classes defined in a CYOOA model. The generator
can easily be enhanced to generate method definitions for
accessor functions for instance variables and to generate
method stubs for any services defined on a class.

The specified Projector model will have four Projector
procedures:

1 generate-alter — the entry point to the program.

2 get-output-port — prompts the user for a filename and
returns an output port on that file.

3 write-definition — generates the type definition code for a
class.

4 write-class-definition — generates the Alter code
necessary to define the class and bind it to a variable.

The model will also contain four Projector Alter code blocks:
32

Programming in Projector Initial Setup
1 write-class-comment — generates a header comment for
the class.

2 superclasses — returns the superclasses of a class.

3 dc-parent — used by the superclasses procedure.

4 gs-parents — used by the superclasses procedure.

Some support procedures will be defined as well.

Initial Setup Initially, the user starts DOME. The DOME launcher will
appear after a few moments. The user opens a new model by
selecting FILE:NEW, and then selecting Projector Diagram from
the list.

Coding
Scenario

As a result of opening a new Projector Diagram, the top level
diagram is displayed in an editor. Many predefined
procedures are defined and available through the Alter/
Projector Browser (see page 21). The browser provides the
user with a view of the operators/procedures and classes
available for use in developing a Projector program, including
procedures defined by the user.

This tutorial uses a mixture of the top-down and the bottom-
up design approaches. Pure top-down or pure bottom-up
design is possible but for ease of understanding the tutorial a
mixture of both is used. The tutorial will first guide the user
through the creation of the main procedure named
generate-alter. Next, the get-output-port, write-
definition, and write-methods procedures are created.
Finally, the implementation for the generate-alter
procedure is specified and invoking the code generator is
described.

To open the shelf, select VIEW:SHELF. The shelf is a library of
reusable components that are defined by the user. It also
serves as an area for the user to define new procedures.

To create a procedure on the shelf, select the procedure tool
which is the rounded rectangle on the toolbar, and drop the
procedure in the interface pane by pressing the <SELECT>
mouse button. A newly created procedure named ‘new
procedure’ will be displayed in the pane.

After the procedure is created, select it and press the return
key. A dialog is opened to prompt the user for the name of the
procedure. Type generate-alter and click OK.

Next, select the port tool which is the filled triangle on the
toolbar, and place the port on the left edge of the generate-
alter operator. Select the port, and then select the properties
inspector. Many users find it useful to open a properties
 Extensions Manual 33

Coding Scenario Programming in Projector
inspector and move it to a corner of their screen and just leave
it open rather than opening a new inspector every time one is
required.

Notice the input port already has a name, ‘new Data Port’. As
with procedures, whenever a port is created, Projector will
give it a default name. Change the name of the port to model by
typing in the name field at the top of the inspector. Press the
APPLY button to make these changes take effect.

Also displayed in the object inspector window are the values
of two other port properties: direction and show name.
Direction indicates whether the port is an input port or
output port. Select In from the direction pop-up. Show Name
indicates whether the name of the port should be displayed on
the procedure or not. Select true from the show name pop-up.
Press APPLY to make these changes take effect.

Figure 8 Projector Shelf Browser

The port should now “point” in towards the center of the
rectangle and the name of the port should be displayed as
well. Chances are the default size of the procedure is not big
enough to display both the procedure name and the port name
without overwriting one with the other. To make things more
legible, resize the procedure so that there is enough room to
display both names. To resize the procedure, place the mouse
pointer over one of the corners of the procedure and press and
hold the <SELECT> mouse button. Drag the corner of the
procedure until it is of the desired size and then release the
mouse button. Your shelf should now look something like
Figure 8. If the port name still overlaps the procedure name
then move the port down near the bottom of the procedure.

Before the implementation for the generate-alter
procedure can be created, the get-output-port and
write-definition procedures must be built. In a similar
34

Programming in Projector Coding Scenario
manner as to how the generate-alter procedure was
made, create the get-output-port procedure. It will have
one output port named port.

Next, create an implementation for get-output-port. Click
with the <OPERATE> mouse button in the implementation
pane, and select create. A dialog will appear prompting you to
select a model type. You can choose between an Alter
Procedure and a Projector Diagram. Selecting an Alter
Procedure allows you to enter an implementation for the
procedure using the textual language Alter. Selecting
Projector Diagram will open up a new Projector editor
that you can use to specify the implementation of the
procedure using the graphical language Projector. Select
Projector Diagram for the implementation of get-
output-port. A new editor will appear. Notice that the
output port that you defined on the get-output-port
procedure shows up in this editor.

Figure 9 Projector implementation of get-output-port

The complete implementation, which is shown above,
requires:

• one reference to the predefined operator request-new-
file-name,

• one reference to the predefined operator open-output-
file,

• one reference to the predefined operator nil?,

• one splitter, and

• one conditional to test the result of the nil? operator.

In order to access the predefined operators you must open the
Alter/Projector Browser. Select TOOLS:BROWSER from the
main menu of either the Projector Diagram editor or the
 Extensions Manual 35

Coding Scenario Programming in Projector
Projector Shelf editor. DOME will load the definitions of the
predefined operators if they have not already been loaded and
then open a window like the one shown below.

Figure 10 Projector Browser

First, we will add the request-new-file-name operator to
the implementation diagram. The ALTER/PROJECTOR
BROWSER provides search capability to make it easier to find
particular operators. Click with the <OPERATE> mouse button
in the type pane of the browser and select search. A dialog will
appear prompting you for a name to search for. The name you
type can include the wildcard character *. Type in request*
and press <RETURN>. A pop-up list of operator names that
matched your search expression will appear. Select request-
new-file-name from the pop-up list. If the description text
for the operator has not been loaded, DOME will load the
description text and then select the operator in the method
pane of the browser. Press the CREATE button. The cursor will
change to the name of the operator after entering the editor in
which to create the operator. Place the cursor over the
implementation diagram and press the <SELECT> mouse
button. A reference to the predefined operator will be created
in the implementation diagram.

Next, perform similar actions to add references to the
predefined operators nil? and open-output-file. Either
of the open-output-file operators may be used.

Now, select the conditional tool from the tool bar. The
conditional tool is an unfilled triangle. Place the conditional in
the implementation diagram.

Next, select the data flow tool from the tool bar. The data flow
tool is represented by a solid arrow. Click on the output port of
the request-new-file-name operator. A solid line will
36

Programming in Projector Coding Scenario
appear attached to the cursor. Move the cursor to the output
port node of the diagram named port and click on it. Now
there is a data flow between the output port of the request-file-
name operator and the output port of the implementation
diagram. Notice that DOME has changed the selected tool
back to the pointer tool.

You can now execute this diagram and inspect the result that
is placed on the output port by the request-new-file-
name operator. Select TOOLS:EXECUTE from the main menu. A
dialog will appear prompting you to choose a file. The
request-new-file-name operator will return the filename
you select or nil if cancel is selected. Select any filename and
press OK. A dialog appears like the one shown below.

Figure 11 Diagram Execution Result

Press OK to make the dialog go away.

Next, select the data flow that you placed between the request-
new-file-name operator and the output port and press the
delete key. The data flow will be removed from the diagram.

Now, connect together the operators in the diagram. Since
there are a lot of wires to place, permanently select the data
wire tool. Do this by holding down the shift key when
selecting the tool. Now that tool will stay active until another
tool is selected.

If at any point the user needs to cancel a wire draw command,
it can be done by clicking the <WINDOW> mouse button. This
can be useful if one has accidentally started a connection
which one didn’t intend.

Place a data flow between the output port of the request-
new-file-name operator and the input port of the nil?
operator. Notice that DOME does not reselect the pointer tool
like it did before. Place a data flow between the output port of
the nil? operator and the top of the conditional node. Be
careful not to connect the data flow to the sides of the
conditional with the T or the F. Only control flows can be
connected to these sides. Finally, place a data flow between the
output port of the open-output-file operator and the
output port node of the implementation diagram.
 Extensions Manual 37

Coding Scenario Programming in Projector
The result of the request-new-file-name operator needs
to be input to the open-output-file operator as well as the
nil? operator. This can be accomplished using a splitter.
Select the splitter tool from the tool bar. The splitter
tool is represented by a solid filled circle with three arrows,
one in-coming and two out-going. After selecting the
splitter tool, click on the middle of the data flow that
connects the request-new-file-name operator to the
nil? operator. A splitter will appear in the data flow.

Now, use the data flow tool to connect the splitter to the input
port of the open-output-file operator.

Finally, we need to connect a control flow from the false port
of the conditional to the open-output-file operator. This
will cause the open-output-file operator to execute only
if the user actually selects a file. Select the control flow tool
from the tool bar. The control flow tool is represented by a
dotted arrow (as opposed to the solid arrow of the data flow).
Click on the F port of the conditional and then on the open-
output-file operator. Click on the operator, not one of the
ports, control flows cannot be connected to input or output
ports.

The implementation diagram for get-output-port is now
finished. However, it probably isn’t very neat looking. A quick
way to spruce up the diagram is by using the straighten arcs
button. First, let’s select the entire diagram. Do this by holding
down the <SELECT> mouse button and drawing a box around
the entire diagram. When the button is released, all of the
objects should be selected. Hit the straighten arcs button.
Projector will straighten the various wires as best it can
without moving any other objects

Now you can test the implementation by selecting
TOOLS:EXECUTE from the main menu as you did before. When
you are done testing select FILE:CLOSE from the editor’s
menu. This will only close the window and not the entire
model, unless this is the last window that is open for this
model.

The next step is to create the write-definition operator.
Go to the shelf browser and create the write-definition
operator, it will have two input ports, named class and
port, and no output ports.

Before the implementation of the write-definition
operator can be created the write-class-comment and
write-class-definition operators must be defined.
These two operators will have Alter implementations so this
will give us a chance to demonstrate implementing an
operator in Alter and show how Alter and Projector inter-
operate.
38

Programming in Projector Coding Scenario
Create the write-class-comment operator on the shelf, it
will have two input ports, named class and port, and no
output ports. Click with the <OPERATE> mouse button in the
implementation pane of the shelf and select CREATE. Again, a
dialog is displayed prompting you for the type of
implementation you wish to create. This time select Alter
Procedure.

An ALTER PROCEDURE CODE inspector is displayed. Type the
Alter implementation given below into the inspector window
and press APPLY to make the changes take effect.

Example 2: Alter implementation of write-class-comment operator

(display ";;; ---" port)
(newline port)
(display ";;; --- TYPE: " port)
(display (name class) port)
(newline port)
(display ";;; --- DESCRIPTION: " port)
(display (description class) port)
(newline port)
(display ";;; ---" port)
(newline port)

Before the write-class-definition operator can be
created, the superclasses operator needs to be defined. The
superclasses operator makes use of two support operators,
dc-parent and gs-parents, that we will define first.

Create the dc-parent operator on the shelf, it will have an
input port named genspec and an output port named
parent. Create an Alter implementation for the operator
using the following Alter code.

Example 3: Alter implementation of dc-parent operator

(let* ((arcs (select (outgoing-arcs genspec)
(lambda (a) (is-a? a domaingslink)))))

(if (null? arcs) nil (destination (car arcs))))

Next create the gs-parents operator. It will have an input
port named class and an output port named parents.
Create an Alter implementation for the operator using the
following code:

(map destination
 (select (outgoing-arcs class)

 (lambda (a) (is-a? a domaingslink))))

Next lets define the superclasses operator. This will
demonstrate making calls to Projector operators in Alter code.
 Extensions Manual 39

Coding Scenario Programming in Projector
Create the superclasses operator on the shelf, it will have
one input port named class and one output port named list.
Create an Alter implementation for the operator.

In the following code we reference the two Projector operators
that were just created. The operators have Alter
implementations but they are still Projector operators. We
could re-implement either of the operators with a Projector
Diagram implementation and the following code would still
work:

Example 4: Alter implementation of superclasses operator

(map dc-parent (gs-parents class))

Now we can implement the write-class-definition
operator. Create the write-class-definition operator on
the shelf. It will have two input ports, named class and
port, and no output ports. In this implementation we will
demonstrate the use of Alter Code blocks. These code
blocks can be thought of as Alter code that is “inlined” in the
graphical Projector Diagram. The complete implementation,
which is shown in the figure below requires:

• five Alter Code Blocks,

• one reference to the superclasses operator, and

• one Statement Block.

Figure 12 Projector implementation of write-class-definition

Begin by creating a Projector implementation. Next, select the
Alter Code tool from the tool bar. The Alter Code tool is
the shadowed gray box. Place four code blocks on the
40

Programming in Projector Coding Scenario
implementation diagram. Name them start, write-
variables, end-variables, and finish. Place two input
ports on both the start code block and the write-
variables code block and name them class and port.
Place one input port on the end-variables and finish
code blocks and name them port.

Connect the class input node to the class input ports on
the start and write-variables code blocks and the port
input node to the port input ports on each of the code blocks.
Use the data flow tool in conjunction with the splitter
tool to accomplish this.

Select the start code block and bring up a property inspector
on it. Use the following Alter code to define its code property.

(display "(define " port)
(display (string-downcase (substitute (name class) " " "-")) port)
(display " (make type (list " port)

Next, use the following code to define the write-variables
code block.

(for-each
(lambda (a)

(begin
(display " ’" port)
(display (string-downcase (substitute (name a) " " "-

")) port)))
(get-property "attributes" class))

Next, use the following code to define the end-variables
code block.

(display “) (list” port)

Finally, use the following code to define the finish code
block.

(display “)))” port)
(newline port)

Next, place a reference to the superclasses operator on the
implementation diagram. This is done by selecting the
archetype, pressing the <OPERATE> mouse button in the
REFERENCES pane, selecting create from the pop-up menu,
entering the editor which is to receive the reference, and then
clicking the <SELECT> mouse button at the location in the
diagram in which the reference is to be placed. Connect the
class input node to this reference’s class input port. Again
use the data flow tool to accomplish this.

Select the Statement Block tool from the tool bar. The
Statement Block tool is a shadowed box drawn with solid
black lines. Place a Statement Block in the implementation
diagram and name it write-superclasses. Place two input ports
 Extensions Manual 41

Coding Scenario Programming in Projector
on the block, and name them class and port. Connect the
list output port of the superclasses operator reference to
the class port of the statement block. Connect the port
input node to the port input port of the statement block.

Next, select the Alter Code tool and place a code block
inside the write-superclasses statement block and name
it write-superclass. You can place an Alter Code
Block inside a Statement Block by dropping the Alter
Code Block on top of the Statement Block. The
Statement Block will expand to absorb the Alter
Statement Block, but you can resize the Statement
Block as well.

Add two input ports to the write-superclass code block
and name them superclass and port. Connect the class
input port on the write-superclasses statement block to
the superclass input port. In the same way connect the port
input port on the statement block to the port input port on the
Alter code block. Use the following code to define the Alter
code block:

(display “ “ port)
(display (string-downcase (substitute (name superclass) “ “ “-”))
port)

The return value of the superclasses operator is a list of
classes. The code inside the statement block expects to receive
one class at a time. We can cause the block to be iterated once
for each element in the list by changing the type of the data
flow. Select the data flow that connects the write-
superclasses statement block class input port to the
write-superclass code block’s superclass input port
and inspect its properties.

The data flow’s transfer property specifies how the data
flow transfers its data from begin to end.

• simple — transfers whatever is placed on its origin to the
destination unmodified.

• maintain — transfers whatever is placed on its origin to
the destination unmodified and continues to return that
value indefinitely.

• build — collects the elements that are placed on its origin
into a list until no more objects are available and then
transfers the built list to its destination.

• reduce — takes any list that is placed on its origin and
transfers the elements of the list one at a time to its
destination.

Set the data flow’s transfer property to reduce and press
the APPLY button to make the changes take effect. Now the
superclasses that are placed on the data flow will be
42

Programming in Projector Coding Scenario
transmitted one at a time to the statement block and the
statement block will be executed once for each element in the
list. We have in effect graphically constructed a for-each
statement. The data flow connecting to the write-
superclass code block input port should have its transfer
property changed to maintain.

As the last part of the implementation of the write-class-
definition operator place a control flow from the start
block to the write-variables block, from the write-variables
block to the write-superclasses statement block and from the
write-superclasses statement block to the finish block. This
will ensure that the graph is executed in the proper order so
that the code gets written to file properly.

Now we can continue with the implementation of the write-
definition operator. The complete implementation, which
is shown below requires:

• one reference to the write-class-comment operator
and,

• one reference to the write-class-definition
operator.

Figure 13 Projector implementation of write-definition

Select the write-definition operator in the Archetypes pane on
the shelf browser and create a Projector Diagram
implementation for the operator. As before, click the
<OPERATE> mouse button in the implementation pane of the
shelf browser, select CREATE and choose Projector
Diagram as the model type for the implementation. Now, in
the implementation diagram which has just opened, create
references to write-class-comment and write-class-
 Extensions Manual 43

Coding Scenario Programming in Projector
definition. This is done by selecting the archetype,
pressing the <OPERATE> mouse button in the REFERENCES
pane, selecting create from the pop-up menu, entering the
editor which is to receive the reference, and then clicking the
<SELECT> mouse button at the location in the diagram in
which the reference is to be placed. In this case, that is the
write-definition implementation diagram.

As can be seen in the figure above, the input class is
connected to the class input ports on both operators and the
input port is connected to the port input port on both
operators. This is accomplished by using splitters to split
the data flow. A control flow is placed from the write-
class-comment operator to the write-class-
definition operator to ensure that the comment is written
before the definition.

Finally, we can return to the generate-alter operator and
construct its implementation. Select the generate-alter
operator in the shelf browser and, as you have done before for
other operators, create a Projector Diagram
implementation for it. The complete implementation, which is
shown below requires:

• one Alter Code Block,

• one Statement Block,

• one reference to the predefined close operator,

• one reference to the get-output-port operator, and

• one reference to the write-definition operator.

Figure 14 Projector implementation of generate-alter
44

Programming in Projector Coding Scenario
As you have done before, create an Alter Code Block and place
it in the implementation diagram for the generate-alter
operator. Name the block get-classes and give it one input
port named model and an output port named classes. Use
the following code to implement the get-classes block:

(select (nodes model)
(lambda (n) (is-a? domainclass)))

Next drop in a statement block and name it write-all-
definitions. Give it two input ports and name them
classes and port. Place a reference to the write-
definition operator in the statement block. Connect the
classes port of the statement block to the class port of the
operator with the data flow tool. Set the transfer property
of the data flow to reduce so that the write-definition
operator gets executed once for each class. Connect the port
on the statement block to the port on the operator and set its
transfer property to maintain.

Next, drop a reference to the get-output-port operator.
Connect the port output port of the get-output-port
operator to the port input port of the statement block with
the data flow tool. Connect the model input node to the
model input port of the get-classes code block. Connect
the classes output port of the code block to the class input
port of the statement block.

Select TOOLS:BROWSER from the main menu in order to open
the Projector Browser. Search for the close operator and drop a
reference to it into the implementation diagram. Place a
splitter into the data flow that connects the get-output-
port operator to the statement block. Connect the splitter
to the input port of the close operator. Leave the output port
of the close operator unconnected.

The port cannot be closed until the statement block is done
executing. Therefore, put a control flow from the statement
block to the close operator.

As the final step, we need to specify the entry point for the
program. To do this select VIEW:TOP OF MODEL DIAGRAM from
the main menu of any of the editors that are part of the
Projector model. The top level diagram will be displayed in an
editor. Drop a reference to the generate-alter operator
into the diagram. Select the graph label node (upper left hand
corner) and inspect its properties. Enter generate-alter for
its Entry property and press the APPLY button to make the
change take effect. This completes the coding scenario.
 Extensions Manual 45

Coding Scenario Programming in Projector
46

Programming in Alter 6

. . In This
Chapter

This chapter describes...

• How a user interacts with the Alter Evaluator
 Extensions Manual 47

. . In This Chapter Programming in Alter
To familiarize yourself with the basic features of the Alter
language and the Alter programming tools, this chapter will
lead you through a set of task oriented steps one would use to
write an Alter program.

The following topics will be covered in this chapter.

• Opening an Alter Evaluator

• Evaluating expressions

• Entering program text - (scrolling, editing commands)

• Evaluating a program (definitions -> environment
bindings)

• Saving program text (definitions)

• Exiting the Alter Evaluator

• Opening existing programs

• Printing program text

Opening an
Evaluator

The Alter Evaluator is a convenient tool for writing, testing
and debugging Alter programs. The evaluator also provides
access to the other tools in the Alter Programming
Environment.

Once the DOME launcher is up you can open a new Alter
Evaluator using the DOME Launcher.

1 Select the TOOLS:ALTER EVALUATOR menu option from
the DOME launcher.
An Alter Evaluator appears.

Alternatively, you can open an Alter Evaluator from any
DOME graph editor.

1 Create a new model.
A new DOME graph editor appears for the type of model
you selected.

2 Select the TOOLS:ALTER EVALUATOR menu option from
the graph editor’s main menu.
An Alter Evaluator appears.

Evaluating
Expressions

An Alter expression is a construct that returns a value, such as
a variable reference, literal, procedure call, or conditional.

Alter expressions can be evaluated interactively using the
INPUT FIELD.

1 Enter (quote a) in the INPUT FIELD and press the
<RETURN> key.
The symbol a is displayed in the OUTPUT PANEL.
48

Programming in Alter . . In This Chapter
2 Enter (- (+ 1 2) 3) in the INPUT FIELD and press the
<RETURN> key.
The number 0 is displayed in the OUTPUT PANEL.

3 Enter “Hello DOME!” in the INPUT FIELD and press the
<RETURN> key.
The string “Hello DOME!” is displayed in the OUTPUT
PANEL.

4 Enter (make grapething) in the INPUT FIELD and press
the <RETURN> key.
#<value: a GrapEThing> is displayed in the OUTPUT PANEL.

Entering a
Program

When you first open a new Alter Evaluator, you will have
access to a new Alter environment. Besides the predefined
bindings (those bindings of symbols to procedures, operations
and types provided by default) the environment will contain
no bindings.

Definitions can be entered interactively in the DEFINITIONS
PANE. When the definitions are evaluated they cause bindings
to be created in the top level environments.

1 Enter definition code in the DEFINITIONS PANE.
For this example enter the following code:

(define add4 (lambda (n) (+ n 4)))

(define sub3 (lambda (n) (- n 3)))

(define add1 (lambda (n) (add4 (sub3 n))))

The DEFINITIONS PANE and the INPUT FIELD of the Evaluator
window provide the basic editing operations that are available
in many text editors.

Evaluating
Definitions

1 Select the EDIT:EVALUATE menu option.
The Alter code in the DEFINITIONS PANE is parsed and
evaluated. The result of the define procedure is displayed
in the OUTPUT/RESULTS PANEL.

2 Type (add4 16) in the Input Field and press the
<RETURN> key.
20 is displayed in the OUTPUT/RESULTS PANEL.

3 Type (sub3 16) in the Input Field and press the
<RETURN> key.
13 is displayed in the OUTPUT/RESULTS PANEL.

4 Type (add1 16) in the Input Field and press the
<RETURN> key.
17 is displayed in the OUTPUT/RESULTS PANEL.
 Extensions Manual 49

. . In This Chapter Programming in Alter
Saving your
Alter Program

You can save your definitions to a file and load them back in
as a program later. In order to allow DOME to recognize that
the file contains Alter code it is necessary to make the first line
in the file a comment.

1 Add a comment line as the first line in the DEFINITIONS
PANE.
Insert the cursor at the far left of the first line in the
definitions pane. Type a semi-colon and press the
<RETURN> key.

2 Select FILE:SAVE or FILE:SAVE AS.
SAVE will save the current definitions to the previously
saved name. If you have not yet saved the file, or you
select SAVE AS, a dialog window will open allowing you to
specify where to save the definitions.

3 Select the directory in which you wish to place the
saved model.

4 Type in the file name. Press OK or <RETURN>.
The title bar will now contain the name of the file to which
you saved the definitions.

Closing an
Evaluator

1 Select FILE:QUIT.
The Evaluator window will close.

Opening an Alter
Program File

Once a program has been saved in a file, you may re-open it
and modify it at any time.

1 Select the OPEN button on the DOME Launcher
window, or select FILE:OPEN from an open DOME
graph editor window.

2 Find the file you want and select it.
3 Click on the OK button or press the <RETURN> key.

The contents of the program file is displayed in the
DEFINITIONS PANE of a new Alter Evaluator Window. The
definitions are parsed and evaluated.

Opening a
Program File

From an
Evaluator

You can also load a program file into a Evaluator window that
is already open. The bindings created by the definitions in the
file augment any bindings already defined through the
Evaluator window.

1 Select FILE:OPEN from an open Evaluator window.
An “Open File Dialog” will open.

2 Find the file you want and select it.
50

Programming in Alter . . In This Chapter
3 Click on the OK button or press the <RETURN> key.
Any old text is removed from the DEFINITIONS PANE of the
Evaluator window. The contents of the program file is
displayed in the DEFINITIONS PANE of the Alter Evaluator
Window. The definitions are parsed and evaluated. The
bindings created by the evaluation are added to, or
modify, any bindings that were previously defined
through the Evaluator window.

Printing The contents of the definitions pane of a Evaluator window
can be sent to a printer.

1 Select FILE:PRINT in the Evaluator window containing
the definitions you want to print.
The text in the DEFINITIONS PANE is sent to the default
printer.
 Extensions Manual 51

. . In This Chapter Programming in Alter
52

Plug-In Functions 7

. . In This
Chapter

This chapter describes...

• How to associate a plug-in function with DOME
(page 54)

• Examples of plug-in functions (page 58)
 Extensions Manual 53

Function Calling Mechanism Plug-In Functions
You can write new functions for DOME to execute on a model.
These functions can be used to perform many different
operations such as model analysis, conversion to another
notation, document and code generation, or graph execution.

Users can register their new functions with DOME. Once a
function is registered it can be invoked from the TOOLS:PLUG-
INS menu (see Figure 15 DOME Tools Menu below).

Figure 15 DOME Tools Menu

Plug-In functions are written using the Projector/Alter
extension system. This chapter provides the requirements that
users must conform to when writing plug-in functions. It also
provides a few examples of plug-in functions.

Function
Calling

Mechanism

When you register a plug-in function with DOME you specify
a function name, a source file, and a graph type. DOME uses the
function name as the menu item label in the TOOLS:PLUG-INS
menu for your function. DOME uses the graph type to
determine when to make a function available in the
TOOLS:PLUG-INS menu. A function appears in the
TOOLS:PLUG-INS menu only if its graph type matches the type
of graph being edited. DOME uses the source file as the source
code of the function. When a function is invoked for the first
time during a session, DOME loads and evaluates the code in
the source file.
54

Plug-In Functions Function Entry Point
When DOME loads the source code for a plug-in function, it
stores the entry point to the function along with the current
time stamp of the source file. When a user invokes a function,
by selecting it from the TOOLS:PLUG-INS menu, DOME checks
to see whether the source file has been loaded.

If it has not been loaded, then DOME proceeds to load and
evaluate the source code.

If the source file has already been loaded then DOME checks
the stored time stamp against the current time stamp of the
source file. If the time stamps are equal then DOME uses the
stored entry point. If the time stamps differ DOME asks the
user whether the source file should be reloaded. If the user
responds “yes” then DOME reloads the file and replaces the
stored entry point and time stamp with the new ones. If the
user responds “no” then DOME uses the stored entry point.

Once DOME has performed the necessary checks and
performed any necessary loads it invokes the plug-in function.
It does this by evaluating the entry point, which is assumed to
be an operator that takes one argument, with the model
currently being edited as the lone argument.

Once DOME invokes the function, it waits for the function to
complete execution before taking control again. Therefore,
during function execution it is up to the function to handle all
interaction with the user, the graph, and the operating system
using the appropriate Alter primitives. A function can be
interrupted by pressing <CONTROL> - c.

Function
Entry Point

In order to invoke a plug-in function, DOME must know what
the entry point for the function is. The entry point is an
operator that takes one argument.

If the source file for the plug-in function contains Alter code
then the entry point is the result of evaluation of the last
expression in the file.

If the source file for the plug-in function contains a Projector
diagram then the entry point is specified as a property of the
top level graph.

Registering
Functions

In order for DOME to recognize the existence of a plug-in
function, you need to register it. The easiest way to register a
plug-in function is via the preferences editor accessible from
the DOME Launcher (use the TOOLS/OPTIONS... menu). The
editor is shown below.
 Extensions Manual 55

Registering Functions Plug-In Functions
Use the MODEL TYPE menu to select the type of model that the
plug-in applies to. The menu includes all of the model types
that are built in to DOME and that lay along the search path in
“specs” directories. If a plug-in is to apply to all model types,
select “Generic”.

The PLUG-INS list shows the plug-in functions currently
registered for the selected model type. The text shown in the
list matches the menu label that appears in the TOOLS/PLUG-
INS menu in a DOME editor window. Each entry has an
associated file that implements the plug-in function. When
adding or changing a plug-in registration, you can use the
Browse... button to locate the plug-in implementation file. If
the file lies along the DOME plug-in search path, DOME
automatically strips off the directory from the filename. This
makes the registration information more portable across file
systems and platforms. The default plug-in search path is
given by the following pathname pattern:

<dome-home>/tools/*/lib/*

where <dome-home> is either the contents of the DOMEHOME
environment variable, if set, or DOME’s installation directory.
(On Windows platforms the slashes are really backslashes, and
on Macintosh platforms they are colons.)

Plug-in functions are registered in one or more function
description files. The DOME preferences editor automatically
creates and maintains these files, but you can also do it
manually.1 All function description files are named
“function.dom”. A function description file is a text file that
describes one or more functions and has the following form:

1 If you manually change one of the function.dom files, you
should exit DOME and restart it before using the DOME
preferences editor. If you don’t, DOME may overwrite your
changes.
56

Plug-In Functions Registering Functions
[DoMEUserFunctionList driverspec . . .]

Where driverspec looks like:

[DoMEUserFunctionSpec
functionName: ’menu-string ’!
sourceFile: ’pathname ’!
graphType: #symbol!
keySequence: ’char ’!

]

where

functionName is a string that will be used to
form the entry in the
TOOLS:PLUG-INS menu. An
ampersand (&) can be placed to
the left of the character that
should be the accelerator key.

sourceFile is a string giving the filename of
the function’s definition file.

graphType is a string representing one of the
DOME graph model types.
GraphModel is the top of the
hierarchy. This function will
appear in the TOOLS:PLUG-INS
menu of editors that are editing
graphs of this type.

keySequence is a single character that can be
used to invoke the function from
within DOME via a shortcut key.

You can also include the contents of other function
specification files with an entry of the following form:

[DoMEFileInclude sourceFile: ’ pathname’!]

where

pathname is a string giving the full path-
name of the function specifica-
tion file to include.

DOME looks for function description files in particular places
depending on your configuration. If you have the
environment variable DoMEUserFunctions set, DOME will
first look there for a description file then DOME will try the
filenames represented by the pattern:

<dome-home>/tools/*/etc/function.dom

where <dome-home> is the contents of the DOMEHOME
environment variable, if set, or DOME’s installation directory.
 Extensions Manual 57

Examples Plug-In Functions
Examples This section includes some example plug-in functions.

Count all the
nodes

In this example you will create a function that counts all the
nodes in a graph and returns the result in a dialog box.

In order to count all the nodes in a graph it is first necessary to
query the graph for its nodes. Projector/Alter provides a
simple mechanism for obtaining the nodes of a graph with the
nodes procedure. For example,

(nodes G)

will evaluate to a list of the nodes in graph G.

The length procedure is a standard Scheme procedure that
returns the number of elements in a list. We will use this to
count the number of nodes.

Once we have the result we need to display it to the user.
Projector/Alter provides some capability to interact with the
user. The warn procedure can be used to display a message to
the user. For example,

(warn "Greetings universe!")

will cause a dialog box to be displayed with the message
"Greetings universe!" and a button labeled "ok".

The following Alter code defines a procedure that implements
this simple node counter.

Example 5: Alter implementation of count-all-nodes

(define (count-all-nodes graph)

 (let ((n (length (nodes graph))))

 (warn (append "There are "

 (number->string n)

 " nodes in this graph."))))

The following is a Projector diagram that also implements the
node counter.
58

Plug-In Functions Examples
Figure 16 Projector implementation of count-all-nodes

Invoking this function on a graph produces a dialog similar to
the following:

Figure 17 Example dialog from count-all-nodes execution

Count the
semantic nodes

You may have noticed in the previous example that the
number of nodes returned was greater than you might have
expected. This is because in DOME many more things are
nodes than you might expect. For example the label that is
usually located in the upper left corner of a DOME graph is a
node (called a Graph Label). In fact the graph label is a
special type of a more general type of DOME node called a
Note.

Notes are part of all DOME graphs. They are similar to a
comment in a program and are therefore semantically
unimportant. To obtain the count that you probably expected
to get, we need to eliminate the semantically unimportant
nodes and only count the semantic nodes.

To obtain a list of only the semantic nodes we need to
eliminate all nodes that are of type netnote. The standard
Scheme procedure select provides us with a mechanism for
selecting particular items from a list. For example,

(select ‘(1 2 3 4) (lambda (e) (> e 2)))

count-all-nodes

graph

nodes length

warn

number->string

"There are "

" nodes in this graph."

append

2

1

3

 Extensions Manual 59

Examples Plug-In Functions
will return a list containing all the elements of the list (1 2 3
4) that are greater than 2. So, the list (3 4) is returned.

To select nodes of a particular type we will need to determine
whether a node is of a particular type. Projector/Alter
provides the is-a? predicate that will do just this. For
example,

(is-a? A B)

will return true if the type of A is equal to B or the type of A
inherits from B, otherwise it will return false.

The following Alter code defines a procedure that implements
this semantic node counter.

Example 6: Alter implementation of count-semantic-nodes

(define (count-semantic-nodes graph)

 (let ((n (length (select (nodes graph)

 (lambda (e) (not (is-a? e
netnote)))))))

 (warn (append "There are "

 (number->string n)

 " semantic nodes in this graph.")))
)

The following is a Projector diagram that also implements the
semantic node counter.

Figure 18 Projector implementation of count-semantic-nodes

count-semantic-nodes

graph
nodes

length

warn

number->string

"There are "

" semantic nodes in this graph."

append

select

(lambda (e) (not (is-a? e netnote)))

2

1

3

semantic nodes
60

Plug-In Functions Examples
Summarize
nodes and arcs

Besides nodes, most DOME graphs include arcs as well. Often,
DOME graphs includes many different kinds of nodes and
arcs. Therefore, we could provide the user with more
information about their model by providing a summary of the
number and types of objects in their graph.

To do this we will need to get a string that describes the type
of an object. Projector/Alter provides the what-are-you
procedure that returns a string describing the object. For
example,

(what-are-you (make graphmodel))

returns the string “Graph Model”.

We will also need to group objects together by type so that we
can get a count of the different types of objects in the graph.
Projector/Alter provides the procedure get-type that returns
the type of an object. For example,

(get-type A)

will return the type of A.

We will make use of a dictionary to store the results until we
are ready to display them. The Projector/Alter procedure
make-dictionary creates a dictionary. For example,

(make-dictionary)

will return a new instance of dictionary. The Projector/
Alter procedures dictionary-set! and dictionary-ref
provide access to the entries in a dictionary. For example,

(dictionary-set! D key value)

will insert value into dictionary D and associate it with key
and

(dictionary-ref D key default)

will return the value in D that is associated with key if it exists
and return default otherwise.

The following Alter code implements a function that displays
a summary of the different types of objects contained in a
graph.

Example 7: Alter implementation of summarize-graph

(define (summarize-graph graph)
(letrec

((c (components graph))
 (d (make-dictionary))
 (s (make-string 0))
 (nl (list->string (list #\newline)))

(tb (list->string (list #\tab)))

 (add-to-d (lambda (e)
(let

((cnt
(dictionary-ref d (what-are you e) 0)))
 Extensions Manual 61

Examples Plug-In Functions
 (dictionary-set! d
(what-are-you e)
(+ cnt 1)))))

 (add-to-s (lambda (e)
(letrec

((cnt (number->string
(dictionary-ref d e -1))))

 (set! s (append s nl e ": " tb cnt))))))
 (for-each add-to-d c)
 (for-each add-to-s (dictionary-keys d))
 (warn (append "Summary:" nl s nl))))

Summary Report Users may wish to produce a report that summarizes the
contents of the model. Simple plain text documents can be
generated using plug-in functions. The following example
creates a simple model summary report, a listing of all of the
components in a model with their descriptions and rationale.
The function traverses the nodes and each of its subdiagrams.

The document is laid out as follows:

Title

1.0 <top level mission name>

An example entry in the inventory list looks like this:

TopModel (State-Transition Diagram)

DESCRIPTION: An example state-transition diagram.
RATIONALE: This model is part of an example.

There is one such entry for each component of the graph.

Model Queries To get the components of the graph use the components
procedure.

(components graph) => list of components

To write an entry, get the name, description and rationale
properties from the object using the name, description and
rationale procedures.

(name component) => string

(description component) => string

(rationale component) => string

Each entry also requires a description of its type. To get a
string that describes the object’s type use the what-are-you
procedure.

(what-are-you component) => string

Word Wrap To make the text more readable use the word-wrap procedure
to create lines no longer that the width of the page.

(word-wrap string page-width verbatum?)

See the Alter Programmer’s Reference Manual for more
information on the word-wrap procedure.
62

Plug-In Functions Examples
Output Files To direct the output to a source other than the system
transcript use the procedure with-output-to-file.

(with-output-to-file filename proc)

See the Alter Programmer’s Reference Manual for more
information on the with-output-to-file procedure.

Generator Put all these together into an Inventory Report generator.

;;; ---------------------------------------
;;; --- This Alter module declares the methods
;;; --- used to write an inventory report for
;;; --- a GrapEThing.
;;; ---------------------------------------
(find-operation display-inventory-property)
(add-method

(display-inventory-property (grapething) self prop)
(for-each

lambda (s) (display-indented-line s 3))
(word-wrap (append (string-upcase prop)

": "
(get-property prop self))

 72
 #t)))

(find-operation display-indented-line)
(add-method (display-indented-line (string-type) s i-sz)

(display (append (make-string i-sz #\space) s))
(newline))

(find-operation without-crs)
(add-method (without-crs (string-type) self)

(list->string
(map

(lambda (c) (if (eq? c #\newline) #\space c))
 (string->list self))))

(find-operation write-inventory-entry)
(add-method (write-inventory-entry (grapething) self)

(newline)
(display (without-crs (get-property "name" self)))
(display (append " (" (what-are-you self) ")"))
(newline)
(display-inventory-property self "description")
(display-inventory-property self "rationale"))

(find-operation write-inventory)
(add-method (write-inventory (graphmodel) graph)

(let ((proc (lambda () (display "Model Inventory
Report")

 (newline)
 (display "----------------------")
 (newline)
 (write-inventory-entry graph)
 (for-each write-inventory-entry

(components graph)))
))
(with-output-to-file "" proc)))

write-inventory ; entry-point
 Extensions Manual 63

Examples Plug-In Functions
The operation display-inventory-property gets the property
named in the prop argument, appends the property name and
a colon to the beginning of the property value, uses word-wrap
to create lines of text no longer than the width of the page, and
then uses display-indented-line to display the lines of text
indented 3 spaces.

The operation display-indented-line adds the number of spaces
indicated by the i-sz argument to the string passed in the s
argument, displays the result on the default output port
followed by a newline.

The without-crs operation removes any carriage returns from
the argument and returns the result.

The write-inventory-entry operation displays the text for the
inventory entry for one GrapEThing. The text is displayed on
the default output port.

The write-inventory operation opens a window and writes an
inventory report for the argument graph.
64

Print Drivers 8

. . In This
Chapter

This chapter describes...

• The DOME print driver facility (page 66)

• An example print driver (page 73)
 Extensions Manual 65

Description Print Drivers
Description A DOME print driver allows the user to print a graph in a
specialized format to a file. DOME has several predefined
print drivers including postscript, gif, and (frame)maker
interchange format.

You can write new printer drivers for DOME using the Alter
language. Such drivers are seamlessly integrated into DOME
and made available for use through the normal print dialog.

Each DOME printer driver must supply a list of procedures
for performing the various graphic operations used for
displaying graphs. You can name the procedures anything you
want; DOME hooks up to them through a simple protocol
(described below).

The printer driver procedures are as follows:

Procedure
Title Description

initialize This is the first call made to a printer driver. It
is typically used for setting up resources and
global data.

preamble This is the second call made to a printer
driver. It is typically used for setting up scaling
information and initializing the print device.

line Draws a simple line from one point to another
point. If this procedure is not supplied by the
driver but polyline is, DOME uses the polyline
procedure.

rectangle Draws a rectangle (filled or unfilled). The
upper left and lower right corners of the
rectangle are given. If this procedure is not
supplied by the driver but polyline is, DOME
uses the polyline procedure. If neither
rectangle nor polyline are provided, DOME
uses the line procedure.

polyline Draws an open polyline (filled or unfilled). The
polyline is given as a list of points (x . y). If the
polyline procedure is not supplied by the
driver but line is, DOME uses the line
procedure.

arc Draws an arc (filled or unfilled). The arc is
given as a bounding box, and a start angle
and sweep angle. If the arc procedure is not
supplied by the driver, but polyline is, DOME
uses the polyline procedure.
66

Print Drivers Description
DOME decomposes the display of the graph into these low-
level calls. For example, to display an arc with an ordinary
arrow head, DOME will make the following calls:

1 polyline procedure, with the pen color the same as the
background, to blank out an area behind the trunk of the
arc

2 polyline procedure, with a visible pen color, to draw the
trunk or the arc

3 arc procedure, specifying filled, with the same color as in
step 2, to draw the arrow head.

When you want to print a model (using the File/Print menu
command), DOME looks for a file that describes the user-
defined drivers that are available. It then uses the information
in this file to augment the print dialog to give you access to
those drivers.

Upon loading the source code for a printer driver, DOME
expects the last expression in the file to be a list that tells which
Alter procedures implement which driver functions.

Driver Functions This section describes the interface that DOME expects for
each driver function listed in the previous table. You may
name the procedures in your driver anything you want; the
names given in the list below are the symbols DOME looks for
in the associative list at the end of the source file.

The first two arguments to each driver function are the
graphics context (gc) and the output port (port). The graphics
context is an object that holds information about pen color,
line style, etc., and is described in more detail later. The output
port is where the driver should send its characters for driving
the print device.

string Displays a single line of text. If a string in the
DOME model is more than one line long,
DOME will make multiple calls to this
procedure, once for each line of text.

postamble This is the second to last call made to a
printer driver. It is typically used for sending
wrap-up data to the print device.

finalize This is the last call made to a printer driver. It
is typically used for releasing supplementary
resources used during the printing.

Procedure
Title Description
 Extensions Manual 67

Description Print Drivers
(initialize gc port)

This is the first call made to a printer driver. It is
typically used for setting up resources and global
data.

(preamble gc port print-size graph-bounds) ⇒
scale-info

This is the second call made to a printer driver,
and is also called at the beginning of subsequent
graphs if more than one is being printed (i.e. the
Print Child Graphs box was checked in the print
dialog). It is typically used for setting up scaling
information and initializing the print device.
print-size The desired size, in inches, of the

resulting printed form of the
graph.

graph-bounds The graph’s current bounds, as a
rectangle with units of pixels.
The rectangle is represented as a
list of the form ((ulx . uly) . (lrx .
lry)), where “ul” means upper-
left and “lr” means lower-right.

A return value is expected from preamble, which
is a list of the form (sx sy tx ty). On subsequent
calls to driver functions that use points, DOME
will first transform screen coordinates into driver
coordinates according to the following formula:

where (xs . ys) is a point in screen coordinates.
(line gc port from to)

Draws a simple line from one point to another
point. If this procedure is not supplied by the
driver but polyline is, DOME uses the polyline
procedure.
from The origin end of the line. The is

given as a pair (x . y).
to The destination end of the line.

The point is given as a pair (x .
y).

(rectangle gc port rectangle fill)

Draws a rectangle (filled or unfilled). The upper

x sx xs tx+()=

y sy ys ty+()=
68

Print Drivers Description
left and lower right corners of the rectangle are
given. If this procedure is not supplied by the
driver but polyline is, DOME uses the polyline
procedure. If neither rectangle nor polyline are
provided, DOME uses the line procedure.
rectangle The upper left and lower right

corners of the rectangle, given as
a list of the form ((ulx . uly) . (lrx .
lry)).

fill A boolean. If true, the rectangle
should be filled (with the current
pen color).

(polyline gc port point-list fill)

Draws an open polyline (filled or unfilled). The
polyline is given as a list of points (x . y). If the
polyline procedure is not supplied by the driver
but line is, DOME uses the line procedure.
point-list A list of the vertices, as points

(pairs of the form (x . y)). The
polyline is considered to be a
closed shape if the last point is
equal to the first point.

fill A boolean. If true, the polyline
should be filled (with the current
pen color).

(arc gc port bounding-box start-angle sweep-
angle fill)

Draws an arc (filled or unfilled). The arc is given
as a bounding box, and a start angle and sweep
angle. Angles are given in degrees, with positive
angles indicating clockwise displacements, nega-
tive angles counterclockwise.
bounding-box A rectangle of the form ((ulx .

uly) . (lrx . lry)) that circum-
scribes the ellipse (only the por-
tion of the ellipse as specified by
start-angle and sweep-angle
should be drawn).

start-angle The starting angular position for
the arc, measured from three
o’clock (in the screen coordinate
system).

sweep-angle The angular path of the arc rela-
 Extensions Manual 69

Description Print Drivers
tive to the starting angle. These
angles are specified in the (possi-
bly skewed) coordinate system of
the ellipse. For example, the
angle between three o’clock and
a line from the center of the
ellipse to the top right corner of
the bounding rectangle is always
45 degrees, even if the bounding
rectangle is not square.

fill A boolean. If true, the arc should
be filled (with the current pen
color), so that it looks like a pie
wedge whose tip is at the center
of the bounding-box.

(string gc port string alignment location extent)

Displays a single line of text. If a string in the
DOME model is more than one line long, DOME
will make multiple calls to this procedure, once
for each line of text.
string A string containing a single line

of text, with no line breaks.
alignment A string indicating the alignment

of the supplied text. The string
may be one of {“Left”, “Right”,
“Center”, or “Justified”}. The
interpretation of location
depends on alignment.

location A point (x . y) specifying the
location for the text. If alignment
is “Left”, then location specifies
the extreme upper-left corner of
the text. If alignment is “Right”,
then location specifies the
extreme upper-right corner of the
text. If alignment is “Center” or
“Justified”, then location speci-
fies the exact center of the text.
The extent parameter may be
used to help position the text on
the print device.

extent The width and height (w . h) of
the string as it appears on the
screen (scaled according to the
70

Print Drivers Description
formula described under pre-
amble).

(postamble gc port)

This is the second to last call made to a printer
driver if only one graph is being printed. If more
than one graph is being printed (because the Print
Child Graphs box was checked in the print dia-
log), the postamble procedure is called at the end
of every graph. It is typically used for sending
wrap-up data to the print device.

(finalize gc port)

This is the last call made to a printer driver. It is
typically used for sending finish-up commands to
the print device, and for releasing supplementary
resources used during the printing.

GraphicsContext
Operations

You can apply the following operations to a graphics context,
the first argument given to all of the printer driver functions:

(face altergraphicscontext) ⇒ string

(landscape altergraphicscontext) ⇒ boolean

(line-width altergraphicscontext) ⇒ integer

(paint altergraphicscontext) ⇒ array

(paint-color altergraphicscontext) ⇒ colorvalue

(paint-style altergraphicscontext) ⇒ symbol

(line-style altergraphicscontext) ⇒ symbol

These are described in more detail in the DOME Alter
Programmer’s Manual.

Color Operations The paint-color operation returns a colorvalue that holds the
individual primary color components of the current pen color.
You can use the following operations on colorvalue instances
to obtain the individual color components: red, blue, green,
cyan, magenta, yellow, hue, saturation, brightness. All of
these operations return a real number between 0 and 1.

The Procedure
Map

The last expression in a driver must be an associative list that
has the form:

((function-symbol . procedure) . . .)

where function-symbol must be one of the following symbols:
initialize, preamble, line, rectangle, polyline, arc, string,
postamble, or finalize. Procedure must be a procedure defined
earlier in the process of loading the driver source file.
 Extensions Manual 71

Description Print Drivers
A driver is not required to supply all of the procedures.
DOME will automatically convert a graphics operation to use
a different driver routine if the preferred one is missing. For
example, if the polyline procedure is missing, DOME will
convert polylines into individual line segments and make
multiple calls to the line procedure. If DOME can’t find a
substitute procedure, it raises an error. Note that there is no
substitute for the string procedure.

The example driver included in this chapter has a sample
procedure map at the very end.

Registering a
Driver

In order for DOME to recognize the existence of a user-defined
driver, you must create a driver description file and place it in
one of the locations DOME searches. The file must be named
“pformats.dom”. A driver description file describes one or
more drivers and has the following form:

[DoMEPrintFormatList driverspec . .
.]

Where driverspec looks like:

[DoMEPrintFormatSpec
formatName: ’name-of-format ’!
sourceFile: ’pathname ’!
fileOnly: boolean!
fileSuffix: ’suffix ’!
handlesChildren: boolean!
handlesLandscape: boolean!

]

where

formatName is a short string that will be used
to augment the print dialog’s for-
mat menu.

sourceFile is a string giving the filename of
the driver source code file.

fileOnly is either true or false. If true,
the format can only be printed to
a file; DOME will not allow it to
be sent directly to the printer.

fileSuffix is a string to be used for suggest-
ing a filename suffix if the graph
is to be printed to a file.

handlesChildren is either true or false. If true,
the format can handle printing
subdiagrams.
72

Print Drivers Example Driver
handlesLandscape is either true or false. If true,
the format can handle printing
the diagram in landscape mode.

If you have the environment variable DoMEPrintFormats set,
DOME will look there first for a driver description file and
then DOME will look in the files represented by the following
Alter expression:

(construct

(construct

(construct

(construct (dome-home) "tools")

"*")

"etc")

"pformats.dom")

Example
Driver

What follows is a trimmed-down, example printer driver that
prints the graph in DXF format. The driver does not support
all of the features of DXF, so the rendering is only
approximate.

;; PLEASE NOTE: Whenever numbers are supplied by DOME as

;; arguments to this print engine, those numbers may be

;; integers, fractions or floats.

;; It is up to the print engine to convert them into whatever

;; form is needed for the particular print format.

(define *scale* ‘(1.0 . 1.0)) ;; a global definition

;; ---

;; dxf-preamble

(define (dxf-preamble context port print-size graph-bounds)

 (let ((width (- (cadr graph-bounds) (caar graph-bounds)))

(height (- (cddr graph-bounds) (cdar graph-bounds))))

 (let ((scale (exact->inexact (/ print-size (max width
height)))))

 (show-pair 0 "SECTION" port)

 (show-pair 2 "HEADER" port)

 (show-pair 9 "$LIMMIN" port)

 (show-point 0 0 port)

 (show-pair 9 "$LIMMAX" port)

 (show-point 8 10 port)

(show-pair 0 "ENDSEC" port)

.

.

.

(show-pair 2 "ENTITIES" port)

 (set! *scale* (cons scale (- scale)))

 (list scale (- scale)

 (- (caar graph-bounds)) (- (cddr graph-bounds))))))

;; ---

;; dxf-rectangle

(define (dxf-rectangle context port rect fill)

 (if (or (< (brightness (paint-color context)) 1.0)
 Extensions Manual 73

Example Driver Print Drivers
 (> (saturation (paint-color context)) 0.0))

 (if fill

 (begin

 (show-pair 0 "SOLID" port)

 (show-pair 8 1 port)

 (show-point (caar rect) (cdar rect) port)

 (show-point (cadr rect) (cdar rect) port 11)

 (show-point (caar rect) (cddr rect) port 12)

 (show-point (cadr rect) (cddr rect) port 13))

(begin

 (dxf-polyline context port

 (list (car rect)

 (cons (cadr rect) (cdar rect))

 (cdr rect)

 (cons (caar rect) (cddr rect))

 (car rect))

 #f)))))

;; ---

;; dxf-polyline

(define (dxf-polyline context port vertices fill)

 (if (or (< (brightness (paint-color context)) 1.0)

 (> (saturation (paint-color context)) 0.0))

 (begin

 (show-pair 0 "POLYLINE" port)

 (show-pair 8 1 port)

 (show-pair 66 1 port)

 (show-pair 70 0 port)

 (let ((thickness (/ (lineWidth context) 72.0)))

 (show-pair 40 thickness port)

 (show-pair 41 thickness port))

 (for-each (lambda (v)

 (show-pair 0 "VERTEX" port)

 (show-pair 8 1 port)

 (show-point (car v) (cdr v) port))

 vertices)

 (show-pair 0 "SEQEND" port)

 (show-pair 8 1 port))))

;; ---

;; dxf-arc

;; This driver does not support arcs. We will supply a routine

;; so that DOME does not raise an exception.

(define (dxf-arc context stream rectangle start-angle sweep-angle
fill)

 ‘())

;; ---

;; dxf-string

(define (dxf-string context port string alignment position extent)

 (show-pair 0 "TEXT" port)

 (show-pair 8 "TEXT" port)

 (let ((relScale (get-property "relativeScale" context)))

 (let ((offset (cond ((equal? alignment "Left")

 (cons 0 0))

((equal? alignment "Center")

 (cons (/ (car extent) 2) (* 0 relScale (cdr
scale))))

((equal? alignment "Right")

 (cons (car extent) 0)))))

 (let ((x (- (car position) (car offset)))

 (y (+ (cdr position) (cdr offset))))
74

Print Drivers Example Driver
(show-point x y port)

(show-pair 40 (* 12 (car *scale*)) port)

(show-pair 1 string port)

(show-pair 50 0.0 port)))))

;; ---

;; dxf-finalize

(define (dxf-postamble context port)

 (show-pair 0 "ENDSEC" port)

 (show-pair 0 "EOF" port))

;; **

;; The following procedures are not called directly by DOME, but ;;
rather by this print engine.

**

;; show-pair

;;

;; Write out a pair of values that constitues a DXF data group

(define (show-pair first second port)

 (display first port)

 (newline port)

 (display second port)

 (newline port))

;; **

;; show-point

;;

;; Write out an x-y coordinate with the specified group ID offset.

(define (show-point x y port . offset)

 (let ((group (if (null? offset) 10 (car offset))))

 (display group port)

 (newline port)

 (display (exact->inexact x) port)

 (newline port)

 (display (+ group 10) port)

 (newline port)

 (display (exact->inexact y) port)

 (newline port)))

;; **

;; End of local procedures

;; **

;; Procedure map

(list

 (cons ‘preamble dxf-preamble)

 (cons ‘postamble dxf-postamble)

 (cons ‘rectangle dxf-rectangle)

 (cons ‘polyline dxf-polyline)

 (cons ‘string dxf-string))
 Extensions Manual 75

Example Driver Print Drivers
76

Document Generators 9

. . In This
Chapter

This chapter describes...

• The DOME documentation generation facility
 Extensions Manual 77

Document Markup Document Generators
You can write plug-in functions in DOME that generate plain
text documentation and code from a model (See “Summary
Report” on page 62). You can also generate documentation
that is compatible with your preferred text processing
environment. These functions perform all the activities
necessary to produce the final output document. They traverse
and query the model, create the document’s content, and
structure and format that content into a final document.

Producing documentation as described in the previous
examples has its drawbacks:

• Changing the format of document requires modification to
the generator program.

• Producing output that is compatible with a different text
processing environment requires modification to the
generator program.

• Producing the same document with multiple styles or for
multiple text processors requires multiple generator
programs.

DOME provides a better way to produce documentation that
removes the drawbacks listed above.

Document
Markup

A document has content, structure and style.1 Content is the
series of words, spaces, and punctuation contained in the
document. Structure refers to the way the document is divided
into paragraphs, chapters and sections. Style dictates how the
different structure elements are displayed.

Traditionally, the publishing process proceeded as follows.
The author would write the document using some media
(hand-written, type written, etc.). When the author turned the
manuscript over to the publisher for publishing the copy-
editor would annotate it with instructions to the type-setter
concerning layout, fonts, spacing, indentation, etc. These
annotations were known as markup. Then the type-setter
would use these instructions to layout the type. Finally the
document would be printed using the type.

As computers became more widely used, publishers began
using electronic publishing programs. These programs process
data files that contain the text of the document interspersed
with processing instructions explaining the actions to be taken
at that point. The various instructions are the equivalent of

1 This section is a watered down version of a couple chapters in
“Practical SGML” written by Eric van Herwijnen. Please see
this book for a more thorough and complete discussion of
SGML.
78

Document Generators Document Markup
traditional document mark up. The mark up for the document
could be expressed in one of many formatting languages
depending on the text formatter being used.

The mark up in these documents is known as specific markup.
It is specific in that it indicates the specific instructions to be
carried out at a certain point during document processing.

Many formatting languages allow commands to be grouped together
into macros. Often these macros can be stored in a separate file and
shared among many documents. Placing the macros in a separate file
makes maintenance of a uniform style easier. Changes made in one
place propagate to all documents. All documents processed using the
macro set have the same style.

Macros lead to the concept of generic markup. With generic
markup the exact processing instructions to be taken by the
formatter are not specified in the document. Instead, markup
is used to specify the structure of the document. Macros are
assumed to correspond one-to-one with the structural elements
of the document.

Using generic markup, the purpose of the various parts of the
document are specified without considering the appearance.
The exact processing instructions are contained in the macro
definitions that correspond to the elements of the document.
Therefore, a generically marked up document specifies the
content and structure of the document but not the style. The
style is specified in a stylesheet.

The set of macros used to format a generically marked up
document is a stylesheet. More than one stylesheet can be
applied to a document. Using one stylesheet, chapter headings
may appear in bold-face type, using another they might
appear in upper case large font. Stylesheets even extend to the
display of a document on media other that the printed page.
For example, chapters could be used to indicate that a new
window should be opened whose title bar contains the
chapter heading text and whose window contains the contents
of the chapter. Stylesheets allow a document’s appearance to
change easily, allowing publishers to use the same document
source for journal articles and later for an anthology.

Standard Generalized Markup Language (SGML) provides a
standard language for specifying generic markup. Using
SGML, document types can be defined. A document type
definition (DTD) specifies the following:

• Names and content of all structural elements that are
allowed in a document of that type.

• The number of times an element may appear.

• The order in which the elements must appear.
 Extensions Manual 79

Document Markup Document Generators
• The contents of all elements.

• Attributes of tags and their default values.

Many standard DTD’s have been designed and published by
various organizations. Probably the most well known DTD is
the Hyper Text Markup Language (HTML) DTD used by the
World Wide Web (WWW).

The language defined by a DTD can be used to describe the
logical structure of the document, but no semantics are
applied to these logical elements by the language. These
semantics (i.e., skip a line and indent three spaces, etc.) are
provided by a style sheet. Document Style Semantics and
Specification Language (DSSSL) will, when approved as an
international standard, provide a standard language for
specifying processing instructions to be applied to the various
elements of a document. An SGML document instance
combined with a DSSSL stylesheet instance can be used by a
SGML/DSSSL aware text formatter to produce a final output
document in some page description language (PDL) such as
PostScript. The PDL version of the document can be displayed
directly on its intended output device.

DOME’s document generation and processing capabilities
have been infused with the spirit of these two international
standards. Though DOME does not completely implement
either of these standards currently, many of their benefits are
passed on to DOME users.

Document
Generators

SGML is used to describe documents with a tree-like structure.
Since the document is a tree it can be represented internally as
a tree. DOME represents SGML documents as trees. Thus, the
process of generating an SGML document is the process of
building a tree representing the document.

Included with DOME is a set of standard Alter libraries for
document generation. These libraries include the definition of
a node type, sgmlnode, useful for producing SGML
documents. The type defined in the standard library includes
the definition of standard operations used by DOME style
sheets and text formatters to process the tree.

Using the standard library, the process of document
generation amounts to producing a tree constructed out of
instances of sgmlnode and its subtypes. A DOME SGML
document generator is a procedure or operation that returns a
tree.

See “SGML Generators” on page 83 for more information
about document generators.
80

Document Generators The Generation Process
Stylesheets Alter is used to specify document stylesheets. The form of an
Alter stylesheet specification is strongly influenced by DSSSL,
but is in no way an implementation of the proposed DSSSL
standard.

DOME stylesheets provide a generic way of specifying the
formatting to be applied to the logical elements (nodes) of an
SGML document (tree).

A DOME stylesheet consists of the definition of one operation.
The operation includes method definitions for each of the
different node types contained in a document that will be
processed using the stylesheet. In the process of formatting a
document, a text formatter will invoke the operation on each
node in the tree and carry out the formatting operations
specified by the stylesheet method.

DOME stylesheets make use of standard formatting
operations supported by DOME document formatters.

See “Stylesheets” on page 99 for more information about
stylesheets.

Text Formatters Text formatters are objects that respond to the processing
instructions contained in a stylesheet. The output from a text
formatter can be anything from a page description language
(PDL) like PostScript to a plain text approximation of the
formatted document to raw SGML code.

A text formatter is an Alter type. Certain standard methods
are defined on the formatter. These methods are used in
stylesheet methods to specify formatting instructions. The
response to the invocation of one of these standard methods
by a stylesheet method varies depending on the formatter.
Each formatter produces output that is compatible with a
particular text processing environment. Users can write
custom text formatters for their preferred document
presentation environment. This environment might be a laser
printer, a word processor or an HTML browser. Each of these
environments requires a source document that is written in a
different language.

See “Text Formatters” on page 91 for more information about
text formatters.

The
Generation

Process

The DOME document generation process is depicted in Figure
19.
 Extensions Manual 81

The Generation Process Document Generators
Figure 19 DOME Document Generation Process

DOME
Model Generator

SGML
Form Formatter

Style
Sheet

Target
Document
82

SGML Generators 10

. . In This
Chapter

This chapter describes...

• The SGML document generator
 Extensions Manual 83

Query Operations SGML Generators
You can write user-defined functions in DOME that produce a
SGML document. These generators are the first stage in the
DOME document generation process. The result of the SGML
document generator is passed to a text formatter that, with
direction from a stylesheet, produces the final formatted
document in some page description language (PDL).

The DOME document generation process is depicted in Figure
20. The non-grayed parts of the figure represent the SGML
portions of the generation process.

Figure 20 DOME Document Generation Process

Query
Operations

A DOME SGML document generator builds a tree structure in
main memory that represents an instance of an SGML
document type. The nodes that the tree are built from must be
instances of a subtype of sgmlnode which provides certain
standard query operations. These standard query operations
are used by stylesheets to query the tree for information. The
stylesheet takes this information and invokes operations on a
text formatter.

The standard SGML tree node query operations are as follows:

(children nd) => list
Returns a list containing a node for each child
of nd.

(attributes nd) => list
Returns a list containing one node for each
attribute of nd.

(parent nd) => list
Returns a list containing the parent of the
node, if the node has a parent, and otherwise
returns the empty list.

(owner nd) => list
Returns a list containing the owner of nd, if nd
has an owner, and otherwise returns the empty
list.

(contents nd) => string
Returns a string representing the contents of
nd.

Style
Sheet

Target
Document

DOME
Model Generator

SGML
Form Formatter
84

SGML Generators Registering a Generator
(map-children nd proc) => list
This is the map procedure invoked with a list
whose elements are the children of nd.

(for-each-child nd proc) => nil
This is the for-each procedure invoked with a
list whose elements are the children of nd.

(map-self+children nd proc) =>list
This is the map procedure invoved with a list
whose elements are nd and each of the children
of nd.

(node=? nd1 nd2) => boolean

Returns #t if nd1 and nd2 represent the same

node in the same tree, and otherwise returns #f.

Registering
a Generator

In order for DOME to recognize the existence of a user-defined
SGML document generator, you must create a generator
description file and place it in one of the locations DOME
searches. All SGML document generator files are named
“document.dom”. An SGML generator description file
describes one or more generators and has the following form:

[DoMESGMLDocList generatorspec . . .]

Where generatorspec looks like:

[DoMESGMLGeneratorSpec
functionName: ’menu-string ’!
sourceFile: ’pathname ’!
graphType: #symbol!
documentType: #symbol!
outputTypes: [OrderedCollection ’#symbol ’!*]

]

where

functionName is a string that will be used to
form the entry in the DOCUMENT
menu of the document generator
dialog.

sourceFile is a string giving the filename of
the generator’s definition file.

graphType is a string representing one of the
DOME graph model types.
GraphModel is the top of the
hierarchy. This generator will
appear in the DOCUMENT menu
of the document generator dialog
of the editors that are editing
graphs of this type.
 Extensions Manual 85

Example Generator SGML Generators
documentType is a string describing which style
types are appropriate for this
generator.

outputTypes is a collection of strings describ-
ing where a document can put
output to. Valid values are #file,
#window, #printer, and #direc-
tory. If unspecified then #file,
#window, and #printer are used.

If you have the environment variable DoMESGMLDocuments
set, DOME will look there first for a SGML document
generator file and then DOME will look in the files
represented by the following Alter expression:

(construct

(construct

(construct

(construct (dome-home) ’tools’)

"*")

’etc’)

’document.dom’)

Example
Generator

The following section will lead you through the construction
of a simple SGML document generator. The example builds on
the example found in “Summary Report” on page 62.

Choosing a DTD The first step in constructing an SGML document generator is
to choose a target document type. This involves choosing a
DTD from among those that are publicly available or
designing your own. In this section we will continue the
example began in “Summary Report” on page 62. We will
enhance that example by making the Model Inventory Report
a formatted document. The following document type
definition will be used for this document:

<!-- Inventory DTD for Manual Examples -->

<!ELEMENT prop - - (propname, propval) >

<!ELEMENT propname - - (#PCDATA) >

<!ELEMENT propval - - (#PCDATA) >

<!ELEMENT name - - (#PCDATA) >

<!ELEMENT type - - (#PCDATA) >

<!ELEMENT title - - (#PCDATA) >

<!ELEMENT entry - - (name, type, desc, rat)>

<!ELEMENT invent - - (title,entry*) >
86

SGML Generators Example Generator
Creating node
types

Before writing the generator you will need to create node
types that match each of the elements in the DTD. The node
types will be used to represent each of the element types in the
document. The stylesheet will use these types to apply the
proper formatting to each element in the document.

The following type definitions will suffice for this DTD.

;;; ---

;;; <!ELEMENT prop - - (#PCDATA) >

;;; ---

(define invent-prop

(make type ‘() (list sgml-node)))

(name-set! invent-prop "prop")

;;; ---

;;; <!ELEMENT propname - - (#PCDATA) >

;;; ---

(define invent-propname

(make type ‘() (list sgml-node)))

(name-set! invent-propname "propname")

;;; ---

;;; <!ELEMENT propval - - (#PCDATA) >

;;; ---

(define invent-propval

(make type ‘() (list sgml-node)))

(name-set! invent-propval "propval")

;;; ---

;;; <!ELEMENT name - - (#PCDATA) >

;;; ---

(define invent-name

(make type ‘() (list sgml-node)))

(name-set! invent-desc "name")

;;; ---

;;; <!ELEMENT type - - (#PCDATA) >

;;; ---

(define invent-type

(make type ‘() (list sgml-node)))

(name-set! invent-desc "type")
 Extensions Manual 87

Example Generator SGML Generators
;;; ---

;;; <!ELEMENT title - - (#PCDATA) >

;;; ---

(define invent-title (make type ‘() (list sgml-
node)))

(name-set! invent-desc "title")

;;; ---

;;; <!ELEMENT entry - - (name, type, desc, rat)
>

;;; ---

(define invent-entry

(make type ‘() (list sgml-node)))

(name-set! invent-entry "entry")

;;; ---

;;; <!ELEMENT invent - - (title, entry*) >

;;; ---

(define invent-invent

(make type ‘() (list sgml-node)))

(name-set! invent-desc "invent")

;;; ---

Each of these types are subtypes from the type sgml-node
which is provided with DOME in the standard library
sgmlnode.lib.

Writing the
generator

The generator is a procedure or operation that takes one
argument and returns an SGML tree. The generator constructs
the tree based on information in the model that is passed in as
its sole argument. The SGML document generator is very
similar to generating a plain text document. The main
difference is that instead of displaying text, the SGML
generator creates nodes in the tree.

The following code will create an SGML tree representing an
instance of the invent DTD.1

(find-operation inventory-property)

(add-method

(inventory-property (grapething) self prop)

(let((nd1 (make invent-prop))

(nd2 (make invent-propname))

(nd3 (make invent-propval)))

1 This example may be found in the .../tools/alter/examples/
inv-sgml.alt file that is delivered with DOME.
88

SGML Generators Example Generator
(set-contents! nd2 prop)

(set-contents! nd3

(without-crs

(get-property prop
self)))

(add-child-first nd1 nd3)

(add-child-first nd1 nd2)

nd1))

(find-operation without-crs)

(add-method (without-crs (string-type) self)

 (list->string

 (map

 (lambda (c) (if (eq? c #\newline) #\space c))

 (string->list self))))

(find-operation inventory-entry)

(add-method (inventory-entry (grapething) self)

(let((nd1 (make invent-entry))

(nd2 (make invent-name))

(nd3 (make invent-type)))

(set-contents! nd2

(without-crs

(get-property "name" self)))

(set-contents! nd3 (what-are-you self))

(add-child-first nd1

(inventory-property self "rationale"))

(add-child-first nd1

(inventory-property self "description"))

(add-child-first nd1 nd3)

(add-child-first nd1 nd2)

nd1))

(find-operation inventory)

(add-method (inventory (graphmodel) graph)

(let((nd1 (make invent-invent))

(nd2 (make invent-title)))

(set-contents! nd2 "Model Inventory Report")

(add-child-first nd1 (inventory-entry graph))

(add-child-first nd1 nd2)

(add-children-last nd1

(map inventory-entry (components
graph)))

nd1))

inventory ; entry-point

The operation inventory is the entry point for this document
generator. The last line of the file that contains the definitions
for this generator should evaluate to the operation inventory.
 Extensions Manual 89

Example Generator SGML Generators
90

Text Formatters 11

. . In This
Chapter

This chapter describes...

• The DOME text formatter facility
 Extensions Manual 91

Overview Text Formatters
You can write new text formatters for DOME. Such formatters
are seamlessly integrated into DOME and made available for
use through the Generate dialog. These formatters are the
second stage in the DOME document generation process. The
result of the SGML document generator is passed to a text
formatter that, with direction from a stylesheet, produces the
final formatted document in some page description language
(PDL).

The DOME document generation process is depicted in Figure
21. The non-grayed parts of the figure represent the text
formatter portions of the generation process.

Figure 21 DOME Document Generation Process

Overview A text formatter is an object that knows how to write
documents in a form compatible with particular document
processing environment. This processing environment may be
a word processor, printer, etc. The formatter takes the
appropriate actions to create a document that is formatted in
the style specified by a stylesheet.

The context-type formatter is provided with all DOME
installations. This type provides basic functionality to create
plain text (without word-wrap) documents from an SGML
tree and a stylesheet.

Context-type implements all the standard functions for
formatters, therefore any subtypes of context-type meet the
requirements for a formatter. The user can then specialize the
standard operations for their new formatter and make use of
the pre-existing operations for those that do not need
specialization.

Also included with DOME are formatters to create documents
in Maker Interchange Format (MIF), Interleaf ASCII Format
(IAF), Rich Text Format (RTF), and plain text with word-wrap
(TXT). There is also a formatter that simply writes out the raw
SGML without any formatting applied (it essentially ignores
the stylesheet). These formatters are all subtypes of the
context-type formatter.

Target
Document

DOME
Model Generator

SGML
Form Formatter

Style
Sheet
92

Text Formatters Formatting Operations
Formatting
Operations

A DOME text formatter generates a final document from a
SGML document represented as a tree under the guidance of a
stylesheet. The stylesheet specifies which operations are to be
invoked whenever a node of a particular type is encountered
in the tree. The stylesheet also dictates how the tree is
traversed. The stylesheet expects that certain standard
formatting operations will be supported by the formatter.

The standard text formatting operations are as follows:

(process-node f style-op nd) => unspecified
Uses the stylesheet operation style-op to
procecss the node nd.

(process-children f style-op nd) => unspecified
Uses the stylesheet operation style-op to
process the children of nd.

(format f style-op output root-node) => unspecified
Uses the stylesheet operation style-op to
process the SGML tree rooted at root-node.

(initialize f) => f

(write-preamble f) => unspecified

(write-postamble f) => unspecified

(open f [file]) => unspecified

(close f) => unspecified

(cr f) => unspecified

(start-para f) => unspecified

(anchor f text) => unspecified

(link f text) => unspecified

(comment f text) => unspecified

(put-string f text)=> unspecified

(default-font f) => font

(set-default-font! f font) => unspecified

(current-font f) => font

(set-current-font! f font)=> unspecified
 Extensions Manual 93

Font Operations Text Formatters
(default-style f) => style

(set-default-style! f style) => unspecified

(current-style f) => style

(set-current-style! f style)=> unspecified

Formatters that are subtyped from context-type contained in
the ALter standard library context.lib will automatically
meet these requirements. To create a new formatter the user
can simply specialize those operations that need specialization
in order to produce the new formatter.

Font
Operations

(family font) => string

(set-family! font string) => unspecified

(bold font) => boolean

(set-bold! font boolean) => unspecified

(italic font) => boolean

(set-italic! font boolean) => unspecified

(size font) => quantity

(set-size! font quantity) => unspecified

(strikeout font) => boolean

(set-strikeout! font boolean) => unspecified

(underline font) => boolean

(set-underline! font boolean) => unspecified

Text-Style
Operations

(sindent style) => quantity

(set-sindent! style quantity) => unspecified

(eindent style) => quantity
94

Text Formatters Quantity Operations
(set-eindent style quantity) => unspecified

(findent style) => quantity

(set-findent! style quantity) => unspecified

(sp-before style) => quantity

(set-sp-before! style quantity) => specified

(sp-after style) => quantity

(set-sp-after! style quantity) => specified

(alignment style) => symbol

(set-alignment! style symbol) => unspecified

(withprev style) => boolean

(set-withprev! style boolean) => unspecified

(withnext style) => boolean

(set-withnext! style boolean) => unspecified

Quantity
Operations

(quantity? obj) => boolean

(quantity-equal? quantity1 quantity2) => boolean

(magnitude quantity) => number

(in number) => quantity

(in quantity) => number

(pt number) => quantity

(pt quantity) => number

(mm number) => quantity

(mm quantity) => number
 Extensions Manual 95

Registering a Formatter Text Formatters
(cm number) => quantity

(cm quantity) => number

(twips number) => quantity

(twips quantity) => number

(add q1 ...) => quantity

(sub q1 ...) => quantity

(mul q1 ...) => quantity

(div q1 ...) => quantity

Registering
a Formatter

In order for DOME to recognize the existence of a user-defined
text formatter, you must create a formatter description file and
place it in one of the locations DOME searches. All text
formatter files are named “dformats.dom”. A text formatter
description file describes one or more formatters and has the
following form:

[DoMEDocumentFormatList formatspec . . .]

Where formatspec looks like:

[DoMEDocumentFormatSpec
formatName: ’menu-string ’!
sourceFile: ’pathname ’!
fileSuffix: ’string ’!

]

where

formatName is a string that will be used to
form the entry in the FORMAT
menu of the document generator
dialog.

sourceFile is a string giving the filename of
the text formatter’s definition
file.

fileSuffix is a string appended to the file-
name specified from the docu-
ment generator dialog.
96

Text Formatters Registering a Formatter
If you have the environment variable
DoMEDocumentFormats set, DOME will look there first for a
text formatter file and then DOME will look in the files
represented by the following Alter expression:

(construct

(construct

(construct

(construct (dome-home) ’tools’)

“*”)

’etc’)

’dformats.dom’)
 Extensions Manual 97

Registering a Formatter Text Formatters
98

Stylesheets 12

. . In This
Chapter

This chapter describes...

• The DOME stylesheet facility
 Extensions Manual 99

Overview Stylesheets
You can write stylesheets for DOME text formatters using
Alter. Such stylesheets direct the process of creating a final
formatted document. Stylesheets are used in the second stage
of the DOME document generation process.

The DOME document generation process is depicted in Figure
22. The non-grayed parts of the figure represent the stylesheet
portions of the generation process.

Figure 22 DOME Document Generation Process

Overview The stylesheet is a procedure or operation that takes two
arguments. The return value of this procedure or operation is
unspecified. The first argument is a node in the tree and the
second argument is a formatter.

The stylesheet defines the operations the formatter should
perform when it encounters a node of a certain type. These
operations include such things as changing the font size,
starting a new paragraph or writing out a string.

A stylesheet is an Alter operation with the following
characteristics:

• It takes two arguments. The first is a node in an SGML
tree. The second is an instance of a DOME text formatter.

• It only makes use of the standard tree querying operations
on the SGML node to traverse and query the tree and its
nodes.

• It invokes only standard text formatting operations on the
DOME text formatter.

• Makes use of only standard operations defined on font-
description, text-style and quantity-type.

Registering
a Stylesheet

In order for DOME to recognize the existence of a user-defined
stylesheet, you must create a stylesheet description file and
place it in one of the locations DOME searches. All stylesheet
files are named “docstyle.dom”. A stylesheet description file
describes one or more stylesheets and has the following form:

[DoMEStyleSheetList stylesheetspec . . .]

Target
Document

DOME
Model Generator

SGML
Form Formatter

Style
Sheet
100

Stylesheets Example Stylesheet
Where stylesheetspec looks like:

[DoMEStyleSheetSpec
styleName: ’menu-string ’!
sourceFile: ’pathname ’!
documentTypes: [OrderedCollection

#’symbol ’*!]
]

where

styleName is a string that will be used to
form the entry in the STYLE
SHEET menu of the document
generator dialog.

sourceFile is a string giving the filename of
the stylesheet’s definition file.

documentTypes is a collection of symbols describ-
ing which documents the
stylesheet can be used in con-
junction with.

If you have the environment variable
DoMEDocumentFormats set, DOME will look there first for a
text formatter file and then DOME will look in the files
represented by the following Alter expression:

(construct

(construct

(construct

(construct (dome-home) ’tools’)

“*”)

’etc’)

’docstyle.dom’)

Example
Stylesheet

The following code is an example of a stylesheet that specifies
formatting for a document that is an instance of the invent
DTD (see “Choosing a DTD” on page 86).1 This style sheet
approximates the formatting given to the Model Inventory
Report in the example in “Summary Report” on page 62.

(find-operation style-op)

(add-method (style-op (invent-invent) self f)

(let((cf (current-font f))

 (cs (current-style f)))

(set-family! cf “Courier”)

(set-sp-before! cs (pt 12))

(process-children f style-op self)))

1 This example may be found in the .../tools/alter/examples/
invent.sty file that is delivered with DOME.
 Extensions Manual 101

Example Stylesheet Stylesheets
(add-method (style-op (invent-title) self f)

(set-size! (current-font f) 14)

(set-bold! (current-font f) #t)

(set-sp-after! (current-style f) (pt 12))

(set-underline! (current-font f) #t)

(start-para f)

(put-string f (contents self)))

(add-method (style-op (invent-entry) self f)

 (start-para f)

 (process-children f style-op self))

(add-method (style-op (invent-name) self f)

 (put-string f (contents self)))

(add-method (style-op (invent-type) self f)

(letrec((cf (current-font f))

(cfi (italic cf)))

(put-string f “ (“)

(if (not cfi) (set-italic! cf #t))

(put-string f (contents self))

(if (not cfi) (set-italic! cf #f))

(put-string f “)”)))

(add-method (style-op (invent-prop) self f)

(let((cs (current-style f)))

(set-sp-before! cs (pt 2))

(set-sp-after! cs (pt 0))

(set-sindent! cs (in (/ 1 4)))

(start-para f)

(process-children f style-op self)))

(add-method (style-op (invent-propname) self f)

 (set-bold! (current-font f) #t)

 (put-string f (contents self))

 (put-string f “: “))

(add-method (style-op (invent-propval) self f)

 (put-string f (contents self)))

style-op ; stylesheet operation

The operation style-op is the stylesheet operation in this case.
The last line of the file that contains the definitions for this
stylesheet should evaluate to the operation style-op.
102

Scheme A

. . In This

Appendix
This appendix describes...

• References to Scheme related information (page 104)

• Scheme Elements not currently implemented in Alter
(page 104)
 Extensions Manual 103

Selected References Scheme
Selected
References

William Clinger and Jonathan Rees, editors. “Revised4 Report
on the Algorithmic Language Scheme”. University of Oregon
Technical Report CIS-TR-90-02.

http://www.cs.indiana.edu/scheme-repository/home.html

http://www-swiss.ai.mit.edu/scheme-home.html

Unimplemen
ted R4

Scheme
Elements

Alter is a nearly complete implementation of R4 Scheme. The
following elements of R4 Scheme have not been implemented
in Alter yet.

• Alter is not properly tail-recursive.

• Scheme continuations are not fully implemented.
Currently, the extent of the escape procedure is restricted
to the activation of the call-with-current-continuation that
defined it. Therefore, its use is pretty much restricted to
structured, non-local exits from loops or procedure bodies.

• Complex numbers.

• Promises.

• Macros.

• The following essential procedures are not implemented:

case
quasiquote
call-with-current-continuation (call/cc) - partially
implemented
call-with-input-file
call-with-output-file
input-port?
output-port?
read

• The following non-essential procedures are not
implemented:

delay
rationalize
make-rectangular
make-polar
real-part
imag-part
magnitude
angle
force
transcript-on
transcript-off
104

Index
Symbols
"Operate" mouse button ix
"Select" mouse button ix
"Window" mouse button ix
^super 16

A
about this guide vi
activation stack. See Alter
add-method 16
Alter 3, 20, 66, 100

activation stack
environment viewer
evaluator window 23
expression
external representation
Programmer’s Reference Manual vii

alter code block 9
assignment 24

B
bindings 16, 24, 25, 27
browser. See Projector
buttons, mouse ix

C
circumfrence 25
code generators vii
color value 71
components 62
conditional 10
constant 9
control flow 10
conventions viii

D
data flow 10
define 24
definitions 25

dictionary 17
document generators vii
Document Style Semantics and

Specification Language 80
Document Type Definition 79
DOME

Programmer’s Manual vii
DOMEHOME environment variable 56
DXF 73

E
environment 24, 25, 27

global 24, 25
local 25
top-level 24, 25

evaluator. See Alter
expression. See Alter
external representation. See Alter

F
face 71
file

opening 50
find-operation 15
fork 9

G
get-property 62
graph

printing 51
graphics context 71
guide

contents vi
conventions used viii
description vi
publication number vii
related documents vii
revision history vii
version vii
window/screen appearance viii
 Extensions Manual Index-105

Index
H
Hyper Text Markup Language 80

I
Interleaf ASCII Format 92
inventory 89

L
lambda 16
landscape 71
let 25
line-width 71

M
macros 79
make 15
Maker Interchange Format 92
markup 78
merge 9
method 22
mouse buttons ix

O
Oaklisp 15
object 15
object-oriented programming 15
operation 15

P
page description language 80, 84
paint 71
paint-color 71
paint-style 71
plug-in

search path 56
port 7
printing 51
procedure 7
program 25
Programmer’s Manual, DOME vii
Programmer’s Reference Manual, Alter

vii
Projector 2, 6

browser

environment viewer
publication number vii

R
registration file

plug-in function 56
related documents vii
Rich Text Format 92

S
Scheme 3, 12
Scheme extension language vii
scope 25
search path 56
set! 24
Standard Generalized Markup Language

79
statement block 7
style-op 102
stylesheet 100
subtype 15
supertype 15

T
type 15, 22

U
UNIX viii
User-defined functions

registering 55

V
value 24
variable 9, 24
viewer. See Alter
viewer. See Projector

W
what-are-ypu 62
Windows viii
with-output-to-file 63
word-wrap 62
World Wide Web 80
write-inventory 63
Index-106

	Extensions Manual
	Preface
	About This Guide
	Revision History
	Related Documents
	DOME Guide Manual
	Alter Programmer’s Reference Manual

	Conventions Used in This Guide
	Appearance of Windows & Screen Elements
	Typographic Conventions
	The Mouse Button Dilemma
	Mouse Button Operations

	How to Reach Us...

	Introduction 1
	. . In This Chapter
	Extension Language
	DOME Extension Languages
	Projector
	Alter
	Inter-Operability
	Programming Environment

	DOME Extension Facilities

	Projector 2
	. . In This Chapter
	Description
	Diagrams
	Nodes
	Procedure
	Port
	Statement Block
	Alter Code
	Constant
	Variable
	Merge
	Fork
	Conditional

	Connectors
	Data Flow
	Control Flow

	Alter 3
	. . In This Chapter
	Description
	Extensions to R4 Scheme
	General Purpose Extensions
	User Interfacing
	GrapE Interface
	navigation
	modifying
	querying

	Object Oriented Programming
	Objects and Types
	Operations and Methods

	Operating System Interface
	Dictionaries

	Programming Tools 4
	. . In This Chapter
	Overview
	Projector Environment Viewer
	Ready Nodes
	Data Flows
	Control Flows

	Alter/ Projector Browser
	Structure
	Types
	Methods
	Description
	Alter methods
	Projector methods

	Alter Evaluator
	Structure
	Definitions
	Environments
	Programs
	Expressions
	External Representations

	Alter Environment Viewer
	Structure
	Activation Stack
	Bindings

	Alter Object Inspector
	Structure

	Alter List Inspector
	Structure

	Programming in Projector 5
	. . In This Chapter
	Code Generator Example
	Initial Setup
	Coding Scenario

	Programming in Alter 6
	. . In This Chapter
	Opening an Evaluator
	Evaluating Expressions
	Entering a Program
	Evaluating Definitions
	Saving your Alter Program
	Closing an Evaluator
	Opening an Alter Program File
	Opening a Program File From an Evaluator
	Printing

	Plug-In Functions 7
	. . In This Chapter
	Function Calling Mechanism
	Function Entry Point
	Registering Functions
	Examples
	Count all the nodes
	Count the semantic nodes
	Summarize nodes and arcs
	Summary Report
	Model Queries
	Word Wrap
	Output Files
	Generator

	Print Drivers 8
	. . In This Chapter
	Description
	Driver Functions
	GraphicsContext Operations
	Color Operations
	The Procedure Map
	Registering a Driver

	Example Driver

	Document Generators 9
	. . In This Chapter
	Document Markup
	Document Generators
	Stylesheets
	Text Formatters

	The Generation Process

	SGML Generators 10
	. . In This Chapter
	Query Operations
	Registering a Generator
	Example Generator
	Choosing a DTD
	Creating node types
	Writing the generator

	Text Formatters 11
	. . In This Chapter
	Overview
	Formatting Operations
	Font Operations
	Text-Style Operations
	Quantity Operations
	Registering a Formatter

	Stylesheets 12
	. . In This Chapter
	Overview
	Registering a Stylesheet
	Example Stylesheet

	Scheme A
	. . In This Appendix
	Selected References
	Unimplemen ted R4 Scheme Elements

	Index

