Writing Character Device Driver for Linux

Copyright (©) 1993, 1994 R. Baruch and C. Schroeter
Version: 1.0

This Document is intended to be both a tutorial for beginners and a reference guide for

advanced Developers.

Contents

1 Introduction

2 General Concepts

2.1 What isan Driver 7.
2.2 The Driver and the Filesystem
2.3 The general look of a Driver,
2.4 Compile your Driver into Kernel Code
2.5 Dynamically loaded Drivers

3 Writing a driver

3.1 General
3.2 First Steps
3.3 A more useful Driver o
3.4 Using Memory
3.5 Process Synchronization 0L
3.6 Theselectcall

4 Your Driver and the Hardware

12

13

13

16

20

23

31

35

CONTENTS 2
4.1 General 35
4.2 Programmed I/O oo 36
4.3 Interrupt driven I/O oo 37

4.3.1 Timeouts and Interrupts 40
4.4 Drivers and signals: L oo L 41
4.5 DMA-Transfers 41

5 Special Concepts in Linux 45
5.1 Accesing Ports in User space 45
5.2 Accessing Kernel Memory from User Space 46
5.3 Reading the kernel Environment o0 47
5.4 Writing Loadable Modules, 48

A Reference Guide 52
A.1 Kernel-callable functions 0L 52
A.2 Data structureso 56
A3 Drivercalls 59
A4 Installation noteso 67

CONTENTS 3

This document (C) 1993 Robert Baruch. This document may be freely
copied as long as the entire title, copyright, this notice, and all of
the introduction are included along with it. Suggestions, criticisms,
and comments to baruch@nynexst.com. This document, nor the work
performed by Robert Baruch using Linux, nor the results of said work
are connected in any way to any of the Nynex companies. Information
may settle during transportation. This product should not be used

in conjunction with a dietary regime except under supervision by your

doctor.

Right, now that that’s over with, let’s get into the fun stuff!

First few words to this Paper

Some time ago 1 played around with some Data aquisition cards so i needed more
insights to the whole Kernel stuff. Then i found the very good Document written by
Robert Baruch (last year) that took me at the Hand and deeper and deeper in the
dark Forest of Kernel hacking. Then sometimes later i found the kernel hackers guide
at tsx-11 that gave me some details about memory and so on. and i got some more
insights. In this time i’ve been asked more and more by people that are interested in
data aquisition and process control. So i got the idea to collect everything related to

this stuff and make it availiable for others.

This Document is a collection of papers about Linux Drivers i included Robert’s
tutorial because i can’t make it better (i hope Robert won’t flame up about this). I
added some Parts from Kernel hackers guide (examples). My Part consists of some
ideas to the Linux-Hardware interconnection and new concepts that are availiable
since v1.0 (Modules etc). My intention was to help both the people that want to
learn how a driver can be written and those that want to know special things about

drivers.
I hope you will have fun with this.

clausi@chemie.fu-berlin.de

Chapter 1

Introduction

Some words of thanks (Yes i copied this):
... First Robert Baruch
Many thanks to:

Donald J. Becker (becker@metropolis.super.org)
Don Holzworth (donh@gcex1.ssd.csd.harris.com)
Michael Johnson (johnsonm@stolaf.edu)

Karl Heinz Kremer (khk@raster.kodak.com)
Hennus Bergman (csg279@wing.rug.nl)

Jon. Tombs (77)

All the driver writers!

...and of course, Linus ”"Linux” Torvalds and all the guys who helped develop Linux

into a BLOODY KICKIN" O/S!

...and now a word of warning:

Messing about with drivers is messing with the kernel. Drivers are run at the kernel
level, and as such are not subject to scheduling. Further, drivers have access to various
kernel structures. Before you actually write a driver, be *damned™ sure of what you

are doing, lest you end up having to re-format your harddrive and re-install Linux!

CONTENTS

The information in this Guide is as up-to-date as I could make it. It also has no stamp
of approval whatsoever by any of the designers of the kernel. I am not responsible

for damage caused to anything as a result of using this Guide.

Chapter 2

General Concepts

2.1 What is an Driver ?

Imagine the following Problem: You buyed a card XXX that does some I/O to
periphal devices like printers, plotters, analog devices etc. Normaly you have to write
lot of assembler code for programming the registers of this card that is linked to
your program code. But every Program that uses this piece of code has to be linked
with it. If you change anything of one of your programs you have to rebuild all your

programs to be up to date.

The most elegant way to avoid this is to extract the hardware-specific code from your
program and make it to an part of your operating system. The specific code then
is called via well defined interface routines that look very similar for each problem.

With this method the specific code is invisible to the user program.

Remember that the most operating systems uses this concept for their system-calls:
The arguments of an call are put on the stack and then a "trap” routine is called.
The operating system jumps to an so called "trap-handler” that takes the arguments

from the stack and does something with it.

Linux and other *ix-like operating systems make a distinction between system calls
and calls that are used for the hardware programming of periphal devices. The
routines for this periphal devices are collected in ”Driver-Modules” that are visible

to the kernel only by a few interface routines. The only problem at this stage is to

2.2. The Driver and the Filesystem 7

communicate between the User Program and these routines.

*ix uses the filesystem for this purpose. The Driver looks like a normal File that you

can open, close, read from and write to. The kernel sees this operations as special

requests and maps it to the appropriate calls in the driver code.

2.2 The Driver and the Filesystem

As mentioned from the user’s side of view the driver looks like an ordinary file. If
you operate on this file via open, close, read or write requests the kernel looks up the

apropriate function in your driver code. But how this path of function references can
be found?

All drivers provides a set of routines. Each Driver has an struct char_fops that holds
the pointers to this routines. At init time of the driver this struct is hooked into
another table where the kernel can find it. The index that is used to dereference this
set of routines is called MAJOR number and is unique so that a definite destinction
its possible. The special inode file for the driver gets its MAJOR number at creation
time via the mknod command. The driver code gets its MAJOR by the register_chrdev
kernel routine (Your task is to find an unique MAJOR).

Every time a file routine is called on a driver-inode the inode and the file struct is
passed to this routine (See. A.2), the kernel dereferences the apropriate routine from
the char_fops struct by its MAJOR number and calls it. The inode and the file struct
itself are passed to the called fops-routines and can be used to get specific information
of the caller-process for Example. The MINOR number, that is also set by the mknod
command, can be used to configure a special behavior of the driver (e.g rewind or

norewind on tapes) or to distinct subdevices (as it is done by the tty drivers).

A list of used MAJORS can be found in SLINUX_SOURCE/include/linux/major.h:

/*
* assignments
*

* devices are as follows (same as minix, so we can use the minix fs):
*

* character block comments

2.2. The Driver and the Filesystem

0 - unnamed

1 - /dev/mem
2_

3_

4 - /dev/tty*
5 - /dev/tty; /dev/cuax
6 - 1p

7_

8_

9 - scsi tape
10 - mice

11 -

12 - qic02 tape
13 -

14 - sound card
16 - sockets

17 - af_unix

18 - af_inet

N N =
= O W
| | |

scsl generic

N N N N NN
~N O 0w N
| | | | | |

qicl17 tape

* * E o I E o I E o * * E o I E o E o I E o I *x * E o I E o I *
~
w W NN —
= O O (¢}
| | | | |

unnamed

ramdisk

floppy
hd

scsi disk

scsi cdrom

xt disk

cdu3la cdrom

(at2disk)
mitsumi cdrom
sony535 cdrom

matsushita cdrom

minor O = true nodev

UNUSED

UNUSED
UNUSED

minors 0..3

The MAJOR numbers go from 0 to MAX_CHRDEV-1. MAX_CHRDEYV is defined in

linux/fs.h, and is currently set at 32. In general, you want to stay away from devices

0-15 because those are reserved for the "usual” devices

2.3. The general look of a Driver 9

2.3 The general look of a Driver

The Structure of an driver is (as mentioned) similar for each periphal device.

e You have an init routine that is for initializing your hardware, perhaps getting
memory from the kernel and last but not least hooking your driver-routines into

the kernel’s gearbox!.

e You have an char_fops struct that is initialized with those routines that you will
provide for your driver. This struct is the key to the kernel it is ‘registered’ by

the register_chrdev routine.

e Mostly you have open and release routines that are called whenever you perform
a open or close on your special inode. The presence of this routines is not

necessary.

e You can have routines for reading and writing data from or to your driver,
a 1octl routine that can perform special commands to your driver like config

requests or options.

e You have the possibility to readout the kernel environment string to configure

your driver via lilo, but on this later on.

e A Interrupt routine can be registered if your hardware support this.

2.4 Compile your Driver into Kernel Code

The most drivers in Linux are linked to the kernel at compile-time. That means if
you want to add an driver you have to put your .c and .h files directly somewhere in

the kernel source path and rebuild the kernel.

For character device driver this should be done in SLINUX_SOURCE/drivers/char .
Edit the Makefile and add

!Realize that this routine is called once at boot time, just before the filesystem and your hard

disks are initialized so you’ve no chance to read any config files at startup.

2.4. Compile your Driver into Kernel Code 10

ifdef CONFIG_MYDRIVER
0BJS := $(0BJS) my_driver.o
SRCS := $(SRCS) my_driver.c

endif

after the OBJS and SRCS definition.

Now your driver will be compiled into the kernel whenever CONFIG_MYDRIVER is
defined at build time. To define CONFIG_.MYDRIVER in Linux manner do this:

cd to SLINUX_SOURCE/linux and edit the file config.in, add somewhere in the driver

section of the file a line like:

bool ’My Driver Support’ CONFIG_MYDRIVER n

To get your driver running you have to hook your init routine into the the kernel so
that your init is called at boot time. You have to do this in SLINUX_SOURCE/drivers/char/mem.c

. Go to the chr_drv_init routine and add your own init routine:

long chr_dev_init(long mem_start, long mem_end)

{

if (register_chrdev(MEM_MAJOR,"mem",&memory_fops))

printk('unable to get major %d for memory devs\n", MEM_MAJOR);

mem_start = tty_init(mem_start);

#ifdef CONFIG_PRINTER

mem_start = lp_init(mem_start);

#endif

#if defined (CONFIG_BUSMOUSE) || defined (CONFIG_82C710_MOUSE) || \
defined (CONFIG_PSMOUSE) || defined (CONFIG_MS_BUSMOUSE) || \
defined (CONFIG_ATIXL_BUSMOUSE)

mem_start = mouse_init(mem_start);

#endif

#ifdef CONFIG_SOUND

mem_start = soundcard_init(mem_start);

#endif

#ifdef CONFIG_PCSP

mem_start = pcsp_init(mem_start);

2.4. Compile your Driver into Kernel Code 11

#endif

#if CONFIG_TAPE_QICO2

mem_start = tape_qicO02_init(mem_start);

#endif

[Kok sk ok ok ok ok ok kK ok k = — = — = —— = — >>>>>> here do it
#if CONFIG_MYDRIVER

mem_start = my_driver_init(mem_start);

#endif

sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kk kR kK KK m—————— == done */

/*

* Rude way to allocate kernel memory buffer for tape device
*/

#ifdef CONFIG_FTAPE
/* allocate NR_FTAPE_BUFFERS 32Kb buffers at aligned address */
ftape_big_buffer= (char*) ((mem_start + Ox7fff) & ~Ox7fff);
printk("ftape: allocated %d buffers alligned at: %p\n",
NR_FTAPE_BUFFERS, ftape_big_buffer);
mem_start = (long) ftape_big_buffer + NR_FTAPE_BUFFERS * 0x8000;
#endif

return mem_start;

}

Now cd to SLINUX_SOURCE/linux. Type make configat SLINUX_SOURCE/linux,
you will be asked about your driver support, answer with 'y’. Now rebuild your kernel

as usual and install it with lilo.

It is strongly recommended that you make an linux-test entry in lilo so that you can

reboot even if one of your drivers fails.

For example add to your /etc/lilo.conf

root = /dev/hdal
image = /usr/src/linux/zImage
label = test

The other possibility is to make a boot disk via make disk

For details refer to the lilo manual.

2.5. Dynamically loaded Drivers 12

2.5 Dynamically loaded Drivers

Since Linux Version 0.99.15 Support for Kernel Modules has been added by Jon.
Tombs. This Kernel modules can be loaded into the Kernel at runtime. That means
loaded and removed at any time after the boot process. The only differences between
a loadable Module and a Kernel linked Driver are a special init() routine that is called
when the module is loaded into the Kernel and a cleanup routine that is called when

the Module is removed.

The typical purpose of this two routines is to register the device and irq or get
memory (init_module) and release/free it if the module is removed from memory

(cleanup_module).

One disadvantage of this Method is that such Kernel Modules can’t allocate a con-
tinuous range of kernel Memory that is greater than 4096 bytes.

The programs for loading and removing Modules are present in the modutils package

available from tsx-11 or sunsite.

Details on writing such drivers are discussed later.

Chapter 3

Writing a driver

3.1 General

The Next few sections (that come from Robert Baruch’s tutorial) will bring you up
to understand how a Driver works together with the Kernel and how an user program
does something with the driver. Realize — that is not the whole story. Mostly all the
Hardware specific stuff is the largest part of work.

The Kernel has no ability to handle with runtime errors as a user program has, so
be careful whatever you do. If you do driver development do is slowly and with care.

Here are some tips that serves from the worst case:

e Never trust the Users. That means whenever you get data from the User pro-
gram, check it for validity. Especially check for validity of Pointers.

if(data_from_user == NULL)
printk("Driver: data_from_user invalid ");
return(-EINVAL) ;
else
if(data_from_user->flags & BUSY).......

e Never trust yourself. Nobody is perfect. Test out your Driver step by step.

13

3.1. General 14

e Hold the code as clearly as possible. That will prevent own errors. A sample
for quick & dirty coding;:

int driver_does_something_on_hardware(){
outb(0x11,0x330);

outb(0x23,0x333);

return(inb(0x330)) ;

}

A reader of this has to guess what is going on with this code. You should doing
yourself and others a favour and clear up the code.

/* Registers x*/

#define CARD_XXX_BASE 0x330

#define CARD_XXX_MODE CARD_XXX_BASE
#define CARD_XXX_DATA CARD_XXX_BASE+1
#define CARD_XXX_CMD CARD_XXX_BASE+2

/* Modes */

#define MODE_1 0x01
#define MODE_2 0x10

/* Commands */
#tdefine COMMAND_1 0x23

int driver_does_something_on_hardware(){
outb(MODE_1 | MODE_2 ,CARD_XXX_MODE); /* select mode */
outb(COMMAND_1 ,CARD_XXX_CMD); /* do command */
return(inb (CARD_XXX_MODE)) ; /* read data */

That means better to spend some more lines of text for clearness.With this
example you have the possibility to change the adress-space of your card by
changing one Macro (and perhaps one jumper on the card). That shows that
the work for the few lines more will be payed with a better maintainance of

your code.

3.2. First Steps 15

o If something is going wrnog with your driver try out to find the error. Do some

#ifdef MY_DRIVER_DEBUG
printk("My Driver: The state of the art ist Jd",a_variable);
#endif

statements in your code that will help to find the error and to watch what the

driver does.

3.2 First Steps

Now lets do it. First let’s have a look of our first Example. A very stupid one, but a

very good exercise to get your stuff running.

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/tty.h>

#include <linux/signal.h>

#include <linux/errno.h>

#include <asm/io.h>
#include <asm/segment.h>
#include <asm/system.h>
#include <asm/irq.h>

unsigned long test_init(unsigned long kmem_start)

{
printk("Test Data Generator installed.\n");

return kmem_start;

Now go to SLINUX_SOURCE/drivers/char/mem.c and hook your driver in place as
discussed above. Change the Makefile and config.in and rebuild.

3.3. A more useful Driver 16

At reboot you should see your message.

3.3 A more useful Driver

This example is taken from the Writing UNIX Device Drivers book by George Pa-
jari, published by Addison Wesley. It can usually be found in a Barnes and Noble
bookstore, or any large bookstore which has a nice section on UNIX. The ISBN is
0-201-52374-4, and it was published in 1992. This book is highly recommended for

the device driver writer.

This device driver will actually be read from. You can open and close it (which really
won’t do much), but the biggest thing it will do is allow you to read from it. This
driver won’t access any external hardware, and so it is called a ”pseudo device driver”.

That is, it really doesn’t drive any device.

Have your Guide handy? OK. now alter your testdata.c file so that it looks like this:

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/tty.h>

#include <linux/signal.h>

#include <linux/errno.h>
#include <asm/io.h>
#include <asm/segment.h>
#include <asm/system.h>
#include <asm/irq.h>

static char test_data[]="Linux is really funky!\n";

static int test_read(struct inode * inode, struct file * file,

char * buffer, int count)

int offset;

3.3. A more useful Driver 17

printk("Test Data Generator, reading %d bytes\n",count);
if (count<=0) return -EINVAL;
for (offset=0; offset<count; offset++)
put_fs_byte(test_dataloffset), (sizeof(test_data)-1)], buffer+offset);

return offset;

static int test_open(struct inode *inode, struct file *file)
{
printk("Test Data Generator opened.\n");

return O;

static void test_release(struct inode *inode, struct file *file)

{

printk("Test Data Generator released.\n");

}

struct file_operations test_fops = {
NULL, /* test_seek */

test_read, /* test_read */

NULL, /* test_write */

NULL, /* test_readdir */

NULL, /* test_select */

NULL, /* test_ioctl */

NULL, /* test_mmap */

test_open, /* test_open */
test_release /* test_release *x/

};

unsigned long test_init(unsigned long kmem_start)
{
printk("Test Data Generator installed.\n");
if (register_chrdev(21,"test",&test_fops));
printk("Test Data Generator error: Cannot register to major device 21!\n");

return kmem_start;

3.3. A more useful Driver 18

This Example demonstrates the use of the register_chrdev routine and the use of the

char_fops struct that tells the kernel which function to call for which kernel operation.

If a driver has already taken major 21, register_chrdrv will return -EBUSY. Here, all

we do is print a message saying that 21 is already taken.

Now, the test_open and test release functions just print out things to the console.

They are really there for debugging purposes. so that you can see when things happen.

The meat of the driver is the test_read function. The first thing it does is print
out how many bytes were requested. Then it puts that many bytes into user space.
Remember that the driver is executing at the kernel level, and the user space will
be differnet from kernel space. We have to do some kind of translation to put the
data which is in kernel space into the buffer which is in user space. We use here the

put _fs_byte function.

The loop puts the string into the buffer. going back to the beginning of the string if
necessary. Once the loop is finished, we just return the actual number of bytes read.
The actual number may be different from the requested number. For example, you
may be reading from the driver some kind of message which has a fixed size. You
may want to code the driver so that if you attempt to read more than the message
size, you will get only the message size, and no more. Here, we just give the process

however many bytes it wants.

Now, let’s get this driver into the kernel. But first what we’ll do is create a special file
which can be opened, read. and closed. Operations on this special file will activate

your driver code.

The special files are normally stored in the /dev directory. Do this:

mknod /dev/testdata c 21 0
chmod 0666 /dev/testdata

This makes a special character (c) file called testdata, and gives it major 21, minor

0. The chmod makes sure that everyone can read and write the device.

Now recompile the kernel, and reboot. Once again, make sure you fix any warnings

or errors in your testdata.c compilation.

Now, go to the /tmp directory (or whereever you want), and write this program:

3.3. A more useful Driver 19

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>

void main(void)

{
int fd;
char buff[128];

fd = open("/dev/testdata",0_RDWR);
printf("/dev/testdata opened, fd=/d\n",fd);

if (£d<=0) exit(0);

printf ("sizeof (buff)=Yd\n",sizeof (buff));

printf ("Read returns %d\n",read(fd,buff,sizeof(buff)));
buff[127]=0;

printf ("buff=\n’Y%s’\n",buff);

close(fd);

Compile it using gce. Run it. If it said ”Linux is really funky!” lots of times, pat
yourself on the back (or whereever you want) for a job well done. If it didn’t, check

the output, and see where you went wrong. It could just be that you have a bad or

old kernel.
The last line may be partial, since you're only printing out 127 characters.
Experiment 1:

Use mknod to make another special file, this one with minor 1. Call it something like
/dev/testdata2. Change the device driver so that in the read call, it finds out which
minor is being read from. Use this:

int minor = MINOR(inode->i_rdev);

Print out the minor number, and depending on which minor it is, read from a different

3.4. Using Memory 20

message string. Test your driver with code similar to data.c.

3.4 Using Memory

You've learned to read, now you're gonna learn to write.

Now that you're reading strings, you may want to write strings and read them back.
We'll go through two versions of this — one that uses static memory, and one that

dynamically allocates the memory.

Keeping your current driver, all you need to do is add a write function to it, not

forgetting to put that write function into the file_operations structure of the driver.

Add this section of code to your driver above the file_operations structure declaration:

static char test_data[128]="\0";

static int test_data_size=0;

static int test_write(struct inode * inode, struct file * file,

char * buffer, int count)

{
printk("Write %d bytes\n",count);
if (count>127) return -ENOMEM;
if (('test_data_size) || (count<=0)) return -EINVAL;
memcpy_fromfs((void *)test_data, (void *)buffer, (unsigned long)count);
test_data[127]=0; /* NUL-terminate the string if necessary */
test_data_size = count;
return count;

}

Also, alter the test_read function so that instead of using sizeof(test_data) as the size

of the test_data string. it uses test_data_size.

In the test_write function, I have decided to prevent the acceptance of strings which

3.4. Using Memory 21

are too big to fit (with a NUL-terminator) into the test_data area, rather than
just writing only what fits. In this case, if the offered string is too long, I return

ENOMEM. The write function in the user’s process will return j0. and errno will be

set to ENOMEM.

Also note that I have used the memcpy fromfs function, which is real convenient —

much more convenient than looping a put_fs_byte.

Compile this driver, and test it by modifying data.c to write some data. then read it

back.
Experiment 2:

Re-write the driver so that it can have two different strings for the two minor devices

as in experiment 1.

Now that we can write data to the driver, it would be nice if we could dynamically
allocate memory to store a string in. We will use kmalloc to do this. (Why is discussed
later)

One thing which must be realized with kmalloc — it can only allocate a maximum of

one Linux page (4096 bytes). If you want more, you will have to create a linked list.

Change your driver so that instead of listing 4. you have this:

static char *test_data=NULL;

static int test_data_size=0;

static int test_write(struct inode * inode, struct file * file,

char * buffer, int count)

printk("Write Jd bytes\n",count);

if (count>4095) return -ENOMEM;

if (test_data!=NULL) kfree_s((void *)test_data, test_data_size);
test_data_size = 0;

test_data = (char #)kmalloc((unsigned int)count, GFP_KERNEL);

if (test_data==NULL) return -ENOMEM;

3.4. Using Memory 22

memcpy_fromfs((void *)test_data, (void *)buffer, (unsigned long)count);
test_datalcount]=0; /* NUL-terminate the string if necessary */
test_data_size = count;

return count;

Here. instead of statically allocating memory for the string, we dynamically allocate
it using kmalloc. Note first, that if we had already allocated a string, we free it first
by using kfree_s. This is faster than using kfree, because kfree would have to search
for the size of the object allocated. Here we know what the size was, so we can use

kfree_s. kmalloc vs. malloc is discussed below.

Next, note that we use the GFP_KERNEL priority in the kmalloc. This causes the
process to go to sleep if there is no memory available, and the process will wake up
again when there is memory to spare. In general. the process will sleep until a page

of memory is swapped out to disk.

In the event of catastrophic memory non-availability, kmalloc will return NULL, and
we should handle that case. Unfortunately here, we have already freed the previous

string — although that could be changed easily by kmallocing, then kfreeing.
The rest of the code reads as in listing 4.

When we get into the section on interrupt handling, we will discuss the use of

GFP_ATOMIC as a kmalloc priority.
A brief excursion into kmalloc vs. malloc:

The malloc() call allocates memory in user space, which is fine if that’s what you
want. Here, we want to have the driver store information so that *any™ process can
use it, and so we have to allocate memory in the kernel. That means, kmalloc().
Further, there is a maximum of 4096 bytes which can be allocated in any one call of
kmalloc. This means that you cannot be guaranteed to get contiguous space of over
4096 bytes. You will have to use a linked list of kmalloced buffers.

Alternatively, you can fool with the init section of the driver, and reserve contiguous

space for yourself on init (but then it may as well be statically allocated).

3.5. Process Synchronization 23

3.5 Process Synchronization

For my next trick, I...fall....a...sleep (SNNXXXX!!)

The thing which really saves multitasking operating systems is that many process
sleep when waiting for events to occur. If this were not true, processes would always
be burning cycles. and there would really be no big difference between running your

processes at the same time, or one after the other.

But when a process sleeps, other processes get to use the CPU. In general, processes
sleep when an event they are waiting for has not yet happened. The exception to this
is processes which are designed to do work when nothing is happening. For example,
you might have a process sitting around using cycles to calculate pi out to a zillion
digits. That kind of background process should have its priority set real low so that
it isn’t executed often when other (presumably more important) processes have work
to do.

Since processes sleep when waiting for events. and said events are usually handled
by drivers, drivers must cause the processes which called them to sleep if not ready.
This is the idea behind the select() call, which will be dealt with in a later chapter.

To illustrate sleeping and waking processes, we will alter our driver from listing 2 by

adding a new write function and changing the read function around as follows:

static char test_data[]="Linux is really funky!\n";
static int wakeups = O;

static struct wait_queue *wait_queue = NULL;

static int test_write(struct inode * inode, struct file * file,

char * buffer, int count)
int i;

printk("Write d bytes\n",count);

wake_up_interruptible(&wait_queue) ;

3.5. Process Synchronization 24

printk("Woke d processes.\n",wakeups);
wakeups = O;

return count;

static int test_read(struct inode * inode, struct file * file,

char * buffer, int count)
int offset;
printk("Test Data Generator, reading %d bytes\n",count);

printk("Process going to sleep\n");
wakeups++;
interruptible_sleep_on(&wait_queue) ;

printk("Process has woken up!\n");

for (offset=0; offset<count; offset++)
put_fs_byte(test_dataloffset % (sizeof(test_data)-1)], buffer+offset);

return offset;

Don’t forget to put the test_write function in the file_operations struct! But don’t

compile this driver just yet! Read on...

The operation of this driver is as follows: On a read, put the process to sleep. On a
write, wake up all those processes which have gone to sleep in this driver. This will

allow the processes to complete the read.

There are two new variables here, wakeups and wait_queue. The wait_queue is a
circular queue of processes which are sleeping. It is FIFO, so that the process woken

up is the first process which went to sleep.

The kernel handles the queue for us; all we need to do is supply a pointer to the queue

and initialize it to NULL (i.e., the queue is empty).

We'll use the wakeups variable to tell us how many processes are taken off the
wait_queue (i.e., woken up) — which is the number of processes which have already

gone to sleep. So each time a process is slept on, we increment wakeups. When a

3.5. Process Synchronization 25

write request comes in, we wake up wakeups processes and reset wakeups to zero.
Simple, yes? Now we get into the sticky part.

In the Guide, you see that you can choose two ways of sleeping — interruptible or
not. Interruptible sleeps can be interrupted (i.e., the process is woken up) by signals
(such as SIGUSR) and hardware interrupts. Non-interruptible sleeps can only be
interrupted by hardware interrupts. Not even a kill -9 will wake up a non-interruptible

process which is sleeping! Suppose you have a signal handler in your process which

will react to signal 30 (SIGUSR). That is, you can do kill -30 jpid;. What happens?

When the scheduler gets around to checking the signalled process for runnability, it
sees that there is a signal pending. This allows the process to continue to run where
it left off, with a twist: when the process leaves kernel mode (the driver call) and
enters user mode, the signal handler is called (if there is one). Once the signal handler

function exits, one of two things can happen:

o If the original system call exited with -ERESTARTNOINTR. then the process

will continue as if it calls the system call again with the same arguments.

o If the original system call did not exit with -ERESTARTNOINTR, but with -
ERESTARTNOHAND or -ERESTARTSYS. then the process will continue exit-
ting from the system call with -1, errno -EINTR.

o Ifthe original system call did not exit with-ERSTARTNOINTR,-ERESTARTNOHAND,
or -ERESTARTSYS. then the process will continue, exitting from the system

call with whatever was returned.

You can see most of this (if you can read mutilated 80386 assembly) in jsrci /kernel /sys_call.S
and jsrc; /kernel /signal.c. Although signal handling has been considerably revamped
for 0.99pl8. the basic sequence of operations is intact across patch levels. -ERESTARTNOHAND

is new in 0.99pl8.

This is important — the driver call should not be completed except for cleanup, since

the kernel will return an error for you or redo the system call.

When the process continues to run before calling the signal handler, it picks up where
it left off — in the interruptible sleep_on function. This function takes the process off

the wait_queue automatically (which is nice). But then wakeups is not updated (which

3.5. Process Synchronization 26

is not so nice). In that case, when a subsequent write comes in, the number of sleeping

processes reported will be wrong!
[pulpit-pounding mode on]

Although for this driver ignoring this is not such a big deal. it is sloppy programming
for a driver. Driver code must be so perfect that it operates like a well-oiled machine,
with no slip-ups. One error — one bit of code that gets out of sync — and you can at
least annoy users and make them throw up their hands in frustration, and at worst
panic the kernel and make users throw your code away in frustration! Also. there is
nothing worse than spending time debugging an application when the bug is in the

driver, or trying to code around a known driver flaw.
[pulpit-pounding mode off]
So how do we solve this out-of-sync problem?

Fact: ignoring interrupts. all processes are atomic when they are in the kernel. That
is, unless a process performs an operation which can sleep (like the call to kmalloc
we visited above), or a hardware interrupt comes in, the flow of execution goes from
entering the kernel to leaving the kernel, with no time taken out to run anything else.
This does not mean that the code in user space gets to continue to run. If the process
leaves the system call and is not eligible to run, other processes may run and then

later on the system call appears to have returned to the process. More on that later.

That fact is good to know. It means that as long as we are sure upon entering
the test_write call that wakeups contains the correct number of sleeping processes,
test_write will work 100comes in which causes the driver to execute an interrupt
handler, we are safe, but here we have no such handler, and so we can ignore that for

now. We will deal with interrupts in a later chapter.

So we know that write doesn’t really have to be changed. It’s really the read that we're
concerned about. What we need to do is after we get out of interruptible_sleep_on()
we see if we were genuinely woken up through a wakeup call, or if we were signalled.
If we were signalled, then we know that the write call wasn’t the cause of the wakeup,

and so we should really decrement wakeups.

Now for some loose ends. Remember that upon signalling, the kernel only flags the

signal for the process, and sets the process to a runnable state. That does not mean

3.5. Process Synchronization 27

that it can run immediately. Another process may get to run first, and that process
may very well run the driver’s write code, waking up all processes. Of course, we can
consider the signalled process to be still asleep when it gets the signal, because it has
not yet run its signal handler. So when that other process gets to run the write code,

the number of sleeping processes is indeed correct, and wakeups is set to 0.

But now, when the signalled process is run again, the read code will attempt to
decrement wakeups, making it -1! The next write will display the wrong number of

sleeping processes!

One thing saves us — the fact that we can detect in the read code that the write code
was executed, simply because wakeups is 0. Remember that wakeups is incremented
before the sleep, so it is guaranteed to be greater than 0 if the write code was not

executed before waking up because of a signal.

So if the write code was executed, it really does not make sense to decrement wakeups,

so we just say that only if wakeups is non-zero do we decrement.

To implement all this, add this code after the sleep:

if (current->signal & “current->blocked) /* signalled? */
{

printk("Process signalled.\n");

if (wakeups) wakeups--;

return -ERESTARTNOINTR; /* Will restart call automagically */
}

Now that you've got that straightened out, let’s add some more confusion to the mix.
Suppose you're in the driver call, doing nice things, and then all of a sudden a nasty
timer interrupt (task switch possibility) comes in. What now? Will there be a task

switch? No. A RUNNING task in the kernel cannot be switched out, otherwise all
hell would break loose. Whew! I'm glad we don’t have to pay attention to that!

Well, now that we’ve gone through all the possible ways signals can make your insides

twist, you can code the driver. Remember to put listing 7 into listing 6!

3.5. Process Synchronization 28

Here’s how we're going to test this driver. Several processes will call read (and sleep).
When they wake up, they're going to say that they were woken up (as opposed to
printing out what they just read — we already know that works). One process will do
a write to wake the other processes up. This is the trigger process. Here is the code

for the two types of processes:

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>

#include <signal.h>
/* The reader process */

void signal_handler(int x)

{
printf("Called signal handler\n");
signal (SIGUSR1, signal_handler); /* Reset signal handler */

}

void main(void)
{
int fd;
char buff[128];

int rtn;

signal (SIGUSR1, signal_handler); /* Setup signal handler */
fd = open("/dev/testdata",0_RDWR);

printf("/dev/testdata opened, fd=/d\n",fd);

if (£d<=0) exit(0);

rtn = read(fd,buff,sizeof (buff));

printf ("Read returns %d\n",rtn);

3.5. Process Synchronization

29

if (rtn<0)
{
perror("read");
exit(1);
}
printf ("Process woken up!\n");
close(fd);

#include <stdio.h>

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>

#include <errno.h>

#include <signal.h>

/* The writer process */

void main(int argc, char **argv)

{

int fd;
char buff[128];

int rtn;

fd = open("/dev/testdata",0_RDWR);
printf("/dev/testdata opened, fd=Yd\n",fd);
if (£fd<=0) exit(0);

if (arge>1)
{
kill(atoi(argv[1]),SIGUSR1);
exit(0);
}
rtn = write(fd,buff,sizeof (buff));
if (rtn<0)

3.5. Process Synchronization 30

perror("write");
exit(1);

}

close(fd);

Compile these programs using gcc. Now run two or three of the data processes:

data &

The last thing each of these processes should print is

Process going to sleep.

because all of these processes are asleep. Now run the trigger program:
trigger

This should wake up all the other processes, which should say,
Process woken up!

Had the read function returned an error (like EINTR), they would have said
read: <error text>

Now, let’s test to see if the signal detection and restart mechanism works. Run a
single data process in the background via "data &”. Remember it’s pid. Now, run
the trigger process with that pid as an argument:

trigger <pid>

This will signal jpid; instead of waking it up via write. The driver should say,

3.6. The select call 31

Process signalled.
Called signal handler

but the process should not wake up, since we restarted the call. Only a write will

stop the call.
Experiment 3:

Re-write the driver so that instead of always restarting the call. it returns with EINTR
on signal when the read call’s count is a special value or values (say anything less
than 1000). Test to see if the read call returns EINTR when the trigger program

signals the reading process.

3.6 The select call

I want this, that, that...no, THIS, and that. Or, selects!

The select call is one of the most useful calls created for interfacing to drivers. Without
it, or a function like it, if you wanted to check a driver for readiness, you would have to
poll it regularly. Worse, you would not be able to check multiple drivers for readiness

at the same time!
But enough of this. You have select, so rejoice and be happy.

As already implied by the first paragraph. the select system call allows a process to
check multiple drivers for readiness. For example, suppose you wanted the process to
sit around and wait for one of two file descriptors to be ready for reading. Usually. if
a descriptor is not ready for reading and you read it. it will put your process to sleep
(or "block™). But you can only read one file descriptor at a time, and here you want

to essentially block on _two_ fd’s.

In that case, you use the select call. The syntax of select was already explained in

the Guide, so let’s go about implementing a select function in our driver.

Add the following code to the driver, and put the test_select function in the fops

structure:

3.6. The select call 32

static int test_select(struct inode *inode, struct file *file,

int sel_type, select_table *wait)

printk("Driver entering select.\n");
if (sel_type==SEL_IN) /* ready for read? */
{
if (wakeups) /* Any process is sleeping in here */
{
select_wait(&wait_queue, wait);
printk("Driver not ready\n");
return 0; /#* Not ready yet */

}
return 1; /% Ready */

}

return 1; /* Always ready for writes and exceptions */

Here’s what this function does. When a process issues a select call with this driver as
one of the fd’s to select on, the kernel will call test_select with sel_type being SEL_IN.
If wakeups is non-zero (that is, processes have read without a process writing) then
we will say that the driver is not ready for reading. In this case, select_wait will add
the process to the wait_queue and immediately return. The return of 0 indicates that

the driver is not ready for the operation.

For any other type of operation (or if there are no processes sleeping in read) we say

the driver is ready (return 1).

The only thing that must be remembered is that we are using the same wait_queue
structure for processes sleeping in read and processes sleeping in select. This means
that writing to the driver will wake up both types of processes. If desired, a different

wait _queue could be used, and the appropriate wake up code would have to be written.

Compile this new code into the kernel. We will test this driver by writing a new type

3.6. The select call 33

of process which will call the select system call. Here is the new process’ code:

#include <stdio.h> /* Doesn’t hurt, can only help! */
#include <fcntl.h>
#include <sys/time.h> /* For FD_* and select */

void main(void)
{
int fd;
int rtn;
fd_set read_£fds;

fd = open('"/dev/testdata", O_RDWR);
printf("/dev/testdata opened, fd=Yd\n",fd);
if (£d<=0) exit(0);
printf("Entering select...\n");
FD_ZERO(&read_£fds);
FD_SET(fd,&read_fds);
rtn = select(&read_fds, NULL, NULL, NULL);
if (rtn<0)
{

perror("select");

exit(0);
}
printf("Select returns %4d\n",rtn);

When the kernel is re-loaded, the first test we will perform is to see whether the select
call returns immediately given that no processes are sleeping in read. Just run sel —

no need to run it in the background. You should see something like:

Entering select...
Driver entering select.

Select returns 1

3.6. The select call 34

This is as it should be — select has determined that one file descriptor is ready for

reading.

Our next test is to see whether select sleeps properly. Run this:

data &
sel &
trip

When sel is run, you should see:

Entering select...
Driver entering select.
Read not ready

Driver entering select.

Read not ready

The select call in the kernel calls the test_select function again once if the first time
the driver is not ready. However, the process is only added to the wait queue once —
the first time.

Once the trip program is run, you should see:

Process has woken up!
Read returns 1024
Driver entering select.

Select returns 1

That is, the data process woke up due to the write, as did the sel process. Note that
the test_select function is called once again when the sel process is woken up. This
is also a consequence of the kernel design, and is nothing to worry about. Those
who are interested in the inner workings of the select call should look in the file

jsrey /fs/select.c.

A word about signals and select. Since the select call in the driver does not return
any error code — just 0 or non-0 — there is no way to decide whether the select call
should be restarted or not. Select will return -1, errno EINTR if interrupted by a

signal.

Chapter 4

Your Driver and the Hardware

4.1 General

In General the greatest problem for you if you decide to write a device driver is to
make the Hardware doing what you want them to do. So the first stage developing
a driver should be making familiar with the Hardware. If your card does Port 1/0,
play around with the Port registers. Some cards like A/D converters uses some tricks
to clear FIFO’s or select special modes, it depends on the electronically design of the

card. Your Task is to get familiar with this tricks.

The second problem is to decide what timing requirements your driver should have.
If you want to aquire 20000 samples per second with an A/D card you have to decide
how this is done on the card, where the samples go in memory, how the transfer can
be done as fast as possible, and so on. For Hardware that produces lot of Data e.g.
CCD-Cameras or Framegrabbers you have to get enough Memory where this data

can be served.

On the other hand do'nt forget that you have a Multitasking System where other
Processes wait for data (to read or to write). Exspecially this People that shoot
together selfmade hardware should take to heart this fact. I've seen Stepper Motor
cards that needs four Port 1/O’s per step’ — very good design to break down your

IThe four pole motors has been driven by bus-latches with amplifiers at their outputs. The inputs

of the latches were connected directly to system bus.

35

4.2. Programmed 1/0 36

system performance.

All these Problems have an influence on the design of your driver. Fortunally the

Linux System has lot of Mechanisms that will help you on this Task.

4.2 Programmed I/0

The simpliest way to do an I/0O is the so called Programmed I/O (Polling): You give
an request to your hardware and have to wait for response. No problem for DOS-
Programmers, you say - you play on some registers to perform the request - you enter
a loop that does nothing but looking at some other registers and - if it’s ready give
your control back. Baah — I say. What does the Program while your Hardware is'nt
ready? — Right! .. nothing but burne cycles. Oh sweet conciousness! This time
could be used to do many other requests. And what is if your hardware never gets

ready7

As mentioned in the sections above can this problem be solved with an timeout:

e Program a timer to your expire time with an routine that should be called if

the timer expires.
e Use this routine to perform the apropriate operations.

e if it is woken by the timer give control back (dont forget to clear the timer)

Let us have a look how this can be done (this code to make a sound on the PC speaker

has been stolen from SLINUX_SOURCE/drivers/char/vt.c):

static void

kd_nosound(unsigned long ignored)
{

/* disable counter 2 */
outb(inb_p(0x61)&0xFC, 0x61);
return;

}

4.3. Interrupt driven I/O 37

void
kd_mksound(unsigned int count, unsigned int ticks)

{
static struct timer_list sound_timer = { NULL, NULL, O, O, kd_nosound };

cli();

del_timer(&sound_timer);

if (count) {

/* enable counter 2 */

outb_p(inb_p(0x61) |3, 0x61);

/* set command for counter 2, 2 byte write */
outb_p(0xB6, 0x43);

/* select desired HZ */

outb_p(count & Oxff, 0x42);

outb((count >> 8) & Oxff, 0x42);

if (ticks) {
sound_timer.expires = ticks;

add_timer(&sound_timer);

}

} else
kd_nosound(0) ;
sti();

return;

}

The other advantage of this concept is the possibility to generate an final timeout if

your card is’'nt responding.

4.3 Interrupt driven I/O

First, a brief exposition on the Meaning of Interrupts. There are three ways by which a
program running in the CPU may be interrupted. The first is the external interrupt.

This is caused by an external device (that is, external to the CPU) signalling for

4.3. Interrupt driven I1/0O 38

attention. These are referred to as ”interrupt requests” or "IRQs”.

The second method is the exception, which is caused by something internal to the

CPU, usually in response to a condition generated by execution of an instruction.

The third method is the software interrupt, which is a deliberately executed interrupt
— the INT instruction in assembly. System calls are implemented using software
interrupts; when a system call is desired, Linux places the system call number in
EAX, and performs an INT 0x80 instruction.

Since drivers usually deal with hardware devices, it is logical that driver interrupts
should refer to external interrupts. There are 16 available TRQs — IRQ0 through
IRQ15. The following table lists the official uses of the various IRQs:

‘ IRQ ‘Function ‘

0 timer 0

1 keyboard

2 | AT slave 8259 ("cascade”)

3 COM2

4 COM1

5 LPT2

6 | floppy

7 LPT1
8-12 | 777777

13 | coprocessor error
14,15 | 777777

Writing drivers which can be interrupted requires care. Be aware that every line you
write can be interrupted, and thus cause variable changes to occur. If you really want

to protect critical sections from being interrupted, use the cli() and sti() driver calls.

Suppose you wanted to test some kind of funky condition, where success of the con-
dition leads to going to sleep, and being woken up by an interrupt. Consider this

code:

void driver_interrupt(int unused)

{
if ('driver_stuff.int_flag) return; /* Spurious interrupts

are not unheard of */

4.3. Interrupt driven I/O 39

driver_stuff.int_flag=0;
weird_wacky(); /* Do some weird and wacky stuff
here to handle the interrupt */
disable_ints(); /* Disable the device from issuing interrupts */
wake_up(&driver_stuff.wait_queue); /* Sets process to TASK_RUNNING */

if (conditions_are_ripe())
{
driver_stuff.int_flag = 1;
enable_ints(); /* Enable device to interrupt us */
sleep_on(&driver_stuff.wait_queue); /* Sets process to TASK_UNINTERRUPTIBLE */
}

Assume we just leave the conditions_are_ripe code, determining that the conditions
are ripe! We have just enabled the device to interrupt the machine. So we are now
about to enter the sleep_on code, and what should happen but the pesky device
issues an interrupt. Ka-chunk! and we enter the driver_interrupt routine, which does
some weird and wacky stuff to handle the interrupt, and then we disable the device’s
interrupts. Ka-ching! we enter the wake up function which sets the process up to run
again. Boink! we exit the interrupt handler and commence where we left off (just
about to enter the sleep_on code). Vooosh! we're now sleeping the process, awaiting
an interrupt which will never occur, since the interrupt handler disabled the device

from interrupts! What to do?

Use cli() and sti() to protect the critical sections of code:

cli();
if (conditions_are_ripe())
{
driver_stuff.int_flag = 1;
enable_ints(); /* Enable device to interrupt us */
sleep_on(&driver_stuff.wait_queue); /* Sets process to TASK_UNINTERRUPTIBLE */
}
else sti();

First we clear interrupts. This is not the same as disabling device interrupts! This

actually prevents a hardware interrupt from causing the CPU to execute interrupt

4.3. Interrupt driven I/O 40

code. In effect, the interrupt is deferred.

Now we can do our check and perform sleep_on. secure in the knowledge that the
interrupt handler cannot be called. The sleep_on (and interruptible_ sleep_on) call
has a sti() in it in the right place, so you don’t have to worry about calling sti()

before sleep_on, and running into a race condition again.

Of course, with any interruptible device driver, you must be careful never to spend
too much time in the interrupt routine if you are expecting more than one interrupt,

because you may miss your second interrupt.

4.3.1 Timeouts and Interrupts

Suppose you wanted to sleep on an interrupt, but also time out after a period of time.
You could always use the add_timer, but that’s frowned upon because there are only

a limited number of timers available — currently there are 64.

The usual solution is to manually alter the current process’s timeout:

current->timeout = jiffies + X;

interruptible_sleep_on(&driver_stuff.wait_queue);

(Interruptible sleep_on must be used here to allow a timeout to interrupt the sleep).
This will cause the scheduler to set the task running again when X jiffies has gone
by. Even if the timeout goes off and the process is allowed to continue running, it

is probably a good idea to call wake_up_interruptible in case the process needs to be

rescheduled.

To find out if it was a timeout which caused the process to wake up. check current-
Jtimeout. If it is 0, a timeout occurred. Otherwise it should remain what you set it
at. If a timeout did not occur, and something else woke the process up. you should

set current-;timeout to 0 to prevent the timeout from continuing.

The disadvantage of this method is that the process can only have one timeout at a

time. Over *all* drivers.

4.4. Drivers and signals: 41

4.4 Drivers and signals:

When a process is sleeping in an interruptible state, any signal can wake it up. This

is the sequence of events which occurs when a sleeping process receives a signal:

e Set current-jsignal.

e Set the process to a runnable state.
e Execute the rest of the driver call.
e Run the signal handler.

o Ifthe driver call in step 3 returned -ERESTARTNOHAND or -ERESTARTNOINTR,
then return from the driver call with EINTR. If the driver call in step 3 re-
turned -ERESTARTSYS. then restart the driver call. Otherwise, just return

with whatever was returned from the driver call.

In the driver, you can tell if a sleep has been interrupted by a signal with the following
code:

if (current->signal & “current->blocked)

{
/* Do things based on sleep interrupted by signal */

}

4.5 DMA-Transfers

Some Hardware supports an Mechanism to tranfer a Block of Data from System-
Memory to a Memory at the card or backwards(Hard and Floppy Disks, Tapes, some
A/D cards). This is done by special controllers so that the CPU load is low for
this transactions. This is the so called Direct Memory Access (DMA). This sounds
wondeful but is a very difficult task in detail expecially for the driver programmer. It
requires a complex interaction between interrupts, hardware-controllers and memory

management.

4.5. DMA-Transfers 42

BTW, its possible so let’s go on. First we have to understand the Principle of oper-

ation.

On the initiate Phase of an DMA Operation the CPU gives the DMA-Controller the
physical memory adress where the data block is to go and the number of data bytes
to transfer, under Linux this is controlled by the two functions set_dma_addr() and
set_dma_count(). Once the DMA transfer has been initiated the controller copies the
first byte (or word) to the adress specified at the Adress Register. Then it increments
the DMA-Adress Register and decrements the Count Register. This is repeated until

the count register reached the zero value and the controller causes an Interrupt.

For the DMA Transfer several lines of the system bus are used for the Handshake
between The Host-side DMA controller and the Card-side DMA controller while the
transfer is done. These lines are grouped in so called DMA-Channels. To use an DMA-
Channel in linux you have to tell this to the kernel similar to IRQ use. This is done
by the request_dma() function that takes the required DMA-Channel as argument.

It should be called in your init function.

The PC has two DMA controllers, the first is connected to channel 0-3 and used for
byte transfers (that means byte-by-byte on odd adresses), the other one is used for
word (16 bit word-by-word) transfers. At each Word transfer the adress register has
to be incremented by 2 and the count register decremented by one (number of words).
The PC designers shifted the adress lines of the 2nd controller by one (multiplication
by 2). All DMA transfers are limited to the lower 16MB of physical memory. Note
that addresses loaded into registers must be physical addresses, not logical addresses

(which may differ if paging is active).

Due to this fact(s) there are some restrictions for DMA-transfers?:

o ALL controller registers are 8 bits only, regardless of transfer size
e channel 4 is not used - cascades 1 into 2.

e channels 0-3 are byte - addresses/counts are for physical bytes

e channels 5-7 are word - addresses/counts are for physical words

e transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries

2This Rules come from jasm/dma.h; from Hennus Bergman

4.5. DMA-Transfers 43

transfer count loaded to registers is 1 less than actual count

controller 2 offsets are all even (2x offsets for controller 1)
e page registers for 5-7 don’t use data bit 0., represent 128K pages

e page registers for 0-3 use bit 0. represent 64K pages

(from <asm/dma.h> by Hennus Bergman)

* Address mapping for channels 0-3:

*

* A23 ... A16 A15 ... A8 A7 ... AO (Physical addresses)

* [... [... [...

* [... [... [...

* [... [... [...

* P7 ... PO A7 ... A0 A7 ... AO

* | Page | Addr MSB | Addr LSB | (DMA registers)

*

* Address mapping for channels 5-7:

*

* A23 ... A17 A16 A15 ... A9 A8 A7 ... Al AO (Physical addresses)
* [... | W W N N P WA

* | ... \ \ ...V \V \ ...\ (not used)

* [... AN R U Y W\

* P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... AO

* | Page | Addr MSB | Addr LSB | (DMA registers)

Again, channels 5-7 transfer physical words (16 bits), so addresses and counts must
be word-aligned (the lowest address bit is ignored at the hardware level, so odd-byte
transfers aren’t possible). Transfer count (not # bytes) is limited to 64K, represented
as actual count - 1 : 64K =; OxFFFF, 1 =; 0x0000. Thus, count is always 1 or more,

and up to 128K bytes may be transferred on channels 5-7 in one operation.

To do a DMA-Transfer do the following:

e Enable DMA on your card.

Look to your hardware documentation how this has to be done. Some cards

4.5. DMA-Transfers 44

have registers to enable DMA and IRQ), it depends on your hardware what you

have to set.

e Set up Host-side registers

— First clear the "DMA Pointer Flip Flop”. Call clear_dma_ff(unsigned int

dmanr) with your DMA-Channel as argument.

— Set the DM A-mode register to one of DMA_MODE_READ, DMA_MODE_WRITE
or DMA_MODE_CASCADE (In this mode the DMA-Controller is used as
no-operation slave®). set_dma_mode(unsigned int dmanr, char mode) will
do this Task for you.

— Now set DMA-count and DMA adress register but remember the rules
above. Use set_dma_addr(unsigned int dmanr, unsigned int a) (If you
want to set the Page register only you have the set_dma_page(unsigned int

dmanr, char pagenr) routine for this).

set_dma_count(unsigned int dmanr, unsigned int count) sets the DMA-
count register while "count’ represents bytes and must be even for channels

5-T.

o start dma-transfer
Now trigger your hardware to do the transfer. If your card supports DMA-
IRQ you should start the transfer and wait for an Interrupt. You could read
the residue count to check out your transfer has been completed. To do this

get_dma_residue(unsigned int dmanr) should return zero.

Note: There is a very good example for DMA-Programming written by Hennus: look
at /drivers/char/tpqic02.c (the QIC-02 Tape driver).

3This Mode is used on Network-cards for example, if you intend to use this mode, have a look

on /drivers/net/lance.c .

Chapter 5

Special Concepts in Linux

5.1 Accesing Ports in User space

For some operations on the hardware the standard driver calls as read() or write()
are too slow. In this case it is better to permit the i/o port access directly to the user
process. This has been done for the vgalib graphics library that is used by the X11
server to get maximal performance. For this purpose Linux offers the ioperm() call

that permits port access.

#include <unistd.h>

int ioperm(unsigned 1long from, unsigned long num, int turn_on);

loperm sets the port access permission bits for the process for num bytes starting from

port address from to the value turn_on. The use of ioperm require root privileges!
On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

To use ioperm in a user programm it must run suid root.

1Only the first 0x3ff I/O ports can be specified in this manner. For more ports, the iopl function

must be used. (see manual page)

45

5.2. Accessing Kernel Memory from User Space 46

5.2 Accessing Kernel Memory from User Space

The second Problem in context with video cards is the Memory of the card that have
to be acessed from user space. This Memory can be mapped to user space using the

mmap() call.

To this a short Example from vgalib:

#include <sys/types.h>

#include <sys/mman.h>

/* open /dev/mem */
if ((mem_fd = open("/dev/mem",0_RDWR))==NULL){
error_and_exit();

}

/* mmap graphics memory */
if ((graph_mem = malloc(GRAPH_SIZE + (PAGE_SIZE-1)))==NULL){
error_and_exit();

}

/* align to page boundary */
if((unsigned long)graph_mem % PAGE_SIZE)
graph_mem += - ((unsigned long) graph_mem j PAGE_SIZE) ;

/* now map the memory */
if((graph_mem = (unsigned char *) mmap(
(caddr_t) graph_mem,
GRAPH_SIZE,
PROT_READ |PROT_WRITE,
MAP_SHARED |MAP_FIXED,
mem_fd,
GRAPH_BASE
)) < (long) 0){
error_and_exit();

}

5.3. Reading the kernel Environment A7

First the /dev/mem device is opened, then enough memory is allocated to do the
map on a 4096 byte boundary. GRAPH_SIZE is the size of the Memory of the card
beginning at GRAPH_BASE.

Any access to graph_mem now is mapped to screen memory.

For details on the flags please refer to the manual page of mmap.

5.3 Reading the kernel Environment

Linux provides an Method to configure Drivers at boot time without rebuilding the
kernel. This configuration options are given by lilo to the kernel as a string. You can

give this parameters at boot time at the lilo boot prompt, for example:
LILO boot: linux mydriver=0x240,4
The kernel passes this options to the driver’s bmouse_setup routine. For example:

static int my_driver_irq = DEFAULT_IRQ;
static int my_driver_base = DEFAULT_BASE;

void my_driver_setup(char *str, int *ints)

{

if (ints[0] == 2){ /* ints[0] holds the number of arguments */
my_driver_base=ints[1];

my_driver_irq=ints[2];

}

}

To bind the option "mydriver=" and the _setup routine together and to make it recog-
nized by the kernel, you have to modify the bootsetups[] array in SLINUX_SOURCE/init /main.c:

struct {
char *str;

void (*setup_func)(char *, int *);

5.4. Writing Loadable Modules 48

} bootsetups[] = {

{ "reserve=", reserve_setup },
: /* some option strings */

#ifdef CONFIG_MYDRIVER
{ "mydriver=", my_driver_setup 1},
#endif

: /* some other options */

{0, 0%
};

Note that the setup routine is called before any init routine. This mechanism is used

by several drivers to configure IRQ) and base adress.

5.4 Writing Loadable Modules

2.5 This section has partially been stolen from Jon. Tomb’s doc file in the modutils

package.

A module is a collection of code which can be dynamicly linked into the kernel.
Modules can contain things such as device drivers, system calls, and file system types

[system calls are actually nolonger permitted].

A module consists of a normal .o file. If you have multiple source files, combine them

into a single .o file using ”1d -r”.
How does the kernel know to use my module?

Your code must contain a routine named ”"init_module” and a routine named " cleanup_module”.

These routines are defined as:

int init_module(void);

void cleanup_module(void);

5.4. Writing Loadable Modules 49

"Init_module” will be called when the module is loaded. It should return zero on
success and -1 on failure. 7Cleanup_module” will be called before the module is
deleted. It should undo the operations performed by "init_module”. For example, if
a module defines a special device type "init_module” should register the device major

number and and ”cleanup_module” should remove it.

Also note for the module to be installed it must contain a string kernel version[] that

matches the release of the current kernel (i.e. matches uname -r).

Here is a short Example of the parts of an Driver that makes it to an Module:

other includes
#include <linux/module.h>

char kernel_version[] = "1.0"; /# or what ever uname -r says */

#t## other driver routines

/*
* Qur special open code.
* MOD_INC_USE_COUNT make sure that the driver memory is not freed
* while the device is in use.
*/
static int
hw_open(struct inode* ino, struct filex filep)
{
MOD_INC_USE_COUNT;

return O;

/*
* Now decrement the use count.
*/
static void
hw_close(struct inode* ino, struct filex filep)
{
MOD_DEC_USE_COUNT;

5.4. Writing Loadable Modules

static struct file_operations hw_fops = {
hw_1lseek,

hw_read,

NULL,

NULL, /* hw_readdir */
NULL, /* hw_select */
NULL, /* hw_ioctl */
NULL,

hw_open,

hw_close,

NULL /* fsync */

3

/*
* And now the modules code and kernel interface.
*/

extern int printk(comnst char* fmt, ...);

int

init_module(void) {

printk("drv_hello.c: init_module called\n");

if (register_chrdev(HW_MAJOR, "hw", &hw_fops)) {
printk("register_chrdev failed: goodbye world :-(\n");
return -EIO;

} else
printk("Hello, world\n");

return O;

}

void
cleanup_module(void) {

printk("drv_hello.c: cleanup_module called\n");

5.4. Writing Loadable Modules 51

if (MOD_IN_USE)

printk("hw: device busy, remove delayed\n");

if (unregister_chrdev(HW_MAJOR, "hw") != 0) {
printk("cleanup_module failed\n");
} else {

printk("cleanup_module succeeded\n");

}

Note that there is a new kernel routine unregister_chrdev() that removes the hooked
fops functions from the kernel. Be shure to call this routine at cleanup. Do’nt forget

to free irq’s, dma’s and memory pages.

The Macros MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT are used in open/close
to prevent the module being freed while it is still running. This is checked by
MOD_N_USE at cleanup.

For loading, unloading and listing modules there are several programs to do this tasks.

“insmod object file” will install a module into the kernel. The name of the module

consists of the name of the object file with the .0 and any directory names removed.

"lsmod” will produce a list of modules currently in the kernel. including the module

name and size in pages.

“rmmod name” will remove a module. The argument should be the module name,

not the object file name.

Appendix A

Reference Guide

A.1 Kernel-callable functions

Note: There is no close for a character device. There is only release. See the file data
structure below to find out how to determine the number of processes which have the

device open.

init : Initializes the driver on bootup.

unsigned long driver_init(unsigned long kmem_start, unsigned long kmem_end)

Arguments: kmem_start -- the start of kernel memory

kmem_end -- the end of kernel memory

Returns: The new start of kernel memory. This will be different from the

kmem_start argument if you want to allocate memory for the driver.

The arguments you use depends on what you want to do. Remember that since
you are going to add your init function to kernel/chr_dev/mem.c, you can make
your call anything you like, but you have access to the kernel memory start and

end.

Generally, the init function initializes the driver and hardware, and displays
some message telling of the availability of the driver and hardware. In addition,

the register_chrdev function is usually called here.

A.1. Kernel-callable functions 53

open : Open a device

static int driver_open(struct inode * inode, struct file * file)

Arguments: inode -- pointer to the inode structure for this device

file -- pointer to the file structure for this device

Returns: 0 on success,

—errno on error.

This function is called whenever a process performs open (or fopen) on the
device special file. If there is no open function for the driver, nothing spectacular

happens. As long as the /dev file exists, the open will succeed.

read : Read from a device

static int driver_read(struct inode * inode, struct file * file,

char * buffer, int count)

Arguments: inode -- pointer to the inode structure for this device
file -- pointer to the file structure for this device
buffer -- pointer to the buffer in user space to read into
count -- the number of bytes to read

Returns: -errno on error
>=0 : the number of bytes actually read

If there is no read function for the driver, read calls will return EINVAL.
write : Write to a device

static int driver_write(struct inode * inode, struct file * file,

char * buffer, int count)

Arguments: inode -- pointer to the inode structure for this device
file -- pointer to the file structure for this device
buffer -- pointer to the buffer in user space to write from
count -- the number of bytes to write

Returns: -errno on error
>=0 : the number of bytes actually written

A.1. Kernel-callable functions 54

If there is no write function for the driver, write calls will return EINVAL.

sk sk ok ok o ok ok o ok ok ok

Iseek : Change the position offset of the device

static int driver_lseek(struct inode * inode, struct file * file,

off_t offset, int origin)

Arguments: inode -- pointer to the inode structure for this device
file -- pointer to the file structure for this device
offset -- offset from origin to move to (bytes)
origin -- origin to move from :

0 = from origin O (beginning)

1
2

from current position

from end

Returns: -errno on error

>=0 : the position after the move

See Also: Data Structure ’file’

If there is no lIseek function for the driver, the kernel will take the default seek

action, which is to alter the file-;f_ pos element. For origins of 2, the default
action results in -EINVAL if file-;f inode is NULL. or it sets file-;f _pos to file-

Jfinode-ji_size + offset otherwise.

ioctl : Various device-dependent services

static int driver_ioctl(struct inode *inode, struct file *file,

unsigned int cmd, unsigned long arg)

Arguments: inode -- pointer to the inode structure for this device
file -- pointer to the file structure for this device
cmd -- the user-defined command to perform
arg -- the user-defined argument. You may use this

as a pointer to user space, since sizeof(long)==

sizeof (void *).

Returns: -errno on error

>=0 : whatever you like! (user-defined)

A.1. Kernel-callable functions 55

For cmd, FIOCLEX, FIONCLEX, FIONBIO, and FIOASYNC are already de-
fined. See the file linux/fs/ioctl.c, sys_ioctl to find out what they do. If there is
no ioctl call for the driver, and the ioctl command performed is not one of the
four types listed here, ioctl will return -EINVAL.

select : Performs the select call on the device:

static int driver_select(struct inode *inode, struct file *file,

int sel_type, select_table * wait)

Arguments: inode -- pointer to the inode structure for this device
file -- pointer to the file structure for this device
sel_type -- the select type to perform :

SEL_IN (read)
SEL_OUT (write)
SEL_EX (exception)

wait -- see the section "Some Notes" for select.

Returns: O if the device is not ready to perform the sel_type operation

'=0 if it is.

See the ”"Some Notes” section 'way below on information on how to use the
select call in drivers. If there is no select call for the driver, select will act as if

the driver is ready for the operation.

release : Release device (no process holds it open)

static void driver_release(struct inode * inode, struct file * file)

Arguments: inode -- pointer to the inode structure for this device

file -- pointer to the file structure for this device

The release call is activated only when the process closes the device as many
times as it has opened it. That is, if the process has opened the device five
times, then only when close is called for the fifth time will release be called
(that is, provided there were no more calls to open!). If there is no release call
for the driver, nothing spectacular happens.

ok sk ok of o ok ok ok ok ok sk ok

readdir : Get the next directory entry

A.2. Data structures 56

static int driver_readdir(struct inode *inode, struct file #*file,

struct dirent *dirent, int count)

Arguments: inode -- pointer to the inode structure for this device
file -- pointer to the file structure for this device
dirent -- pointer to a dirent ("directory entry") structure
count -- number of entries to read (currently always 1)

Returns: 0 on success

-errno on failure.

If there is no readdir function for the driver, readdir will return -ENOTDIR.
This is really for file systems, but you can probably use it for whatever you like

in a non-fs device, as long as you return a dirent structure.

See Also: dirent (data structure)

mmap : Forget this. According to the source (src/linux/mm/mmap.c), for character
devices only /dev/[k]Jmem may be mapped. Besides, 'm not too clear on what
it will do.

A.2 Data structures

dirent : Information about files in a directory.

#include <linux/dirent.h>

struct dirent {

long d_ino; /* Inode of file */
off_t d_off;

unsigned short d_reclen;

char d_name [NAME_MAX+1]; /* Name of file */

file : Information about open files

A.2. Data structures 57

According to the Hacker’s Guide to Linux, this structure is mainly used for
writing filesystems, not drivers. However, there is no reason it cannot be used

by drivers.

#include <linux/fs.h>

struct file {

mode_t f_mode;

dev_t f_rdev; /* needed for /dev/tty */

off_t f_pos; /* Curr. posn in file */

unsigned short f_flags; /* The flags arg passed to open */
unsigned short f_count; /* Number of opens on this file */

unsigned short f_reada;
struct inode * f_inode; /* pointer to the inode struct */

struct file_operations * f_op; /* pointer to the fops struct */

file_operations : Tells the kernel which function to call for which kernel function.
#include <linux/fs.h>

struct file_operations {
int (*1lseek) (struct inode *, struct file *, off_t, int);
int (*read) (struct inode *, struct file *, char *, int);
int (*write) (struct inode *, struct file *, char *, int);
int (*readdir) (struct inode *, struct file *, struct dirent *, int);
int (*select) (struct inode *, struct file *, int, select_table *);
int (*ioctl) (struct inode *, struct file *, unsigned int,
unsigned int);
int (*mmap) (void);
int (*open) (struct inode #*, struct file *);
void (*release) (struct inode *, struct file *);

int (#fsync) (struct inode #*, struct file *);

inode : Information about the /dev/xxx file (or inode)

A.2. Data structures 58

#include <linux/fs.h>

struct inode {
dev_t i_dev;

unsigned long i_ino; /* Inode number */

umode_t i_mode; /* Mode of the file */
nlink_t i_nlink;
uid_t i_uid;
gid_t i_gid;
dev_t i_rdev; /* Device major and minor numbers */
off_t i_size;
time_t i_atime;
time_t i_mtime;
time_t i_ctime;

unsigned long i_blksize;

unsigned long i_blocks;

struct inode_operations * i_op;

struct super_block * i_sb;

struct wait_queue * i_wait;

struct file_lock * i_flock;

struct vm_area_struct * i_mmap;

struct inode * i_next, * 1i_prev;

struct inode * i_hash_next, * i_hash_prev;

struct inode * i_bound_to, * i_bound_by;

unsigned short i_count;

unsigned short i_flags; /* Mount flags (see fs.h) */

unsigned char i_lock;

unsigned char i_dirt;

unsigned char i_pipe;

unsigned char i_mount;

unsigned char i_seek;

unsigned char i_update;

union {
struct pipe_inode_info pipe_i;
struct minix_inode_info minix_i;
struct ext_inode_info ext_i;
struct msdos_inode_info msdos_i;
struct iso_inode_info isofs_i;

struct nfs_inode_info nfs_i;

A.3. Driver calls 59

};

See Also: Driver Calls: MAJOR. MINOR, IS_LRDONLY, IS_.NOSUID, IS.NODEV,
IS NOEXEC, ISSYNC

A.3 Driver calls

add_timer : Cause a function to be executed when a given amount of time has
passed.

#include <linux/sched.h>

void add_timer(long jiffies, void (*fn)(void))

Arguments: jiffies -- The number of jiffies to time out after.

fn -- The function in kernel space to run after timeout.

Note! This is NOT process-specific! If you are looking for a way to have a
process go to sleep and timeout, look for 7 Excessive use of this function will

cause the kernel to panic if there are too many timeouts active at once.

cli : Macro. Prevent interrupts from occuring

#include <asm/system.h>

#define cli() __asm volatile__ ("cli"::)

See Also: sti

free_irq : Free a registered interrupt

#include <linux/sched.h>

A.3. Driver calls 60

void free_irq(unsigned int irq)
Arguments: irq -- the interrupt level to free up

See Also: request_irq

get_fs_byte, get_fs_word, get_fs_long : Get data from user space

Purpose: Allows a driver to access data in user space (which is in a different

segment than the kernel!)

#include <asm/segment.h>

inline unsigned char get_fs_byte(const char * addr)

inline unsigned short get_fs_word(const unsigned short *addr)
inline unsigned long get_fs_long(const unsigned long *addr)

Arguments: addr -- the address in user space to get data from

Returns: the value in user space.

See Also: memcpy fromfs, memcpy_tofs, put_fs_byte, put fs_word. put_fs_long

inb, inb_p : Inputs a byte from a port
#include <asm/io.h>

inline unsigned int inb(unsigned short port)

inline unsigned int inb_p(unsigned short port)
Arguments: port -- the port to input a byte from

Returns: Byte received in the low byte. High byte unused.

See Also: outb. outb_p

IS_ RDONLY, IS NOSUID, IS NODEV, IS NOEXEC, IS SYNC: Macros, check
the status of the device on the filesystem

A.3. Driver calls 61

#include <linux/fs.h>

#define IS_RDONLY(inode) (((inode)->i_sb) && ((inode)->i_sb->s_flags &
MS_RDONLY))

#define IS_NOSUID(inode) ((inode)->i_flags & MS_NOSUID)

#define IS_NODEV(inode) ((inode)->i_flags & MS_NODEV)

#define IS_NOEXEC(inode) ((inode)->i_flags & MS_NOEXEC)

#define IS_SYNC(inode) ((inode)->i_flags & MS_SYNC)

kfree, kfree_s : Free memory which has been kmalloced.

#include <linux/kernel.h>

#define kfree(x) kfree_s((x), 0)

void kfree_s(void * obj, int size)

Arguments : obj -- pointer to kernel memory you want to free
size -- size of block you want to free (0 if you don’t know
or are lazy -- slows things down)

kmalloc : Allocate memory in kernel space

#include <linux/kernel.h>

void * kmalloc(unsigned int len, int priority)

Arguments: len -- the length of the memory to allocate. Must not be bigger
than 4096.

priority -- GFP_KERNEL or GFP_ATOMIC. GFP_ATOMIC causes kmalloc

to return NULL if the memory could not be found
immediately. GFP_KERNEL is the usual priority.

Returns: NULL on failure, a pointer to kernel space on success.

memcpy fromfs, memecpy_tofs : Copies memory from user(fromfs)/kernel(tofs) space
to kernel /user space

A.3. Driver calls 62

#include <asm/segment.h>

inline void memcpy_fromfs(void * to, const void * from, unsigned long n)

inline void memcpy_tofs(void * to, const void * from, unsigned long n)

Arguments: to -- Address to copy data to
from -- Address to copy data from
n -- number of bytes to copy

See Also: get_fs_byte. get fs_word, get _fs_long, put_fs_byte, put_fs_word. put_fs_long
Warning! Get the order of arguments right!

MAJOR, MINOR : Macros, get major/minor device number from inode i_dev en-
try.

#include <linux/fs.h>

#define MAJOR(a) (((unsigned)(a))>>8)
#define MINOR(a) ((a)&0xff)

outb, outb_p : Outputs a byte to a port

#include <asm/io.h>

inline void outb(char value, unsigned short port)

inline void outb_p(char value, unsigned short port)

Arguments: value -- the byte to write out

port -- the port to write it out on

See Also: inb, inb_p
printk : Kernel printf

#include <linux/kernel.h>
int printk(const char *fmt, ...)

Arguments: fmt -- printf-style format

. -- var-arguments, printf-style

Returns: Number of characters printed.

A.3. Driver calls 63

put_fs_byte, put_fs_word, put_fs_long : Put data into user space

Purpose: Allows a driver to put a byte, word, or long into user space, which is
at a different segment than the kernel.

#include <asm/segment.h>

inline void put_fs_byte(char val,char *addr)

inline void put_fs_word(short val,short * addr)

inline void put_fs_long(unsigned long val,unsigned long * addr)

Arguments: addr -- the address in user space to get data from

Returns: the value in user space.

See Also: memcpy fromfs, memcpy_tofs, get fs_byte. get fs_word, get fs_long
Warning! Get the order of arguments right!

register_chrdev : Register a character device with the kernel

#include <linux/fs.h>

#include <linux/errno.h>

int register_chrdev(unsigned int major, const char *name,

struct file_operations *fops)

Arguments: major -- the major device number to register as
name -- the name of the device (currently unused)
fops -- a file_operations structure for the device.

Returns: -EINVAL if major is >= MAX_CHRDEV (defined in fs.h as 32)
-EBUSY if major device has already been allocated

0 on success.
request_irq : Request to perform a function on an interrupt

#include <linux/sched.h>

#include <linux/errno.h>

A.3. Driver calls 64

int request_irq(unsigned int irq, void (*handler) (int))

Arguments: irq -- the interrupt to request.
handler -- the function to handle the interrupt. The interrupt
handler should be of the form void handler(int).
Unless you really know what you are doing, don’t

use the int argument.

Returns: -EINVAL if irq>15 or handler==NULL
-EBUSY if irq is already allocated.

0 on success.
See Also: free_irq

select_wait : Add a process to the select-wait queue

#include <linux/sched.h>
inline void select_wait(struct wait_queue ** wait_address, select_table * p)

Arguments: wait_address -- Address of a wait_queue pointer

P -- Address of a select_table

Devices which use select should define a struct wait_queue pointer and initialize
it to NULL. select_wait adds the current process to a circular list of waits.
The pointer to the circular list is wait_address. If p is NULL. select_wait does

nothing. otherwise the current process is put to sleep.

See Also: sleep_on, interruptible_sleep_on, wake up, wake_up_interruptible

sleep_on, interruptible_sleep_on : Put the current process to sleep.

#include <linux/sched.h>

void sleep_on(struct wait_queue ** p)

void interruptible_sleep_on(struct wait_queue ** p)

Arguments: q -- Pointer to the driver’s wait_queue (see select_wait)

sleep_on puts the current process to sleep in an uninterruptible state. That is,

signals will not wake the process up. The only thing which will wake a process

A.3. Driver calls

65

sti :

up in this state is a hardware interrupt (which would call the interrupt handler

of the driver) — and even then the interrupt routine needs to call wake_up to

put the process in a running state.

interruptible sleep_on puts the current process to sleep in an interruptible state,

which means that not only will hardware interrupts get through, but also signals

and process timeouts (”alarms”) will cause the process to wake up (and execute

interrupt or signal handlers). A call to wake_up_interruptible is necessary to

wake up the process and allow it to continue running where it left off.

See Also: select_wait, wake_up, wake_up_interruptible

Macro, Allow interrupts to occur
#include <asm/system.h>

#define sti() __asm volatile__ ("sti"::)

See Also: cli

sys_getegid, sys_getgid, sys_getpid, sys_getppid, sys_getuid, sys_geteuid

wake_up, wake_up_interruptible :

functions which get various information about the current process,

#include <linux/sys.h>

int sys_getegid(void)
int sys_getgid(void)
int sys_getpid(void)
int sys_getppid(void)
int sys_getuid(void)
int sys_geteuid(void)

sys_getegid gets the effective gid of the process.
sys_getgid gets the group ID of the process.

sys_getpid gets the process ID of the process.
sys_getppid gets the process ID of the process’ parent.
sys_geteuid gets the effective uid of the process.

sys_getuid gets the user ID of the process.

queue.

: Funky

Wake up _all_ processes waiting on the wait

A.3. Driver calls 66

#include <linux/sched.h>

void wake_up(struct wait_queue *%*q)

void wake_up_interruptible(struct wait_queue #**q)

Arguments: q -- Pointer to the driver’s wait_queue (see select_wait)

See Also: select_wait, sleep_on, interruptible sleep_on

When a process issues a select call, it is checking to see if the given devices are ready
to perform the given operations. For example, suppose you want a driver to have a
command written to it, and to disallow further commands until the current command
is complete. Well, in the write call you would block commands if there is already a
command operating (for example, waiting for a board to do something). But that
would require the process to write over and over again until it succeeds. That just

burns cycles.

The select call allows a process to determine the availability of read and write. In the
above example, one merely has to select for write on that device’s file descriptor (as
returned by open), and the process would be put to sleep until the device is ready to

be written to.

The kernel will call the driver’s driver_select call when the process issues a select call.
The arguments to the driver_select call are detailed above. If the wait argument is
non-NULL, and there is no error condition caused by the select, driver_select should
put the process to sleep, and arrange to be woken up when the device becomes ready

(usually through an interrupt).

If. however. the wait argument is NULL, then the driver should quickly see if the
device is ready, and return even if it is not. The select_wait function does this already

for you (see further).

Putting the process to sleep does not require calling a sleep_on function. It is the
select_wait function which is called, with the p argument being equal to the wait

argument passed to driver_ select.

select_wait is pretty much equivalent to interruptible_sleep_on in that it adds the
current process to the wait queue and sleeps the process in an interruptible state.

The internals of the differences between select_wait and interruptible sleep_on are

A.4. Installation notes 67

relatively irrelevant here. Suffice it to say that to wake the process up from the
select, one needs to perform the wake_up_interruptible call. When that happens. the

process is free to run.

However, in the case of interruptible sleep_on, the process will continue running after
the call to interruptiblesleep_on. In the case of select_wait, the process does not.
driver_select is called as a "side effect” of the select call, and so completes even when
it calls select_wait. It is not select_wait which sleeps the process, but the select call.
Nevertheless, it is required to call select_wait to add the process to the wait-queue,

since select will not do that.

All one needs to remember for driver_select is:

o (Call select_wait if the device is not ready, and return 0.

e Return 1 if the device is ready.

Calling select with a timeout is really no different to the driver than calling it without
select. But there is one crucial difference. Remember timing out on interrupts above?
Well, interrupt timeouts and select timeouts cannot co-exist. They both use current-

Jtimeout to wake the process up after a period of time. Remember that!

A.4 Installation notes

Before you sit down and write your first driver, first make sure you understand how
to recompile the kernel. Then go ahead and recompile it! Recompilation of the kernel
is described in the FAQ. If you can’t recompile the kernel, you can’t install your
driver into the kernel. [Although I hear tell of a package on sunsite which can load
and unload drivers while the kernel is running. Until I test out this package, I won’t

include instructions for it here.]

For character devices, you need to go into the mem.cfile in the (source)/linux/kernel/chr_dev
directory, to the chr_dev_init function, and add your init function to it. Recompile

the kernel, and away you go!

(BTW. would you manually have to do a mknod to make the /dev/xxx entry for your

driver? Can you do it in the init function?)

A.4. Installation notes 68

In general, one installs a device special file in /dev manually, by using mknod:

mknod /dev/xxx c major minor

If you registered your character driver as major device X, then all accesses to /dev/xxx

where major==X will call your driver functions.

